JP2004241352A - Cathode for magnetron, and magnetron using the same - Google Patents

Cathode for magnetron, and magnetron using the same Download PDF

Info

Publication number
JP2004241352A
JP2004241352A JP2003032150A JP2003032150A JP2004241352A JP 2004241352 A JP2004241352 A JP 2004241352A JP 2003032150 A JP2003032150 A JP 2003032150A JP 2003032150 A JP2003032150 A JP 2003032150A JP 2004241352 A JP2004241352 A JP 2004241352A
Authority
JP
Japan
Prior art keywords
cathode
electron emission
magnetron
electrode
emission source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003032150A
Other languages
Japanese (ja)
Inventor
Masayuki Aiga
正幸 相賀
Toshiyuki Tsukada
敏行 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003032150A priority Critical patent/JP2004241352A/en
Publication of JP2004241352A publication Critical patent/JP2004241352A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Microwave Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode for a magnetron where no cathode part is required to be heated. <P>SOLUTION: A coil-like first electron emission source 12 where needle-like particles 11 are adhered to at least a part of the surface of a first electrode 10, and a second electron emission source 15 where an oxide film 14 of high secondary emission gain is adhered to at least a part of the surface of a second electrode 13, are sandwiched between the upper and lower end hats 16, constituting a cathode part 17. The second electrode which is a second electron emission source is formed cylindrical 131, which is disposed inside the first electrode 10 that is the first electron emission source. The second electrode which is the second electron emission source has a porous metal impregnated with oxide to obtain stable secondary electron emission gain. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子レンジなどの高周波加熱装置やレーダなどのパルス発生装置に用いられるマグネトロン用陰極及びそれを用いたマグネトロンに関するものである。
【0002】
【従来の技術】
現在使われているマグネトロンは、電子源として熱陰極が用いられている。熱陰極は、熱電子放出により電子を供給するものである。熱電子放出は、これらの熱陰極を1800〜3000℃程度に加熱することで、陰極金属内の伝導帯の自由電子が熱エネルギーを得て陰極金属表面のポテンシャル障壁を乗り越えて空間に放出される機構である。
【0003】
次に、従来のマグネトロンについて図面を用いて説明する。図7は、従来の熱陰極型マグネトロンの一実施形態を示す部分断面図であり、図8は図7の要部拡大図である。図において、軸方向に外部磁石1による直流磁界Tがある。
【0004】
