JP2004245390A - Hydraulic joint and shaft connection mechanism using it - Google Patents

Hydraulic joint and shaft connection mechanism using it Download PDF

Info

Publication number
JP2004245390A
JP2004245390A JP2003038589A JP2003038589A JP2004245390A JP 2004245390 A JP2004245390 A JP 2004245390A JP 2003038589 A JP2003038589 A JP 2003038589A JP 2003038589 A JP2003038589 A JP 2003038589A JP 2004245390 A JP2004245390 A JP 2004245390A
Authority
JP
Japan
Prior art keywords
liquid chamber
rotating shaft
shaft
hydraulic
hydraulic joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003038589A
Other languages
Japanese (ja)
Other versions
JP4300816B2 (en
Inventor
Takekata Morimoto
健固 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2003038589A priority Critical patent/JP4300816B2/en
Publication of JP2004245390A publication Critical patent/JP2004245390A/en
Application granted granted Critical
Publication of JP4300816B2 publication Critical patent/JP4300816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic joint capable of reducing the ocurrence of fatigue destruction without increasing weight and material cost irrespective of restrictions in outer dimension. <P>SOLUTION: This hydraulic joint 11 is provided with an annular liquid chamber part 12 extending in the axial direction and a swelling part 11a constituted so as to swell by pressure of liquid pressed in the liquid chamber part. A value (L1/L2) obtained by dividing distance L1 from an end face 11a of the hydraulic joint 11 to an end face 12a of the liquid chamber part 12 by length L2 in the axial direction of the liquid chamber part is set to a scope of 0.06 to 0.08. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば圧延機の駆動装置などに用いられる液圧継手およびそれを用いた軸連結機構に関する。
【0002】
【従来の技術】
従来から、圧延機の駆動装置などにおいては、駆動側の回転軸(以下「駆動軸」ともいう)と、その駆動軸と離隔して内装または外装される従動側の回転軸(以下「従動軸」ともいう)とを、駆動軸のガタを従動軸に伝達することなく連結して固定しトルクを伝達するのに液圧継手が用いられている。
この液圧継手としては、例えば、図4に示すように、全体が円筒状であり、その内部に軸方向に延設された環状の液室部2と、その液室部2の内周面側に位置する薄肉の膨出部3とを備えたものがある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特許第2784881号公報(第2頁、第5図)
【0004】
【発明が解決しようとする課題】
上記従来の液圧継手1においては、液注入口(図示せず)から作動油が液室部2に圧入されると、その液圧が液室部2の内壁面に作用することで薄肉の膨出部3が押し出されるようになる。そして、同図の破線3aで示すように膨出すると駆動軸4に圧接し、さらにその駆動軸4が従動軸5に圧接することで、駆動軸4と従動軸5とが連結される。このような連結は、図示しない液圧制御手段によって繰り返し行われる。このため、液室部2の両端近傍に大きな引張応力や圧縮応力が繰り返し作用することになり、疲労破壊が発生しやすいという問題がある。
【0005】
