JP2004241449A - Apparatus and method for evaluating performance of solar battery - Google Patents

Apparatus and method for evaluating performance of solar battery Download PDF

Info

Publication number
JP2004241449A
JP2004241449A JP2003026597A JP2003026597A JP2004241449A JP 2004241449 A JP2004241449 A JP 2004241449A JP 2003026597 A JP2003026597 A JP 2003026597A JP 2003026597 A JP2003026597 A JP 2003026597A JP 2004241449 A JP2004241449 A JP 2004241449A
Authority
JP
Japan
Prior art keywords
solar cell
electrode
measurement
performance evaluation
evaluation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003026597A
Other languages
Japanese (ja)
Other versions
JP4625941B2 (en
Inventor
Takeshi Yanagisawa
武 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003026597A priority Critical patent/JP4625941B2/en
Publication of JP2004241449A publication Critical patent/JP2004241449A/en
Application granted granted Critical
Publication of JP4625941B2 publication Critical patent/JP4625941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make detectable characteristic unevenness and a local defect in an integrated type thin film solar battery. <P>SOLUTION: A stage for placing the integrated type thin film solar battery is installed in a dark box 2. A line structure light source 8 used also as a measuring electrode capable of illuminating in a line state the integrated type thin film solar battery is installed on the stage so as to realize a stepwise movement by a stepwise driver. The longitudinal direction of the line structure light source 8 is a direction for connecting in series the cells of the integrated type thin film solar battery. The line structure light source 8 is stepwisely sent from the end to the end of the photodetecting surface of the solar battery by the stepwise driver, and the current-voltage characteristics of the light illuminating part of the integrated type thin film solar battery is measured at each stopping position of the line structure light source 8. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【発明の属する技術分野】
【0001】
本発明は、太陽電池の性能評価装置および性能評価方法に関し、特に太陽電池の局部の特性の測定を可能にし、かつ、面内の特性ばらつきを評価することのできる太陽電池の性能評価装置および性能評価方法に関するものである。
【0002】
【従来の技術】
太陽電池は、結晶系と薄膜系とに大別される。結晶系では、p型またはn型半導体基板(ウェハ)の表面にn型またはp型拡散層を形成し、基板表裏面に表面側電極と裏面電極とを形成することによって作製される。また、薄膜系太陽電池は、絶縁性基板上に裏面電極を形成しその上に、または、金属(ステンレス)基板上にp(またはn)型半導体層とn(またはp)型半導体層を成長させ、その上に表面電極を形成することによって作製される。
太陽電池ウェハは近年大面積化が図られているが、大面積化によって、均一な拡散や成膜が難しくなり、特性の面内均一化の維持が重要な課題となっている。また、膜厚および組成の不均一部分、ピンホール等が性能低下、経時的不安定要因になり易い。そこで、面内での拡散状況や成膜状態とそのばらつき程度を把握できるようにすることが求められている。
上記のようにして作製された太陽電池についての品質を評価する従来の方法は、電池全面に光を当て、発電性能を二端子から測定することによってなされ、平均性能として評価される。従って、従来の測定方法では電池内の局部の性能や面内での特性ばらつき程度を評価することはできない。しかし、太陽電池の局部情報を得たいというニーズは高く、これに対応して太陽電池受光面にレーザビームなどの光ビームを照射し電池面内の光電流分布を評価するレーザ光励起電流像 (LBIC:laser beam induced current) 法が開発され(例えば、非特許文献1参照)、測定器もすでに市販されている。この方法は、太陽電極に二端子を取り付けた後に光ビーム照射して二端子を利用して回路短絡電流の面分布を測定するものである。
【0003】
【非特許文献1】
Scott A. McHugo et al., Appl. Phys. Lett., Vol.72, No.26, 29 June 1998, pp.3482−3484
【0004】
【発明が解決しようとする課題】
太陽電池の特性を評価する指標には、回路短絡電流(Isc)のみならず、回路開放電圧(Voc)、曲線因子(FF)、出力電力特性(P)、最大出力(Pmax)があり、これらの値およびそのばらつき(面内およびウェハ間)を知ることは、製品評価、工程管理の面で重要であるにも拘らず、上述したLBIC法は回路短絡電流のみしか得られないため、新しい測定・評価方法が求められてきた。
本願発明の課題は、上述した従来技術の不備を解決することであって、その目的は、回路短絡電流のみならず、回路開放電圧、曲線因子、出力電力特性、最大出力等の局部値を知ることができるようにすることであり、これにより太陽電池の面内ばらつき、欠陥位置などの工程管理や経時的安定性について必要な情報を得ることができるようにしようとするものである。
【0005】
【課題を解決するための手段】
上記の目的を達成するため、本発明によれば、スポット光照射手段と、前記スポット光照射手段を囲み先端部が太陽電池の光照射面と接触することができる第1の電極部とを有する第1の接触部材と、前記第1の電極部と同等の外形形状を有し概第1の電極部と対向して配備されその先端部が太陽電池の裏面側のスポット光の外周部と接触することのできる第2の電極部を有する第2の接触部材と、太陽電池を保持する太陽電池保持部材と、前記第1および前記第2の電源と接続されてスポット光下の太陽電池の回路短絡電流または回路開放電圧または電流−電圧特性を測定する測定部と、を有する太陽電池の性能評価装置、が提供される。
【0006】
また、上記の目的を達成するため、本発明によれば、スポット光照射手段と、前記スポット光照射手段を囲み先端部が太陽電池の光照射面と接触することができる第1の電極部とを有する第1の接触部材と、太陽電池の裏面側または太陽電池の裏面電極と接触することのできる第2の電極部と、太陽電池を保持する太陽電池保持部材と、前記第1および前記第2の電源と接続されてスポット光下の太陽電池の回路短絡電流または回路開放電圧または電流−電圧特性を測定する測定部と、を有する太陽電池の性能評価装置、が提供される。
【0007】
また、上記の目的を達成するため、本発明によれば、太陽電池の光照射面にスポット光を照射し、そのスポット光の外周部に電極を接触させスポット光下の太陽電池の回路短絡電流または回路開放電圧または電流−電圧特性を測定することを特徴とする太陽電池の性能評価方法、が提供される。
【0008】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の第1の実施の形態を示す斜視図である。図1において、1は、太陽電池である被測定ウェハ、2は、装置本体が収容される遮光された暗ボックス、3はベース、4は、被測定ウェハを搬入・搬出するウェハ搬送台、5は、ウェハ搬送台4のガイドとなるガイドレール、6は、被測定ウェハ1を把持してX方向およびY方向に移動可能なウェハ保持手段、7は、ウェハ保持手段6のガイドとなる保持手段ガイド、8は、被測定ウェハ1に光を照射するとともにこれと接触して測定端子となる光源兼用測定電極、9は、被測定ウェハ1に裏面側から接触して測定端子となる対向測定電極、10、11は、それぞれ光源兼用測定電極8、対向測定電極9を保持して上下動する電極保持手段、12は、電極保持手段10、11を駆動する測定電極駆動手段である。また、13は、装置全体の動作をコントロールする制御部、14は、暗ボックス内の雰囲気(温度、湿度)を調整する空調部である。