例えば、電子放出源としてトリウムタングステンフィラメントからなる螺旋状の陰極2が陽極3のほぼ中心に配設されている。この陰極2に十数Aの電流を流し、1700〜1800℃に加熱する。陽極3と陰極2との間に数kVの電圧を印加し、半径方向に直流電界を生じさせると熱電子4が陰極2から放出される。陽極3は、陽極円筒5の内面に中心軸へ向かって突設された複数のベイン6により空洞共振器(図示せず)が形成された分割陽極である。陰極2と陽極3との間の空間を作用空間7といい、直流磁界Tが供給される。陰極2の軸方向上下両側にはエンドハット8と呼ぶ電極を配置し、エンドハット8を陰極2と同電位あるいは負電位にすることで、熱電子を作用空間7内に閉じ込めることが可能である。電子は作用空間7において、直流磁界Tにより曲げられ、サイクロトロン運動をする。サイクロトロン運動した電子は陰極に再突入する。その際陰極表面の二次電子放出利得が大きいと二次電子が放出される。陽極3は空洞共振器による振動回路を持ち、陽極3の分割間隙に生ずる高周波電界(図示せず)により電子流は速度変調を受ける。やがて電子流は疎な部分と密な部分になりベイン間の隣同士異なる極性と同期して回転電子極を形成し、陽極3の空洞共振器に誘導電流が流れ高周波電力が生じる。陽極3に発生した高周波電力は外部出力端子9から外部へと取り出される(例えば、特許文献1参照)。
【0005】
なお、従来例では、陰極にトリウムタングステンフィラメントを用いたが、酸化バリウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウムなどの酸化物陰極は加熱時に二次電子放出利得が大変大きく、熱エミッション電流そのものは少なくとも二次電子放出によって大電流を放出するため使用することは可能である。
【0006】
【特許文献1】
特開平5−121007号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来のマグネトロンでは、上記したように熱陰極を用いているため、マグネトロンの発振時の熱損失以外に熱陰極自身からの発熱があり、通常、マグネトロン自体を冷却させる必要があった。
【0008】
また、熱陰極は1700〜1800℃の高温になるため、陰極自身はもちろんのこと周辺の部品にも高価な高融点金属、例えばタングステンやモリブデン等を用いる必要があった。
【0009】
【課題を解決するための手段】
本発明のマグネトロン用陰極は、上記課題を解決するため、電子放出源の表面の少なくとも一部に針状粒子または突起を備えたコイル状の第1電極と、電子放出源の表面の少なくとも一部に二次電子放出利得の高い酸化物膜を備えた第2電極とから構成されている。
【0010】
この構成により、第1電極の針状粒子または突起の先端に電界集中が起こり、加熱することなく一次電子を放出させることができ、陰極から放出させる電子数を第2電極により増加させることができる。
【0011】
また、本発明のマグネトロン用陰極は、前記第1電極の内側に、電子放出源の表面の少なくとも一部に二次電子放出利得の高い酸化物膜を備えた円筒あるいは円柱状第2電極が配設されて構成されている。
【0012】
また、本発明のマグネトロン用陰極は、前記第2電極がコイル状に形成されている。
【0013】
また、本発明のマグネトロン用陰極は、前記第1電極の内側に、電子放出源の表面の少なくとも一部に二次電子放出利得の高い酸化物膜を備えた円筒あるいは円柱状第2電極が配設されている。
【0014】
また、本発明のマグネトロン用陰極は、多孔性金属に酸化物を含侵させて二次電子放出を安定化した第2電極を有している。
【0015】
この構成により、針状粒子の先端に発生する電界集中と、二次電子放出による電子の倍増作用により、陰極を加熱することなく一次電子を放出させることが可能となる。
【0016】
また、本発明のマグネトロンは、上記に記載されたマグネトロン陰極を備えている。
【0017】
この構成により、従来より低い温度で動作させることが可能なマグネトロンを得ることができる。
【0018】
【発明の実施の形態】
以下、本発明のマグネトロン用陰極について図面を用いて説明する。なお、従来と同一の構成要素には同一符号を付し説明を省略する。
【0019】
図1は本発明によるマグネトロンの要部構成を示した軸方向の断面図であり、図2および図3は図1の要部拡大図である。
【0020】
図において、本発明のマグネトロンの一実施形態は、第1電極10の表面の少なくとも一部に針状粒子11を固着させた第1の電子放出源12と、第2電極13の表面の少なくとも一部に二次放出利得の高い酸化物膜14を固着させた第2の電子放出源15とが上下のエンドハット16で挟持されて陰極部17が構成されている。針状粒子11は、図3に示されるように、例えばテトラポット形状のウィスカー111であってもよい。
【0021】
針状粒子11は、例えば、亜鉛、アルミニウム、珪素、鉄、ホウ素、マグネシウムなどの群から選択される金属、またはこれらの酸化物、窒化物、炭化物などから構成されている。そして、針状粒子11の表面には、カーボンナノチューブ、炭素繊維などを固着させることも可能である。
【0022】
また、電子を放出しやすい性質がある黒鉛、ダイヤモンド粒子などをウィスカー111状の針状粒子の表面に固着させることも可能である。
【0023】
そこで、本発明者は、実際に上述した構成によるマグネトロンを試作し、その効果を確認した。
【0024】