この問題に対して、液室部2の両端近傍を厚肉にして機械的強度を高めることが考えられるが、例えば、液室部2の軸方向の両外側をそれぞれ厚肉にすると液室部2の軸方向長さが短くなるために駆動軸4に圧接する膨出部3の軸方向長さも短くなり、充分に駆動軸4のガタをなくすことができなくなる。一方、液室部2の軸方向の両外側をそれぞれ厚肉にした上で、液室部2の軸方向長さを充分な長さにしようとすると、液圧継手1全体の寸法が大きくなってしまい、各種機器に取り付けるのが難しくなる。よって、外形寸法を大きくすることなく、いかにして疲労強度を向上させるか、が重要となる。
【0006】
ところで、上記特許文献1には、液室部2両端の内周側が厚肉になるように傾斜を設ける方策が開示されている。この方策によれば、液室部2両端の軸方向外側を厚肉にするのではなく内周側を厚肉にしているので、外形寸法を大きくすることなく疲労強度を向上することができる。ところが、液室部2両端の内周側を厚肉にしたことにより、重量増加や材料コストアップを招来するので、必ずしも最善の疲労強度向上策とはいえない。
【0007】
本発明はこのような事情に鑑みなされたものであり、外形寸法上の制約があっても、重量増加や材料コスト高を招来することなく、疲労強度を向上させた液圧継手およびそれを用いた軸連結機構の提供をその目的とする。
【0008】
【課題を解決するための手段】
本発明者は、液室部両端近傍に発生する応力を低減すべく、液室部両端近傍に作用する応力をFEM解析(有限要素解析)により調べていたところ、液室部の寸法と液室部両端近傍に作用する応力との間に特異な関係が存在するとの知見を得た。すなわち、応力を低減するには、上述したように、その部分を厚肉にすればよいが、液室部両端の軸方向の両外側を厚肉にしすぎると、かえって大きな応力が作用するようになり疲労破壊が生じやすくなるとの知見を得た。そこで、液室部両端近傍に作用する応力が小さくなる液室部の寸法について種々実験を重ねた結果、本発明を完成するに至った。
【0009】
すなわち、本発明の液圧継手は、軸方向に延設された環状の液室部と、前記液室部に圧入された液の圧力により膨出する膨出部とを備え、前記膨出部を膨出させることにより、その膨出部と接触または離隔して内装または外装される第1の回転軸と、その第1の回転軸と離隔して内装または外装される第2の回転軸とを連結する液圧継手であって、当該液圧継手端面から前記液室部端面までの距離L1を前記液室部の軸方向長さL2で除した値(L1/L2)が0.06〜0.08の範囲に設定されていることを特徴としている。
【0010】
上記の構成によれば、膨出部を繰り返し膨出させて第1の回転軸と第2の回転軸とを繰り返し連結させたとしても、疲労破壊が起こりやすい部位に作用する応力を低減できる。また、液室部両端の軸方向の両外側を薄肉にできるので、重量増加や材料コスト高を抑制できるとともに、各種機器への取り付けに寸法上の不具合を生じる可能性が低くなる。ここで、L1/L2が0.06未満であると、液室部両端の軸方向の両外側が薄肉すぎて機械的強度が不足するからであり、L1/L2が0.08を超えると、液室部両端の軸方向の両外側が厚肉すぎて撓みにくくなり応力集中が発生するためと考えられるが、かえって疲労破壊が発生しやすくなるからである。
ここで、本発明において「当該液圧継手端面から前記液室部端面までの距離L1」とは、液圧継手の一方の端面から軸方向内側に向かって最短の位置にある液室部の一方の端面までの距離と、液圧継手の他方の端面から軸方向内側に向かって最短の位置にある液室部の他方の端面までの距離との平均をいう。
【0011】
本発明の軸連結機構は、第1の回転軸と、前記第1の回転軸と離隔して内装または外装される第2の回転軸と、前記第1の回転軸と接触または離隔して外装または内装される上記した液圧継手とを備えたことを特徴としている。上記の構成によれば、疲労強度を向上させた液圧継手を用いているので、長期にわたって、一方の回転軸のガタを他方の回転軸へ伝達することなく連結して固定しトルクを伝達することが可能となる。
ここで、本発明の軸連結機構には、第1の回転軸と、前記第1の回転軸と離隔して内装される第2の回転軸と、前記第1の回転軸と接触または離隔して外装される上記した液圧継手とを備えたものと、第1の回転軸と、前記第1の回転軸と離隔して外装される第2の回転軸と、前記第1の回転軸と接触または離隔して内装される上記した液圧継手とを備えたものとを含む。
【0012】
【発明の実施の形態】
つぎに、本発明の好ましい実施形態について図面を参照しながら説明する。図1は本発明の一実施形態に係る液圧継手を含んで構成される軸連結機構の要部構成を模式的に示す部分的な断面図である。この軸連結機構は、第1の回転軸としての円筒状の駆動側の回転軸(駆動軸)13と、この駆動軸13の一端部側の内周面13bと離隔して内装される円柱状の第2の回転軸としての従動側の回転軸(従動軸)14と、前記駆動軸13の一端部側の外周面13aと接触して外装(例えば焼嵌め)される円筒状の金属製の液圧継手11とを備えたものである。なお、駆動軸13と従動軸14は互いに同軸的に配置されているが、駆動軸13にガタが生じた際には、両者の軸が同軸的とならない場合がある。
【0013】
液圧継手11は、その内部に軸方向に延設された環状の液室部12と、この液室12よりも内周面11c側に位置し液室部12に圧入された液の圧力により膨出する膨出部11bとを備えている。
【0014】
液室部12は、その軸方向長さがL2であり、液圧継手11内部のやや内周面11cに近い位置で、かつ両端面11aからそれぞれ同じ距離L1,L1離れた位置に端面12aが位置するように形成されている。なお、液室部12の両端は、中央に比べ拡大するように形成されている。
膨出部11bは、液室部12より内周面11c側に位置する薄肉の部分であり、図示しない液圧制御手段によって圧入された液の圧力により膨出するよう形成されている。
【0015】
