JP2004245209A - Pump pressure control device - Google Patents

Pump pressure control device Download PDF

Info

Publication number
JP2004245209A
JP2004245209A JP2003076562A JP2003076562A JP2004245209A JP 2004245209 A JP2004245209 A JP 2004245209A JP 2003076562 A JP2003076562 A JP 2003076562A JP 2003076562 A JP2003076562 A JP 2003076562A JP 2004245209 A JP2004245209 A JP 2004245209A
Authority
JP
Japan
Prior art keywords
pressure
piping system
pump
chamber
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076562A
Other languages
Japanese (ja)
Inventor
Enro Yamamoto
円朗 山本
Toshiharu Kagawa
利春 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Controls Co Ltd
Original Assignee
Fuji Controls Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Controls Co Ltd filed Critical Fuji Controls Co Ltd
Priority to JP2003076562A priority Critical patent/JP2004245209A/en
Publication of JP2004245209A publication Critical patent/JP2004245209A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pump pressure control device able to produce positive-pressure and negative-pressure air using a pump, and to shorten departure time by implementing adsorption through negative pressure and departure through positive pressure. <P>SOLUTION: In a setup in which two kinds of pressure, one arising on the air suction side of a pump, and the other arising on its air exhaust side, are stored in chambers, and both positive and negative pressures are thus taken out of a single pump, it is made possible to utilize both positive and negative pressures at low facility expenses. Based on this arrangement, adsorption/departure is attained by switching pressure to be provided to a component adsorption device between positive and negative pressures. Also, work force in pushing-out and pulling operations is made greater by connecting positive and negative pressures to the pressure application side and the air exhaust side of an actuator and changing over connections with these pressures through a selector valve. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は圧力供給源の供給圧力制御装置に関わり、正圧空気と負圧空気を同時または別々に用いるような装置に関する。
【0002】
【従来の技術】
従来、例えば部品搬送装置の吸着器として真空装置を利用するにあたって部品を負圧で吸着し搬送する場合、その動作は、真空ポンプを用いて負圧で吸着し搬送したのち、負圧を大気に開放することにより部品を吸着器から離脱するという動作を繰り返す。ここで部品を吸着器から離脱するとき、吸着器内の真空圧を大気に開放して部品を離脱させるのでは離脱時間が大きくなってしまう。また、例えば真空ポンプの代わりにエゼクタを利用した場合、エゼクタは圧縮機の正圧空気を利用して負圧を発生させるので、負圧で部品を吸着して搬送し、離脱時にはエゼクタ内部の回路を切り換えて圧縮機の正空気を出力させ、高速で部品を離脱させることができる。しかし、エゼクタを利用した場合一つのエゼクタに対して一つの吸着器を用いるのが一般的であり複数の吸着器を同時に用いる場合には不向きである。
【0003】
また、一般に部品搬送装置用に用いられている小型および中型の真空ポンプは圧力制御機構を持たず、部品搬送中、つまり工場において生産ラインが稼動している間は常に動作しつづけて一定の真空圧力を発生している。この時、生産ライン内の真空圧力は部品吸着に必要な真空圧力よりも余分に真空圧力を発生しつづけエネルギーを無駄にしている。
【0004】
【発明が解決しようとする課題】
正圧空気と負圧空気の両方を利用しようとした場合、一般的には圧縮機と真空ポンプの両方を用意しなければならない。
【0005】
また、真空ポンプを利用した部品吸着器において、部品を搬送したのち負圧を大気に開放することにより吸着器から離すのでは、圧力の開放に時間がかかってしまうので、短時間に多くの製品を搬送する事が出来ない。さらに、吸着に必要とする負圧は電磁弁の開閉時間により調整されるために、ポンプは常に動作し続け一定の負圧を発生させているので、必要以上の圧力を発生させていることになる。よって省エネルギに装置を稼動させるためには必要以上にポンプを動作させないようにしなければならない。
【0006】
本発明の目的は、1つのポンプを用いて正圧空気および負圧空気を発生させ、負圧で吸着を行い、正圧で離脱させることで離脱時間の短縮ができるようなポンプ圧力制御装置を提供することにある。また、ポンプおよびチャンバー間の管路系への圧力スイッチの取付けによって2つのチャンバー内のそれぞれの圧力を検出し、ポンプおよびチャンバー間に取付けた制御弁とポンプを制御することにより2つのチャンバー内の圧力を目標圧力域に保つことにある。
【0007】
【課題が解決するための手段】