【0009】
次に、図1に示される装置の概略の動作について説明する。被測定ウェハ1は、ウェハ搬送台4に載せられて暗ボックス2内に搬送されてくる。このとき、ウェハ保持手段6は、紙面手前側下方に位置している。ウェハ搬送台4が所定の位置に到着するとプッシャ(図示なし)が動作して被測定ウェハ1をウェハ保持手段6上に載置させる。ウェハ保持手段6は、被測定ウェハ1を把持して上昇した後水平方向に移動して、被測定ウェハ1の最初の測定点を測定電極8、9間に位置させる。このとき光源兼用測定電極8の光源は点灯状態にある。
【0010】
図2は、このときの状態を示す斜視図である。被測定ウェハ1の位置決めが完了すると、光源兼用測定電極8が降下し、対向測定電極9が上昇して被測定ウェハ1を両電極間に挟み込む。そして、図中Aにて示す、光照射スポット領域(電極接触部)の一つ(この場合は図の奥側左端のスポット領域)についての光−電気特性を測定する。すなわち、回路短絡電流、回路開放電圧、電流−電圧特性を測定する。ここで、被測定ウェハの裏面側には高不純物濃度拡散層または裏面電極が形成されているが、表面側には透明電極は形成されていなくてもよい。第1スポットについての測定が完了すると、光源兼用測定電極8が上昇、対向測定電極9が降下し、被測定ウェハ1が1ステップ矢印B方向に送られて被測定ウェハ1の次の光照射スポット領域Aが測定電極8下に送られる。そして、そのスポット領域についての測定が行われる。以下同様にして、被測定ウェハ1が1ステップずつ矢印B方向に送られて各スポット領域ごと測定が行われる.X方向の1行分の測定が完了すると、被測定ウェハ1は矢印C方向に1ステップ送られる。そして、第2行目のスポット領域についての測定が順次行われる。このとき、被測定ウェハ1は矢印Bと反対方向に1ステップずつ送られる。このようにして、被測定ウェハ1の全面に渡る測定が行われる。なお、光照射スポット領域Aは互いに接するようにするのが原則であるが、隣接する領域間に重複部が存在していてもよい。また、隣接する光照射スポット領域A同士が乖離していてもよい(すなわち、測定が飛び飛びの領域について行われるようにしてもよい)。
図1に戻り、被測定ウェハ1について全領域の測定が完了すると、被測定ウェハ1は、ウェハ保持手段6に把持された状態でまず図の手前側に送られ次いで下方に搬送される。次に、ウェハ保持手段6による保持が解除され、プッシャ(図示なし)により、押圧されてウェハ搬送台上へ移される。そして、暗ボックス2外へ搬出される。
【0011】
図3(a)、(b)は、光源兼用測定電極8の底面図と断面図である。図3において、81は、電極保持手段10に把持される固定部、82は、固定部81から下方に延びる、四重に形成された絶縁材からなる絶縁円筒部、83は、円筒状の電圧測定電極、84は、円筒状の電流測定電極、85は、ゴムなどの弾性絶縁材からなる絶縁リング、86は、単色LEDまたは白色LEDである光源、87は、絶縁円筒間に装着された、光源兼用測定電極8が被測定ウェハに接触した際に、電圧測定電極83、電流測定電極84、絶縁リング85を下方へ押圧するばねである。電圧測定電極83の内径は0.5〜50mmの範囲に設定される。
絶縁リング85は、必ずしも設ける必要はなく省略可能である。この実施の形態では、光源兼用測定電極8内にLEDを内蔵していたがこの構成に代え測定電極8の中空部に光ファイバを保持させ、任意点に配置された光源の光を光ファイバを介して被測定ウェハ上へ導くようにしてもよい。また、この実施の形態では、光源兼用測定電極8は円筒形状をしていたが、四角筒形状あるいは六角筒形状とすることもできる。
対向測定電極9は、光源兼用測定電極8から光源86を除去した構成を有するものである。光源86を除去した部分は、中空のままでもよいが充填物が充填されていてもよい。
【0012】
図4は、図1に示される制御部13の概略の構成を示すブロック図である。図4に示されるように、制御部13には、中央処理部131を中心として、ウェハ搬入・搬出部132、ウェハ駆動部133、光源制御部134、測定電極駆動部135、測定部136、演算部137、判定・選別部138、記録部139が設けられる。ウェハ搬入・搬出部132は、中央処理部131の指示を受け、被測定ウェハの搬入・搬出およびその初期位置を制御する。ウェハ駆動部133は、被測定ウェハのX方向およびY方向のステップ送りを制御する。光源制御部134は、光源のオン・オフおよびその輝度を制御する。測定電極駆動部135は、測定電極の上下動を制御する。測定部136は、中央処理部131より被測定ウェハの測定スポットに測定電極が接触したことの信号を受けると被測定ウェハの1光照射スポット領域のI−V特性を測定する。中央処理部131は、測定部134より1スポット領域のI−V特性の測定が完了したことを示す信号を受け取ると測定電極駆動部135、演算部137へ向けてトリガー信号を発信する。演算部137は、測定部136の測定データを受け取りこれに基づいて最大出力PmaxとFF値とを算出する。測定部136の測定データと演算部137の演算結果とは、判定・選別部138と記録部139とに伝達される。判定・選別部138は、被測定太陽電池の全面のデータを取得すると、その被測定太陽電池の良・不良の判別および不良発生個所の特定を行うと共に不良品が発生した場合には警告を発し、良品である場合にはその光−電気特性に応じてクラス分けを行う。警告が発せられると製造ラインへフィードバックがかけられる。
【0013】
図5は、図1〜図4に示される本実施の形態に係る太陽電池の測定装置を用いた処理の流れの一例を示すフローチャートである。この例では、光源は1ウェハの全スポット領域を測定する間常時点灯されているものとされる。また、ウェハのステップ送り回数はX方向にN、Y方向にM(測定されるスポット領域はX方向にN+1、Y方向にM+1)であるものとする。太陽電池処理部Aでは、ステップS101において、被測定ウェハが測定電極間に送られてきて位置決めされる。ステップS102において、m=0と設定され、ステップS103において、n=0と設定される。そして、ステップS104において、測定電極が被測定ウェハに接触し光−電気特性の測定が行われる。すなわち、光の照射されたスポット領域の電流−電圧特性が測定される。この測定が完了すると、ステップS105において、トリガー信号が発信され、測定電極が被測定ウェハから離れる。そして、ステップS106において、nがNであるか否かがチェックされる。nがNである場合には、ステップS107に至り、mがMであるか否かがチェックされる。mがMである場合には、ステップS108において、被測定ウェハは測定位置から外され、本装置外へ搬出される。
【0014】
ステップS106において、n=Nではないと判定された場合には、ステップS109に至り、mが偶数であるか否かがチェックされる。mが偶数である場合には、ステップS110において、被測定ウェハはX方向に1ステップ送られ、ステップS111に至る。ステップS109において、mが偶数でないと判定された場合には、ステップS112において、被測定ウェハは−X方向に1ステップ送られ、ステップS111に至る。ステップS111において、n=n+1とした後、ステップS104へ戻る。
ステップS107において、m=Mではないと判定された場合には、ステップS113に至り、被測定ウェハをY方向に1ステップ送り、ステップS114において、m=m+1とした後、ステップS103へ戻る。
【0015】
データ処理部Bでは、ウェハ処理部AのステップS101において、被測定ウェハの搬入が行われると、ステップS201において、p=0と設定し、ステップS202において、q=0と設定した後、ウェハ処理部Aより、トリガー信号が発信されるのを待つ。ステップS203において、ウェハ処理部AのステップS105にて発信されたトリガー信号が受信されると、ステップS204に移り、ウェハ処理部AのステップS104にて得られた測定データを取り込む。そして、ステップS205において、取得した測定データに基づいて最大出力Pmaxを求め、FF値を算出する。次いで、ステップS206において、qがNであるか否かがチェックされ、qがNである場合には、ステップS207へ移り、pがMであるか否かがチェックされ、pがMである場合には、ステップS208において、測定の終了した被測定ウェハの測定結果、演算結果を取得して、当該被測定ウェハについて判定・選別を行う。すなわち、不良品は除外され、良品は特性に応じてクラス分けされる。不良品が発生した場合には、製造ラインに対してフィードバックが行われる(ステップS209)。
【0016】
ステップS206において、qがNではないと判定された場合には、ステップS210に移り、q=q+1とした後、トリガー信号の発信を待ち、ステップS203へ進む。
ステップS207において、pがMではないと判定された場合には、ステップS211に移り、q=q+1とした後、ステップS202へ戻る。
【0017】
上述した第1の実施の形態は、被測定ウェハ1をX−Y方向へステップ移動させるものであったが、測定電極駆動手段12をX−Y平面上をステップ移動させることにより、測定電極8、9をX−Y方向にステップ移動させるようにしてもよい。あるいは、被測定ウェハ1を例えばX方向へのみステップ移動させ測定電極8、9をY方向にステップ移動させるようにして、被測定ウェハと測定電極の双方をステップ移動させるようにしてもよい。
【0018】
図6は、本発明の第2の実施の形態を示す要部斜視図である。図6において、図1に示した第1の実施の形態の部分と同等の機能を有する部材には同一の参照番号が付せられている。本実施の形態のおいては、被測定ウェハ1は、YおよびZ方向に移動可能なウェハ保持手段6により垂直に保持される。また、光源兼用測定電極8を保持する電極保持手段10と対向測定電極9を保持する電極保持手段11とは、測定電極駆動手段12により、左右方向に移動される。
本実施の形態の装置も第1の実施の形態装置と同様に動作し、第1の実施の形態装置と同様の効果を奏することができる。本実施の形態においても、測定電極側をYおよびZ方向にステップ移動可能に変更することも、測定電極と被測定ウェハの一方をY方向へステップ移動させ他方をZ方向へステップ移動させるように変更することも可能である。