このような液圧継手11において、その液圧継手11の端面11aから液室部12の端面12aまでの距離L1を液室部12の軸方向長さL2で除した値(L1/L2)が0.06〜0.08の範囲に設定されている。このような範囲に設定されている場合、液室部12の両端部に作用する応力が小さくなるため、疲労破壊の発生が低減されたものとなる。
【0016】
図2は、液室部12の軸方向長さL2を一定(226mm)とした場合に、液圧継手11の端面11aから液室部12の端面12aまでの距離L1と測定部A(図1参照)に作用する応力との関係を示すグラフ図である。なお、測定部Aに作用する応力はFEM解析(有限要素解析)により求め、図2の縦軸は基準となるサンプルの応力(σmax0)に対する比とした。ここで、応力の測定を測定部Aで行ったのは、測定容易である、最も疲労破壊が発生しやすい部分(液室部12両端の内周側)と実質的に等価なデータが得られる等の理由による。
【0017】
図2より、L1を14.5mm(L1/L2=0.064)、17.0mm(L1/L2=0.075)とした場合は、測定部Aに作用する応力が小さくなっていることがわかる。これに対して、L1が12.0mm(L1/L2=0.053)、19.5mm(L1/L2=0.086)、22.0mm(L1/L2=0.097)、24.5mm(L1/L2=0.108)とした場合は、測定部Aに作用する応力が大きくなっていることがわかる。したがって、L1/L2が0.06〜0.08の範囲内であれば、測定部Aに作用する応力が小さくなり、そのため疲労破壊が低減されたものになることが確認できる。
【0018】
このような液圧継手11は、例えば、液圧継手本体用のリング状中間部材と、膨出部用のリング状中間素材とを準備した後、液圧継手本体用のリング状中間部材の内周面と膨出部用のリング状中間部材の外周面に、それぞれL1/L2が0.06〜0.08の範囲内となる液室部12用の凹面部を形成した後、両者の凹面部同士を対面させた状態で溶接して接合一体化することにより製造することができる。
【0019】
本形態に係る液圧継手11は、L1/L2が特定の範囲に設定されているので、膨出部11bを繰り返し膨出させても、液室部12の両端の軸方向外側に大きな応力が作用しにくく、そのため疲労破壊の発生が低減されたものとなる。よって、このような液圧継手11を用いた本形態に係る軸連結機構は、長期にわたって、駆動軸13のガタを従動軸14に伝達することなく両軸を連結して固定し、トルクを伝達することができるものとなる。また、液室部12両端の軸方向の両外側を薄肉にできるので、重量増加や材料コスト高を抑制できるとともに、各種機器への取り付けに寸法上の不具合を生じる可能性が低くなる。なお、本形態に係る液圧継手11は、駆動軸13に接触させているので、液室部12に圧入される作動油の液圧を有効に活用することができるという利点がある。
【0020】
図3は、本発明の他の実施形態に係る液圧継手を含んで構成される軸連結機構の要部構成を模式的に示す部分的な断面図である。本形態では、上記した実施形態(図1参照)と比べ、液圧継手11を駆動軸13と離隔して配置した点で異なる。このような構成の液圧継手11であっても、液室部12の端面12aから液圧継手12の端面11aまでの距離L1を液室部12の軸方向長さL2で除した値が0.06〜0.08の範囲に設定されておれば、疲労破壊の発生が低減されたものとなる。また、液室部12両端の軸方向の両外側を薄肉にできるので、重量増加や材料コスト高を抑制できるとともに、各種機器への取り付けに寸法上の不具合を生じる可能性が低くなる。
【0021】
なお、上記実施形態では、第1の回転軸としての駆動軸13に液圧継手11を外装する場合について説明したが、本発明はこれに限らず、第1の回転軸としての駆動軸13に液圧継手11を内装するようにしてもよい。この場合、液圧継手は、軸方向に延設された液室部と、前記液室部に圧入された液の圧力により膨出する膨出部とを備えたものであれば、全体が円筒状であってもよいし、円柱状であってもよい。
【0022】
【発明の効果】
以上のように、本発明の液圧継手によれば、外形寸法に制約があっても、重量増加や材料コスト高を招来することなく、疲労破壊の発生を低減したものとなる。また、本発明の軸連結機構によれば、疲労破壊の発生が低減された液圧継手を用いているので、長期にわたって、一方の回転軸のガタを他方の回転軸へ伝達することなく動力伝達を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る液圧継手を含んで構成される軸連結機構の要部構成を模式的に示す部分的な断面図である。
【図2】液室部の軸方向長さと応力との関係を示すグラフ図である。
【図3】本発明の他の実施形態に係る液圧継手を含んで構成される軸連結機構の要部構成を模式的に示す部分的な断面図である。
【図4】従来の液圧継手を含んで構成される軸連結機構の要部構成を模式的に示す部分的な断面図である。
【符号の説明】
11 液圧継手(液圧継手)
11a 液圧継手の端面
11b 膨出部
12 液室部
12a 液室部の端面
13 駆動軸(第1の回転軸)