請求項1記載の発明では、正圧空気又は負圧空気を発生させるポンプの排出口および吸入口とを正圧配管系と負圧配管系に繋ぐそれぞれの配管の途中に、その配管を大気に開放または閉止状態に切り換える制御弁を接続する分岐管路と、その分岐管路の配管系側に配管内の圧力を維持する圧力維持用のチャンバーをそれぞれ設け、前記分岐管路と前記チャンバーの間にチャンバーに蓄積された正圧、若しくは負圧がポンプ側へ漏れるのを阻止する逆止弁を設けると共に、前記チャンバー内の圧力に応じて前記制御弁を制御する出力信号を出力する圧力スイッチがそれぞれ接続されていることを特徴とするポンプ圧力制御装置であって、正圧側および負圧側のチャンバー内の圧力が足りない場合には、正圧側制御弁および負圧側制御弁ともに閉じた状態で、ポンプを動作させ、正圧および負圧を同時に発生させる。次に負圧だけ設定圧に足りない場合には、正圧側の制御弁を大気に開放し排気の負荷を小さくした状態でポンプを動作させ負圧を発生させる。反対に正圧だけ設定圧に足りない場合には負圧側の制御弁を大気に開放することによりポンプの吸気の負荷を軽くし正圧を発生させる。このとき、制御弁により大気に開放した側のチャンバーは逆止弁により圧力が低下しないような構造になっている。また、正圧側および負圧側ともに設定圧力に達している場合にはポンプを停止することにより、ポンプ自体の動作時間を節約することができる一台のポンプで正圧、負圧を発生させるポンプ圧力制御装置となる。
【0008】
請求項2記載の発明では、正圧空気又は負圧空気を発生させるポンプの排出口および吸入口とを正圧配管系と負圧配管系に繋ぐそれぞれの配管の途中に、その配管を大気に開放、閉止状態に切り換える制御弁を接続する分岐管路と、その分岐管路の配管系側に配管内の圧力を維持する圧力維持用のチャンバーをそれぞれ設け、前記分岐管路と前記チャンバーの間にチャンバーに蓄積された正圧、若しくは負圧がポンプ側へ漏れるのを阻止する逆止弁を設けると共に、前記チャンバー内の圧力に応じて前記制御弁を制御する出力信号を出力する圧力スイッチがそれぞれ接続されているチャンバーに接続された負圧配管系と正圧配管系に空気圧を駆動源とする部品吸着器を負圧配管系と正圧配管系を切り換える切換弁を介してして接続し、負圧で部品を吸着させ、正圧で部品を離脱させるようにしたポンプ圧力制御装置であるから、一台のポンプを使用して部品吸着器の部品の吸着、離脱を高速にすることが出来る。
【0009】
請求項3記載の発明では、正圧空気又は負圧空気を発生させるポンプの排出口および吸入口とを正圧配管系と負圧配管系に繋ぐそれぞれの配管の途中に、その配管を大気に開放、閉止状態に切り換える制御弁を接続する分岐管路と、その分岐管路の配管系側に配管内の圧力を維持する圧力維持用のチャンバーをそれぞれ設け、前記分岐管路と前記チャンバーの間にチャンバーに蓄積された正圧、若しくは負圧がポンプ側へ漏れるのを阻止する逆止弁を設けると共に、前記チャンバー内の圧力に応じて前記制御弁を制御する出力信号を出力する圧力スイッチがそれぞれ接続されているチャンバーに接続された負圧配管系と正圧配管系に空気圧を駆動源とするアクチュエーターを負圧配管系と正圧配管系を切り換える切換弁を介して接続し、押し出し作動時はアクチュエーターの加圧側に正圧配管系を接続し空気を送り、同時にアクチュエーターの排気側に負圧配管系を接続し排気側の空気を強制的に排気させ、引き動作時はアクチュエーターの加圧側に負圧配管系を接続し加圧側を強制排気しアクチュエーターの排気側に正圧配管系を接続し空気を送るように切換弁を切り換え、前記アクチュエーターを動作させるようにしたポンプ圧力制御装置であるからアクチュエーターの加圧側と排気側の圧力差が大きくなるので正圧配管系の圧力を低圧にしても必要圧力差を得ることが出来ると共に高速で動作させることが出来る。
【0010】
【実施例】
以下実施例に基づき本発明を詳細に説明する。図1は本発明の一実施例を示すものである。図1において、ポンプ1の排出口10と正圧用チャンバー12とを配管2により、配管2を分岐して、その分岐管路を開閉する電磁弁4を接続すると共に前記分岐管路と正圧用チャンバー12の間にポンプ1から正圧用チャンバー12側への流れを許容し、正圧用チャンバー12からポンプ1側への流れを阻止する逆止弁6を介して接続される。同様に、前記ポンプ1の吸込口11と負圧用チャンバー13とを配管3により、配管3を分岐して、その分岐管路を開閉する電磁弁5を接続すると共に前記分岐管路と負圧用チャンバー13の間にポンプ1から負圧用チャンバー13側への流れを阻止し、負圧用チャンバー13からポンプ1側への流れを許容する逆止弁7を介して接続される。そしてそれぞれのチャンバー12,13内の圧力を検知する圧力スイッチ8,9をチャンバー若しくはチャンバー近傍の配管に取付ける。さらに、前記正圧用チャンバー12は正圧配管系14に接続され、前記負圧用チャンバー13は負圧配管系15に接続される。そして正圧配管系14、負圧配管系15に空圧で駆動する装置を適宜接続することで正圧、負圧の空圧を使用することが出来る。
【0011】
次に前述の配管系に空気圧を駆動源とする吸着器を接続する場合について説明する。正圧配管系14と負圧配管系15を分岐して正圧、負圧を切り換える電磁弁16の空圧接続口にそれぞれ接続し、出力口に吸着器17を接続する。図示しない吸着器17の制御装置により電磁弁16を吸着器17に正圧、負圧、両方がOFFになるように切り換え制御する。
【0012】
図2は図1に示した破線18内の構造の他の例である。図1では電磁弁4、5と逆止弁6、7とでポンプ1の吸気口および排気口を大気圧に開放するが、図2では電磁弁に逆止弁が組込まれた電磁弁21、22を用いて配管を簡略化した例であり、ポンプ1に組付けてポンプユニットとしても良い。基本的な動作は同じである。
【0013】
次に動作について説明する。図3はチャンバー内圧力と、圧力スイッチと、ポンプとおよび電磁弁の時間変化を示す。ここでは吸着器17が一つの場合を例にとる。図3において横軸は時間を、縦軸は(a)が圧力を、(b)が前記圧力スイッチ8(SW)および前記圧力スイッチ9(SW)のON,OFFを、(c)がポンプ1のON、OFFを、(d)が前記電磁弁4および前記電磁弁5の開、閉を示している。
【0014】
先ず、時間tからtまでは前記正圧側圧力および前記負圧側圧力ともに下限設定圧力以下なので前記圧力スイッチ8、9ともにONとなるので、前期電磁弁4および前記電磁弁5は閉となり、ポンプ1はONとなる。
【0015】
次に、時間tからtまでは前記正圧用チャンバー7内の圧力は上限設定圧力に達しているので前記圧力スイッチ8はOFFとなるが、前記負圧用チャンバー13内の圧力は上限設定圧力に達していないので前記圧力スイッチ9はONのままである。よって、ポンプ1はONのままで、前記電磁弁4が開になり、電磁弁5は閉のままである。従ってポンプ1の排出側の負荷が減り、効率よく負圧を発生することができる。
【0016】
次に、時間tからtまでは前記負圧用チャンバー13内の圧力が上限設定圧力に達し正圧側および負圧側の圧力は設定圧力範囲内となるので前記圧力スイッチ8,9共にOFFとなり、ポンプ1はOFFとなる。よってこの間はポンプ1の動作時間を節約できる。またこのときは、前記電磁弁4、5は開、閉どちらの状態にしても良い。また、時間tからtまでは時間tからtのときとは反対に正圧側の圧力が設定圧力に達していないので前記圧力スイッチ8のみがONとなり、前記ポンプ1もONとなり、前記電磁弁5が開となる。よって前記吸込側の負荷が減るので、効率よく正圧を発生することができる。
【0017】
図1に示す実施例の如く前述のように圧力が制御された正圧配管系14、負圧配管系15に接続した吸着器17の作動は図示しない制御装置により電磁弁16を制御して、部品吸着時は吸着器17を負圧配管系15側に接続して部品を負圧により吸着し、部品離脱時は正圧配管系14側に接続して正圧により部品を高速で離脱し、移動時および部品非吸着時はどちらもOFF状態として圧力の保持を図るようになる。吸着器17はポンプ性能とチャンバー容量によって、いくつでも並列に繋げることができ、電磁弁16の制御により、干渉されることなく自由に動作させることができる。
【0018】
図4にアクチュエーター24を接続した場合を示す。図示しない制御装置により切換弁23を制御して、アクチュエーター24の押し出し動作時はアクチュエーター24の加圧側に正圧配管系14側、排出側に負圧配管系15側を接続して、加圧側を加圧し排出側を強制排気して加圧側と排気側の圧力差を大きくし大きな動作力を発生させる。又逆に引き動作の際には前記切換弁23により加圧側を負圧配管系15側、排出側を正圧配管系14側に接続して、加圧側を強制排気し排出側を加圧し押し出し動作時と同様に加圧側と排出側の圧力差を大きくし大きな作動力を発生させる。
【0019】
さらに、正圧空気、負圧空気を個別に使用しても良く、正圧空気を用いてアクチュエーターを動作させ、負圧空気を用いて部品の真空吸着を同時に行うこともできる。
【0020】
【発明の効果】
以上説明したように請求項1記載の発明によれば、ポンプで発生した正圧、負圧をチャンバーに蓄えることで、一台のポンプから正圧、負圧を取り出すことを可能とし、また、ポンプにかかる負荷を調節することができるので、ポンプ自身の動作時間を節約することができると共に設定圧力を効率よく発生させることができる。請求項2記載の発明によれば、一つのポンプで正圧、負圧が利用可能なので吸着器の部品の負圧吸着と正圧力による離脱を行なう装置が安価に構築することができる。さらに請求項3の発明によれば、アクチュエーターにおいて正圧、負圧を利用することで加圧側と排出側の圧力差を大きくし大きな作動力を発生させることが出来る。
【図面の簡単な説明】
【図1】本発明の一実施例におけるポンプ圧力制御装置の全体的な構成を示す配管管路図である。
【図2】本発明の一実施例におけるポンプ圧力制御装置の全体的な構成を示す配管管路図である。
【図3】本発明の一実施例におけるチャンバー内の圧力と、圧力スイッチおよび電磁弁の作動の一例を示した説明図である。
【図4】本発明のアクチュエーターを取付けた一実施例における部分配管路図である。
【符号の説明】
1――ポンプ 2、3――配管
4、5――電磁弁 6、7――逆止弁
8、9――圧力スイッチ 12――正圧チャンバー
13――負圧チャンバー 16――電磁弁
17――吸着ノズル 14――正圧配管系
15――負圧配管系 21、22――電磁弁
23――切換弁 24――アクチュエーター
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a supply pressure control device for a pressure supply source, and more particularly to a device in which positive pressure air and negative pressure air are used simultaneously or separately.
[0002]
[Prior art]
Conventionally, for example, when a vacuum device is used as a suction device of a component transfer device to suction and transfer components at a negative pressure, the operation is performed by suctioning and transferring the components at a negative pressure using a vacuum pump, and then the negative pressure is released to the atmosphere. The operation of releasing the component from the suction device by opening is repeated. Here, when the component is separated from the suction device, if the vacuum pressure in the suction device is released to the atmosphere to release the component, the separation time increases. Also, for example, when an ejector is used instead of a vacuum pump, the ejector uses the positive pressure air of the compressor to generate a negative pressure. To output the positive air of the compressor, thereby separating the parts at high speed. However, when an ejector is used, one adsorber is generally used for one ejector, which is not suitable when a plurality of adsorbers are used at the same time.
[0003]
In addition, small and medium-sized vacuum pumps that are generally used for component transfer devices do not have a pressure control mechanism, and keep operating constantly during component transfer, that is, while the production line is operating in the factory. Pressure is being generated. At this time, the vacuum pressure in the production line continues to generate more vacuum pressure than the vacuum pressure required for parts suction, and wastes energy.
[0004]
[Problems to be solved by the invention]
If both positive pressure air and negative pressure air are to be used, generally both a compressor and a vacuum pump must be provided.
[0005]
Also, in a component suction device using a vacuum pump, releasing the negative pressure to the atmosphere by releasing the negative pressure to the atmosphere after transporting the component takes time to release the pressure. Cannot be transported. Furthermore, since the negative pressure required for adsorption is adjusted by the opening and closing time of the solenoid valve, the pump always operates and generates a constant negative pressure. Become. Therefore, in order to operate the apparatus with energy saving, it is necessary to prevent the pump from being operated more than necessary.
[0006]
An object of the present invention is to provide a pump pressure control device that generates positive pressure air and negative pressure air using a single pump, performs suction with a negative pressure, and releases with a positive pressure, thereby shortening the separation time. To provide. Further, the pressure in each of the two chambers is detected by mounting a pressure switch on a pipe system between the pump and the chamber, and the control valve and the pump mounted between the pump and the chamber are controlled to control the pressure in the two chambers. The purpose is to keep the pressure in the target pressure range.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, the discharge port and the suction port of the pump that generates the positive pressure air or the negative pressure air are connected to the positive pressure piping system and the negative pressure piping system, and the piping is connected to the atmosphere. A branch pipe for connecting a control valve for switching to an open or closed state, and a pressure maintaining chamber for maintaining pressure in the pipe on the pipe system side of the branch pipe are provided, respectively, between the branch pipe and the chamber. A positive pressure accumulated in the chamber, or a check valve for preventing negative pressure from leaking to the pump side, and a pressure switch that outputs an output signal for controlling the control valve according to the pressure in the chamber is provided. Pump pressure control devices characterized in that they are connected to each other, and when the pressures in the pressure side and suction side chambers are insufficient, both the pressure side control valve and the suction side control valve are closed. In the state, the pump is operated, at the same time to generate a positive pressure and negative pressure. Next, when only the negative pressure is less than the set pressure, the pump is operated in a state where the control valve on the positive pressure side is opened to the atmosphere and the load of exhaust gas is reduced to generate a negative pressure. On the other hand, if only the positive pressure is less than the set pressure, the control valve on the negative pressure side is opened to the atmosphere to reduce the load on the intake of the pump and generate a positive pressure. At this time, the chamber on the side opened to the atmosphere by the control valve is structured so that the pressure is not reduced by the check valve. In addition, when both the positive pressure side and the negative pressure side have reached the set pressure, the pump is stopped, so that the operation time of the pump itself can be saved. Control device.
