JP2004245103A - Direct injection diesel engine - Google Patents

Direct injection diesel engine Download PDF

Info

Publication number
JP2004245103A
JP2004245103A JP2003034552A JP2003034552A JP2004245103A JP 2004245103 A JP2004245103 A JP 2004245103A JP 2003034552 A JP2003034552 A JP 2003034552A JP 2003034552 A JP2003034552 A JP 2003034552A JP 2004245103 A JP2004245103 A JP 2004245103A
Authority
JP
Japan
Prior art keywords
fuel
injection
engine
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003034552A
Other languages
Japanese (ja)
Inventor
Kazunori Eguchi
一憲 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003034552A priority Critical patent/JP2004245103A/en
Publication of JP2004245103A publication Critical patent/JP2004245103A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct injection diesel engine capable of improving exhaust gas performance by enabling compression ratio to be reduced without damaging low-temperature startability. <P>SOLUTION: The common-rail type direct injection diesel engine 1 comprises a fuel injection valves 2a-2d for directly injecting fuel into a combustion chamber of the engine 1, a fuel pressure adjusting means 5 formed of a fuel supply pump 5a for adjusting pressure of the fuel supplied to the fuel injection valves and a solenoid valve 5b, and a start control section of an electronic control unit 3 for controlling the fuel injection valves and the fuel pressure adjusting means at a starting time of the engine. When the temperature at the starting time of the engine is not higher than a predetermined temperature, the start control section controls the fuel injection valves 2a-2d to perform pilot injection prior to a main injection, and controls the fuel pressure adjusting means 5 to adjust the pressure of the fuel to be higher than that when the the temperature exceeds the predetermined temperature. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、低圧縮比化を可能にして排ガス性能の向上が図れる直噴ディーゼルエンジンに関する。
【0002】
【従来の技術と発明が解決しようとする課題】
一般に、エンジンの燃焼室内に直接燃料を噴射する燃料噴射弁を備えた直噴ディーゼルエンジンにおいて、低圧縮比化(例えば圧縮比17〜18.5→圧縮比16.0)を図ると、燃焼温度の低下でNOx(窒素酸化物)や煤の発生が抑制されて排ガス性能が向上する反面、低温環境時における低温始動性が悪化することは周知である。
【0003】