14 従動軸(第2の回転軸)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic coupling used for a drive device of a rolling mill, for example, and a shaft coupling mechanism using the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a driving device of a rolling mill, a driving-side rotating shaft (hereinafter, also referred to as a “driving shaft”) and a driven-side rotating shaft (hereinafter, referred to as a “driven shaft”) that is internally or externally separated from the driving shaft. ) Is connected and fixed without transmitting the play of the drive shaft to the driven shaft, and the hydraulic joint is used to transmit the torque.
For example, as shown in FIG. 4, this hydraulic coupling is entirely cylindrical and has an annular liquid chamber portion 2 extending in the axial direction therein, and an inner peripheral surface of the liquid chamber portion 2. And a thin bulging portion 3 located on the side (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent No. 2784881 (page 2, FIG. 5)
[0004]
[Problems to be solved by the invention]
In the above-described conventional hydraulic coupling 1, when hydraulic oil is press-fitted into the liquid chamber 2 from a liquid inlet (not shown), the hydraulic pressure acts on the inner wall surface of the liquid chamber 2 so that the thin wall is formed. The bulging portion 3 is pushed out. When it bulges as shown by the broken line 3a in the figure, it comes into pressure contact with the drive shaft 4, and the drive shaft 4 comes into pressure contact with the driven shaft 5, whereby the drive shaft 4 and the driven shaft 5 are connected. Such connection is repeatedly performed by a hydraulic control unit (not shown). For this reason, a large tensile stress or a large compressive stress is repeatedly applied to the vicinity of both ends of the liquid chamber portion 2, and thus there is a problem that fatigue fracture easily occurs.
[0005]
To solve this problem, it is conceivable to increase the mechanical strength by increasing the thickness in the vicinity of both ends of the liquid chamber portion 2. Since the length in the axial direction is shortened, the length in the axial direction of the bulging portion 3 pressed against the drive shaft 4 is also reduced, so that the play of the drive shaft 4 cannot be sufficiently eliminated. On the other hand, if the axial length of the liquid chamber portion 2 is made to be a sufficient length after both the outer sides in the axial direction of the liquid chamber portion 2 are made thicker, the overall size of the hydraulic coupling 1 becomes large. It becomes difficult to attach to various devices. Therefore, it is important how to improve the fatigue strength without increasing the external dimensions.