【0019】
図7は、本発明の第3の実施の形態を示す斜視図である。図7において、図1に示した第1の実施の形態の部分と同等の機能を有する部材には同一の参照番号が付せられている。本実施の形態のおいては、被測定ウェハ1は、Y方向およびX方向へステップ移動するY−Xテーブル15上に固定される対向測定電極ステージ16上に載置される。被測定ウェハ1と対向測定電極ステージ16との間には、板状ないしマット状の対向測定電極(図示なし)が配置されており、被測定ウェハ1の裏面に形成された高不純物濃度層または裏面電極と接触している。光源兼用測定電極8は、電極保持手段10により上下動されて、対向測定電極との間に被測定ウェハ1を挟み込んで測定を行う。
本実施の形態の装置においても、被測定ウェハを固定し測定電極側をXおよびY方向にステップ移動できるようにしてもよい。また、測定電極と被測定ウェハの双方をステップ移動させるようにすることも可能である。
対向測定電極は以下のように変更することが可能である。すなわち、ポゴピンのように弾性的に接触することのできるピンを対向測定電極ステージ16に複数本林立させて対向測定電極とする。以上は、被測定ウェハの全面に対向測定電極を接触させるものであったが、ウェハ裏面に裏面電極が形成されている場合や金属基板を用いた場合には、その裏面電極や金属基板と部分的に接触する対向測定電極を用いることができる。また、薄膜系太陽電池の場合には、基板上に形成された裏面電極の露出部と弾性的に接触するクリップ電極を対向測定電極とすることができる。
【0020】
図8は、本発明の第4の実施の形態を示す要部斜視図である。本実施の形態の図1に示した第1の実施の形態と異なる点は、第1の実施の形態においては、光源兼用測定電極8と対向測定電極9とを1本ずつ設け、一光照射スポットごとに測定を行っているのに対し、本実施の形態においては、光源兼用測定電極8と対向測定電極9とはライン状に4本設けられている。そして、本実施の形態においては、四光照射スポットに対し一括して測定を行う。本実施の形態に拠れば、測定・評価の時間を短縮することができる。
【0021】
図9は、本発明の第5の実施の形態を示す要部斜視図である。本実施の形態の図8に示した第4の実施の形態と異なる点は、第4の実施の形態においては、光源兼用測定電極8と対向測定電極9とが1列にライン状に連続して配置されていたのに対し、本実施の形態においては、光源兼用測定電極8と対向測定電極9とは2列に、かつ、各測定電極はX方向およびY方向に一光照射スポット分の間隔を隔てて配置されている点である。第4の実施の形態の場合のように、光源兼用測定電極8を連続して設けた場合には隣接光照射スポット間での干渉により測定精度が低下する恐れがあるので、本実施の形態のように各測定電極間を離すことが望ましい。本実施の形態においては、X方向およびY方向に1ステップ移動させた後には3ステップ移動させる必要がある。
【0022】
図10(a)は、本発明の第6の実施の形態を示す要部斜視図であり、図10(b)は、その要部平面図である。図8に示した第4の実施の形態では、光源兼用測定電極8、対向測定電極9がライン状に配置されていたが、本実施の形態においては、被測定ウェハ1の受光領域の全面をカバーできるように、マトリックス状に配置される。そして、光源兼用測定電極8と対向測定電極9とは、それぞれ上下動可能な箱型の電極保持手段10、11に保持されている。また、第4、第5の実施の形態では、測定は複数スポットに対して同時に行われていたが、本実施の形態においては、1スポットずつ行なわれる。すなわち、光源用電源17および測定器18が、走査回路19を介して光源兼用測定電極8と対向測定電極9に順次接続され、光源の点灯とその光照射スポット領域の測定が順次行なわれる。
【0023】
次に、本実施の形態の動作について説明する。被測定ウェハ1が、搬送手段(図示なし)により、図10(a)に示されるように、電極保持手段10、11間に搬送されてきて位置決めされる。次に、電極保持手段10、11が駆動手段(図示なし)によりそれぞれ上昇、降下せしめられ、被測定ウェハ1が測定電極8、9間に挟持される。最初に、例えば、図10(b)の最上段左端の光源兼用測定電極8とその光源が走査回路19を介して測定器18、光源用電源17に接続され、またその測定電極8に対向する位置にある対向測定電極9が走査回路19を介して測定器18に接続され、その位置の光源が点灯され、そのスポット領域の測定が行われる。第1のスポット領域の測定が完了すると、走査回路19は、光源用電源17、測定器18の接続を最上段左端の右隣に位置する光源兼用測定電極8に切り換え、またその光源兼用測定電極8に対向する位置にある対向測定電極9に測定器18が接続されて、第2のスポット領域の測定が行われる。以下同様にして、走査回路19により、光源用電源17、測定器18の測定電極8、9への接続が順次切り換えられ、測定が繰り返される。被測定ウェハ1の受光領域全体の測定が完了すると、すなわち、すべての光源兼用測定電極8と対向測定電極9に対する走査回路19による走査が完了すると、電極保持手段10、11が駆動手段(図示なし)によりそれぞれ降下、上昇せしめられ、被測定ウェハ1が搬送手段(図示なし)により、外部へ搬出される。
被測定ウェハ1の裏面に高不純物濃度層または裏面電極が形成されているとき、マトリックス状に配置された複数の対向測定電極を用いるのに代え、1枚の板状ないしマット状の対向測定電極を用いることができる。あるいは、ポゴピンのような弾性的に接触することのできるピンを林立させて対向測定電極とすることもできる。また、薄膜系太陽電池の場合には、基板上に形成された裏面電極の露出部と弾性的に接触する電極を対向測定電極とすることができる。
【0024】
【実施例】
ガラス基板上にMo裏面電極が形成された受光面が36mm×27mmのCIGS太陽電池を、図7に示す装置を用い、裏面電極をクリップ電極で挟んで回路短絡電流Isc、回路開放電圧VocおよびI−V特性の測定を行った。スポット光径は3mmで、X−Y方向のステップ移動幅は3mmであり、測定スポット数は108である。
測定結果を相対値にて図11〜図14に示す。図11、図12、図13、図14は、それぞれ回路短絡電流Isc、回路開放電圧Voc、最大出力電力Pmax、曲線因子FFを示す図であって、各図の最上段は、Y=一定としてX方向に12スポット測定した結果を示す折れ線グラフを9本集めたものであり、各図において、異なる折れ線グラフはそれぞれY方向位置の異なる位置での測定結果を示している。また、各図の中段は、最上段に示すデータを基に作成した面内分布を示すグラフである。
各図の上段の図より、面内のデータのばらつき程度が判定できる。たとえば、Pmaxの分布では面内において3%のばらつき幅があることが分かる。合否判定基準は分布の幅と製品の要求品質レベル等に基づいて設定し、合否判定する。不合格となった場合、不合格の主要因である評価パラメータおよび他の評価パラメータの解析から改善案情報を作成することができ、これを製造過程にフィードバックすることができる。また、各図の中段の図から、電池受光面の異常の位置および広がりを把握できる。
【0025】
【発明の効果】
以上説明したように、本発明は、太陽電池受光面にスポット光を照射しスポット光照射部外周に測定電極を当接させて太陽電池の光−電気特性を測定するものであるので、太陽電池の局部的諸特性を測定することが可能になり、性能の内部均一性を評価することが可能になる。したがって、本発明によれば、太陽電池内部の局部劣化および異常の診断が可能になり、その情報を製造過程へフィードバックすることにより欠陥要素の除去された、経時変化の起こりにくい高品質の製品の供給が可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の概略の斜視図。
【図2】本発明の第1の実施の形態の要部斜視図。
【図3】本発明の評価装置において用いられる光源兼用測定電極の一例を示す底面図と断面図。
【図4】本発明の第1の実施の形態における制御部のブロック図。
【図5】本発明の第1の実施の形態における動作を示すフローチャート。
【図6】本発明の第2の実施の形態の要部斜視図。
【図7】本発明の第3の実施の形態の斜視図。
【図8】本発明の第4の実施の形態の要部斜視図。
【図9】本発明の第5の実施の形態の要部斜視図。
【図10】本発明の第6の実施の形態の要部斜視図と要部平面図。
【図11】本発明の一実施例でのCIGS太陽電池回路短絡電流Iscの面内スポット測定結果を示す折れ線グラフと相対面分布図。
【図12】本発明の一実施例でのCIGS太陽電池回路開放電圧Vocの面内スポット測定結果を示す折れ線グラフと相対面分布図。
【図13】本発明の一実施例でのCIGS太陽電池最大出力電力Pmaxの面内スポット測定結果を示す折れ線グラフと相対面分布図。
【図14】本発明の一実施例でのCIGS太陽電池曲線因子FFの面内スポット測定結果を示す折れ線グラフと相対面分布図。
【符号の説明】
1 被測定ウェハ
2 暗ボックス
3 ベース
4 ウェハ搬送台
5 ガイドレール
6 ウェハ保持手段
7 保持手段ガイド
8 光源兼用測定電極
81 固定部
82 絶縁円筒部
83 電圧測定電極
84 電流測定電極
85 絶縁リング
86 光源
87 ばね
9 対向測定電極
10、11 電極保持手段
12 測定電極駆動手段
13 制御部
14 空調部
15 X−Yテーブル
16 対向測定電極ステージ
TECHNICAL FIELD OF THE INVENTION
[0001]
The present invention relates to a solar cell performance evaluation device and a performance evaluation method, and more particularly to a solar cell performance evaluation device and performance capable of measuring local characteristics of a solar cell and capable of evaluating in-plane characteristic variations. It concerns the evaluation method.