前記低温始動性の悪化は、元来、圧縮比が低いために混合気が自己着火温度に達し難い低圧縮比の直噴ディーゼルエンジンにおける低温始動時の燃料噴射特性に因るものと考えられる。即ち、図6に示すように、低温時における噴射圧力がおよそ20MPa程度と比較的低く設定されていたため、噴射した燃料の微粒化が十分に促進されていなかったことと、燃料噴射は主噴射のみであり、その噴射量と噴射開始時期の制御のみであることから、低温時において自己着火可能な雰囲気下に容易になりにくかったことにある。
【0004】
因みに、山岳地等の高地において始動性を改善するために、エンジン始動時にコモンレール圧(即ち、噴射圧力)を制御すると共にパイロット噴射とメイン噴射(主噴射)を実行するコモンレール式ディーゼルエンジンの始動制御装置において、大気圧が低い程コモンレール圧を低くし且つメイン噴射開始時期を進角させる制御を行う技術が特許文献1で開示されている。また、この特許文献1には、エンジン温度が低い程、パイロット噴射量(及び又はメイン噴射量)を増量する技術が開示されている。
【0005】
ところが、特許文献1には、前述したように低温始動時にコモンレール圧を制御すると共にメイン噴射に先立ってパイロット噴射を実行する技術が開示されているが、低温始動性を損なわずに低圧縮比化を可能にする技術は一切開示されていない。
【0006】
【特許文献1】
特開2001−12277号公報
【0007】
そこで、本発明の目的は、低温始動性を損なわずに低圧縮比化を可能にして排ガス性能の向上が図れる直噴ディーゼルエンジンを提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するための、本発明の請求項1に係る直噴ディーゼルエンジンは、エンジンの燃焼室内に直接燃料を噴射する燃料噴射弁と、前記燃料噴射弁に供給される燃料の圧力を調節する燃圧調節手段と、前記エンジンの始動時に前記燃料噴射弁と前記燃圧調節手段を制御する始動制御装置と、を備えた直噴ディーゼルエンジンにおいて、前記始動制御装置は、前記エンジンの始動時温度が所定温度以下の場合に、主噴射に先立ってパイロット噴射を実行すべく前記燃料噴射弁を制御すると共に前記所定温度を越える場合より前記燃料の圧力を高圧に調節すべく前記燃圧調節手段を制御することを特徴とする。
【0009】
これにより、噴射した燃料の微粒化が十分に促進される(燃料圧力の高圧化により)と共に、主噴射が着火し易い雰囲気化に容易になり得る(燃料の分割噴射により)。この結果、直噴ディーゼルエンジンにおいて低温始動性を損なわずに低圧縮比化を可能にして排ガス性能の向上が図れる。
【0010】
請求項2に係る直噴ディーゼルエンジンは、エンジンの燃焼室内に直接燃料を噴射する燃料噴射弁と、前記燃料噴射弁に供給される燃料の圧力を調節する燃圧調節手段と、前記エンジンの始動時に前記燃料噴射弁と前記燃圧調節手段を制御する始動制御装置と、を備えた直噴ディーゼルエンジンにおいて、前記始動制御装置は、前記エンジンの始動時温度が所定温度以下の場合に、主噴射に先立ってパイロット噴射を実行すべく前記燃料噴射弁を制御すると共に前記燃料の圧力を40MPa以上に調節すべく前記燃圧調節手段を制御することを特徴とする。
【0011】
これにより、請求項1に係る発明と同様の作用・効果が得られる。
【0012】
請求項3に係る直噴ディーゼルエンジンは、前記エンジンの圧縮比が16.5以下であることを特徴とする。
【0013】
これにより、低圧縮比化によってより一層排ガス性能が向上される。
【0014】
【発明の実施の形態】
以下、本発明に係る直噴ディーゼルエンジンを実施例により図面を用いて詳細に説明する。
【0015】
[実施例]
図1は本発明の一実施例を示す直噴ディーゼルエンジンのシステム構成図、図2は同じく分割噴射パターンの説明図、図3は同じく始動時のエンジン冷却水温と噴射圧力(制御燃圧)との関係を示すグラフ、図4は同じく噴射圧力の比較を説明するグラフ、図5は同じく低温始動時の噴射圧力と完爆時間との関係を示すグラフである。
【0016】
図1に示すように、トラック、バスなどの車両に搭載されたコモンレール式直噴ディーゼルエンジン(以下、エンジンという)1の各気筒毎に燃料噴射弁2a〜2dが設けられ(図では4気筒の例を示す)、該燃料噴射弁2a〜2dに装備された電磁弁(図示せず)がマイクロコンピュータ等からなる電子制御ユニット(以下ECUという)3によりON/OFF制御されることで、燃料噴射(燃料噴射量及び噴射時期等)がエンジン1の運転状態に応じて制御されるようになっている。
【0017】
前記燃料噴射弁2a〜2dにはコモンレール4に貯溜された所定圧力の燃料が常時供給され、このコモンレール4には、燃圧調節手段5を構成する燃料供給ポンプ5aにより、燃料タンク(図示せず)からの燃料が供給されるようになっている。
【0018】
前記ECU3は、コモンレール4に付設された噴射圧センサ(コモンレール圧センサ)6からの圧力信号を入力し、前記燃圧調節手段5を構成する電磁弁5bをデューティー制御により弁開度を調節することで、前記コモンレール4の燃料圧力(即ち、燃料噴射弁2a〜2dの噴射圧力)をエンジン1の運転状態に応じてフィードバック制御するようになっている。