[0006]
By the way, Patent Literature 1 discloses a method of providing a slope such that the inner peripheral sides of both ends of the liquid chamber 2 are thick. According to this measure, the outer peripheral side of the liquid chamber 2 at both ends is not made thicker but thicker on the inner peripheral side, so that the fatigue strength can be improved without increasing the external dimensions. However, increasing the thickness of the inner peripheral sides of both ends of the liquid chamber portion 2 leads to an increase in weight and an increase in material cost, and thus cannot always be said to be the best measure for improving fatigue strength.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and even when there are restrictions on external dimensions, a hydraulic joint having improved fatigue strength and a hydraulic joint having improved fatigue strength are provided without increasing weight or increasing material costs. It is an object of the present invention to provide a shaft connecting mechanism.
[0008]
[Means for Solving the Problems]
The present inventor examined the stress acting near both ends of the liquid chamber by FEM analysis (finite element analysis) in order to reduce the stress generated near both ends of the liquid chamber. It was found that there was a peculiar relationship with the stress acting near both ends of the part. That is, in order to reduce the stress, as described above, the portion may be made thicker. However, if both the outer sides in the axial direction of both ends of the liquid chamber portion are made too thick, a large stress may be applied instead. It was found that fatigue fracture easily occurs. Therefore, as a result of repeated experiments on the dimensions of the liquid chamber where the stress acting on the vicinity of both ends of the liquid chamber decreases, the present invention has been completed.
[0009]
That is, the hydraulic joint of the present invention includes an annular liquid chamber portion extending in the axial direction, and a swelling portion that swells due to the pressure of the liquid press-fitted into the liquid chamber portion. Swelling, a first rotating shaft that is fitted or separated from the bulging portion, or a second rotating shaft that is fitted or separated from the first rotating shaft. In which the distance (L1 / L2) obtained by dividing the distance L1 from the end face of the hydraulic joint to the end face of the liquid chamber part by the axial length L2 of the liquid chamber part is 0.06 or more. It is characterized in that it is set in the range of 0.08.
[0010]
According to the above configuration, even when the swelling portion is repeatedly swelled to repeatedly connect the first rotating shaft and the second rotating shaft, it is possible to reduce the stress applied to a portion where fatigue failure easily occurs. Further, since both outer sides in the axial direction of both ends of the liquid chamber portion can be made thin, it is possible to suppress an increase in weight and material cost, and to reduce the possibility of causing dimensional defects in mounting to various devices. Here, if L1 / L2 is less than 0.06, both ends in the axial direction at both ends of the liquid chamber portion are too thin, resulting in insufficient mechanical strength. If L1 / L2 exceeds 0.08, It is considered that both sides in the axial direction at both ends of the liquid chamber portion are too thick to bend easily and cause stress concentration, but rather fatigue fatigue is likely to occur.
Here, in the present invention, the “distance L1 from the end face of the hydraulic joint to the end face of the liquid chamber portion” refers to one of the liquid chamber portions located at the shortest position axially inward from one end face of the hydraulic joint. And the average of the distance from the other end face of the hydraulic coupling to the other end face of the liquid chamber portion at the shortest position inward in the axial direction.
[0011]
The shaft coupling mechanism according to the present invention includes a first rotating shaft, a second rotating shaft that is provided internally or externally at a distance from the first rotating shaft, and an external device that contacts or separates from the first rotating shaft. Alternatively, it is characterized by including the above-mentioned hydraulic coupling to be installed therein. According to the above configuration, since the hydraulic coupling with improved fatigue strength is used, for a long period of time, the backlash of one rotating shaft is connected and fixed without transmitting to the other rotating shaft to transmit the torque. It becomes possible.