[0008]
According to the invention described in claim 2, the discharge port and the suction port of the pump for generating the positive pressure air or the negative pressure air are connected to the positive pressure piping system and the negative pressure piping system, and the piping is connected to the atmosphere. A branch pipe for connecting a control valve for switching between an open state and a closed state, and a pressure maintaining chamber for maintaining pressure in the pipe on the piping system side of the branch pipe are provided, respectively, between the branch pipe and the chamber. A positive pressure accumulated in the chamber, or a check valve for preventing negative pressure from leaking to the pump side, and a pressure switch that outputs an output signal for controlling the control valve according to the pressure in the chamber is provided. A component suction device driven by air pressure is connected to the negative pressure piping system and the positive pressure piping system connected to the connected chambers via a switching valve that switches between the negative pressure piping system and the positive pressure piping system. At negative pressure Article was adsorbed, positive pressure component from a pump pressure control device so as to disengage the at can be single use pumps with components adsorber parts suction, the withdrawal speed.
[0009]
In the invention according to claim 3, the discharge port and the suction port of the pump for generating the positive pressure air or the negative pressure air are connected to the positive pressure piping system and the negative pressure piping system in the respective pipes, and the pipe is exposed to the atmosphere. A branch pipe for connecting a control valve for switching between an open state and a closed state, and a pressure maintaining chamber for maintaining pressure in the pipe on the piping system side of the branch pipe are provided, respectively, between the branch pipe and the chamber. A positive pressure accumulated in the chamber, or a check valve for preventing negative pressure from leaking to the pump side, and a pressure switch that outputs an output signal for controlling the control valve according to the pressure in the chamber is provided. The actuators driven by air pressure are connected to the negative pressure piping system and the positive pressure piping system connected to the connected chambers via a switching valve that switches between the negative pressure piping system and the positive pressure piping system, and pushed. During operation, a positive pressure piping system is connected to the pressurized side of the actuator to send air, and at the same time, a negative pressure piping system is connected to the exhaust side of the actuator to forcibly exhaust the air on the exhaust side. A pump pressure control device in which a negative pressure pipe system is connected to the pressurized side, the pressurized side is forcibly evacuated, a positive pressure pipe system is connected to the exhaust side of the actuator, a switching valve is switched so as to send air, and the actuator is operated. Therefore, since the pressure difference between the pressurized side and the exhaust side of the actuator becomes large, even if the pressure of the positive pressure piping system is reduced, the required pressure difference can be obtained and the actuator can be operated at high speed.
[0010]
【Example】
Hereinafter, the present invention will be described in detail based on examples. FIG. 1 shows an embodiment of the present invention. In FIG. 1, a discharge port 10 of a pump 1 and a positive pressure chamber 12 are branched by a pipe 2, the pipe 2 is branched, an electromagnetic valve 4 for opening and closing the branch pipe is connected, and the branch pipe and the positive pressure chamber are connected. It is connected via a check valve 6 that allows a flow from the pump 1 to the positive pressure chamber 12 side and prevents a flow from the positive pressure chamber 12 to the pump 1 side during the period 12. Similarly, the suction port 11 of the pump 1 and the negative pressure chamber 13 are branched from the pipe 3 by the pipe 3, a solenoid valve 5 for opening and closing the branch pipe is connected, and the branch pipe and the negative pressure chamber are connected. During the period 13, it is connected via a check valve 7 which prevents the flow from the pump 1 to the negative pressure chamber 13 and allows the flow from the negative pressure chamber 13 to the pump 1. Then, pressure switches 8 and 9 for detecting the pressures in the respective chambers 12 and 13 are attached to the chambers or pipes near the chambers. Further, the positive pressure chamber 12 is connected to a positive pressure piping system 14, and the negative pressure chamber 13 is connected to a negative pressure piping system 15. By appropriately connecting a device driven by pneumatic pressure to the positive pressure piping system 14 and the negative pressure piping system 15, it is possible to use positive and negative pressure pneumatic pressure.
[0011]
Next, a case where an adsorber using air pressure as a driving source is connected to the above-described piping system will be described. The positive pressure piping system 14 and the negative pressure piping system 15 are branched and connected to pneumatic connection ports of a solenoid valve 16 for switching between positive pressure and negative pressure, respectively, and an adsorber 17 is connected to an output port. The electromagnetic valve 16 is switched and controlled so as to turn off both the positive pressure and the negative pressure to the adsorber 17 by a control device of the adsorber 17 (not shown).
[0012]
FIG. 2 shows another example of the structure within the broken line 18 shown in FIG. In FIG. 1, the solenoid valves 4, 5 and the check valves 6, 7 open the intake port and the exhaust port of the pump 1 to the atmospheric pressure. In FIG. 2, the solenoid valve 21, in which the check valve is incorporated in the solenoid valve, This is an example in which the piping is simplified using 22, and the pump unit may be assembled to the pump 1. The basic operation is the same.
[0013]
Next, the operation will be described. FIG. 3 shows the time change of the pressure in the chamber, the pressure switch, the pump, and the solenoid valve. Here, the case where there is one adsorber 17 is taken as an example. In FIG. 3, the horizontal axis represents time, the vertical axis (a) represents pressure, (b) represents ON / OFF of the pressure switch 8 (SW p ) and the pressure switch 9 (SW n ), and (c) represents the pressure. (D) shows opening and closing of the solenoid valve 4 and the solenoid valve 5.
[0014]
First, from time t 0 to t 1, since both the positive pressure side pressure and the negative pressure side pressure are lower than the lower limit set pressure, the pressure switches 8 and 9 are both turned on, so that the first solenoid valve 4 and the first solenoid valve 5 are closed, The pump 1 turns on.
[0015]
Then, the pressure switch 8 is turned OFF because from the time t 1 to t 2 the pressure in the positive pressure chamber 7 has reached the upper limit set pressure, the pressure of the negative pressure chamber 13 is the upper limit set pressure , The pressure switch 9 remains ON. Thus, the pump 1 remains ON, the solenoid valve 4 is opened, and the solenoid valve 5 remains closed. Therefore, the load on the discharge side of the pump 1 is reduced, and a negative pressure can be generated efficiently.
[0016]
Then, the pressure switch 8, 9 both turned OFF because from the time t 2 to t 3 the pressure side and the pressure of the suction pressure reaches the upper limit set pressure of the negative pressure chamber 13 is within the set pressure range, The pump 1 is turned off. Therefore, during this time, the operation time of the pump 1 can be saved. At this time, the solenoid valves 4 and 5 may be opened or closed. Further, the pressure only the switch 8 is turned ON, the pressure of the pressure side to the opposite does not reach the set pressure and time t 2 to t 4 is the time from t 1 from the time t 3, also it turns ON the pump 1, The solenoid valve 5 opens. Therefore, the load on the suction side is reduced, so that a positive pressure can be generated efficiently.
[0017]
As in the embodiment shown in FIG. 1, the operation of the adsorber 17 connected to the positive pressure piping system 14 and the negative pressure piping system 15 whose pressure is controlled as described above is performed by controlling the solenoid valve 16 by a control device (not shown). At the time of component suction, the suction device 17 is connected to the negative pressure piping system 15 side to suck components by negative pressure, and at the time of component separation, the component is connected to the positive pressure piping system 14 side to release components at high speed by positive pressure. At the time of movement and at the time of non-suction of parts, the pressure is maintained by setting the state to OFF. Any number of adsorbers 17 can be connected in parallel depending on the pump performance and chamber capacity, and can be operated freely without interference by controlling the electromagnetic valve 16.
[0018]
FIG. 4 shows a case where the actuator 24 is connected. The switching valve 23 is controlled by a control device (not shown), and when the actuator 24 is pushed out, the positive pressure piping system 14 side is connected to the pressurizing side of the actuator 24 and the negative pressure piping system 15 side is connected to the discharging side, and the pressurizing side is connected. By pressurizing and forcibly exhausting the discharge side, the pressure difference between the pressurized side and the exhaust side is increased to generate a large operating force. Conversely, during the pulling operation, the switching valve 23 connects the pressurizing side to the negative pressure piping system 15 side and the discharge side to the positive pressure piping system 14 side, forcibly exhausts the pressurizing side and pressurizes and discharges the discharge side. As in the case of the operation, the pressure difference between the pressure side and the discharge side is increased to generate a large operating force.
[0019]
Further, positive pressure air and negative pressure air may be used individually, and an actuator may be operated using positive pressure air, and vacuum suction of parts may be performed simultaneously using negative pressure air.
[0020]
【The invention's effect】
As described above, according to the first aspect of the present invention, by storing the positive pressure and the negative pressure generated by the pump in the chamber, it is possible to extract the positive pressure and the negative pressure from one pump. Since the load applied to the pump can be adjusted, the operation time of the pump itself can be saved, and the set pressure can be generated efficiently. According to the second aspect of the present invention, since the positive pressure and the negative pressure can be used by one pump, a device for performing the negative pressure adsorption and the desorption of the components of the adsorber by the positive pressure can be constructed at low cost. Further, according to the third aspect of the present invention, by utilizing the positive pressure and the negative pressure in the actuator, the pressure difference between the pressurized side and the discharge side can be increased to generate a large operating force.
[Brief description of the drawings]
FIG. 1 is a piping diagram illustrating an overall configuration of a pump pressure control device according to an embodiment of the present invention.
FIG. 2 is a piping diagram illustrating an overall configuration of a pump pressure control device according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram showing an example of the pressure in a chamber and the operation of a pressure switch and a solenoid valve in one embodiment of the present invention.
FIG. 4 is a partial piping diagram of an embodiment to which the actuator of the present invention is attached.
[Explanation of symbols]
1—Pump 2, 3-Piping 4, 5—Electromagnetic valve 6, 7—Check valve 8, 9—Pressure switch 12—Positive pressure chamber 13—Negative pressure chamber 16—Electromagnetic valve 17 -Suction nozzle 14-Positive pressure piping system 15-Negative pressure piping system 21, 22-Solenoid valve 23-Switching valve 24-Actuator

Claims (3)

正圧空気又は負圧空気を発生させるポンプの排出口および吸入口とを正圧配管系と負圧配管系に繋ぐそれぞれの配管の途中に、その配管を大気に開放、閉止状態に切り換える制御弁を接続する分岐管路と、その分岐管路の配管系側に配管内の圧力を維持する圧力維持用のチャンバーをそれぞれ設け、前記分岐管路と前記チャンバーの間にチャンバーに蓄積された正圧、若しくは負圧がポンプ側へ漏れるのを阻止する逆止弁を設けると共に、前記チャンバー内の圧力に応じて前記制御弁を制御する出力信号を出力する圧力スイッチがそれぞれ接続されていることを特徴とするポンプ圧力制御装置。A control valve that opens and closes the piping to the atmosphere in the middle of each pipe that connects the discharge port and the suction port of the pump that generates positive pressure air or negative pressure air to the positive pressure piping system and the negative pressure piping system. And a pressure maintaining chamber for maintaining the pressure in the pipe on the piping system side of the branch pipe, and the positive pressure accumulated in the chamber between the branch pipe and the chamber. Or a check valve for preventing a negative pressure from leaking to the pump side, and a pressure switch for outputting an output signal for controlling the control valve according to the pressure in the chamber is connected. And pump pressure control device. 正圧空気又は負圧空気を発生させるポンプの排出口および吸入口とを正圧配管系と負圧配管系に繋ぐそれぞれの配管の途中に、その配管を大気に開放、閉止状態に切り換える制御弁を接続する分岐管路と、その分岐管路の配管系側に配管内の圧力を維持する圧力維持用のチャンバーをそれぞれ設け、前記分岐管路と前記チャンバーの間にチャンバーに蓄積された正圧、若しくは負圧がポンプ側へ漏れるのを阻止する逆止弁を設けると共に、前記チャンバー内の圧力に応じて前記制御弁を制御する出力信号を出力する圧力スイッチがそれぞれ接続されているチャンバーに接続された負圧配管系と正圧配管系に空気圧を駆動源とする部品吸着器を負圧配管系と正圧配管系を切り換える切換弁を介してして接続し、負圧で部品を吸着させ、正圧で部品を離脱させるようにしたポンプ圧力制御装置。A control valve that opens and closes the piping to the atmosphere in the middle of each pipe that connects the discharge port and the suction port of the pump that generates positive pressure air or negative pressure air to the positive pressure piping system and the negative pressure piping system. And a pressure maintaining chamber for maintaining the pressure in the pipe on the piping system side of the branch pipe, and the positive pressure accumulated in the chamber between the branch pipe and the chamber. Or a check valve for preventing a negative pressure from leaking to the pump side, and a pressure switch for outputting an output signal for controlling the control valve in accordance with the pressure in the chamber is connected to the chamber to which each is connected. A component suction device driven by air pressure is connected to the selected negative pressure piping system and positive pressure piping system via a switching valve that switches between the negative pressure piping system and the positive pressure piping system, and the components are sucked by negative pressure. , With positive pressure Pump pressure control device so as to disengage the. 正圧空気又は負圧空気を発生させるポンプの排出口および吸入口とを正圧配管系と負圧配管系に繋ぐそれぞれの配管の途中に、その配管を大気に開放、閉止状態に切り換える制御弁を接続する分岐管路と、その分岐管路の配管系側に配管内の圧力を維持する圧力維持用のチャンバーをそれぞれ設け、前記分岐管路と前記チャンバーの間にチャンバーに蓄積された正圧、若しくは負圧がポンプ側へ漏れるのを阻止する逆止弁を設けると共に、前記チャンバー内の圧力に応じて前記制御弁を制御する出力信号を出力する圧力スイッチがそれぞれ接続されているチャンバーに接続された負圧配管系と正圧配管系に空気圧を駆動源とするアクチュエーターを負圧配管系と正圧配管系を切り換える切換弁を介して接続し、押し出し動作時はアクチュエーターの加圧側に正圧配管系を接続し空気を送り、同時にアクチュエーターの排気側に負圧配管系を接続し排気側の空気を強制的に排気させ、引き動作時はアクチュエーターの加圧側に負圧配管系を接続し加圧側を強制排気しアクチュエーターの排気側に正圧配管系を接続し空気を送るように切換弁を切り換え、前記アクチュエーターを動作させるようにしたポンプ圧力制御装置。A control valve that opens and closes the piping to the atmosphere in the middle of each pipe that connects the discharge port and the suction port of the pump that generates positive pressure air or negative pressure air to the positive pressure piping system and the negative pressure piping system. And a pressure maintaining chamber for maintaining the pressure in the pipe on the piping system side of the branch pipe, and the positive pressure accumulated in the chamber between the branch pipe and the chamber. Or a check valve for preventing a negative pressure from leaking to the pump side, and a pressure switch for outputting an output signal for controlling the control valve in accordance with the pressure in the chamber is connected to the chamber to which each is connected. An air-powered actuator is connected to the selected negative pressure piping system and positive pressure piping system via a switching valve that switches between the negative pressure piping system and the positive pressure piping system. A positive pressure piping system is connected to the pressurizing side of the actuator to send air, and at the same time, a negative pressure piping system is connected to the exhaust side of the actuator to forcibly exhaust the air on the exhaust side. A pump pressure control device that connects a pressure piping system, forcibly exhausts a pressurized side, connects a positive pressure piping system to an exhaust side of an actuator, switches a switching valve to send air, and operates the actuator.
JP2003076562A 2003-02-14 2003-02-14 Pump pressure control device Pending JP2004245209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076562A JP2004245209A (en) 2003-02-14 2003-02-14 Pump pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076562A JP2004245209A (en) 2003-02-14 2003-02-14 Pump pressure control device

Publications (1)

Publication Number Publication Date
JP2004245209A true JP2004245209A (en) 2004-09-02

Family

ID=33027901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076562A Pending JP2004245209A (en) 2003-02-14 2003-02-14 Pump pressure control device

Country Status (1)

Country Link
JP (1) JP2004245209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069836A (en) * 2010-09-27 2012-04-05 Juki Corp Electronic component mounting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069836A (en) * 2010-09-27 2012-04-05 Juki Corp Electronic component mounting device
CN102421280A (en) * 2010-09-27 2012-04-18 Juki株式会社 Electronic part installing device

Similar Documents

Publication Publication Date Title
JP4132897B2 (en) Vacuum generator
CN102536814A (en) Oil free screw compressor
US5797262A (en) Drive circuit for fluid operated actuator having high and low pressure reservoirs
JP4288296B2 (en) Gripper unit, mounting head and method for mounting electrical components on a substrate
JP2004245209A (en) Pump pressure control device
JP6511437B2 (en) Method of exhausting film chamber
JP3676669B2 (en) Pneumatic equipment
JP2010121677A (en) Pneumatic system
CN107035732A (en) Vacuum generator device
WO2003103904A1 (en) Vacuum system
JPH0511986Y2 (en)
JP6743747B2 (en) Semiconductor manufacturing equipment
JP2004169677A (en) Positive pressure/negative pressure supply device
TWI825939B (en) Positive/negative pressure switch circuit
JP2009083017A (en) Workpiece adsorbing and holding device
JP2004144088A (en) Multistage piston vacuum pump and its operating method
CN111459053B (en) Positive and negative pressure fast switching device
JP2010120103A (en) Vacuum generation system
JP2012012943A (en) Vacuum generation system
JP2002257099A (en) Vacuum producing device
US11255350B2 (en) Method and apparatus for conversion of single-acting pneumatic actuator to electric power platform
US11732733B2 (en) Method and apparatus for conversion of a pneumatic actuator to an electric power platform
JP2004360735A (en) Fluid circuit system
JP5600664B2 (en) Vacuum pump device
JPS6027791A (en) Combination compressor and method of controlling operation thereof