【0019】
また、前記ECU3には、エンジン1の運転状態を検出する手段としての、エンジン冷却水温を検知する水温センサ,エンジンクランキング中か否かを検知するスタータスイッチ,エンジン回転速度を検知するエンジン回転センサ,エンジン負荷状態を検知するアクセル開度センサ等の各種検出信号が入力されている。
【0020】
そして、本実施例では、前記ECU3内に設けた始動制御部(始動制御装置)により、エンジン1の始動時(これはスタータスイッチにより検出する)に前記燃料噴射弁2a〜2dと燃圧調節手段5を制御し、前記エンジン1の始動時温度(これは水温センサにより検出する)が所定温度以下の場合に、図2に示すように主噴射に先立って1回のパイロット噴射を実行すると共に、図3(A)及び図4に示すように前記燃料噴射弁2a〜2dの噴射圧力(制御燃圧)を前記所定温度を越える場合より高圧に調節するようになっている。尚、図3(B)のように、噴射圧力(制御燃圧)は始動時のエンジン冷却水温が所定値を境に所定値以下の領域でステップ状に高圧に調節するようにしてもよい。
【0021】
前記パイロット噴射の噴射量は噴射量全体のおよそ10%が好適であると共に、パイロット噴射の終了時期と主噴射の開始時期との分割噴射間隔はクランク角で5°程度とすると好適である(図2参照)。
【0022】
前記噴射圧力は、エンジン1への負担軽減のために限度があるが、従来の20MPa→60MPa程度まで高圧化すると好適である(図4参照)。
【0023】
このようにして本実施例では、エンジン1の始動時温度が所定温度以下の場合に、燃料噴射弁2a〜2dの噴射圧力を前記所定温度を越える場合より高圧に調節することにより噴射した燃料の微粒化が十分に促進されると共に、主噴射に先立ってパイロット噴射を実行することにより主噴射が着火し易い雰囲気化に容易になり得る。
【0024】
この結果、図5に示すように、コモンレール式直噴ディーゼルエンジン1において低温始動性を損なわずに低圧縮比化(例えば圧縮比16.5以下)を可能にして排ガス性能の向上が図れる。
【0025】
図5からは、低温始動時の完爆時間(クランキング開始からアイドル回転数まで上昇するのに要する時間)が、従来のおよそ9秒→およそ2秒へ短縮されるのが判る。また、噴射圧力が40MPa以上でも十分効果があることも判る。
【0026】
尚、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲で各種変更が可能であることはいうまでもない。例えば、エンジンの始動時温度を検出する手段として水温センサに代えて大気温度センサ等の他の検出手段を用いても良い。また、分割噴射はエンジン1の始動時温度が所定温度を越える場合にも、さらには始動時以外にも実行しても良い。
【0027】
【発明の効果】
以上説明したように請求項1の発明によれば、エンジンの始動時に燃料噴射弁と燃圧調節手段を制御する始動制御装置は、前記エンジンの始動時温度が所定温度以下の場合に、主噴射に先立ってパイロット噴射を実行すべく前記燃料噴射弁を制御すると共に前記所定温度を越える場合より前記燃料の圧力を高圧に調節すべく前記燃圧調節手段を制御するので、噴射した燃料の微粒化が十分に促進されると共に主噴射が着火し易い雰囲気化に容易になり得ることにより、直噴ディーゼルエンジンにおいて低温始動性を損なわずに低圧縮比化を可能にして排ガス性能の向上が図れる。
【0028】
請求項2の発明によれば、エンジンの始動時に燃料噴射弁と燃圧調節手段を制御する始動制御装置は、前記エンジンの始動時温度が所定温度以下の場合に、主噴射に先立ってパイロット噴射を実行すべく前記燃料噴射弁を制御すると共に前記燃料の圧力を40MPa以上に調節すべく前記燃圧調節手段を制御するので、請求項1に係る発明と同様の作用・効果が得られる。
【0029】
請求項3の発明によれば、前記エンジンの圧縮比が16.5以下であるので、低圧縮比化によってより一層排ガス性能が向上される。
【図面の簡単な説明】
【図1】本発明の一実施例を示す直噴ディーゼルエンジンのシステム構成図である。
【図2】同じく分割噴射パターンの説明図である。
【図3】同じく始動時のエンジン冷却水温と噴射圧力(制御燃圧)との関係を示すグラフである。
【図4】同じく噴射圧力の比較を説明するグラフである。
【図5】同じく低温始動時の噴射圧力と完爆時間との関係を示すグラフである。
【図6】従来の低温始動時の噴射特性を示す説明図である。
【符号の説明】
1 コモンレール式直噴ディーゼルエンジン
2a〜2d 燃料噴射弁
3 電子制御ユニット(ECU)
4 コモンレール
5 燃圧調節手段
5a 燃料供給ポンプ
5b 電磁弁
6 噴射圧センサ(コモンレール圧センサ)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a direct-injection diesel engine capable of achieving a low compression ratio and improving exhaust gas performance.