Here, the shaft connecting mechanism of the present invention includes a first rotating shaft, a second rotating shaft which is housed separately from the first rotating shaft, and a contacting or separating member with the first rotating shaft. A first rotary shaft, a second rotary shaft that is provided separately from the first rotary shaft, and the first rotary shaft. And the above-mentioned hydraulic coupling which is provided in contact with or separated therefrom.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a partial cross-sectional view schematically showing a main configuration of a shaft coupling mechanism including a hydraulic coupling according to an embodiment of the present invention. The shaft coupling mechanism includes a cylindrical rotating shaft (driving shaft) 13 as a first rotating shaft on a driving side and a cylindrical inner space separated from an inner peripheral surface 13 b on one end side of the driving shaft 13. And a cylindrical metal (for example, shrink-fit) which is in contact with the driven-side rotating shaft (driven shaft) 14 as a second rotating shaft and the outer peripheral surface 13a at one end of the driving shaft 13. The hydraulic coupling 11 is provided. The drive shaft 13 and the driven shaft 14 are arranged coaxially with each other. However, when the drive shaft 13 is backlashed, the two shafts may not be coaxial.
[0013]
The hydraulic joint 11 has an annular liquid chamber portion 12 extending in the axial direction therein and a pressure of the liquid press-fitted into the liquid chamber portion 12 located on the inner peripheral surface 11 c side of the liquid chamber 12. And a bulging portion 11b that bulges.
[0014]
The liquid chamber portion 12 has an axial length L2, and has an end surface 12a at a position slightly closer to the inner peripheral surface 11c inside the hydraulic coupling 11 and at the same distance L1, L1 from both end surfaces 11a. It is formed so that it may be located. In addition, both ends of the liquid chamber 12 are formed so as to be enlarged as compared with the center.
The bulging portion 11b is a thin portion located closer to the inner peripheral surface 11c than the liquid chamber portion 12, and is formed so as to bulge by the pressure of the liquid press-fitted by a liquid pressure control means (not shown).
[0015]
In such a hydraulic joint 11, a value (L1 / L2) obtained by dividing the distance L1 from the end face 11a of the hydraulic joint 11 to the end face 12a of the liquid chamber part 12 by the axial length L2 of the liquid chamber part 12 is obtained. It is set in the range of 0.06 to 0.08. When the range is set in such a range, the stress acting on both ends of the liquid chamber portion 12 is reduced, so that the occurrence of fatigue fracture is reduced.
[0016]
FIG. 2 shows the distance L1 from the end face 11a of the hydraulic coupling 11 to the end face 12a of the liquid chamber section 12 and the measuring section A (FIG. 1) when the axial length L2 of the liquid chamber section 12 is constant (226 mm). FIG. 7 is a graph showing a relationship with stress acting on the reference (see FIG. 1). The stress acting on the measurement portion A was obtained by FEM analysis (finite element analysis), and the vertical axis in FIG. 2 was the ratio to the stress (σmax0) of the reference sample. Here, the measurement of the stress at the measurement section A is easy to measure, and data substantially equivalent to the portion where the fatigue fracture is most likely to occur (the inner circumferential side at both ends of the liquid chamber section 12) is obtained. For reasons such as.
[0017]
FIG. 2 shows that when L1 is 14.5 mm (L1 / L2 = 0.064) and 17.0 mm (L1 / L2 = 0.075), the stress acting on the measurement portion A is small. Understand. On the other hand, L1 is 12.0 mm (L1 / L2 = 0.053), 19.5 mm (L1 / L2 = 0.086), 22.0 mm (L1 / L2 = 0.097), 24.5 mm ( When L1 / L2 = 0.108), it can be seen that the stress acting on the measurement portion A is large. Therefore, when L1 / L2 is in the range of 0.06 to 0.08, it can be confirmed that the stress acting on the measuring portion A is small, and therefore, the fatigue fracture is reduced.