本発明者は、第1および第2の電子放出源を、例えば低価格のニッケルを原材料として用い、雰囲気温度を800〜900℃に保持しながら熱CVD法あるいはプラズマCVD法によりアセチレン、メタンなどの炭化水素系の希釈ガスを第1の電子放出源12の表面に反応させて炭素の針状粒子11を形成させた。また、蒸着法あるいはイオンプレートにより第2の電子放出源15の表面に酸化バリウム被膜14を形成させた。
【0025】
そして、真空中において陰極に電流を流すことで第1電極10を加熱し、針状粒子11のクリーニングと酸化バリウム膜14の活性化を同時に行った。真空引きしながらマグネトロン全体を600℃にし、ガス出しした後に真空封止をした。マグネトロン管内の真空度は10−7Paである。陰極半径は4mmとし、分割陽極は既存のマグネトロン(10分割、内径8mm)のものとした。この陰極に−6000Vの電圧を印加すると、第1の電子放出源12の針状粒子11の先端に強電界(10V/cmオーダー)が生じる。極度に高い電界の為、針状粒子11の先端のポテンシャル障壁が薄くなり、電子の波動性から生じるトンネル効果により、真空準位の電子をそのまま空間に放出することになる。この電界放出電子を以後一次電子40と称する。
【0026】
また、軸方向に直流磁界Tを0.35T発生させた。陽陰極間電圧のため生じる半径方向電界と、軸方向の直流磁界Tによって、陰極からの一次電子40の一部はサイクロトロン運動し第2の電子放出源15に突入し、第2の電子放出源15から二次放出電子が放出された。この二次放出電子を以後二次電子41と称する。更に二次電子41が第2の電子放出源15に再突入し二次電子41は雪崩的に増え、陽陰極間に50mAの電流を流した時、2.45GHzにて最大200Wのマイクロ波の発振を確認した。
【0027】
図4は本発明による第2の実施形態であるマグネトロンの要部構成を示した軸方向の断面図であり、図5は本発明による第2の実施形態の要部拡大図であり、図6は第2の実施形態による第2電極の酸化物膜の要部拡大図である。
【0028】
図において、第2の電子放出源である第2電極131を円筒状にし、第1の電子放出源である第1電極10の内側に配置したものである。また、第2電極131を多孔性の含浸型金属にした場合、異常放電率が減少し第1の実施形態で示された螺旋状に比較して約10%長寿命になった。同様にして、電子が衝突すると多くの二次電子を放出するといわれているセラミックス材を第2電極に用いてもよいことはいうまでもない。
【0029】
次に、第2の実施形態によるマグネトロン用陰極を用いたマグネトロンについて説明する。
【0030】
第1電極10の酸化亜鉛ウイスカー111が固着された第1の電子放出源12と二次放出利得の高い酸化物膜14を固着させた第2の電子放出源15とから構成されるマグネトロンの陽極と陰極間に電圧を6.0kV印加し、半径方向に電界を生じさせ、軸方向に直流磁界を0.35T生じさせた。電界によって、陰極の酸化亜鉛ウイスカー111の表面から最大10mAの電界放出電流が放出された。この電流により最大で2.45GHzのマイクロ波40Wの出力を確認した。
【0031】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0032】
針状粒子から電界放出される電子が一次電子として作用空間に放出された後、その電子が軸方向の直流磁界によってサイクロトロン運動し陰極に再突入し、その突入先が酸化物膜の場合、酸化物膜から二次電子が作用空間に放出される。二次電子がさらに酸化物膜に再突入するので、陰極から作用空間へと放出される総電子量は雪崩的に増えることになり、発振に十分な電子放出を得ることが出来る。
【0033】
また、陰極から電子を放出させるために陰極を加熱する必要が無いので、ヒータ用の電源が省かれ、マグネトロン用電源が簡素化される。
【0034】
フィラメントからなる陰極と比較し本発明の陰極は動作温度が低くなるので、陰極周辺の部品に従来から用いられてきたタングステンやモリブデンなどの高価な高融点金属と比較して安い金属(ニッケル、鉄、ステンレス鋼など)が用いられるようになる。
【0035】
本発明の陰極から放出される電界放出電子は、エネルギーバンドが狭い為、熱擾乱が小さいのでマグネトロン動作時のノイズが少なくなるなど多くの効果を奏する。
【図面の簡単な説明】
【図1】本発明によるマグネトロンの第1の実施形態による要部構成を示した軸方向の断面図
【図2】本発明による第1の実施形態の要部拡大図
【図3】本発明による第1の実施形態の要部拡大図
【図4】本発明の第2の実施形態による要部構成を示した軸方向の断面図
【図5】本発明による第2の実施形態の要部拡大図
【図6】第2の実施形態による第2電極の要部拡大図
【図7】従来のマグネトロンの部分断面図
【図8】従来のマグネトロンの要部拡大図
【符号の説明】
10、11、12、111 第1の電子放出源
13、14、15、131 第2の電子放出源
16 エンドハット
17 陰極部
40 一次電子
41 二次電子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetron cathode used in a high-frequency heating device such as a microwave oven or a pulse generator such as a radar, and a magnetron using the same.