[0002]
[Prior Art and Problems to be Solved by the Invention]
Generally, in a direct injection diesel engine provided with a fuel injection valve for directly injecting fuel into a combustion chamber of an engine, when the compression ratio is reduced (for example, a compression ratio of 17 to 18.5 → a compression ratio of 16.0), the combustion temperature is reduced. It is well known that, while the generation of NOx (nitrogen oxide) and soot is suppressed and the exhaust gas performance is improved due to the decrease in the temperature, the low-temperature startability in a low-temperature environment is deteriorated.
[0003]
It is considered that the deterioration of the low-temperature startability is originally caused by the fuel injection characteristics at the low-temperature start of the low-compression ratio direct injection diesel engine in which the air-fuel mixture hardly reaches the self-ignition temperature due to the low compression ratio. That is, as shown in FIG. 6, since the injection pressure at a low temperature was set at a relatively low level of about 20 MPa, atomization of the injected fuel was not sufficiently promoted. However, since only the control of the injection amount and the injection start timing is performed, it is difficult to easily achieve the self-ignition atmosphere at a low temperature.
[0004]
Incidentally, in order to improve startability in high altitudes such as mountainous areas, start control of a common rail diesel engine that controls a common rail pressure (ie, injection pressure) at the time of engine start and executes pilot injection and main injection (main injection). Patent Literature 1 discloses a technique for controlling the common rail pressure to be lower as the atmospheric pressure is lower and to advance the main injection start timing. Further, Patent Document 1 discloses a technique of increasing the pilot injection amount (and / or the main injection amount) as the engine temperature is lower.
[0005]
However, Patent Literature 1 discloses a technique of controlling the common rail pressure at the time of low-temperature start and executing pilot injection prior to main injection as described above, but reducing the compression ratio without impairing low-temperature startability. There is no disclosure of a technology that makes this possible.
[0006]
[Patent Document 1]
JP 2001-12277 A
SUMMARY OF THE INVENTION It is an object of the present invention to provide a direct injection diesel engine capable of achieving a low compression ratio without deteriorating low-temperature startability and improving exhaust gas performance.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a direct injection diesel engine according to claim 1 of the present invention controls a fuel injection valve for directly injecting fuel into a combustion chamber of the engine, and regulates a pressure of fuel supplied to the fuel injection valve. A direct-injection diesel engine, comprising: a fuel pressure adjusting unit that controls the fuel injection valve and the fuel pressure adjusting unit at the time of starting the engine. When the temperature is equal to or lower than the predetermined temperature, the fuel injection valve is controlled to execute the pilot injection prior to the main injection, and the fuel pressure adjusting means is controlled so as to adjust the pressure of the fuel to a higher pressure than when the temperature exceeds the predetermined temperature. It is characterized by the following.
[0009]
As a result, atomization of the injected fuel is sufficiently promoted (by increasing the fuel pressure), and an atmosphere in which the main injection is easily ignited can be easily made (by split injection of fuel). As a result, in the direct injection diesel engine, the compression ratio can be reduced without impairing the low temperature startability, and the exhaust gas performance can be improved.
[0010]
A direct injection diesel engine according to claim 2, wherein a fuel injection valve that injects fuel directly into a combustion chamber of the engine, a fuel pressure adjustment unit that adjusts a pressure of fuel supplied to the fuel injection valve, and when the engine is started. In a direct-injection diesel engine including the fuel injection valve and a start control device that controls the fuel pressure adjusting unit, the start control device performs, prior to main injection, when a temperature at the time of starting the engine is equal to or lower than a predetermined temperature. And controlling the fuel injection valve to execute pilot injection and controlling the fuel pressure adjusting means to adjust the pressure of the fuel to 40 MPa or more.
[0011]
Thereby, the same operation and effect as the first aspect can be obtained.
[0012]
The direct injection diesel engine according to claim 3 is characterized in that the compression ratio of the engine is 16.5 or less.
[0013]
Thereby, the exhaust gas performance is further improved by lowering the compression ratio.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the direct injection diesel engine according to the present invention will be described in detail with reference to the drawings.
[0015]
[Example]
FIG. 1 is a system configuration diagram of a direct injection diesel engine showing an embodiment of the present invention, FIG. 2 is an explanatory view of a split injection pattern, and FIG. 3 is a graph showing the relationship between engine coolant temperature and injection pressure (control fuel pressure) at startup. FIG. 4 is a graph illustrating the comparison of the injection pressure, and FIG. 5 is a graph similarly illustrating the relationship between the injection pressure and the complete explosion time at a low temperature start.
[0016]
As shown in FIG. 1, fuel injection valves 2a to 2d are provided for each cylinder of a common rail direct injection diesel engine (hereinafter, referred to as an engine) 1 mounted on a vehicle such as a truck or a bus (four cylinders in the figure). An example is shown), and the electromagnetic valves (not shown) mounted on the fuel injection valves 2a to 2d are turned on / off by an electronic control unit (hereinafter referred to as ECU) 3 composed of a microcomputer or the like, so that the fuel injection is performed. (Fuel injection amount, injection timing, etc.) are controlled according to the operating state of the engine 1.
[0017]
Fuel of a predetermined pressure stored in a common rail 4 is constantly supplied to the fuel injection valves 2a to 2d. A fuel tank (not shown) is supplied to the common rail 4 by a fuel supply pump 5a constituting a fuel pressure adjusting means 5. Fuel is supplied.
[0018]
The ECU 3 receives a pressure signal from an injection pressure sensor (common rail pressure sensor) 6 attached to the common rail 4 and adjusts the valve opening of the solenoid valve 5b constituting the fuel pressure adjusting means 5 by duty control. The fuel pressure of the common rail 4 (that is, the injection pressure of the fuel injection valves 2a to 2d) is feedback-controlled according to the operating state of the engine 1.
[0019]
The ECU 3 includes a water temperature sensor for detecting an engine cooling water temperature, a starter switch for detecting whether or not the engine is cranking, and an engine rotation sensor for detecting an engine rotation speed, as means for detecting an operation state of the engine 1. And various detection signals such as an accelerator opening sensor for detecting an engine load state.
[0020]
In this embodiment, when the engine 1 is started (this is detected by a starter switch), the fuel injection valves 2a to 2d and the fuel pressure adjusting means 5 are controlled by a start control unit (start control device) provided in the ECU 3. When the starting temperature of the engine 1 (which is detected by a water temperature sensor) is equal to or lower than a predetermined temperature, one pilot injection is executed prior to the main injection as shown in FIG. As shown in FIG. 3 (A) and FIG. 4, the injection pressure (control fuel pressure) of the fuel injection valves 2a to 2d is adjusted to a higher pressure than when the temperature exceeds the predetermined temperature. As shown in FIG. 3B, the injection pressure (control fuel pressure) may be adjusted to a high pressure in a stepwise manner in a region where the engine cooling water temperature at the time of starting is equal to or lower than a predetermined value.
[0021]
The injection amount of the pilot injection is preferably about 10% of the entire injection amount, and the divided injection interval between the end time of the pilot injection and the start time of the main injection is preferably about 5 ° in crank angle (FIG. 2).
[0022]
The injection pressure has a limit in order to reduce the load on the engine 1, but it is preferable to increase the injection pressure from the conventional 20 MPa to about 60 MPa (see FIG. 4).
[0023]
As described above, in the present embodiment, when the starting temperature of the engine 1 is equal to or lower than the predetermined temperature, the injection pressure of the fuel injection valves 2a to 2d is adjusted to a higher pressure than when the temperature exceeds the predetermined temperature. Atomization can be sufficiently promoted, and the execution of the pilot injection prior to the main injection can easily create an atmosphere in which the main injection is easily ignited.
[0024]
As a result, as shown in FIG. 5, in the common rail type direct injection diesel engine 1, a low compression ratio (for example, a compression ratio of 16.5 or less) can be achieved without impairing the low temperature startability, and the exhaust gas performance can be improved.
[0025]
From FIG. 5, it can be seen that the complete explosion time at the time of low temperature start (the time required to increase from the start of cranking to the idling speed) is reduced from about 9 seconds to about 2 seconds in the related art. It can also be seen that a sufficient effect is obtained even when the injection pressure is 40 MPa or more.
[0026]
It is needless to say that the present invention is not limited to the above embodiments, and various changes can be made without departing from the spirit of the present invention. For example, other detection means such as an atmospheric temperature sensor may be used instead of the water temperature sensor as a means for detecting the engine start temperature. Further, the split injection may be executed when the temperature at the time of starting the engine 1 exceeds a predetermined temperature, or even at times other than the starting time.
[0027]
【The invention's effect】
As described above, according to the first aspect of the present invention, the start control device that controls the fuel injection valve and the fuel pressure adjusting means at the time of starting the engine performs the main injection when the engine start temperature is equal to or lower than the predetermined temperature. Since the fuel injection valve is controlled to execute pilot injection in advance and the fuel pressure adjusting means is controlled to adjust the pressure of the fuel to a higher pressure than when the temperature exceeds the predetermined temperature, atomization of the injected fuel is sufficient. Therefore, the direct injection diesel engine can have a low compression ratio without impairing the low-temperature startability, thereby improving exhaust gas performance.
[0028]
According to the invention of claim 2, the start control device that controls the fuel injection valve and the fuel pressure adjusting means at the time of starting the engine performs the pilot injection prior to the main injection when the temperature at the time of starting the engine is equal to or lower than a predetermined temperature. Since the fuel injection valve is controlled to be executed and the fuel pressure adjusting means is controlled to adjust the pressure of the fuel to 40 MPa or more, the same operation and effect as the first aspect of the invention can be obtained.
[0029]
According to the invention of claim 3, since the compression ratio of the engine is 16.5 or less, the exhaust gas performance is further improved by lowering the compression ratio.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a direct injection diesel engine showing one embodiment of the present invention.
FIG. 2 is an explanatory view of a divided injection pattern.
FIG. 3 is a graph showing a relationship between an engine cooling water temperature and an injection pressure (control fuel pressure) at the time of starting.
FIG. 4 is a graph similarly illustrating a comparison of injection pressures.
FIG. 5 is a graph showing the relationship between the injection pressure and the complete explosion time at the time of low temperature startup.
FIG. 6 is an explanatory diagram showing injection characteristics at the time of a conventional low-temperature start.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Common rail type direct injection diesel engine 2a-2d Fuel injection valve 3 Electronic control unit (ECU)
4 common rail 5 fuel pressure adjusting means 5a fuel supply pump 5b solenoid valve 6 injection pressure sensor (common rail pressure sensor)

Claims (3)

エンジンの燃焼室内に直接燃料を噴射する燃料噴射弁と、
前記燃料噴射弁に供給される燃料の圧力を調節する燃圧調節手段と、
前記エンジンの始動時に前記燃料噴射弁と前記燃圧調節手段を制御する始動制御装置と、
を備えた直噴ディーゼルエンジンにおいて、
前記始動制御装置は、
前記エンジンの始動時温度が所定温度以下の場合に、主噴射に先立ってパイロット噴射を実行すべく前記燃料噴射弁を制御すると共に前記所定温度を越える場合より前記燃料の圧力を高圧に調節すべく前記燃圧調節手段を制御することを特徴とする直噴ディーゼルエンジン。
A fuel injection valve that injects fuel directly into the combustion chamber of the engine;
Fuel pressure adjusting means for adjusting the pressure of the fuel supplied to the fuel injection valve;
A start control device that controls the fuel injection valve and the fuel pressure adjusting means when the engine is started;
In a direct injection diesel engine with
The start control device includes:
When the starting temperature of the engine is equal to or lower than a predetermined temperature, the fuel injection valve is controlled to execute pilot injection prior to the main injection, and the pressure of the fuel is adjusted to a higher pressure than when the temperature exceeds the predetermined temperature. A direct-injection diesel engine, which controls the fuel pressure adjusting means.
エンジンの燃焼室内に直接燃料を噴射する燃料噴射弁と、
前記燃料噴射弁に供給される燃料の圧力を調節する燃圧調節手段と、
前記エンジンの始動時に前記燃料噴射弁と前記燃圧調節手段を制御する始動制御装置と、
を備えた直噴ディーゼルエンジンにおいて、
前記始動制御装置は、
前記エンジンの始動時温度が所定温度以下の場合に、主噴射に先立ってパイロット噴射を実行すべく前記燃料噴射弁を制御すると共に前記燃料の圧力を40MPa以上に調節すべく前記燃圧調節手段を制御することを特徴とする直噴ディーゼルエンジン。
A fuel injection valve that injects fuel directly into the combustion chamber of the engine;
Fuel pressure adjusting means for adjusting the pressure of the fuel supplied to the fuel injection valve;
A start control device that controls the fuel injection valve and the fuel pressure adjusting means when the engine is started;
In a direct injection diesel engine with
The start control device includes:
When the temperature at the time of starting the engine is equal to or lower than a predetermined temperature, the fuel injection valve is controlled to execute a pilot injection prior to the main injection, and the fuel pressure adjusting means is controlled to adjust the pressure of the fuel to 40 MPa or more. Direct injection diesel engine.
前記エンジンの圧縮比が16.5以下であることを特徴とする請求項1又は2記載の直噴ディーゼルエンジン。3. The direct injection diesel engine according to claim 1, wherein a compression ratio of the engine is 16.5 or less.
JP2003034552A 2003-02-13 2003-02-13 Direct injection diesel engine Pending JP2004245103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034552A JP2004245103A (en) 2003-02-13 2003-02-13 Direct injection diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034552A JP2004245103A (en) 2003-02-13 2003-02-13 Direct injection diesel engine

Publications (1)

Publication Number Publication Date
JP2004245103A true JP2004245103A (en) 2004-09-02

Family

ID=33020191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034552A Pending JP2004245103A (en) 2003-02-13 2003-02-13 Direct injection diesel engine

Country Status (1)

Country Link
JP (1) JP2004245103A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064164A (en) * 2005-09-02 2007-03-15 Fuji Heavy Ind Ltd Smoke emission reduction device for diesel engine
JP2008089233A (en) * 2006-10-02 2008-04-17 Denso Corp Glow plug
JP2009509084A (en) * 2005-09-22 2009-03-05 ダイムラー・アクチェンゲゼルシャフト Method for operating an internal combustion engine
US7559229B2 (en) 2006-07-21 2009-07-14 Denso Corporation Gas sensor with increased water-incursion resistance and method of operating gas sensor
US7708869B2 (en) 2006-09-21 2010-05-04 Denso Corporation Gas sensor
US7841316B2 (en) * 2007-07-11 2010-11-30 Denso Corporation Controller for direct injection engine
WO2015133209A1 (en) * 2014-03-05 2015-09-11 ヤンマー株式会社 Fuel injection control device for internal combustion engine
WO2021233576A1 (en) * 2020-05-21 2021-11-25 Perkins Engines Company Limited Fixed-speed engines

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064164A (en) * 2005-09-02 2007-03-15 Fuji Heavy Ind Ltd Smoke emission reduction device for diesel engine
JP2009509084A (en) * 2005-09-22 2009-03-05 ダイムラー・アクチェンゲゼルシャフト Method for operating an internal combustion engine
DE102007000340B4 (en) * 2006-07-21 2014-12-24 Denso Corporation Gas sensor with increased water penetration resistance and method for operating a gas sensor
US7559229B2 (en) 2006-07-21 2009-07-14 Denso Corporation Gas sensor with increased water-incursion resistance and method of operating gas sensor
US7708869B2 (en) 2006-09-21 2010-05-04 Denso Corporation Gas sensor
JP2008089233A (en) * 2006-10-02 2008-04-17 Denso Corp Glow plug
US7841316B2 (en) * 2007-07-11 2010-11-30 Denso Corporation Controller for direct injection engine
WO2015133209A1 (en) * 2014-03-05 2015-09-11 ヤンマー株式会社 Fuel injection control device for internal combustion engine
JP2015169094A (en) * 2014-03-05 2015-09-28 ヤンマー株式会社 Fuel injection control device of internal combustion engine
KR20160128340A (en) * 2014-03-05 2016-11-07 얀마 가부시키가이샤 Fuel injection control device for internal combustion engine
KR102070486B1 (en) 2014-03-05 2020-01-29 얀마 가부시키가이샤 Fuel injection control device for internal combustion engine
US10612487B2 (en) 2014-03-05 2020-04-07 Yanmar Co., Ltd. Fuel injection control device for internal combustion engine
WO2021233576A1 (en) * 2020-05-21 2021-11-25 Perkins Engines Company Limited Fixed-speed engines

Similar Documents

Publication Publication Date Title
KR101704064B1 (en) Variable ignition type engine for complex combustion using diesel and gasoline, method for controlling of the same and complex combustion system using diesel and gasoline
EP2339158B1 (en) Control apparatus for direct injection type internal combustion engine
EP2020495B1 (en) Engine equipped with adjustable valve timing mechanism
KR101693895B1 (en) Variable ignition type engine for complex combustion using diesel and gasoline, method for controlling of the same and complex combustion system using diesel and gasoline
JP4407581B2 (en) Gas fuel engine
JP2009019538A (en) Control device for cylinder injection type internal combustion engine
JP2013072281A (en) Starting control device for compression self-ignition type engine
JP2013015022A (en) Control device of direct injection engine
EP1408223A1 (en) Fuel injection controller for direct injection engine
JP2012255366A (en) Control device and control method for internal combustion engine
JP2014020211A (en) Fuel injection control device of direct-injection gasoline engine
JP5321844B2 (en) Fuel injection control device for internal combustion engine
JP4135643B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2004245103A (en) Direct injection diesel engine
JP4579853B2 (en) Start control device
JP4412194B2 (en) Control unit for direct injection hydrogen engine
JP2007056700A (en) Control device for hydrogen fueled engine
JP5910176B2 (en) Start control device for compression self-ignition engine
JP4197791B2 (en) Direct injection engine
JP2008274789A (en) Control system for direct injection engine
JP4743139B2 (en) Fuel injection amount control device for internal combustion engine
JPH11107792A (en) Premix compression ignition type engine
JP2004346854A (en) Controller of compression ignition operation of internal combustion engine
US20140261300A1 (en) Fuel injection control apparatus for internal combustion engine
JP5429148B2 (en) Premixed compression self-ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304