[0018]
Such a hydraulic coupling 11 is, for example, prepared by preparing a ring-shaped intermediate member for the hydraulic coupling main body and a ring-shaped intermediate material for the bulging portion, and then preparing the ring-shaped intermediate member for the hydraulic coupling main body. After forming a concave portion for the liquid chamber portion 12 in which L1 / L2 is in the range of 0.06 to 0.08 on the peripheral surface and the outer peripheral surface of the ring-shaped intermediate member for the bulging portion, respectively, the concave surfaces of both are formed. It can be manufactured by welding and joining together in a state where the parts face each other.
[0019]
In the hydraulic joint 11 according to the present embodiment, since L1 / L2 is set to a specific range, even if the bulging portion 11b is repeatedly bulged, a large stress is applied to both ends of the liquid chamber portion 12 in the axial direction outside. It is difficult to act, so that the occurrence of fatigue fracture is reduced. Therefore, the shaft connecting mechanism according to the present embodiment using such a hydraulic coupling 11 connects and fixes both shafts without transmitting the play of the drive shaft 13 to the driven shaft 14 for a long time, and transmits the torque. Can be done. Further, since both outer sides in the axial direction of both ends of the liquid chamber portion 12 can be made thin, it is possible to suppress an increase in weight and material cost, and to reduce the possibility of causing dimensional defects in mounting to various devices. Since the hydraulic coupling 11 according to the present embodiment is in contact with the drive shaft 13, there is an advantage that the hydraulic pressure of the hydraulic oil press-fitted into the liquid chamber 12 can be effectively used.
[0020]
FIG. 3 is a partial cross-sectional view schematically illustrating a main configuration of a shaft coupling mechanism including a hydraulic coupling according to another embodiment of the present invention. The present embodiment is different from the above-described embodiment (see FIG. 1) in that the hydraulic coupling 11 is disposed apart from the drive shaft 13. Even in the hydraulic joint 11 having such a configuration, the value obtained by dividing the distance L1 from the end face 12a of the liquid chamber 12 to the end face 11a of the hydraulic joint 12 by the axial length L2 of the liquid chamber 12 is 0. If it is set in the range of 0.06 to 0.08, the occurrence of fatigue fracture is reduced. Further, since both outer sides in the axial direction of both ends of the liquid chamber portion 12 can be made thin, it is possible to suppress an increase in weight and material cost, and to reduce the possibility of causing dimensional defects in mounting to various devices.
[0021]
In the above embodiment, the case where the hydraulic coupling 11 is provided on the drive shaft 13 serving as the first rotation shaft has been described. However, the present invention is not limited to this, and the drive shaft 13 serving as the first rotation shaft may be provided. The hydraulic joint 11 may be provided inside. In this case, if the hydraulic coupling includes a liquid chamber portion extending in the axial direction and a swelling portion that swells due to the pressure of the liquid press-fitted into the liquid chamber portion, the whole is cylindrical. The shape may be a column shape.
[0022]
【The invention's effect】
As described above, according to the hydraulic joint of the present invention, even if there are restrictions on the external dimensions, the occurrence of fatigue fracture is reduced without increasing weight or increasing material costs. In addition, according to the shaft coupling mechanism of the present invention, since the hydraulic coupling with reduced occurrence of fatigue fracture is used, power transmission without transmitting backlash of one rotating shaft to the other rotating shaft for a long period of time. It can be performed.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view schematically showing a main configuration of a shaft coupling mechanism including a hydraulic coupling according to an embodiment of the present invention.
FIG. 2 is a graph showing a relationship between an axial length of a liquid chamber and stress.
FIG. 3 is a partial cross-sectional view schematically showing a main part configuration of a shaft coupling mechanism including a hydraulic coupling according to another embodiment of the present invention.
FIG. 4 is a partial cross-sectional view schematically showing a main configuration of a shaft coupling mechanism including a conventional hydraulic coupling.