[0002]
[Prior art]
Currently used magnetrons use hot cathodes as electron sources. The hot cathode supplies electrons by thermionic emission. Thermionic emission is achieved by heating these hot cathodes to about 1800 to 3000 ° C., so that free electrons in the conduction band in the cathode metal gain thermal energy and cross the potential barrier on the surface of the cathode metal to be emitted into space. Mechanism.
[0003]
Next, a conventional magnetron will be described with reference to the drawings. FIG. 7 is a partial sectional view showing an embodiment of a conventional hot cathode magnetron, and FIG. 8 is an enlarged view of a main part of FIG. In the figure, there is a DC magnetic field T generated by the external magnet 1 in the axial direction.
[0004]
For example, a helical cathode 2 made of a thorium tungsten filament as an electron emission source is disposed substantially at the center of the anode 3. A current of more than 10 A is passed through the cathode 2 to heat it to 1700 to 1800 ° C. When a voltage of several kV is applied between the anode 3 and the cathode 2 to generate a DC electric field in the radial direction, thermions 4 are emitted from the cathode 2. The anode 3 is a split anode in which a cavity (not shown) is formed by a plurality of vanes 6 protruding toward the central axis on the inner surface of the anode cylinder 5. The space between the cathode 2 and the anode 3 is referred to as a working space 7 and is supplied with a DC magnetic field T. Electrodes called end hats 8 are arranged on both upper and lower sides in the axial direction of the cathode 2, and by setting the end hat 8 to the same potential or a negative potential as the cathode 2, it is possible to confine thermoelectrons in the working space 7. . The electrons are bent by the DC magnetic field T in the working space 7 and perform cyclotron motion. Cyclotron-moved electrons re-enter the cathode. At that time, if the secondary electron emission gain on the cathode surface is large, secondary electrons are emitted. The anode 3 has an oscillating circuit with a cavity resonator, and the electron flow is subjected to velocity modulation by a high-frequency electric field (not shown) generated in the divided gap of the anode 3. Eventually, the electron flow becomes a sparse part and a dense part, and a rotating electron pole is formed in synchronization with the polarity different between adjacent vanes, and an induced current flows through the cavity resonator of the anode 3 to generate high-frequency power. The high-frequency power generated at the anode 3 is taken out from the external output terminal 9 (for example, see Patent Document 1).
[0005]
In the conventional example, a thorium-tungsten filament was used for the cathode, but an oxide cathode such as barium oxide, magnesium oxide, calcium oxide, or strontium oxide has a very large secondary electron emission gain when heated, and the thermal emission current itself is at least It can be used to emit a large current by secondary electron emission.
[0006]
[Patent Document 1]
JP-A-5-121007
[Problems to be solved by the invention]
However, in the conventional magnetron, since the hot cathode is used as described above, heat is generated from the hot cathode itself in addition to heat loss at the time of oscillation of the magnetron, and it is usually necessary to cool the magnetron itself.