[0002]
[Prior art]
Solar cells are broadly divided into crystalline and thin-film cells. In the case of a crystal system, an n-type or p-type diffusion layer is formed on the surface of a p-type or n-type semiconductor substrate (wafer), and a front-side electrode and a back-side electrode are formed on the front and back surfaces of the substrate. In a thin-film solar cell, a back electrode is formed on an insulating substrate, and a p (or n) type semiconductor layer and an n (or p) type semiconductor layer are grown thereon or on a metal (stainless) substrate. And a surface electrode is formed thereon.
In recent years, solar cell wafers have been increased in area, but with the increase in area, uniform diffusion and film formation have become difficult, and maintaining in-plane uniformity of characteristics has become an important issue. In addition, uneven portions and pinholes in the film thickness and composition are likely to cause performance degradation and temporal instability. Therefore, it is required to be able to grasp the state of diffusion and the state of film formation in the plane and the degree of variation thereof.
A conventional method for evaluating the quality of the solar cell manufactured as described above is performed by irradiating light to the entire surface of the cell and measuring the power generation performance from two terminals, and is evaluated as an average performance. Therefore, the conventional measurement method cannot evaluate the performance of a local part in a battery or the degree of characteristic variation in a plane. However, there is a high need to obtain local information of the solar cell, and in response to this, a laser beam excitation current image (LBIC) is used to irradiate a light beam such as a laser beam to the solar cell light receiving surface and evaluate the photocurrent distribution in the cell surface. : Laser beam induced current) method has been developed (for example, see Non-Patent Document 1), and measuring instruments are already commercially available. In this method, a light beam is irradiated after attaching two terminals to the solar electrode, and the surface distribution of the short circuit current is measured using the two terminals.
[0003]
[Non-patent document 1]
Scott A. McHugo et al. , Appl. Phys. Lett. , Vol. 72, No. 26, 29 June 1998, pp. 30-29. 3482-3484
[0004]
[Problems to be solved by the invention]
Indices for evaluating the characteristics of the solar cell include not only the circuit short-circuit current (Isc) but also the circuit open-circuit voltage (Voc), the fill factor (FF), the output power characteristic (P), and the maximum output (Pmax). Is important in product evaluation and process control, it is important to know the value of and its variance (in-plane and between wafers).・ Evaluation methods have been required.
An object of the present invention is to solve the above-mentioned deficiencies of the prior art. The purpose of the present invention is to know not only a short circuit current but also local values such as an open circuit voltage, a fill factor, an output power characteristic, and a maximum output. It is intended to obtain necessary information on process control such as in-plane variation of a solar cell and a defect position and stability over time.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, there is provided a spot light irradiating unit, and a first electrode unit which surrounds the spot light irradiating unit and whose leading end can contact a light irradiating surface of a solar cell. A first contact member, which has an outer shape equivalent to that of the first electrode portion, is provided so as to substantially face the first electrode portion, and has a tip portion in contact with an outer peripheral portion of spot light on the back surface side of the solar cell; A second contact member having a second electrode portion capable of being operated, a solar cell holding member for holding a solar cell, and a circuit of a solar cell under a spotlight connected to the first and second power sources A performance evaluation device for a solar cell, comprising: a measurement unit configured to measure a short-circuit current, an open circuit voltage, or a current-voltage characteristic.
[0006]
In order to achieve the above object, according to the present invention, a spot light irradiating unit, and a first electrode unit which surrounds the spot light irradiating unit and whose leading end can contact a light irradiating surface of a solar cell. A first contact member having: a second electrode portion capable of contacting the back surface side of the solar cell or the back surface electrode of the solar cell; a solar cell holding member holding the solar cell; And a measuring unit connected to the second power supply and measuring a short circuit current or an open circuit voltage or a current-voltage characteristic of the solar cell under the spotlight.
[0007]
Further, in order to achieve the above object, according to the present invention, a light irradiation surface of a solar cell is irradiated with a spot light, and an electrode is brought into contact with an outer peripheral portion of the spot light to cause a short circuit current of the solar cell under the spot light. Alternatively, there is provided a method for evaluating the performance of a solar cell, comprising measuring a circuit open-circuit voltage or a current-voltage characteristic.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a wafer to be measured which is a solar cell, 2 denotes a light-shielded dark box in which an apparatus main body is housed, 3 denotes a base, 4 denotes a wafer carrier for loading / unloading the wafer to be measured, 5 Is a guide rail serving as a guide for the wafer transfer table 4; 6 is a wafer holding means capable of gripping the wafer 1 to be measured and moving in the X and Y directions; 7 is a holding means serving as a guide for the wafer holding means 6 A guide 8 irradiates the wafer 1 to be measured with light and makes contact with the light source and also serves as a measurement terminal. A counter electrode 8 comes in contact with the wafer 1 to be measured from the back side and becomes a measurement terminal. Reference numerals 10 and 11 denote electrode holding means for holding the measurement electrode 8 serving as a light source and the counter measurement electrode 9 and moving up and down, and reference numeral 12 denotes a measurement electrode driving means for driving the electrode holding means 10 and 11. Reference numeral 13 denotes a control unit that controls the operation of the entire apparatus, and reference numeral 14 denotes an air conditioning unit that adjusts the atmosphere (temperature and humidity) in the dark box.
[0009]
Next, a schematic operation of the apparatus shown in FIG. 1 will be described. The wafer 1 to be measured is placed on the wafer carrier 4 and carried into the dark box 2. At this time, the wafer holding means 6 is located below the front side of the drawing. When the wafer carrier 4 arrives at a predetermined position, a pusher (not shown) operates to place the wafer 1 to be measured on the wafer holding means 6. The wafer holding means 6 grips and rises the wafer 1 to be measured and moves in the horizontal direction to position the first measurement point of the wafer 1 to be measured between the measurement electrodes 8 and 9. At this time, the light source of the light source / measuring electrode 8 is in a lighting state.
[0010]
FIG. 2 is a perspective view showing the state at this time. When the positioning of the wafer 1 to be measured is completed, the measurement electrode 8 also serves as a light source, and the opposing measurement electrode 9 rises to sandwich the wafer 1 to be measured between the two electrodes. Then, the photo-electric characteristic of one of the light irradiation spot areas (electrode contact portions) (in this case, the spot area at the left end on the far side in the figure) indicated by A in the figure is measured. That is, the circuit short circuit current, circuit open voltage, and current-voltage characteristics are measured. Here, the high impurity concentration diffusion layer or the back electrode is formed on the back side of the wafer to be measured, but the transparent electrode may not be formed on the front side. When the measurement of the first spot is completed, the measurement electrode 8 also serves as a light source, the counter measurement electrode 9 descends, and the wafer 1 to be measured is sent in the direction of the arrow B for one step. The area A is sent below the measurement electrode 8. Then, the measurement for the spot area is performed. Similarly, the wafer 1 to be measured is sent one step at a time in the direction of arrow B, and the measurement is performed for each spot area. When the measurement for one row in the X direction is completed, the wafer under test 1 is moved one step in the direction of arrow C. Then, the measurement of the spot area on the second row is sequentially performed. At this time, the wafer 1 to be measured is sent one step at a time in the direction opposite to the arrow B. In this way, the measurement over the entire surface of the wafer 1 to be measured is performed. Note that the light irradiation spot areas A are basically in contact with each other, but overlapping portions may exist between adjacent areas. In addition, the adjacent light irradiation spot areas A may be separated from each other (that is, the measurement may be performed on intermittent areas).
Referring back to FIG. 1, when the measurement of the entire area of the wafer 1 to be measured is completed, the wafer 1 to be measured is first sent to the near side of the drawing while being held by the wafer holding means 6 and then transferred downward. Next, the holding by the wafer holding means 6 is released, and the wafer is pressed by a pusher (not shown) and transferred onto the wafer carrier. Then, it is carried out of the dark box 2.
[0011]
3A and 3B are a bottom view and a cross-sectional view of the measurement electrode 8 also serving as a light source. In FIG. 3, reference numeral 81 denotes a fixed portion gripped by the electrode holding means 10, 82 denotes an insulating cylindrical portion extending downward from the fixed portion 81 and made of a quadruple insulating material, and 83 denotes a cylindrical voltage. The measuring electrode, 84 is a cylindrical current measuring electrode, 85 is an insulating ring made of an elastic insulating material such as rubber, 86 is a light source that is a monochromatic LED or a white LED, 87 is mounted between insulating cylinders, A spring that presses the voltage measurement electrode 83, the current measurement electrode 84, and the insulating ring 85 downward when the light source / measurement electrode 8 contacts the wafer to be measured. The inner diameter of the voltage measuring electrode 83 is set in the range of 0.5 to 50 mm.
The insulating ring 85 need not always be provided, and can be omitted. In this embodiment, an LED is built in the light source / measurement electrode 8. However, instead of this configuration, the optical fiber is held in the hollow portion of the measurement electrode 8, and the light of the light source arranged at an arbitrary point is transmitted to the optical fiber. Alternatively, it may be guided to the wafer to be measured via the measurement target. Further, in this embodiment, the light source / measuring electrode 8 has a cylindrical shape, but may have a rectangular cylindrical shape or a hexagonal cylindrical shape.
The counter measurement electrode 9 has a configuration in which the light source 86 is removed from the light source / measurement electrode 8. The portion from which the light source 86 has been removed may remain hollow, but may be filled with a filler.
[0012]
FIG. 4 is a block diagram showing a schematic configuration of the control unit 13 shown in FIG. As shown in FIG. 4, the control unit 13 includes a central processing unit 131 as a center, a wafer loading / unloading unit 132, a wafer driving unit 133, a light source control unit 134, a measurement electrode driving unit 135, a measurement unit 136, an arithmetic unit. A unit 137, a determination / selection unit 138, and a recording unit 139 are provided. The wafer loading / unloading unit 132 receives instructions from the central processing unit 131 and controls loading / unloading of the wafer to be measured and its initial position. The wafer driving unit 133 controls the step feed of the wafer to be measured in the X and Y directions. The light source control unit 134 controls on / off of the light source and its brightness. The measurement electrode driving unit 135 controls the vertical movement of the measurement electrode. Upon receiving a signal from the central processing unit 131 indicating that the measurement electrode has come into contact with the measurement spot on the measurement target wafer, the measurement unit 136 measures the IV characteristics of the one light irradiation spot area of the measurement target wafer. When the central processing unit 131 receives a signal indicating that the measurement of the IV characteristic of one spot area is completed from the measurement unit 134, the central processing unit 131 transmits a trigger signal to the measurement electrode driving unit 135 and the calculation unit 137. The calculation unit 137 receives the measurement data of the measurement unit 136 and calculates the maximum output Pmax and the FF value based on the measurement data. The measurement data of the measurement unit 136 and the calculation result of the calculation unit 137 are transmitted to the determination / selection unit 138 and the recording unit 139. Upon acquiring the data of the entire surface of the measured solar cell, the determination / selection unit 138 determines whether the measured solar cell is good or defective, specifies the location where the failure has occurred, and issues a warning when a defective product occurs. If they are non-defective, they are classified according to their optical-electrical characteristics. When a warning is issued, feedback is given to the production line.
[0013]
FIG. 5 is a flowchart illustrating an example of a flow of processing using the solar cell measurement device according to the present embodiment illustrated in FIGS. 1 to 4. In this example, it is assumed that the light source is constantly turned on while measuring the entire spot area of one wafer. Also, the number of step feeds of the wafer is N in the X direction and M in the Y direction (the spot area to be measured is N + 1 in the X direction and M + 1 in the Y direction). In the solar cell processing section A, in step S101, the wafer to be measured is sent between the measurement electrodes and positioned. In step S102, m = 0 is set, and in step S103, n = 0 is set. Then, in step S104, the measurement electrode comes into contact with the wafer to be measured, and the optical-electrical characteristics are measured. That is, the current-voltage characteristics of the spot area irradiated with light are measured. When this measurement is completed, in step S105, a trigger signal is transmitted, and the measurement electrode is separated from the wafer to be measured. Then, in step S106, it is checked whether or not n is N. If n is N, the process proceeds to step S107, and it is checked whether m is M. If m is M, in step S108, the wafer to be measured is removed from the measurement position and carried out of the apparatus.
[0014]
If it is determined in step S106 that n is not equal to N, the process proceeds to step S109, and it is checked whether m is an even number. If m is an even number, in step S110, the wafer to be measured is sent one step in the X direction, and the process proceeds to step S111. If it is determined in step S109 that m is not an even number, in step S112, the wafer to be measured is sent one step in the −X direction, and the process proceeds to step S111. After n = n + 1 in step S111, the process returns to step S104.
If it is determined in step S107 that m = M is not satisfied, the process proceeds to step S113, in which the wafer to be measured is moved one step in the Y direction. In step S114, m = m + 1, and the process returns to step S103.
[0015]
In the data processing section B, when the wafer to be measured is loaded in step S101 of the wafer processing section A, p = 0 is set in step S201, and q = 0 in step S202. Wait for the trigger signal to be transmitted from the unit A. In step S203, when the trigger signal transmitted in step S105 of the wafer processing unit A is received, the process proceeds to step S204, and the measurement data obtained in step S104 of the wafer processing unit A is fetched. Then, in step S205, the maximum output Pmax is obtained based on the acquired measurement data, and the FF value is calculated. Next, in step S206, it is checked whether or not q is N. If q is N, the process proceeds to step S207, where it is checked whether or not p is M. If p is M In step S208, a measurement result and a calculation result of the measured wafer whose measurement has been completed are obtained, and the determination and sorting are performed on the measured wafer. That is, defective products are excluded, and good products are classified according to their characteristics. When a defective product occurs, feedback is performed on the production line (step S209).
[0016]
If it is determined in step S206 that q is not N, the process proceeds to step S210, where q = q + 1. After waiting for transmission of a trigger signal, the process proceeds to step S203.
If it is determined in step S207 that p is not M, the process proceeds to step S211 and sets q = q + 1, and then returns to step S202.
[0017]
In the above-described first embodiment, the measurement target wafer 1 is step-moved in the XY direction. However, the measurement electrode 8 is moved by step-moving the measurement electrode driving means 12 on the XY plane. , 9 may be moved stepwise in the XY directions. Alternatively, the wafer 1 to be measured may be step-moved only in the X direction, for example, and the measurement electrodes 8 and 9 may be step-moved in the Y direction, so that both the wafer to be measured and the measurement electrodes may be step-moved.
[0018]
FIG. 6 is a perspective view of a main part showing a second embodiment of the present invention. 6, members having the same functions as those of the first embodiment shown in FIG. 1 are given the same reference numerals. In the present embodiment, the wafer 1 to be measured is vertically held by wafer holding means 6 movable in the Y and Z directions. The electrode holding means 10 for holding the light source / measuring electrode 8 and the electrode holding means 11 for holding the counter measurement electrode 9 are moved in the left and right direction by the measurement electrode driving means 12.
The device of the present embodiment also operates in the same manner as the device of the first embodiment, and can achieve the same effects as those of the device of the first embodiment. Also in the present embodiment, the measurement electrode side can be changed to be step-movable in the Y and Z directions, or one of the measurement electrode and the wafer to be measured is step-moved in the Y direction and the other is step-moved in the Z direction. It can be changed.
[0019]
FIG. 7 is a perspective view showing a third embodiment of the present invention. 7, the members having the same functions as those of the first embodiment shown in FIG. 1 are given the same reference numerals. In the present embodiment, the wafer 1 to be measured is placed on an opposed measurement electrode stage 16 fixed on a YX table 15 that moves stepwise in the Y and X directions. A plate-like or mat-like counter measurement electrode (not shown) is arranged between the wafer 1 to be measured and the counter measurement electrode stage 16, and a high impurity concentration layer or a high impurity concentration layer formed on the back surface of the wafer 1 to be measured. It is in contact with the back electrode. The light source / measuring electrode 8 is moved up and down by the electrode holding means 10 to perform measurement with the wafer 1 to be measured sandwiched between the electrode and the opposing measuring electrode.
Also in the apparatus of the present embodiment, the wafer to be measured may be fixed so that the measurement electrode side can be step-moved in the X and Y directions. In addition, both the measurement electrode and the wafer to be measured can be moved stepwise.
The counter measurement electrode can be changed as follows. That is, a plurality of pins, such as pogo pins, that can elastically contact each other are erected on the opposing measurement electrode stage 16 to form opposing measurement electrodes. In the above description, the facing measurement electrode is brought into contact with the entire surface of the wafer to be measured. However, when a back electrode is formed on the back surface of the wafer or when a metal substrate is used, the back electrode or the metal substrate is partially used. An opposing measurement electrode that comes into direct contact can be used. In the case of a thin-film solar cell, a clip electrode that elastically contacts an exposed portion of a back electrode formed on a substrate can be used as a counter measurement electrode.
[0020]
FIG. 8 is a perspective view of a main part showing a fourth embodiment of the present invention. The difference of the present embodiment from the first embodiment shown in FIG. 1 is that in the first embodiment, one light source / measuring electrode 8 and one opposed measuring electrode 9 are provided, and one light irradiation is performed. While the measurement is performed for each spot, in the present embodiment, four measurement electrodes 8 serving as a light source and the opposite measurement electrode 9 are provided in a line. Then, in the present embodiment, the measurement is collectively performed on the four light irradiation spots. According to the present embodiment, the time for measurement and evaluation can be reduced.
[0021]
FIG. 9 is a perspective view of a main part showing a fifth embodiment of the present invention. The difference of this embodiment from the fourth embodiment shown in FIG. 8 is that, in the fourth embodiment, the light source / measuring electrode 8 and the opposing measuring electrode 9 are continuous in a line in a line. In the present embodiment, on the other hand, in the present embodiment, the light source / measuring electrode 8 and the opposing measuring electrode 9 are arranged in two rows, and each measuring electrode corresponds to one light irradiation spot in the X direction and the Y direction. This is a point that is arranged at intervals. As in the case of the fourth embodiment, when the measurement electrode 8 also serves as a light source, the measurement accuracy may be reduced due to interference between adjacent light irradiation spots. It is desirable to separate the measurement electrodes as described above. In the present embodiment, it is necessary to move three steps after moving one step in the X and Y directions.
[0022]
FIG. 10A is a perspective view of a main part showing a sixth embodiment of the present invention, and FIG. 10B is a plan view of the main part. In the fourth embodiment shown in FIG. 8, the light source / measuring electrode 8 and the opposing measuring electrode 9 are arranged in a line, but in the present embodiment, the entire light receiving area of the wafer 1 to be measured is covered. They are arranged in a matrix so that they can be covered. The measurement electrode 8 and the counter measurement electrode 9 are also held by box-shaped electrode holding means 10 and 11 which can move up and down, respectively. In the fourth and fifth embodiments, the measurement is performed on a plurality of spots at the same time, but in the present embodiment, the measurement is performed on each spot. That is, the power supply 17 for the light source and the measuring device 18 are sequentially connected to the measurement electrode 8 for the light source and the counter measurement electrode 9 via the scanning circuit 19, and the lighting of the light source and the measurement of the light irradiation spot area are sequentially performed.
[0023]
Next, the operation of the present embodiment will be described. As shown in FIG. 10A, the wafer 1 to be measured is transferred between the electrode holding units 10 and 11 and positioned by the transfer unit (not shown). Next, the electrode holding means 10 and 11 are respectively raised and lowered by the driving means (not shown), and the wafer 1 to be measured is sandwiched between the measurement electrodes 8 and 9. First, for example, the light source / measuring electrode 8 at the uppermost left end of FIG. 10B and its light source are connected to the measuring instrument 18 and the light source power supply 17 via the scanning circuit 19, and face the measuring electrode 8. The opposing measurement electrode 9 at the position is connected to the measuring device 18 via the scanning circuit 19, the light source at that position is turned on, and the spot area is measured. When the measurement of the first spot area is completed, the scanning circuit 19 switches the connection of the light source power supply 17 and the measuring device 18 to the light source / measurement electrode 8 located on the right side of the uppermost left end. The measuring device 18 is connected to the opposing measurement electrode 9 located at a position opposing the position 8, and the measurement of the second spot area is performed. Similarly, the connection to the light source power supply 17 and the connection of the measuring device 18 to the measuring electrodes 8 and 9 are sequentially switched by the scanning circuit 19 in the same manner, and the measurement is repeated. When the measurement of the entire light receiving region of the wafer 1 to be measured is completed, that is, when the scanning of the scanning circuit 19 for all the light source / measuring electrodes 8 and the opposing measuring electrodes 9 is completed, the electrode holding means 10 and 11 are driven by driving means (not shown). ), The wafer 1 to be measured is carried out, and the wafer 1 to be measured is carried out to the outside by carrying means (not shown).
When a high impurity concentration layer or a back electrode is formed on the back surface of the wafer 1 to be measured, a single plate-shaped or mat-shaped opposed measurement electrode is used instead of using a plurality of opposed measurement electrodes arranged in a matrix. Can be used. Alternatively, a pin that can be elastically contacted, such as a pogo pin, can be used as an opposing measurement electrode. In the case of a thin-film solar cell, an electrode that elastically contacts the exposed portion of the back electrode formed on the substrate can be used as the counter measurement electrode.
[0024]
【Example】
A CIGS solar cell having a Mo back electrode formed on a glass substrate and having a light-receiving surface of 36 mm × 27 mm, using the apparatus shown in FIG. 7, sandwiching the back electrode with a clip electrode, has a circuit short-circuit current Isc, and circuit open voltages Voc and Ic -V characteristics were measured. The spot light diameter is 3 mm, the step movement width in the XY directions is 3 mm, and the number of measurement spots is 108.
The measurement results are shown as relative values in FIGS. 11, 12, 13, and 14 are diagrams showing a circuit short-circuit current Isc, a circuit open-circuit voltage Voc, a maximum output power Pmax, and a fill factor FF, respectively. It is a collection of nine line graphs showing the results of 12 spot measurements in the X direction. In each figure, different line graphs show the measurement results at different positions in the Y direction. The middle part of each figure is a graph showing an in-plane distribution created based on the data shown in the uppermost part.
The degree of variation of the data in the plane can be determined from the upper diagram in each diagram. For example, it can be seen that the distribution of Pmax has a variation width of 3% in the plane. The acceptance / rejection criterion is set based on the width of the distribution and the required quality level of the product, and the acceptance / rejection is determined. In the case of rejection, improvement plan information can be created from the analysis of the evaluation parameters and other evaluation parameters that are the main causes of rejection, and this can be fed back to the manufacturing process. In addition, the position and spread of the abnormality on the light receiving surface of the battery can be grasped from the middle part of each figure.
[0025]
【The invention's effect】
As described above, the present invention is to measure the photo-electrical characteristics of the solar cell by irradiating the light receiving surface of the solar cell with the spot light and bringing the measurement electrode into contact with the outer periphery of the spot light irradiating section. Can be measured, and the internal uniformity of performance can be evaluated. Therefore, according to the present invention, it is possible to diagnose local deterioration and abnormality inside the solar cell, and feed back the information to the manufacturing process to remove defective elements and obtain a high-quality product that is unlikely to change with time. Supply becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a first embodiment of the present invention.
FIG. 2 is a perspective view of a main part of the first embodiment of the present invention.
FIG. 3 is a bottom view and a cross-sectional view showing an example of a light source / measuring electrode used in the evaluation apparatus of the present invention.
FIG. 4 is a block diagram of a control unit according to the first embodiment of the present invention.
FIG. 5 is a flowchart showing an operation according to the first embodiment of the present invention.
FIG. 6 is a perspective view of a main part of a second embodiment of the present invention.
FIG. 7 is a perspective view of a third embodiment of the present invention.
FIG. 8 is a perspective view of a main part of a fourth embodiment of the present invention.
FIG. 9 is a perspective view of a main part according to a fifth embodiment of the present invention.
FIG. 10 is a perspective view of a main part and a plan view of a main part according to a sixth embodiment of the present invention.
FIG. 11 is a line graph and a relative plane distribution diagram showing in-plane spot measurement results of a CIGS solar cell circuit short-circuit current Isc in one embodiment of the present invention.
FIG. 12 is a line graph and a relative surface distribution diagram showing in-plane spot measurement results of the CIGS solar cell circuit open-circuit voltage Voc in one embodiment of the present invention.
FIG. 13 is a line graph and a relative surface distribution diagram showing in-plane spot measurement results of the CIGS solar cell maximum output power Pmax in one embodiment of the present invention.
FIG. 14 is a line graph and a relative surface distribution diagram showing in-plane spot measurement results of the CIGS solar cell fill factor FF in one embodiment of the present invention.
[Explanation of symbols]
1. Wafer to be measured
2 Dark box
3 base
4 Wafer carrier
5 Guide rail
6 Wafer holding means
7 Guide for holding means
8 Measurement electrode combined with light source
81 Fixed part
82 insulating cylinder
83 Voltage measurement electrode
84 Current measuring electrode
85 Insulation ring
86 light source
87 spring
9 Counter electrode
10, 11 electrode holding means
12 Measurement electrode driving means
13 Control unit
14 Air conditioning unit
15 XY table
16 Opposite measurement electrode stage

Claims (20)

スポット光照射手段と、前記スポット光照射手段を囲み先端部が太陽電池の光照射面と接触することができる第1の電極部とを有する第1の接触部材と、前記第1の電極部と同等の外形形状を有し該第1の電極部と対向して配備されその先端部が太陽電池の前記第1の電極部の接触部の裏面側と接触することのできる第2の電極部を有する第2の接触部材と、太陽電池を保持する太陽電池保持部材と、前記第1および前記第2の電極部と接続されてスポット光下の太陽電池の回路短絡電流または回路開放電圧または電流−電圧特性を測定する測定部と、を有する太陽電池の性能評価装置。A first contact member having a spot light irradiation unit, a first electrode unit surrounding the spot light irradiation unit, and having a front end portion capable of contacting a light irradiation surface of the solar cell; and the first electrode unit. A second electrode portion having an equivalent outer shape and provided so as to face the first electrode portion and having a tip portion capable of contacting the back surface of the contact portion of the first electrode portion of the solar cell. A second contact member, a solar cell holding member for holding the solar cell, and a circuit short circuit current or a circuit open voltage or current of the solar cell under a spotlight connected to the first and second electrode portions. A solar cell performance evaluation device, comprising: a measurement unit for measuring voltage characteristics. スポット光照射手段と、前記スポット光照射手段を囲み先端部が太陽電池の光照射面と接触することができる第1の電極部とを有する第1の接触部材と、太陽電池の裏面側または太陽電池の裏面電極と接触することのできる第2の電極部と、太陽電池を保持する太陽電池保持部材と、前記第1および前記第2の電極部と接続されてスポット光下の太陽電池の回路短絡電流または回路開放電圧または電流−電圧特性を測定する測定部と、を有する太陽電池の性能評価装置。A first contact member having a spot light irradiating means, a first electrode section surrounding the spot light irradiating means and having a tip portion capable of contacting a light irradiating surface of the solar cell, and a back side of the solar cell or the sun. A second electrode portion capable of contacting the back electrode of the battery, a solar cell holding member for holding the solar cell, and a circuit of the solar cell connected to the first and second electrode portions and under a spotlight A performance evaluation device for a solar cell, comprising: a measurement unit configured to measure a short-circuit current, an open circuit voltage, or a current-voltage characteristic. 前記第2の電極部には、電流測定電極と電圧測定電極とが備えられていることを特徴とする請求項1に記載の太陽電池の性能評価装置。The solar cell performance evaluation device according to claim 1, wherein the second electrode unit includes a current measurement electrode and a voltage measurement electrode. 前記第2の電極部は、筒型形状をなしておりその接触部はリング状をなしていることを特徴とする請求項1または3に記載の太陽電池の性能評価装置。The solar cell performance evaluation device according to claim 1, wherein the second electrode portion has a cylindrical shape, and a contact portion thereof has a ring shape. 前記第2の電極部が、太陽電池の裏面側または裏面側電極と、全面的に、または、多点において、または、部分的に接触するものであることを特徴とする請求項2に記載の太陽電池の性能評価装置。The said 2nd electrode part is a thing which contacts the back surface side or back surface side electrode of a solar cell entirely, at multiple points, or partly, The said 2nd electrode part. Solar cell performance evaluation device. 前記第1の電極部には、電流測定電極と電圧測定電極とが備えられていることを特徴とする請求項1〜5のいずれかに記載の太陽電池の性能評価装置。The solar cell performance evaluation device according to any one of claims 1 to 5, wherein the first electrode unit includes a current measurement electrode and a voltage measurement electrode. 前記第1の電極部は、筒型形状をなしており中央中空部には前記スポット光照射手段が配備されその太陽電池への接触部はリング状をなしていることを特徴とする請求項1〜6のいずれかに記載の太陽電池の性能評価装置。The said 1st electrode part is making cylindrical shape, The said spot light irradiation means is arrange | positioned in a center hollow part, and the contact part with the solar cell has comprised the ring shape. 7. The performance evaluation device for a solar cell according to any one of claims 6 to 6. 前記スポット光照射手段が、一端が光源に対向した光ファイバまたは単色LEDまたは白色LEDであることを特徴とする請求項1〜7のいずれかに記載の太陽電池の性能評価装置。The solar cell performance evaluation device according to any one of claims 1 to 7, wherein the spot light irradiating unit is an optical fiber having one end facing a light source, a single-color LED, or a white LED. 前記第1の電極と前記太陽電池保持部材の内の少なくとも一方はステップ状に移動可能であって、前記第1の電極は太陽電池上を、相対的にX−Y方向にステップ状に移動して光照射位置をステップ状に移動させることを特徴とする請求項1〜8のいずれかに記載の太陽電池の性能評価装置。At least one of the first electrode and the solar cell holding member is movable stepwise, and the first electrode is relatively stepwise movable in the XY direction on the solar cell. The solar cell performance evaluation device according to any one of claims 1 to 8, wherein the light irradiation position is moved stepwise. 第1の接触部材が複数個設けられ、それぞれの接触部材に測定部が設置されていることを特徴とする請求項1〜8のいずれかに記載の太陽電池の性能評価装置。The solar cell performance evaluation device according to any one of claims 1 to 8, wherein a plurality of first contact members are provided, and a measurement unit is provided for each contact member. 第1の接触部材が複数個設けられ、前記測定部と第1の接触部材との接続を切り換える走査回路が設置されていることを特徴とする請求項1〜8のいずれかに記載の太陽電池の性能評価装置。The solar cell according to any one of claims 1 to 8, wherein a plurality of first contact members are provided, and a scanning circuit that switches a connection between the measurement unit and the first contact member is provided. Performance evaluation equipment. 第1の接触部材のスポット光照射手段による光照射が走査回路により順次切り換えられることを特徴とする請求項11に記載の太陽電池の性能評価装置。The solar cell performance evaluation device according to claim 11, wherein light irradiation by the spot light irradiation means of the first contact member is sequentially switched by a scanning circuit. 第1の接触部材が太陽電池の受光領域の全体を覆うように複数個設けられていることを特徴とする請求項11または12に記載の太陽電池の性能評価装置。13. The solar cell performance evaluation device according to claim 11, wherein a plurality of first contact members are provided so as to cover the entire light receiving region of the solar cell. 太陽電池が暗所内に配置されることを特徴とする請求項1〜13のいずれかに記載の太陽電池の性能評価装置。The solar cell performance evaluation device according to claim 1, wherein the solar cell is arranged in a dark place. 太陽電池が配置される雰囲気を調整することができることを特徴とする請求項1〜14のいずれかに記載の太陽電池の性能評価装置。The solar cell performance evaluation device according to any one of claims 1 to 14, wherein an atmosphere in which the solar cell is arranged can be adjusted. 太陽電池の光照射面にスポット光を照射し、そのスポット光の外周部に電極を接触させスポット光下の太陽電池の回路短絡電流または回路開放電圧または電流−電圧特性を測定することを特徴とする太陽電池の性能評価方法。Irradiating the light irradiation surface of the solar cell with a spot light, contacting an electrode with the outer periphery of the spot light, and measuring a short circuit current or a circuit open voltage or a current-voltage characteristic of the solar cell under the spot light. Solar cell performance evaluation method. 測定を四端子測定法にて行うことを特徴とする請求項16に記載の太陽電池の性能評価方法。The method according to claim 16, wherein the measurement is performed by a four-terminal measurement method. スポット光をX−Y方向にステップ状に移動させ太陽電池の面内の特性を測定することを特徴とする請求項16または17に記載の太陽電池の性能評価方法。The method for evaluating the performance of a solar cell according to claim 16 or 17, wherein the spot light is moved stepwise in the XY directions to measure in-plane characteristics of the solar cell. 測定結果から算出した最大電力または曲線因子または回路短絡電流または回路開放電圧についての太陽電池面における特性分布のばらつき幅を求めこれに基づいて性能評価ないし製品の品質スクリーニングを行うことを特徴とする請求項18に記載の太陽電池の性能評価方法。Determining a variation width of a characteristic distribution on a solar cell surface with respect to a maximum power or a fill factor or a circuit short-circuit current or a circuit open voltage calculated from a measurement result, and performing a performance evaluation or a product quality screening based on the obtained width. Item 19. The performance evaluation method for a solar cell according to Item 18. 太陽電池の光入射面側の電極が形成されていない状態で測定を行うことを特徴とする請求項16〜19のいずれかに記載の太陽電池の性能評価方法。20. The method for evaluating the performance of a solar cell according to claim 16, wherein the measurement is performed in a state where the electrode on the light incident surface side of the solar cell is not formed.
JP2003026597A 2003-02-04 2003-02-04 Solar cell performance evaluation system Expired - Lifetime JP4625941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026597A JP4625941B2 (en) 2003-02-04 2003-02-04 Solar cell performance evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026597A JP4625941B2 (en) 2003-02-04 2003-02-04 Solar cell performance evaluation system

Publications (2)

Publication Number Publication Date
JP2004241449A true JP2004241449A (en) 2004-08-26
JP4625941B2 JP4625941B2 (en) 2011-02-02

Family

ID=32954551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026597A Expired - Lifetime JP4625941B2 (en) 2003-02-04 2003-02-04 Solar cell performance evaluation system

Country Status (1)

Country Link
JP (1) JP4625941B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129010A3 (en) * 2007-04-19 2009-03-26 Oc Oerlikon Balzers Ag Test equipment for automated quality control of thin film solar modules
JP2009194016A (en) * 2008-02-12 2009-08-27 Orbotech Ltd Apparatus for inspecting semiconductor substrate
WO2009129030A2 (en) * 2008-04-14 2009-10-22 Applied Materials, Inc. Solar parametric testing module and processes
EP2159583A1 (en) * 2008-08-29 2010-03-03 ODERSUN Aktiengesellschaft System and method for localizing and passivating defects in a photovoltaic element
JP2010073990A (en) * 2008-09-19 2010-04-02 Mitsubishi Heavy Ind Ltd Inspecting apparatus of photoelectric conversion device module
CN101814185A (en) * 2010-04-14 2010-08-25 天津大学 Line structured light vision sensor calibration method for micro-size measurement
WO2010107616A2 (en) * 2009-03-19 2010-09-23 Kyo Chung System and method for characterizing solar cell conversion performance and detecting defects in a solar cell
JP2010245431A (en) * 2009-04-09 2010-10-28 Lasertec Corp Evaluating apparatus and evaluating method for solar battery and manufacturing method for solar battery
LU91561B1 (en) * 2009-04-30 2010-11-02 Univ Luxembourg Electrical and opto-electrical characterisation oflarge-area semiconductor devices.
WO2010151364A1 (en) * 2009-06-26 2010-12-29 Applied Materials, Inc. Method and apparatus for inspecting scribes in solar modules
WO2011017570A2 (en) * 2009-08-06 2011-02-10 Applied Materials, Inc. In-line metrology methods and systems for solar cell fabrication
JP2011155225A (en) * 2010-01-28 2011-08-11 Dainippon Screen Mfg Co Ltd Solar cell evaluation device and solar cell evaluation method
KR101104338B1 (en) * 2011-04-01 2012-01-16 디아이티 주식회사 Apparatus of evaluating solar cell and method of evaluating solar cell using the same
KR101454929B1 (en) 2007-10-22 2014-10-27 닛신보 홀딩스 가부시키 가이샤 Inspecting apparatus for photovoltaic devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790713B (en) * 2016-04-28 2017-08-29 衢州学院 A kind of detector of solar panel

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525311A (en) * 2007-04-19 2010-07-22 エーリコン・トレイディング・アーゲー・トリューバッハ Thin film solar module automatic quality control test equipment
US7554346B2 (en) 2007-04-19 2009-06-30 Oerlikon Trading Ag, Trubbach Test equipment for automated quality control of thin film solar modules
WO2008129010A3 (en) * 2007-04-19 2009-03-26 Oc Oerlikon Balzers Ag Test equipment for automated quality control of thin film solar modules
KR101454929B1 (en) 2007-10-22 2014-10-27 닛신보 홀딩스 가부시키 가이샤 Inspecting apparatus for photovoltaic devices
JP2009194016A (en) * 2008-02-12 2009-08-27 Orbotech Ltd Apparatus for inspecting semiconductor substrate
WO2009129030A2 (en) * 2008-04-14 2009-10-22 Applied Materials, Inc. Solar parametric testing module and processes
WO2009129030A3 (en) * 2008-04-14 2009-12-10 Applied Materials, Inc. Solar parametric testing module and processes
US8049521B2 (en) 2008-04-14 2011-11-01 Applied Materials, Inc. Solar parametric testing module and processes
WO2010023263A1 (en) * 2008-08-29 2010-03-04 Odersun Ag System and method for localizing and passivating defects in a photovoltaic element
EP2159583A1 (en) * 2008-08-29 2010-03-03 ODERSUN Aktiengesellschaft System and method for localizing and passivating defects in a photovoltaic element
CN102197311A (en) * 2008-08-29 2011-09-21 奥德森公司 System and method for localizing and passivating defects in a photovoltaic element
JP2010073990A (en) * 2008-09-19 2010-04-02 Mitsubishi Heavy Ind Ltd Inspecting apparatus of photoelectric conversion device module
WO2010107616A2 (en) * 2009-03-19 2010-09-23 Kyo Chung System and method for characterizing solar cell conversion performance and detecting defects in a solar cell
WO2010107616A3 (en) * 2009-03-19 2011-01-13 Kyo Chung System and method for characterizing solar cell conversion performance and detecting defects in a solar cell
JP2010245431A (en) * 2009-04-09 2010-10-28 Lasertec Corp Evaluating apparatus and evaluating method for solar battery and manufacturing method for solar battery
LU91561B1 (en) * 2009-04-30 2010-11-02 Univ Luxembourg Electrical and opto-electrical characterisation oflarge-area semiconductor devices.
WO2010125078A1 (en) * 2009-04-30 2010-11-04 Universite Du Luxembourg Electrical and opto-electrical characterisation of large-area semiconductor devices
US9245810B2 (en) 2009-04-30 2016-01-26 Universite Du Luxembourg Electrical and opto-electrical characterization of large-area semiconductor devices
WO2010151364A1 (en) * 2009-06-26 2010-12-29 Applied Materials, Inc. Method and apparatus for inspecting scribes in solar modules
WO2011017570A2 (en) * 2009-08-06 2011-02-10 Applied Materials, Inc. In-line metrology methods and systems for solar cell fabrication
WO2011017570A3 (en) * 2009-08-06 2011-06-16 Applied Materials, Inc. In-line metrology methods and systems for solar cell fabrication
JP2011155225A (en) * 2010-01-28 2011-08-11 Dainippon Screen Mfg Co Ltd Solar cell evaluation device and solar cell evaluation method
CN101814185B (en) * 2010-04-14 2012-10-10 天津大学 Line structured light vision sensor calibration method for micro-size measurement
CN101814185A (en) * 2010-04-14 2010-08-25 天津大学 Line structured light vision sensor calibration method for micro-size measurement
KR101104338B1 (en) * 2011-04-01 2012-01-16 디아이티 주식회사 Apparatus of evaluating solar cell and method of evaluating solar cell using the same

Also Published As

Publication number Publication date
JP4625941B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
TWI429925B (en) Test equipment for automated quality control of thin film solar modules
JP4625941B2 (en) Solar cell performance evaluation system
US7733111B1 (en) Segmented optical and electrical testing for photovoltaic devices
US9103871B2 (en) High throughput quantum efficiency combinatorial characterization tool and method for combinatorial solar test substrates
JP3618865B2 (en) Photovoltaic element characteristic inspection apparatus and manufacturing method
JP5134479B2 (en) Inspection device for photoelectric conversion device module
JP4765052B2 (en) Integrated thin film solar cell evaluation apparatus and evaluation method
JP2010238906A (en) Device and method of measuring output characteristics of solar cell
US8319513B2 (en) Inspecting apparatus for solar cell and inspecting method using the same
EP1220394A2 (en) Laser bar tester
JP5509414B2 (en) Solar cell evaluation apparatus and solar cell evaluation method
US20100190275A1 (en) Scribing device and method of producing a thin-film solar cell module
JP5579829B2 (en) Electrical and optoelectric properties of large area semiconductor devices.
KR101447716B1 (en) Device for Investigating Epiwafer and Method for Investigating the Same
KR20100009844A (en) Testing apparatus for solar cell
KR101104338B1 (en) Apparatus of evaluating solar cell and method of evaluating solar cell using the same
KR20100128494A (en) Inspection device and method of solar cell
Kim et al. A dual side electroluminescence measurement system for LED wafer manufacturing
TW201816409A (en) Apparatus for testing solar cells, system for production of solar cells, and method for controlling an irradiation device for simulating a spectrum of solar radiation
CN115940812A (en) Reverse backpressure probe type current-voltage testing device and method
WO2011052426A1 (en) Solar cell evaluation device and evaluation method
WO2018077423A1 (en) Apparatus for testing solar cells, system for production of solar cells, and method for controlling an irradiation device for simulating a spectrum of solar radiation
JPH09326498A (en) Tester for solar cell
CN110648937A (en) Solar cell voltage distribution measuring method and measuring device thereof
JP2013026395A (en) Film inspection device and method of thin film solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4625941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term