[Explanation of symbols]
11 Hydraulic fittings (hydraulic fittings)
11a End face of hydraulic joint 11b Swelling part 12 Liquid chamber part 12a End face of liquid chamber part 13 Drive shaft (first rotation axis)
14 Followed shaft (second rotating shaft)

Claims (2)

軸方向に延設された環状の液室部と、前記液室部に圧入された液の圧力により膨出する膨出部とを備え、前記膨出部を膨出させることにより、その膨出部と接触または離隔して内装または外装される第1の回転軸と、その第1の回転軸と離隔して内装または外装される第2の回転軸とを連結する液圧継手であって、
当該液圧継手端面から前記液室部端面までの距離L1を前記液室部の軸方向長さL2で除した値(L1/L2)が0.06〜0.08の範囲に設定されていることを特徴とする液圧継手。
An annular liquid chamber portion extending in the axial direction, and a swelling portion swelling due to the pressure of the liquid press-fitted into the liquid chamber portion. A hydraulic coupling for connecting a first rotating shaft that is internally or externally provided in contact with or separated from the portion, and a second rotating shaft that is internally or externally separately provided from the first rotating shaft,
A value (L1 / L2) obtained by dividing the distance L1 from the end face of the hydraulic joint to the end face of the liquid chamber part by the axial length L2 of the liquid chamber part is set in the range of 0.06 to 0.08. A hydraulic joint characterized by the above-mentioned.
第1の回転軸と、前記第1の回転軸と離隔して内装または外装される第2の回転軸と、前記第1の回転軸と接触または離隔して外装または内装される請求項1に記載された液圧継手と、を備えたことを特徴とする軸連結機構。The first rotating shaft, a second rotating shaft provided inside or outside at a distance from the first rotating shaft, and an outside or inside contacted or separated from the first rotating shaft. A shaft coupling mechanism comprising: the above-described hydraulic coupling.
JP2003038589A 2003-02-17 2003-02-17 Hydraulic joint and shaft coupling mechanism using the same Expired - Fee Related JP4300816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038589A JP4300816B2 (en) 2003-02-17 2003-02-17 Hydraulic joint and shaft coupling mechanism using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038589A JP4300816B2 (en) 2003-02-17 2003-02-17 Hydraulic joint and shaft coupling mechanism using the same

Publications (2)

Publication Number Publication Date
JP2004245390A true JP2004245390A (en) 2004-09-02
JP4300816B2 JP4300816B2 (en) 2009-07-22

Family

ID=33023082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038589A Expired - Fee Related JP4300816B2 (en) 2003-02-17 2003-02-17 Hydraulic joint and shaft coupling mechanism using the same

Country Status (1)

Country Link
JP (1) JP4300816B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163501A (en) * 2010-02-12 2011-08-25 Jtekt Corp Shaft coupling device and torque limiter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163501A (en) * 2010-02-12 2011-08-25 Jtekt Corp Shaft coupling device and torque limiter

Also Published As

Publication number Publication date
JP4300816B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2010086704A1 (en) Differential device
JP6461164B2 (en) Power tools
JP5131054B2 (en) Elastic shaft coupling and electric power steering device
JP5239465B2 (en) Method for manufacturing universal joint yoke
FR2840376A1 (en) HOMOCINETIC JOINT TRIPODE
JP2004245390A (en) Hydraulic joint and shaft connection mechanism using it
EP1854698A2 (en) Vehicle steering assembly having an axially compliant intermediate shaft
JP2011527737A (en) Axial compact support for the gear in the gearbox
JP4775220B2 (en) Transmission ratio variable device
JP6364823B2 (en) Electric power steering apparatus and manufacturing method thereof
JP5138539B2 (en) Power transmission structure and twin-screw kneading extruder
JPH0643047A (en) Mechanical joint
JP6521065B2 (en) Universal Joint Yoke
JPH08226451A (en) Shaft connecting mechanism
WO2024018529A1 (en) Universal joint
JP2010270808A (en) Spline shaft coupling
JP2007113751A (en) Power transmission structure of motor
JPH06329033A (en) Elastic coupling
JP2002136043A (en) Motor antirattler for electric power steering device
JP5007752B2 (en) Method for manufacturing yoke for cross shaft type universal joint
JP6572953B2 (en) Universal joint yoke
JPH01145424A (en) Shaft joint
JP2004162738A (en) Universal joint
JP2009127762A (en) Constant velocity universal joint
JPH0979280A (en) Elastic shaft joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4300816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees