WO2024018529A1 - Universal joint - Google Patents

Universal joint Download PDF

Info

Publication number
WO2024018529A1
WO2024018529A1 PCT/JP2022/028067 JP2022028067W WO2024018529A1 WO 2024018529 A1 WO2024018529 A1 WO 2024018529A1 JP 2022028067 W JP2022028067 W JP 2022028067W WO 2024018529 A1 WO2024018529 A1 WO 2024018529A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
universal joint
contact surface
keyway
bearing cup
Prior art date
Application number
PCT/JP2022/028067
Other languages
French (fr)
Japanese (ja)
Inventor
諭史 吉田
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to PCT/JP2022/028067 priority Critical patent/WO2024018529A1/en
Publication of WO2024018529A1 publication Critical patent/WO2024018529A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/16Rotary-absorption dynamometers, e.g. of brake type
    • G01L3/20Rotary-absorption dynamometers, e.g. of brake type fluid actuated

Definitions

  • the present invention relates to a universal joint.
  • Patent Document 1 discloses a large universal joint used for drive shafts of rolling mills, etc.
  • the universal joint connected to the drive shaft includes a plurality of parts.
  • the inventor of the present application focused on this point, and determined that the torque of the drive shaft can be measured with a relatively simple configuration by measuring the stress acting on some of the multiple parts included in the universal joint. We have thought about what we can do and have created embodiments according to the present disclosure.
  • the universal joint of this embodiment includes a cross shaft having a trunnion, a bearing cup that supports the trunnion via a plurality of rollers, a yoke to which the bearing cup is attached, and a fastener that fixes the bearing cup to the yoke.
  • the device includes a member and a pressure sensor.
  • the bearing cup has a first surface that includes a first contact surface that contacts the yoke and a key that projects with respect to the first contact surface, and an opening in the first contact surface through which the fastening member passes. It has a through hole.
  • the yoke includes a second abutting surface that abuts the first abutting surface, a second surface that is recessed with respect to the second abutting surface, and includes a keyway into which the key is fitted, and a second abutting surface that is in contact with the second abutting surface. It has a fastening hole that is open and into which the fastening member is fastened, and a hydraulic chamber filled with liquid. The pressure sensor measures the pressure of the liquid. At least a portion of the hydraulic chamber is located between the keyway and the fastening hole.
  • FIG. 1 is a diagram showing a universal joint according to an embodiment.
  • FIG. 2 is an exploded perspective view of the universal joint according to the embodiment.
  • FIG. 3 is a partial sectional view taken along the line III--III in FIG. 4 is a partial sectional view taken along the line IV-IV in FIG. 3.
  • FIG. 5 is a block diagram showing a configuration example of a pressure sensor and a data processing device.
  • FIG. 6 is a diagram showing a universal joint according to a modified example.
  • the universal joint of this embodiment includes a cross shaft having a trunnion, a bearing cup that supports the trunnion via a plurality of rollers, a yoke to which the bearing cup is attached, and a yoke that attaches the bearing cup to the yoke. It includes a fastening member for fixing and a pressure sensor.
  • the bearing cup has a first surface that includes a first contact surface that contacts the yoke and a key that projects with respect to the first contact surface, and an opening in the first contact surface through which the fastening member passes. It has a through hole.
  • the yoke includes a second abutting surface that abuts the first abutting surface, a second surface that is recessed with respect to the second abutting surface, and includes a keyway into which the key is fitted, and a second abutting surface that is in contact with the second abutting surface. It has a fastening hole that is open and into which the fastening member is fastened, and a hydraulic chamber filled with liquid. The pressure sensor measures the pressure of the liquid. At least a portion of the hydraulic chamber is located between the keyway and the fastening hole.
  • the hydraulic chamber is located near the keyway.
  • the compressive stress acts on the hydraulic chamber.
  • changes in stress due to torque acting on the universal joint appear as changes in fluid pressure. Therefore, the universal joint of this embodiment can measure the torque acting on the universal joint based on the output of the pressure sensor.
  • the universal joint of this embodiment can measure torque by measuring the pressure of the liquid in the hydraulic chamber. Compared to the above, a bridge circuit or the like is not required, and wiring etc. can be easily routed.
  • the universal joint of this embodiment can measure torque with a simple configuration. Further, in the universal joint of this embodiment, the hydraulic chamber is not destroyed by excessive torque that is instantaneously generated.
  • the hydraulic chamber may be located between the bottom surface of the keyway and the second contact surface in an axial direction parallel to the central axis of the universal joint.
  • the hydraulic pressure chamber can be reliably provided between the keyway and the fastening hole.
  • the hydraulic pressure chamber is a cylindrical hole extending in the longitudinal direction of the keyway. It is preferable to include.
  • the universal joint of this embodiment can ensure a wide range in the longitudinal direction of the keyway where the hydraulic pressure chamber and the keyway are lined up in the vicinity. As a result, the universal joint according to the present embodiment is able to more noticeably cause a change in liquid pressure due to a change in stress.
  • FIG. 1 is a diagram showing a universal joint according to an embodiment.
  • FIG. 2 is an exploded perspective view of the universal joint according to the embodiment.
  • This universal joint 10 is used, for example, in a rolling mill in a steel mill. More specifically, the universal joint 10 is disposed between the input shaft of the rolling roll and the drive shaft, or between the output shaft of the drive motor and the drive shaft, and connects the pair of shafts so that they can rotate together. .
  • the universal joint 10 transmits rotational force from one of the pair of shafts to the other.
  • the universal joint 10 includes one cross shaft 11, four bearing cups 12, a pair of yokes 13, and a plurality of fastening members 14.
  • the plurality of fastening members 14 are members for fixing the bearing cup 12 to the yoke 13.
  • the plurality of fastening members 14 are, for example, bolts.
  • the cross shaft 11 has four trunnions 11a.
  • Each bearing cup 12 supports each trunnion 11a via a plurality of rollers 15. All bearing cups 12 have the same configuration.
  • Each bearing cup 12 is attached to a pair of yokes 13.
  • the pair of yokes 13 are integrally rotatably connected to a pair of shafts (not shown) in a rolling mill.
  • the first yoke 13a shown on the right side in FIGS. 1 and 2 is included in the first shaft 16.
  • the first yoke 13a can rotate integrally with the first shaft 16.
  • the first shaft 16 is connected to one of a pair of shafts in the rolling mill.
  • the second yoke 13b shown on the left side in FIGS. 1 and 2 is included in the second shaft 17.
  • the second yoke 13b can rotate integrally with the second shaft 17.
  • the second shaft 17 is connected to the other shaft of the pair of shafts in the rolling mill.
  • the first yoke 13a and the second yoke 13b have the same configuration.
  • the central axis of the first shaft 16 first yoke 13a
  • the central axis of the second shaft 17 second yoke 13b
  • the direction along the central axis C is the "axial direction.”
  • the "axial direction” also includes a direction parallel to the central axis C.
  • the direction perpendicular to the central axis C is the "radial direction”.
  • the direction of rotation around the central axis C is the "circumferential direction.”
  • each bearing cup 12 has a first surface 20 facing the yoke 13 and a plurality of through holes 25.
  • the first surface 20 includes a first contact surface 22 that contacts the yoke 13 and a key 24 .
  • the key 24 projects in a rectangular shape with respect to the first contact surface 22.
  • the plurality of through holes 25 are provided in parallel to the axial direction.
  • the plurality of through holes 25 penetrate between the first surface 20 and the first opposite surface 19.
  • the first opposite surface 19 is a surface of the bearing cup 12 that faces opposite to the first surface 20 .
  • a total of six through holes 25 are provided, three on both sides of the bearing cup 12 in the circumferential direction.
  • the plurality of through holes 25 open into two regions 22 a of the first contact surface 22 adjacent to each other on both sides of the key 24 in the circumferential direction. Three through holes 25 open in each of the two regions 22a.
  • the first yoke 13a has a second surface 26 that faces the first surface 20 of the bearing cup 12, and a plurality of fastening holes 28.
  • the second surface 26 includes a pair of second contact surfaces 30 and a pair of keyways 23 .
  • Each of the pair of second abutting surfaces 30 is a surface that abuts the first abutting surface 22 of one of the bearing cups 12 of the pair.
  • the pair of second contact surfaces 30 are provided on both sides of the second surface 26 in the radial direction with the central axis C interposed therebetween.
  • the pair of keyways 23 are recessed relative to the pair of second contact surfaces 30.
  • the keys 24 of the pair of bearing cups 12 are fitted into the pair of key grooves 23.
  • the pair of keyways 23 each extend in the radial direction from the outer peripheral surface 13g of the first yoke 13a. Therefore, the keyway 23 is provided so as to cut out the outer peripheral surface 13g.
  • the plurality of fastening holes 28 are provided in each of the pair of second contact surfaces 30.
  • the plurality of fastening holes 28 open in two regions 30 a of the second contact surface 30 adjacent to both sides of the keyway 23 in the circumferential direction.
  • Three fastening holes 28 open in each of the two regions 30a.
  • a female thread is formed on the inner peripheral surface of the fastening hole 28.
  • a male thread provided at the tip of the fastening member 14 is screwed into this female thread.
  • the fastening member 14 is inserted into the through hole 25 from the first opposite surface 19 side of the bearing cup 12 and is screwed into the fastening hole 28 . Thereby, the bearing cup 12 is fixed to the second surface 26 of the first yoke 13a. At this time, the first contact surface 22 of the bearing cup 12 and the second contact surface 30 of the first yoke 13a contact each other.
  • the universal joint 10 of this embodiment further includes a pressure sensor 40.
  • the pressure sensor 40 measures the pressure of the liquid filled in the hydraulic pressure chamber 42 provided in the first yoke 13a.
  • FIG. 3 is a partial sectional view taken along the line III--III in FIG.
  • the hydraulic chamber 42 is configured by a hole 44 and an internal space of an adapter 46.
  • FIG. 3 is a partial sectional view taken along the line III--III in FIG.
  • the hydraulic chamber 42 is configured by a hole 44 and an internal space of an adapter 46.
  • the hole 44 is open to the outer peripheral surface 13g of the first yoke 13a.
  • the hole 44 has a first cylindrical surface 44a and a bottom surface 44b.
  • the first cylindrical surface 44a is a surface connecting the outer peripheral surface 13g and the bottom surface 44b.
  • the first cylindrical surface 44a extends along the longitudinal direction of the keyway 23.
  • 4 is a partial sectional view taken along the line IV-IV in FIG. 3.
  • the keyway 23 has a bottom surface 23a and a pair of stepped surfaces 23b.
  • the pair of stepped surfaces 23b are surfaces that connect the pair of long sides of the bottom surface 23a and the two regions 30a on both sides of the keyway 23. As shown in FIGS.
  • the hole 44 is provided between the keyway 23 and the fastening hole 28. Therefore, the hydraulic chamber 42 is located between the keyway 23 and the fastening hole 28. Further, as shown in FIG. 4, the hole 44 is provided between the bottom surface 23a of the keyway 23 and the region 30a (second contact surface 30) in the axial direction. Therefore, the hydraulic chamber 42 is located between the bottom surface 23a and the second contact surface 30 in the axial direction.
  • the stepped surface 23b on the side of the torque generation source presses the key 24.
  • the key 24 on the side receiving the torque presses the stepped surface 23b.
  • compressive stress acts on the surface layer portion when the step surface 23b is the surface, and a region that is slightly plastically deformed is generated. Therefore, in FIG. 4, the distance W between the stepped surface 23b and the hole 44 is set to a value that does not cause plastic deformation in the hole 44.
  • plastic deformation occurring in the surface layer of the stepped surface 23b does not affect the hydraulic pressure chamber 42.
  • the adapter 46 is attached to the outer end 44a1 of the first cylindrical surface 44a.
  • the adapter 46 is a T-shaped fitting.
  • the adapter 46 has a first tube 46a extending in the radial direction and a second tube 46b extending in the axial direction.
  • the first pipe 46a is connected to the second pipe 46b at approximately the center in the longitudinal direction.
  • the first pipe 46a and the second pipe 46b are in communication with each other.
  • a distal end portion 46a1 of the first tube 46a facing radially inward is press-fitted into an outer end portion 44a1.
  • the pressure sensor 40 is provided at the tip 46b1 of the second pipe 46b facing toward the second yoke 13b. Pressure sensor 40 is fixed to the outside of bearing cup 12 .
  • a valve 48 is provided at a distal end portion 46b2 of the second tube 46b facing in the opposite direction to the distal end portion 46b1. The valve 48 can be opened and closed, and can be switched between communicating and blocking communication between the inside and outside of the hydraulic chamber 42.
  • the liquid L is filled inside the hydraulic pressure chamber 42.
  • the connecting portion between the hole 44 and the adapter 46, the connecting portion between the adapter 46 and the pressure sensor 40, and the connecting portion between the adapter 46 and the valve 48 are sealed.
  • the liquid L in the hydraulic pressure chamber 42 does not leak from these connecting parts.
  • the liquid L is, for example, hydraulic oil.
  • the liquid L is filled into the hydraulic chamber 42 to a predetermined pressure.
  • the liquid L is injected into the hydraulic chamber 42 from the valve 48 .
  • an injection pipe for injecting liquid L is connected to valve 48 .
  • the valve 48 is opened and the inside of the hydraulic chamber 42 is brought to negative pressure.
  • the liquid L is injected into the hydraulic pressure chamber 42, and when the liquid L reaches a predetermined pressure, the valve 48 is closed. In this way, the inside of the hydraulic chamber 42 is filled with the liquid L.
  • the pressure sensor 40 has a function of measuring the pressure of the liquid L filled inside the hydraulic pressure chamber 42. Moreover, the pressure sensor 40 has a function of wirelessly transmitting the measured output to the data processing device.
  • This compressive stress is caused by the keyway 23 being pressed by the key 24, or by the key 24 being pressed by the keyway 23.
  • the hydraulic chamber 42 is located between the keyway 23 and the fastening hole 28. Therefore, the hydraulic chamber 42 is located near the keyway 23.
  • the compressive stress acts on the hydraulic chamber 42. Thereby, stress changes due to torque acting on the universal joint 10 appear as pressure changes in the liquid L. Therefore, the torque acting on the universal joint 10 can be measured based on the output of the pressure sensor 40.
  • FIG. 5 is a block diagram showing a configuration example of the pressure sensor 40 and the data processing device.
  • the pressure sensor 40 can communicate wirelessly with the data processing device 50.
  • the pressure sensor 40 includes a communication section 40a and a sensor section 40b.
  • the sensor section 40b has a function of measuring the pressure of the liquid L in the hydraulic pressure chamber 42, and a function of providing an output indicating the measurement result to the communication section 40a.
  • the communication unit 40a has a function of performing wireless communication using a wireless WAN (Wide Area Network) or the like, and transmits and receives information to and from the data processing device 50 via the network.
  • the communication unit 40a transmits an output indicating the measurement result to the data processing device 50.
  • WAN Wide Area Network
  • the data processing device 50 includes a communication section 50a and a processing section 50b.
  • the communication unit 50a has a function of performing wireless communication with the communication unit 40a of the pressure sensor 40 and receiving an output indicating a measurement result transmitted from the pressure sensor 40.
  • the processing unit 50b is a computer having a CPU (Central Processing Unit) and a storage unit such as a memory or a hard disk.
  • the processing unit 50b has a function of determining the torque acting on the universal joint 10 based on the output indicating the measurement result.
  • the processing unit 50b stores a conversion table 50b1 in the storage unit. Data indicating the correlation between the output from the pressure sensor 40 and the torque is registered in the conversion table 50b1.
  • the conversion table 50b1 is created in advance using a testing device or the like, for example, before the universal joint 10 is attached to an actual machine. Data serving as a reference for the data showing the correlation is obtained by applying a known torque to the universal joint 10 using a testing device and measuring the pressure of the liquid L at that time. Different known torques are applied to the universal joint 10. The pressure of the liquid L when each of the different known torques is applied is measured by the pressure sensor 40. Data indicating the correlation between the output (measured pressure value) from the pressure sensor 40 and the torque is registered in the conversion table 50b1.
  • the output from the pressure sensor 40 is given to the processing section 50b.
  • the processing unit 50b performs a process of converting the output from the pressure sensor 40 into a torque value using data indicating the correlation registered in the conversion table 50b1.
  • the universal joint 10 according to the embodiment can measure the torque acting on the universal joint 10.
  • the universal joint 10 can measure torque with a simple configuration. Furthermore, in the universal joint 10 according to the present embodiment, the hydraulic pressure chamber is not destroyed by excessive torque that is instantaneously generated.
  • the hydraulic chamber 42 is located between the bottom surface 23a and the second contact surface 30 in the axial direction, so that the fluid is reliably
  • a pressure chamber 42 can be provided between the keyway 23 and the fastening hole 28.
  • the hydraulic pressure chamber 42 includes the cylindrical hole 44 along the longitudinal direction of the keyway 23, so the universal joint 10 of the present embodiment has the hydraulic pressure chamber 42 and the keyway. 23 can be secured in a wide range along the longitudinal direction of the keyway 23. Thereby, the universal joint 10 according to the present embodiment can cause a pressure change in the liquid L caused by a stress change to occur more significantly.
  • the hole 44 opens in the outer peripheral surface 13g of the first yoke 13a, and the pressure sensor 40 is fixed outside the bearing cup 12.
  • the hole 44 may have a first cylindrical surface 44a and a second cylindrical portion 44c.
  • the first cylindrical surface 44a shown in FIG. 6 does not have an opening on the outer peripheral surface 13g.
  • the first cylindrical surface 44a has an opening formed in the outer peripheral surface 13g, and then the opening is closed by a plug or welding.
  • the second cylindrical portion 44c extends along the axial direction.
  • the second cylindrical portion 44c is connected to the first cylindrical surface 44a and opens to the end surface 13t of the yoke 13 (second yoke 13b). Therefore, the second cylindrical portion 44c communicates the first cylindrical surface 44a with the outside.
  • An adapter 46 made of a single tube is connected to the open end of the second cylindrical portion 44c.
  • a pressure sensor 40 is provided at the tip of the adapter 46. In this case, the pressure sensor 40 is fixed to the outer peripheral surface of the second shaft 17. In the case of the configuration shown in FIG. 6 as well, torque measurement is possible with a simple configuration, as in the case of the configuration of the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

A universal joint 10 comprises: a cross shaft 11 which has a trunnion 11a; a bearing cup 12 which supports the trunnion 11a via plurality of rollers 15; a yoke 13 to which the bearing cup 12 is attached; a fastening member 14 which fixes the bearing cup 12 to the yoke 13; and a pressure sensor 40. The bearing cup 12 has: a first surface 20 which includes a first contact surface 22 that contacts the yoke 13 and a key 24 which protrudes with respect to the first contact surface 22; and a through hole 25 which is open in the first contact surface 22 and through which the fastening member 14 passes. The yoke 13 has: a second surface 26 which includes a second contact surface 30 that contacts the first contact surface 22 and a key groove 23 that is recessed with respect to the second contact surface 30 and that fits with the key 24; a fastening hole 28 which is open in the second contact surface 30 and in which the fastening member 14 is fastened; and a liquid pressure chamber 42 inside which a liquid L is filled. The pressure sensor 40 measures the pressure of the liquid L. At least part of the liquid pressure chamber 42 is positioned between the key groove 23 and the fastening hole 28.

Description

ユニバーサルジョイントuniversal joint
 本発明は、ユニバーサルジョイントに関する。 The present invention relates to a universal joint.
 特許文献1に、圧延機のドライブシャフト等に用いられる大型のユニバーサルジョイントが開示されている。 Patent Document 1 discloses a large universal joint used for drive shafts of rolling mills, etc.
特開2006-77873号公報Japanese Patent Application Publication No. 2006-77873
 上記ユニバーサルジョイントが採用される圧延機のドライブシャフトに作用するトルクを測定するために、例えば、ドライブシャフトに歪ゲージを装着することが考えられる。ドライブシャフトに作用するトルクは、歪ゲージの出力に基づいて測定される。
 しかし、歪ゲージによるトルク測定は、歪ゲージの他、ドライブシャフトの回転時において歪ゲージの出力を取得するための送信器や、ブリッジ回路等を接続する必要がある。さらに、これら機器を接続するために多数本のケーブルの配線が必要であるため、トルク測定のための機器構成は比較的複雑になることが多い。また、歪ゲージが、瞬間的に発生する過大なトルクによって破損することが考えられる。
In order to measure the torque acting on the drive shaft of a rolling mill in which the universal joint is employed, it is conceivable to attach a strain gauge to the drive shaft, for example. The torque acting on the drive shaft is measured based on the output of the strain gauge.
However, to measure torque using a strain gauge, it is necessary to connect, in addition to the strain gauge, a transmitter, a bridge circuit, etc. to obtain the output of the strain gauge when the drive shaft rotates. Furthermore, since a large number of cables are required to connect these devices, the device configuration for torque measurement is often relatively complex. Furthermore, it is possible that the strain gauge may be damaged due to excessive torque that is instantaneously generated.
 前記ドライブシャフトに接続されるユニバーサルジョイントは、複数の部品を含んで構成されている。
 本願の発明者は、この点に着目し、ユニバーサルジョイントに含まれる複数の部品のうちの一部の部品に作用する応力を測定すれば比較的簡易な構成でドライブシャフトのトルクを測定することができることを考え、本開示に係る実施形態を創作するに至った。
The universal joint connected to the drive shaft includes a plurality of parts.
The inventor of the present application focused on this point, and determined that the torque of the drive shaft can be measured with a relatively simple configuration by measuring the stress acting on some of the multiple parts included in the universal joint. We have thought about what we can do and have created embodiments according to the present disclosure.
 本実施形態であるユニバーサルジョイントは、トラニオンを有する十字軸と、複数のころを介して前記トラニオンを支持する軸受カップと、前記軸受カップが取り付けられるヨークと、前記軸受カップを前記ヨークに固定する締結部材と、圧力センサと、を備える。前記軸受カップは、前記ヨークに当接する第1当接面及び前記第1当接面に対して突出するキーを含む第1面と、前記第1当接面に開口し前記締結部材が通過する貫通孔と、を有する。前記ヨークは、前記第1当接面に当接する第2当接面及び前記第2当接面に対して凹み前記キーが嵌め込まれるキー溝を含む第2面と、前記第2当接面に開口し前記締結部材が締結される締結孔と、内部に液体が充填された液圧室と、を有する。前記圧力センサは、前記液体の圧力を測定する。前記液圧室の少なくとも一部が前記キー溝と前記締結孔との間に位置する。 The universal joint of this embodiment includes a cross shaft having a trunnion, a bearing cup that supports the trunnion via a plurality of rollers, a yoke to which the bearing cup is attached, and a fastener that fixes the bearing cup to the yoke. The device includes a member and a pressure sensor. The bearing cup has a first surface that includes a first contact surface that contacts the yoke and a key that projects with respect to the first contact surface, and an opening in the first contact surface through which the fastening member passes. It has a through hole. The yoke includes a second abutting surface that abuts the first abutting surface, a second surface that is recessed with respect to the second abutting surface, and includes a keyway into which the key is fitted, and a second abutting surface that is in contact with the second abutting surface. It has a fastening hole that is open and into which the fastening member is fastened, and a hydraulic chamber filled with liquid. The pressure sensor measures the pressure of the liquid. At least a portion of the hydraulic chamber is located between the keyway and the fastening hole.
 本開示によれば、簡易な構成でトルク測定が可能なユニバーサルジョイントを得ることができる。 According to the present disclosure, it is possible to obtain a universal joint that allows torque measurement with a simple configuration.
図1は、実施形態に係るユニバーサルジョイントを示す図である。FIG. 1 is a diagram showing a universal joint according to an embodiment. 図2は、実施形態に係るユニバーサルジョイントの分解斜視図である。FIG. 2 is an exploded perspective view of the universal joint according to the embodiment. 図3は、図1中、III-III線矢視部分断面図である。FIG. 3 is a partial sectional view taken along the line III--III in FIG. 図4は、図3中、IV-IV線矢視部分断面図である。4 is a partial sectional view taken along the line IV-IV in FIG. 3. FIG. 図5は、圧力センサ、及びデータ処理装置の構成例を示すブロック図である。FIG. 5 is a block diagram showing a configuration example of a pressure sensor and a data processing device. 図6は、変形例に係るユニバーサルジョイントを示す図である。FIG. 6 is a diagram showing a universal joint according to a modified example.
 最初に実施形態の内容を列記して説明する。
[実施形態の概要]
(1)本実施形態であるユニバーサルジョイントは、トラニオンを有する十字軸と、複数のころを介して前記トラニオンを支持する軸受カップと、前記軸受カップが取り付けられるヨークと、前記軸受カップを前記ヨークに固定する締結部材と、圧力センサと、を備える。前記軸受カップは、前記ヨークに当接する第1当接面及び前記第1当接面に対して突出するキーを含む第1面と、前記第1当接面に開口し前記締結部材が通過する貫通孔と、を有する。前記ヨークは、前記第1当接面に当接する第2当接面及び前記第2当接面に対して凹み前記キーが嵌め込まれるキー溝を含む第2面と、前記第2当接面に開口し前記締結部材が締結される締結孔と、内部に液体が充填された液圧室と、を有する。前記圧力センサは、前記液体の圧力を測定する。前記液圧室の少なくとも一部が前記キー溝と前記締結孔との間に位置する。
First, the contents of the embodiment will be listed and explained.
[Overview of embodiment]
(1) The universal joint of this embodiment includes a cross shaft having a trunnion, a bearing cup that supports the trunnion via a plurality of rollers, a yoke to which the bearing cup is attached, and a yoke that attaches the bearing cup to the yoke. It includes a fastening member for fixing and a pressure sensor. The bearing cup has a first surface that includes a first contact surface that contacts the yoke and a key that projects with respect to the first contact surface, and an opening in the first contact surface through which the fastening member passes. It has a through hole. The yoke includes a second abutting surface that abuts the first abutting surface, a second surface that is recessed with respect to the second abutting surface, and includes a keyway into which the key is fitted, and a second abutting surface that is in contact with the second abutting surface. It has a fastening hole that is open and into which the fastening member is fastened, and a hydraulic chamber filled with liquid. The pressure sensor measures the pressure of the liquid. At least a portion of the hydraulic chamber is located between the keyway and the fastening hole.
 ドライブシャフト等を介して前記ユニバーサルジョイントにトルクが作用するとき、トルクに応じた応力が軸受カップを通じてヨークに作用する。ヨークは、この応力によって僅かに弾性変形する。このとき、ヨークに設けられた液圧室内の液体の圧力は、ヨークに作用する応力の大きさに応じて変化する。つまり、液圧室内の液体の圧力は、ユニバーサルジョイントに作用するトルクの大きさに応じて変化する。
 特に、ヨークのキー溝には圧縮応力が作用する。この圧縮応力は、キー溝がキーによって押圧され、又は、キーがキー溝によって押圧されることによって生じる。
 本実施形態において、液圧室の少なくとも一部がキー溝と締結孔との間に位置する。このため、液圧室はキー溝近傍に位置する。前記圧縮応力は液圧室に作用する。これにより、ユニバーサルジョイントに作用するトルクによる応力変化は、液体の圧力変化として現れる。
 よって、本実施形態であるユニバーサルジョイントは、圧力センサの出力に基づいて、ユニバーサルジョイントに作用するトルクを測定することができる。
 このように、本実施形態であるユニバーサルジョイントは、液圧室内の液体の圧力を測定することによって、トルク測定を行うことができるので、上記課題に記載したトルク測定に歪ゲージを用いたユニバーサルジョイントと比較して、ブリッジ回路等が不要となり、さらに配線等の取り回しも簡易となる。この結果、本実施形態であるユニバーサルジョイントは、簡易な構成でトルク測定が可能となる。また、本実施形態であるユニバーサルジョイントは、瞬間的に発生する過大なトルクによって液圧室が破壊しない。
When torque acts on the universal joint via a drive shaft or the like, stress corresponding to the torque acts on the yoke through the bearing cup. The yoke is slightly elastically deformed by this stress. At this time, the pressure of the liquid in the hydraulic pressure chamber provided in the yoke changes depending on the magnitude of stress acting on the yoke. In other words, the pressure of the liquid in the hydraulic chamber changes depending on the magnitude of the torque acting on the universal joint.
In particular, compressive stress acts on the keyway of the yoke. This compressive stress is caused by the keyway being pressed by the key, or by the key being pressed by the keyway.
In this embodiment, at least a portion of the hydraulic chamber is located between the keyway and the fastening hole. Therefore, the hydraulic chamber is located near the keyway. The compressive stress acts on the hydraulic chamber. As a result, changes in stress due to torque acting on the universal joint appear as changes in fluid pressure.
Therefore, the universal joint of this embodiment can measure the torque acting on the universal joint based on the output of the pressure sensor.
In this way, the universal joint of this embodiment can measure torque by measuring the pressure of the liquid in the hydraulic chamber. Compared to the above, a bridge circuit or the like is not required, and wiring etc. can be easily routed. As a result, the universal joint of this embodiment can measure torque with a simple configuration. Further, in the universal joint of this embodiment, the hydraulic chamber is not destroyed by excessive torque that is instantaneously generated.
(2)上記ユニバーサルジョイントにおいて、前記液圧室は、前記ユニバーサルジョイントの中心軸に平行な軸方向において、前記キー溝の底面と、前記第2当接面との間に位置していることが好ましい。
 この場合は、確実に液圧室をキー溝と締結孔との間に設けることができる。
(2) In the universal joint, the hydraulic chamber may be located between the bottom surface of the keyway and the second contact surface in an axial direction parallel to the central axis of the universal joint. preferable.
In this case, the hydraulic pressure chamber can be reliably provided between the keyway and the fastening hole.
(3)本実施形態であるユニバーサルジョイントは、キー溝に周方向に沿う圧縮応力が作用する。よって、本実施形態であるユニバーサルジョイントは、キー溝に前記キー溝の長手方向全域に亘って圧縮応力が作用する。
 この点、上記ユニバーサルジョイントにおいて、前記キー及び前記キー溝が前記中心軸に直交する径方向に沿って延びている場合、前記液圧室は、前記キー溝の長手方向に沿った筒状の孔を含むことが好ましい。
 この場合、本実施形態であるユニバーサルジョイントは、液圧室とキー溝とが近傍に並ぶ範囲をキー溝の長手方向に沿って広く確保することができる。これにより、本実施形態であるユニバーサルジョイントは、応力変化に起因する液体の圧力変化をより顕著に生じさせることができる。
(3) In the universal joint of this embodiment, compressive stress acts on the keyway along the circumferential direction. Therefore, in the universal joint of this embodiment, compressive stress acts on the keyway over the entire longitudinal direction of the keyway.
In this regard, in the above universal joint, when the key and the keyway extend along a radial direction perpendicular to the central axis, the hydraulic pressure chamber is a cylindrical hole extending in the longitudinal direction of the keyway. It is preferable to include.
In this case, the universal joint of this embodiment can ensure a wide range in the longitudinal direction of the keyway where the hydraulic pressure chamber and the keyway are lined up in the vicinity. As a result, the universal joint according to the present embodiment is able to more noticeably cause a change in liquid pressure due to a change in stress.
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
〔全体構成について〕
 図1は、実施形態に係るユニバーサルジョイントを示す図である。図2は、実施形態に係るユニバーサルジョイントの分解斜視図である。
 このユニバーサルジョイント10は、例えば製鉄所の圧延機に用いられる。より具体的に、ユニバーサルジョイント10は、圧延ロールの入力シャフトとドライブシャフトとの間や、駆動用モータの出力シャフトとドライブシャフトとの間に配置され、一対のシャフト同士を一体回転可能に連結する。ユニバーサルジョイント10は、一対のシャフトの一方から他方へ回転力を伝達する。
[Details of embodiment]
Hereinafter, preferred embodiments will be described with reference to the drawings.
[About the overall structure]
FIG. 1 is a diagram showing a universal joint according to an embodiment. FIG. 2 is an exploded perspective view of the universal joint according to the embodiment.
This universal joint 10 is used, for example, in a rolling mill in a steel mill. More specifically, the universal joint 10 is disposed between the input shaft of the rolling roll and the drive shaft, or between the output shaft of the drive motor and the drive shaft, and connects the pair of shafts so that they can rotate together. . The universal joint 10 transmits rotational force from one of the pair of shafts to the other.
 ユニバーサルジョイント10は、1つの十字軸11と、4つの軸受カップ12と、一対のヨーク13と、複数の締結部材14とを備える。
 複数の締結部材14は、軸受カップ12をヨーク13に固定するための部材である。複数の締結部材14は、例えばボルトである。
 十字軸11は、4つのトラニオン11aを有する。
 各軸受カップ12は、各トラニオン11aを複数のころ15を介して支持する。軸受カップ12は全て同じ構成を有する。
 各軸受カップ12は、一対のヨーク13に取り付けられる。
The universal joint 10 includes one cross shaft 11, four bearing cups 12, a pair of yokes 13, and a plurality of fastening members 14.
The plurality of fastening members 14 are members for fixing the bearing cup 12 to the yoke 13. The plurality of fastening members 14 are, for example, bolts.
The cross shaft 11 has four trunnions 11a.
Each bearing cup 12 supports each trunnion 11a via a plurality of rollers 15. All bearing cups 12 have the same configuration.
Each bearing cup 12 is attached to a pair of yokes 13.
 一対のヨーク13は、圧延機における一対のシャフト(図示省略)に一体回転可能に繋がる。
 一対のヨーク13のうち、図1及び図2中の右側に示す第1ヨーク13aは、第1軸16に含まれている。第1ヨーク13aは第1軸16と一体回転可能である。第1軸16は、圧延機における一対のシャフトの内うちの一方のシャフトに繋がる。
 一対のヨーク13のうち、図1及び図2において左側に示す第2ヨーク13bは、第2軸17に含まれている。第2ヨーク13bは第2軸17と一体回転可能である。第2軸17は圧延機における一対のシャフトのうちの他方のシャフトに繋がる。
 第1ヨーク13aと第2ヨーク13bとは同じ構成を有する。
The pair of yokes 13 are integrally rotatably connected to a pair of shafts (not shown) in a rolling mill.
Of the pair of yokes 13, the first yoke 13a shown on the right side in FIGS. 1 and 2 is included in the first shaft 16. The first yoke 13a can rotate integrally with the first shaft 16. The first shaft 16 is connected to one of a pair of shafts in the rolling mill.
Of the pair of yokes 13, the second yoke 13b shown on the left side in FIGS. 1 and 2 is included in the second shaft 17. The second yoke 13b can rotate integrally with the second shaft 17. The second shaft 17 is connected to the other shaft of the pair of shafts in the rolling mill.
The first yoke 13a and the second yoke 13b have the same configuration.
 ここで、第1軸16(第1ヨーク13a)の中心軸と第2軸17(第2ヨーク13b)の中心軸とが同一直線状に配置された状態(図1に示す状態)のとき、中心軸Cに沿う方向は、「軸方向」である。本開示の発明において、「軸方向」は、中心軸Cに平行な方向も含む。
 また、中心軸Cに直交する方向は、「径方向」である。中心軸Cを中心とする回転方向は、「周方向」である。
Here, when the central axis of the first shaft 16 (first yoke 13a) and the central axis of the second shaft 17 (second yoke 13b) are arranged in the same straight line (the state shown in FIG. 1), The direction along the central axis C is the "axial direction." In the invention of the present disclosure, the "axial direction" also includes a direction parallel to the central axis C.
Further, the direction perpendicular to the central axis C is the "radial direction". The direction of rotation around the central axis C is the "circumferential direction."
 図2に示すように、各軸受カップ12は、ヨーク13に対向する第1面20と、複数の貫通孔25と、を有する。
 第1面20は、ヨーク13に当接する第1当接面22と、キー24と、を含む。
 キー24は、第1当接面22に対して矩形状に突出している。
 複数の貫通孔25は、軸方向に平行に設けられている。複数の貫通孔25は、第1面20と、第1反対面19との間を貫通している。第1反対面19は、軸受カップ12において第1面20の反対側に向く面である。
 本実施形態において貫通孔25は、軸受カップ12の周方向両側寄りに3つずつ合計6つ設けられている。複数の貫通孔25は、第1当接面22のうちキー24の周方向両側に隣接する2つの領域22aに開口する。3つの貫通孔25が、2つの領域22aそれぞれに開口する。
As shown in FIG. 2, each bearing cup 12 has a first surface 20 facing the yoke 13 and a plurality of through holes 25. As shown in FIG.
The first surface 20 includes a first contact surface 22 that contacts the yoke 13 and a key 24 .
The key 24 projects in a rectangular shape with respect to the first contact surface 22.
The plurality of through holes 25 are provided in parallel to the axial direction. The plurality of through holes 25 penetrate between the first surface 20 and the first opposite surface 19. The first opposite surface 19 is a surface of the bearing cup 12 that faces opposite to the first surface 20 .
In this embodiment, a total of six through holes 25 are provided, three on both sides of the bearing cup 12 in the circumferential direction. The plurality of through holes 25 open into two regions 22 a of the first contact surface 22 adjacent to each other on both sides of the key 24 in the circumferential direction. Three through holes 25 open in each of the two regions 22a.
 一対の軸受カップ12二組が、一対のヨーク13のそれぞれに一組ずつ取り付けられる。以下の説明は、第1ヨーク13aの構成について説明する。一方、第2ヨーク13bの構成は、第1ヨーク13aの構成と同様である。
 第1ヨーク13aは、軸受カップ12の第1面20に対向する第2面26と、複数の締結孔28と、を有する。
 第2面26は、一対の第2当接面30と、一対のキー溝23と、を含む。一対の第2当接面30のそれぞれは、一対のうちの一つの軸受カップ12の第1当接面22に当接する面である。
 一対の第2当接面30は、中心軸Cを挟んで第2面26の径方向両側に設けられている。
Two sets of the pair of bearing cups 12 are attached to each of the pair of yokes 13. The following description will explain the configuration of the first yoke 13a. On the other hand, the configuration of the second yoke 13b is similar to the configuration of the first yoke 13a.
The first yoke 13a has a second surface 26 that faces the first surface 20 of the bearing cup 12, and a plurality of fastening holes 28.
The second surface 26 includes a pair of second contact surfaces 30 and a pair of keyways 23 . Each of the pair of second abutting surfaces 30 is a surface that abuts the first abutting surface 22 of one of the bearing cups 12 of the pair.
The pair of second contact surfaces 30 are provided on both sides of the second surface 26 in the radial direction with the central axis C interposed therebetween.
 一対のキー溝23は、一対の第2当接面30に対して凹んでいる。一対の軸受カップ12のキー24は、一対のキー溝23に嵌め込まれる。
 一対のキー溝23は、それぞれ、第1ヨーク13aの外周面13gから径方向に沿って延びている。よって、キー溝23は外周面13gを切り欠くように設けられている。
The pair of keyways 23 are recessed relative to the pair of second contact surfaces 30. The keys 24 of the pair of bearing cups 12 are fitted into the pair of key grooves 23.
The pair of keyways 23 each extend in the radial direction from the outer peripheral surface 13g of the first yoke 13a. Therefore, the keyway 23 is provided so as to cut out the outer peripheral surface 13g.
 複数の締結孔28は、一対の第2当接面30のそれぞれに設けられている。
 複数の締結孔28は、第2当接面30のうちキー溝23の周方向両側に隣接する2つの領域30aに開口する。3つの締結孔28が、2つの領域30aそれぞれに開口する。
 雌ねじが、締結孔28の内周面に形成されている。締結部材14の先端に設けられた雄ねじは、この雌ねじに螺合する。
The plurality of fastening holes 28 are provided in each of the pair of second contact surfaces 30.
The plurality of fastening holes 28 open in two regions 30 a of the second contact surface 30 adjacent to both sides of the keyway 23 in the circumferential direction. Three fastening holes 28 open in each of the two regions 30a.
A female thread is formed on the inner peripheral surface of the fastening hole 28. A male thread provided at the tip of the fastening member 14 is screwed into this female thread.
 締結部材14は、軸受カップ12の第1反対面19側から貫通孔25に差し込まれ、締結孔28に螺合する。
 これにより、軸受カップ12は、第1ヨーク13aの第2面26に固定される。このとき、軸受カップ12の第1当接面22と、第1ヨーク13aの第2当接面30とは互いに当接する。
The fastening member 14 is inserted into the through hole 25 from the first opposite surface 19 side of the bearing cup 12 and is screwed into the fastening hole 28 .
Thereby, the bearing cup 12 is fixed to the second surface 26 of the first yoke 13a. At this time, the first contact surface 22 of the bearing cup 12 and the second contact surface 30 of the first yoke 13a contact each other.
 本実施形態のユニバーサルジョイント10は、さらに、圧力センサ40を備える。
 圧力センサ40は、第1ヨーク13aに設けられた液圧室42内に充填された液体の圧力を測定する。
The universal joint 10 of this embodiment further includes a pressure sensor 40.
The pressure sensor 40 measures the pressure of the liquid filled in the hydraulic pressure chamber 42 provided in the first yoke 13a.
〔液圧室について〕
 上述の液圧室42が、本実施形態の第1ヨーク13aに設けられている。
 図3は、図1中、III-III線矢視部分断面図である。
 図3に示すように、液圧室42は、孔部44、及びアダプタ46の内部空間によって構成されている。
[About the hydraulic chamber]
The above-described hydraulic chamber 42 is provided in the first yoke 13a of this embodiment.
FIG. 3 is a partial sectional view taken along the line III--III in FIG.
As shown in FIG. 3, the hydraulic chamber 42 is configured by a hole 44 and an internal space of an adapter 46. As shown in FIG.
 孔部44は、第1ヨーク13aの外周面13gに開口している。孔部44は、第1円筒面44aと、底面44bとを有する。第1円筒面44aは、外周面13gと底面44bとを繋ぐ面である。第1円筒面44aは、キー溝23の長手方向に沿っている。
 図4は、図3中、IV-IV線矢視部分断面図である。
 図4中、キー溝23は、底面23aと、一対の段差面23bとを有する。一対の段差面23bは、底面23aの一対の長辺と、キー溝23の両側の2つの領域30aとを繋ぐ面である。
 図3及び図4に示すように、孔部44は、キー溝23と、締結孔28との間に設けられている。よって、液圧室42は、キー溝23と、締結孔28との間に位置している。
 さらに、図4に示すように、孔部44は、軸方向において、キー溝23の底面23aと、領域30a(第2当接面30)との間に設けられている。よって、液圧室42は、軸方向において、底面23aと、第2当接面30との間に位置している。
The hole 44 is open to the outer peripheral surface 13g of the first yoke 13a. The hole 44 has a first cylindrical surface 44a and a bottom surface 44b. The first cylindrical surface 44a is a surface connecting the outer peripheral surface 13g and the bottom surface 44b. The first cylindrical surface 44a extends along the longitudinal direction of the keyway 23.
4 is a partial sectional view taken along the line IV-IV in FIG. 3. FIG.
In FIG. 4, the keyway 23 has a bottom surface 23a and a pair of stepped surfaces 23b. The pair of stepped surfaces 23b are surfaces that connect the pair of long sides of the bottom surface 23a and the two regions 30a on both sides of the keyway 23.
As shown in FIGS. 3 and 4, the hole 44 is provided between the keyway 23 and the fastening hole 28. Therefore, the hydraulic chamber 42 is located between the keyway 23 and the fastening hole 28.
Further, as shown in FIG. 4, the hole 44 is provided between the bottom surface 23a of the keyway 23 and the region 30a (second contact surface 30) in the axial direction. Therefore, the hydraulic chamber 42 is located between the bottom surface 23a and the second contact surface 30 in the axial direction.
 また、キー24とキー溝23との間でトルクが伝達される際に、トルクの発生源側の段差面23bはキー24を押圧する。トルクを受ける側のキー24は段差面23bを押圧する。これにより、圧縮応力が段差面23bを表面としたときの表層部分には作用し、僅かに塑性変形する領域が生じる。
 そこで、図4中、段差面23bと孔部44との間隔Wは、孔部44に塑性変形が発生しない値に設定される。
 これにより、段差面23bの表層部に生じる塑性変形は、液圧室42に影響しない。
Furthermore, when torque is transmitted between the key 24 and the keyway 23, the stepped surface 23b on the side of the torque generation source presses the key 24. The key 24 on the side receiving the torque presses the stepped surface 23b. As a result, compressive stress acts on the surface layer portion when the step surface 23b is the surface, and a region that is slightly plastically deformed is generated.
Therefore, in FIG. 4, the distance W between the stepped surface 23b and the hole 44 is set to a value that does not cause plastic deformation in the hole 44.
As a result, plastic deformation occurring in the surface layer of the stepped surface 23b does not affect the hydraulic pressure chamber 42.
 図3に示すように、アダプタ46は、第1円筒面44aの外端部44a1に装着されている。
 図2に示すように、アダプタ46は、T型の継手である。アダプタ46は、径方向に沿って延びる第1管46aと、軸方向に沿って延びる第2管46bと、を有する。
 第1管46aは、第2管46bの長手方向のほぼ中央に繋がっている。また、第1管46a、及び第2管46bは互いに連通している。
As shown in FIG. 3, the adapter 46 is attached to the outer end 44a1 of the first cylindrical surface 44a.
As shown in FIG. 2, the adapter 46 is a T-shaped fitting. The adapter 46 has a first tube 46a extending in the radial direction and a second tube 46b extending in the axial direction.
The first pipe 46a is connected to the second pipe 46b at approximately the center in the longitudinal direction. Moreover, the first pipe 46a and the second pipe 46b are in communication with each other.
 図3に示すように、径方向内方に向く第1管46aの先端部46a1は、外端部44a1に圧入されている。
 図1に示すように、圧力センサ40が、第2ヨーク13b側へ向く第2管46bの先端部46b1に設けられている。圧力センサ40は、軸受カップ12の外方に固定されている。
 バルブ48が、先端部46b1の反対方向へ向く第2管46bの先端部46b2に設けられている。バルブ48は、開閉可能であり、液圧室42の内部と外部とを連通させることと遮断させることとに切替ることができる。
As shown in FIG. 3, a distal end portion 46a1 of the first tube 46a facing radially inward is press-fitted into an outer end portion 44a1.
As shown in FIG. 1, the pressure sensor 40 is provided at the tip 46b1 of the second pipe 46b facing toward the second yoke 13b. Pressure sensor 40 is fixed to the outside of bearing cup 12 .
A valve 48 is provided at a distal end portion 46b2 of the second tube 46b facing in the opposite direction to the distal end portion 46b1. The valve 48 can be opened and closed, and can be switched between communicating and blocking communication between the inside and outside of the hydraulic chamber 42.
 図3に示すように、液体Lが、液圧室42の内部に充填されている。なお、孔部44とアダプタ46との接続部分、アダプタ46と圧力センサ40との接続部分、及びアダプタ46とバルブ48との接続部分は、密封されている。液圧室42内の液体Lは、これら接続部分から漏洩しない。
 液体Lは、例えば、作動油である。
 液体Lは、液圧室42内に所定の圧力となるように充填される。
 液体Lは、バルブ48から液圧室42の内部に注入される。
 例えば、液体Lを注入するための注入パイプが、バルブ48に接続される。次いで、バルブ48は開放され、液圧室42の内部は負圧にされる。
 その後、液体Lは、液圧室42の内部へ注入され、液体Lが所定の圧力に到達したとき、バルブ48は閉鎖される。このようにして、液体Lは、液圧室42の内部に充填される。
As shown in FIG. 3, the liquid L is filled inside the hydraulic pressure chamber 42. As shown in FIG. Note that the connecting portion between the hole 44 and the adapter 46, the connecting portion between the adapter 46 and the pressure sensor 40, and the connecting portion between the adapter 46 and the valve 48 are sealed. The liquid L in the hydraulic pressure chamber 42 does not leak from these connecting parts.
The liquid L is, for example, hydraulic oil.
The liquid L is filled into the hydraulic chamber 42 to a predetermined pressure.
The liquid L is injected into the hydraulic chamber 42 from the valve 48 .
For example, an injection pipe for injecting liquid L is connected to valve 48 . Then, the valve 48 is opened and the inside of the hydraulic chamber 42 is brought to negative pressure.
Thereafter, the liquid L is injected into the hydraulic pressure chamber 42, and when the liquid L reaches a predetermined pressure, the valve 48 is closed. In this way, the inside of the hydraulic chamber 42 is filled with the liquid L.
 圧力センサ40は、上述のように、液圧室42の内部に充填された液体Lの圧力を測定する機能を有する。また、圧力センサ40は、測定した出力をデータ処理装置へ無線送信する機能を有する。 As described above, the pressure sensor 40 has a function of measuring the pressure of the liquid L filled inside the hydraulic pressure chamber 42. Moreover, the pressure sensor 40 has a function of wirelessly transmitting the measured output to the data processing device.
〔圧力測定及びトルク測定について〕
 第1軸16又は第2軸17の一方から他方へ伝達され、ユニバーサルジョイント10にトルクが作用すると、トルクに応じた応力が軸受カップ12を通じてヨーク13に作用する。ヨーク13は、この応力によって僅かに弾性変形する。このとき、第1ヨーク13aに設けられた液圧室42内の液体Lの圧力は、第1ヨーク13aに作用する応力の大きさに応じて変化する。つまり、液圧室42内の液体Lの圧力は、ユニバーサルジョイント10に作用するトルクの大きさに応じて変化する。
 特に、ヨーク13のキー溝23には圧縮応力が作用する。この圧縮応力は、キー溝23がキー24によって押圧され、又は、キー24がキー溝23によって押圧されることによって生じる。
 本実施形態では、液圧室42がキー溝23と締結孔28との間に位置する。このため、液圧室42はキー溝23近傍に位置する。前記圧縮応力は液圧室42に作用する。これにより、ユニバーサルジョイント10に作用するトルクによる応力変化は、液体Lの圧力変化として現れる。
 よって、圧力センサ40の出力に基づいて、ユニバーサルジョイント10に作用するトルクを測定することができる。
[About pressure measurement and torque measurement]
When torque is transmitted from one of the first shaft 16 or the second shaft 17 to the other and acts on the universal joint 10, stress corresponding to the torque acts on the yoke 13 through the bearing cup 12. The yoke 13 is slightly elastically deformed by this stress. At this time, the pressure of the liquid L in the hydraulic pressure chamber 42 provided in the first yoke 13a changes depending on the magnitude of the stress acting on the first yoke 13a. That is, the pressure of the liquid L within the hydraulic chamber 42 changes depending on the magnitude of the torque acting on the universal joint 10.
In particular, compressive stress acts on the keyway 23 of the yoke 13. This compressive stress is caused by the keyway 23 being pressed by the key 24, or by the key 24 being pressed by the keyway 23.
In this embodiment, the hydraulic chamber 42 is located between the keyway 23 and the fastening hole 28. Therefore, the hydraulic chamber 42 is located near the keyway 23. The compressive stress acts on the hydraulic chamber 42. Thereby, stress changes due to torque acting on the universal joint 10 appear as pressure changes in the liquid L.
Therefore, the torque acting on the universal joint 10 can be measured based on the output of the pressure sensor 40.
 図5は、圧力センサ40、及びデータ処理装置の構成例を示すブロック図である。
 図5中、圧力センサ40は、データ処理装置50と無線通信可能である。
 圧力センサ40は、通信部40aと、センサ部40bとを有する。
 センサ部40bは、液圧室42の液体Lの圧力を測定する機能、及び、その測定結果を示す出力を通信部40aに与える機能を有する。
 通信部40aは、無線WAN(Wide Area Network)等による無線通信を行う機能を有しており、ネットワークを介してデータ処理装置50との間で情報の送受信を行う。通信部40aは、測定結果を示す出力をデータ処理装置50へ送信する。
FIG. 5 is a block diagram showing a configuration example of the pressure sensor 40 and the data processing device.
In FIG. 5, the pressure sensor 40 can communicate wirelessly with the data processing device 50.
The pressure sensor 40 includes a communication section 40a and a sensor section 40b.
The sensor section 40b has a function of measuring the pressure of the liquid L in the hydraulic pressure chamber 42, and a function of providing an output indicating the measurement result to the communication section 40a.
The communication unit 40a has a function of performing wireless communication using a wireless WAN (Wide Area Network) or the like, and transmits and receives information to and from the data processing device 50 via the network. The communication unit 40a transmits an output indicating the measurement result to the data processing device 50.
 データ処理装置50は、通信部50aと、処理部50bとを有する。
 通信部50aは、圧力センサ40の通信部40aとの間で無線通信を行い、圧力センサ40から送信される測定結果を示す出力を受信する機能を有する。
 処理部50bは、CPU(Central Processing Unit)、及びメモリやハードディスク等の記憶部を有するコンピュータである。
 処理部50bは、測定結果を示す出力に基づいて、ユニバーサルジョイント10に作用するトルクを求める機能を有する。
The data processing device 50 includes a communication section 50a and a processing section 50b.
The communication unit 50a has a function of performing wireless communication with the communication unit 40a of the pressure sensor 40 and receiving an output indicating a measurement result transmitted from the pressure sensor 40.
The processing unit 50b is a computer having a CPU (Central Processing Unit) and a storage unit such as a memory or a hard disk.
The processing unit 50b has a function of determining the torque acting on the universal joint 10 based on the output indicating the measurement result.
 処理部50bは、記憶部に換算テーブル50b1を記憶する。
 圧力センサ40からの出力と、トルクとの相関関係を示すデータが、換算テーブル50b1に登録されている。換算テーブル50b1は、例えば、ユニバーサルジョイント10を実機に取り付ける前に、事前に試験装置等を用いて作成される。相関関係を示すデータの基準となるデータは、試験装置によってユニバーサルジョイント10に既知のトルクを与え、その時の液体Lの圧力を測定することによって得られる。異なった既知のトルクが、ユニバーサルジョイント10に与えられる。異なった既知のトルクのそれぞれが与えられたときの液体Lの圧力が圧力センサ40によって測定される。圧力センサ40からの出力(圧力の測定値)と、トルクとの相関関係を示すデータと、が換算テーブル50b1に登録される。
 圧力センサ40からの出力は、処理部50bに与えられる。処理部50bは、換算テーブル50b1に登録された相関関係を示すデータを用いて、圧力センサ40からの出力をトルクの値に換算する処理を行う。
 以上のようにして、実施形態に係るユニバーサルジョイント10は、ユニバーサルジョイント10に作用するトルク測定が可能である。
The processing unit 50b stores a conversion table 50b1 in the storage unit.
Data indicating the correlation between the output from the pressure sensor 40 and the torque is registered in the conversion table 50b1. The conversion table 50b1 is created in advance using a testing device or the like, for example, before the universal joint 10 is attached to an actual machine. Data serving as a reference for the data showing the correlation is obtained by applying a known torque to the universal joint 10 using a testing device and measuring the pressure of the liquid L at that time. Different known torques are applied to the universal joint 10. The pressure of the liquid L when each of the different known torques is applied is measured by the pressure sensor 40. Data indicating the correlation between the output (measured pressure value) from the pressure sensor 40 and the torque is registered in the conversion table 50b1.
The output from the pressure sensor 40 is given to the processing section 50b. The processing unit 50b performs a process of converting the output from the pressure sensor 40 into a torque value using data indicating the correlation registered in the conversion table 50b1.
As described above, the universal joint 10 according to the embodiment can measure the torque acting on the universal joint 10.
 このように本実施形態によれば、液圧室42内の液体Lの圧力を測定することによって、トルク測定を行うことができるので、上記課題に記載したトルク測定に歪ゲージを用いたユニバーサルジョイントと比較して、ブリッジ回路等が不要となり、さらに配線等の取り回しも簡易となる。この結果、本実施形態であるユニバーサルジョイント10は、簡易な構成でトルク測定が可能となる。また、本実施形態であるユニバーサルジョイント10は、瞬間的に発生する過大なトルクによって液圧室が破壊しない。
 また、本実施形態であるユニバーサルジョイント10は、上述のように、液圧室42が、軸方向において、底面23aと、第2当接面30との間に位置しているので、確実に液圧室42をキー溝23と締結孔28との間に設けることができる。
As described above, according to the present embodiment, torque can be measured by measuring the pressure of the liquid L in the hydraulic pressure chamber 42. Therefore, the universal joint using a strain gauge can be used for torque measurement as described in the above problem. Compared to the above, a bridge circuit or the like is not required, and wiring etc. can be easily routed. As a result, the universal joint 10 according to this embodiment can measure torque with a simple configuration. Furthermore, in the universal joint 10 according to the present embodiment, the hydraulic pressure chamber is not destroyed by excessive torque that is instantaneously generated.
Further, in the universal joint 10 of this embodiment, as described above, the hydraulic chamber 42 is located between the bottom surface 23a and the second contact surface 30 in the axial direction, so that the fluid is reliably A pressure chamber 42 can be provided between the keyway 23 and the fastening hole 28.
 また、本実施形態であるユニバーサルジョイント10は、キー溝23の段差面23bに周方向に沿う圧縮応力が作用する。よって、本実施形態であるユニバーサルジョイント10は、キー溝23にキー溝23の長手方向全域に亘って圧縮応力が作用する。
 この点、本実施形態では、液圧室42が、キー溝23の長手方向に沿った筒状の孔部44を含むので、本実施形態であるユニバーサルジョイント10は、液圧室42とキー溝23とが近傍に並ぶ範囲をキー溝23の長手方向に沿って広く確保することができる。これにより、本実施形態であるユニバーサルジョイント10は、応力変化に起因する液体Lの圧力変化をより顕著に生じさせることができる。
Further, in the universal joint 10 of this embodiment, compressive stress acts on the step surface 23b of the keyway 23 along the circumferential direction. Therefore, in the universal joint 10 of this embodiment, compressive stress acts on the keyway 23 over the entire length of the keyway 23 .
In this regard, in the present embodiment, the hydraulic pressure chamber 42 includes the cylindrical hole 44 along the longitudinal direction of the keyway 23, so the universal joint 10 of the present embodiment has the hydraulic pressure chamber 42 and the keyway. 23 can be secured in a wide range along the longitudinal direction of the keyway 23. Thereby, the universal joint 10 according to the present embodiment can cause a pressure change in the liquid L caused by a stress change to occur more significantly.
〔その他〕
 今回開示した実施形態はすべての点で例示であって制限的なものではない。
 例えば、上記実施形態は、孔部44が第1ヨーク13aの外周面13gに開口し、圧力センサ40を軸受カップ12の外方に固定した場合である。
 しかし、図6に示すように、孔部44が、第1円筒面44aと、第2円筒部44cとを有していてもよい。図6に示す第1円筒面44aは、外周面13gに開口を有していない。第1円筒面44aは外周面13gに開口を形成した後、開口をプラグや溶接によって閉じている。また、第2円筒部44cは、軸方向に沿って延びている。第2円筒部44cは、第1円筒面44aに繋がるとともに、ヨーク13(第2ヨーク13b)の端面13tに開口する。よって第2円筒部44cは、第1円筒面44aと外部とを連通する。
 単管で構成されたアダプタ46が第2円筒部44cの開口端に接続されている。アダプタ46の先端には圧力センサ40が設けられている。
 この場合、圧力センサ40は、第2軸17の外周面に固定される。
 図6に示す構成の場合も、上記実施形態の構成の場合と同様、簡易な構成でトルク測定が可能となる。
〔others〕
The embodiments disclosed herein are illustrative in all respects and are not restrictive.
For example, in the embodiment described above, the hole 44 opens in the outer peripheral surface 13g of the first yoke 13a, and the pressure sensor 40 is fixed outside the bearing cup 12.
However, as shown in FIG. 6, the hole 44 may have a first cylindrical surface 44a and a second cylindrical portion 44c. The first cylindrical surface 44a shown in FIG. 6 does not have an opening on the outer peripheral surface 13g. The first cylindrical surface 44a has an opening formed in the outer peripheral surface 13g, and then the opening is closed by a plug or welding. Further, the second cylindrical portion 44c extends along the axial direction. The second cylindrical portion 44c is connected to the first cylindrical surface 44a and opens to the end surface 13t of the yoke 13 (second yoke 13b). Therefore, the second cylindrical portion 44c communicates the first cylindrical surface 44a with the outside.
An adapter 46 made of a single tube is connected to the open end of the second cylindrical portion 44c. A pressure sensor 40 is provided at the tip of the adapter 46.
In this case, the pressure sensor 40 is fixed to the outer peripheral surface of the second shaft 17.
In the case of the configuration shown in FIG. 6 as well, torque measurement is possible with a simple configuration, as in the case of the configuration of the above embodiment.
 本発明の権利範囲は、上述の実施形態に限定されるものではなく、請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。 The scope of the present invention is not limited to the above-described embodiments, and includes all modifications within the scope of equivalents to the configurations described in the claims.
10 ユニバーサルジョイント
11 十字軸
11a トラニオン
12 軸受カップ
13 ヨーク
13a 第1ヨーク
14 締結部材
15 ころ
20 第1面
22 第1当接面
23 キー溝
23a 底面
24 キー
25 貫通孔
26 第2面
28 締結孔
30 第2当接面
40 圧力センサ
42 液圧室
L 液体
 
10 Universal joint 11 Cross shaft 11a Trunnion 12 Bearing cup 13 Yoke 13a First yoke 14 Fastening member 15 Roller 20 First surface 22 First contact surface 23 Keyway 23a Bottom surface 24 Key 25 Through hole 26 Second surface 28 Fastening hole 30 Second contact surface 40 Pressure sensor 42 Liquid pressure chamber L Liquid

Claims (3)

  1.  トラニオンを有する十字軸と、
     複数のころを介して前記トラニオンを支持する軸受カップと、
     前記軸受カップが取り付けられるヨークと、
     前記軸受カップを前記ヨークに固定する締結部材と、
     圧力センサと、を備え、
     前記軸受カップは、
     前記ヨークに当接する第1当接面及び前記第1当接面に対して突出するキーを含む第1面と、
     前記第1当接面に開口し前記締結部材が通過する貫通孔と、を有し、
     前記ヨークは、
     前記第1当接面に当接する第2当接面及び前記第2当接面に対して凹み前記キーが嵌め込まれるキー溝を含む第2面と、
     前記第2当接面に開口し前記締結部材が締結される締結孔と、
     内部に液体が充填された液圧室と、を有し、
     前記圧力センサは、前記液体の圧力を測定し、
     前記液圧室の少なくとも一部が前記キー溝と前記締結孔との間に位置する
    ユニバーサルジョイント。
    a cross shaft having a trunnion;
    a bearing cup that supports the trunnion via a plurality of rollers;
    a yoke to which the bearing cup is attached;
    a fastening member that fixes the bearing cup to the yoke;
    A pressure sensor;
    The bearing cup is
    a first surface including a first contact surface that contacts the yoke and a key that projects with respect to the first contact surface;
    a through hole that is open to the first contact surface and through which the fastening member passes;
    The yoke is
    a second surface that includes a second contact surface that contacts the first contact surface and a key groove that is recessed with respect to the second contact surface and into which the key is fitted;
    a fastening hole opened in the second contact surface and into which the fastening member is fastened;
    It has a hydraulic chamber filled with liquid,
    the pressure sensor measures the pressure of the liquid;
    A universal joint in which at least a portion of the hydraulic chamber is located between the keyway and the fastening hole.
  2.  前記液圧室は、前記ユニバーサルジョイントの中心軸に平行な軸方向において、前記キー溝の底面と、前記第2当接面との間に位置している
    請求項1に記載のユニバーサルジョイント。
    The universal joint according to claim 1, wherein the hydraulic pressure chamber is located between the bottom surface of the keyway and the second contact surface in an axial direction parallel to the central axis of the universal joint.
  3.  前記キー及び前記キー溝は、前記中心軸に直交する径方向に沿って延びており、
     前記液圧室は、前記キー溝の長手方向に沿った筒状の孔を含む
    請求項1に記載のユニバーサルジョイント。
    The key and the keyway extend along a radial direction perpendicular to the central axis,
    The universal joint according to claim 1, wherein the hydraulic chamber includes a cylindrical hole extending in the longitudinal direction of the keyway.
PCT/JP2022/028067 2022-07-19 2022-07-19 Universal joint WO2024018529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028067 WO2024018529A1 (en) 2022-07-19 2022-07-19 Universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028067 WO2024018529A1 (en) 2022-07-19 2022-07-19 Universal joint

Publications (1)

Publication Number Publication Date
WO2024018529A1 true WO2024018529A1 (en) 2024-01-25

Family

ID=89617395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028067 WO2024018529A1 (en) 2022-07-19 2022-07-19 Universal joint

Country Status (1)

Country Link
WO (1) WO2024018529A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826786Y1 (en) * 1968-12-24 1973-08-06
JPS5872018A (en) * 1981-10-27 1983-04-28 Nippon Soken Inc Torque detector for internal combustion engine
JP2006022866A (en) * 2004-07-07 2006-01-26 Koyo Seiko Co Ltd Apparatus for monitoring driving shaft
JP2006077873A (en) * 2004-09-09 2006-03-23 Jtekt Corp Universal joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826786Y1 (en) * 1968-12-24 1973-08-06
JPS5872018A (en) * 1981-10-27 1983-04-28 Nippon Soken Inc Torque detector for internal combustion engine
JP2006022866A (en) * 2004-07-07 2006-01-26 Koyo Seiko Co Ltd Apparatus for monitoring driving shaft
JP2006077873A (en) * 2004-09-09 2006-03-23 Jtekt Corp Universal joint

Similar Documents

Publication Publication Date Title
US5135060A (en) Articulated coupling for use with a downhole drilling apparatus
WO2024018529A1 (en) Universal joint
US20240159277A1 (en) Transmission assembly for transmitting torque across an angular connection between a torsional drive component and a torsionally driven component
GB2296071A (en) Elastic universal joint
JPS63157026A (en) Method and device for measuring torque
CN102549288B (en) Method for adjusting an air gap of a clutch device
JPH08201192A (en) Pin-type load converter
CA2573252A1 (en) Measuring apparatus in connection with a gear
US5591921A (en) Device for measuring the bending of a cylinder
JP6952569B2 (en) Screw device that can detect preload
US5872318A (en) Method and apparatus for inducing fully-reversed three-dimensional loading on a non-rotating beam
EP1857696B1 (en) Cross joint and vehicular steering system including the same
KR20010101210A (en) Ball cam centering mechanism
US11092199B2 (en) Down-hole motor universal joint assembly
US20060130306A1 (en) Method of manufacturing a sliding spline type of slip joint
KR102375738B1 (en) Grease sealing structure for constant velocity joint of vehicles and constant velocity joint including same
JPH08226451A (en) Shaft connecting mechanism
JP5138539B2 (en) Power transmission structure and twin-screw kneading extruder
EP2365228A2 (en) Shaft connector and torque limiter
JP3440690B2 (en) Brake tester
US20050119055A1 (en) Rotating shaft coupling
JP5607463B2 (en) Electric power steering device
JP4300816B2 (en) Hydraulic joint and shaft coupling mechanism using the same
KR100985598B1 (en) Insert body and torque transfer apparatus using thereof
GB2311358A (en) Bipode universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951918

Country of ref document: EP

Kind code of ref document: A1