[0008]
In addition, since the hot cathode has a high temperature of 1700 to 1800 ° C., it is necessary to use expensive high-melting-point metals, such as tungsten and molybdenum, not only for the cathode itself but also for peripheral parts.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the magnetron cathode according to the present invention includes a coil-shaped first electrode having needle-like particles or protrusions on at least a part of the surface of the electron emission source, and at least a part of the surface of the electron emission source. And a second electrode provided with an oxide film having a high secondary electron emission gain.
[0010]
With this configuration, electric field concentration occurs at the tips of the acicular particles or protrusions of the first electrode, primary electrons can be emitted without heating, and the number of electrons emitted from the cathode can be increased by the second electrode. .
[0011]
Further, in the magnetron cathode of the present invention, a cylindrical or columnar second electrode provided with an oxide film having a high secondary electron emission gain on at least a part of the surface of the electron emission source is provided inside the first electrode. It is provided and configured.
[0012]
Further, in the magnetron cathode of the present invention, the second electrode is formed in a coil shape.
[0013]
Further, in the magnetron cathode of the present invention, a cylindrical or columnar second electrode provided with an oxide film having a high secondary electron emission gain on at least a part of the surface of the electron emission source is provided inside the first electrode. Is established.
[0014]
Further, the magnetron cathode of the present invention has a second electrode in which secondary electrons are stabilized by impregnating a porous metal with an oxide.
[0015]
With this configuration, it is possible to emit primary electrons without heating the cathode due to the concentration of the electric field generated at the tips of the needle-like particles and the doubling of electrons due to secondary electron emission.
[0016]
Further, a magnetron of the present invention includes the magnetron cathode described above.
[0017]
With this configuration, it is possible to obtain a magnetron that can be operated at a lower temperature than before.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the magnetron cathode of the present invention will be described with reference to the drawings. The same components as those in the related art are denoted by the same reference numerals, and description thereof will be omitted.
[0019]
FIG. 1 is an axial cross-sectional view showing a configuration of a main part of a magnetron according to the present invention, and FIGS. 2 and 3 are enlarged views of a main part of FIG.
[0020]
In the figure, one embodiment of the magnetron of the present invention includes a first electron emission source 12 having needle-like particles 11 fixed to at least a part of a surface of a first electrode 10, and at least one surface of a second electrode 13. A second electron emission source 15 having an oxide film 14 having a high secondary emission gain fixed thereto is sandwiched between upper and lower end hats 16 to form a cathode portion 17. The needle-like particles 11 may be, for example, tetrapod-shaped whiskers 111 as shown in FIG.
[0021]
The acicular particles 11 are made of, for example, a metal selected from the group of zinc, aluminum, silicon, iron, boron, magnesium, and the like, or an oxide, nitride, carbide, or the like thereof. Further, carbon nanotubes, carbon fibers, and the like can be fixed on the surface of the acicular particles 11.
[0022]
It is also possible to fix graphite, diamond particles, etc., which have a property of easily emitting electrons, to the surface of the whisker 111-like needle-like particles.
[0023]
Then, the inventor actually manufactured a prototype of the magnetron having the above-described configuration, and confirmed its effects.
[0024]
The present inventor has proposed that the first and second electron emission sources are made of, for example, acetylene, methane, or the like by thermal CVD or plasma CVD while using low-cost nickel as a raw material and maintaining the ambient temperature at 800 to 900 ° C. The hydrocarbon-based diluent gas was reacted with the surface of the first electron emission source 12 to form the acicular particles 11 of carbon. Further, the barium oxide film 14 was formed on the surface of the second electron emission source 15 by a vapor deposition method or an ion plate.
[0025]
Then, the first electrode 10 was heated by applying a current to the cathode in a vacuum, thereby cleaning the needle-like particles 11 and activating the barium oxide film 14 at the same time. The entire magnetron was heated to 600 ° C. while evacuating, degassed, and then vacuum sealed. The degree of vacuum in the magnetron tube is 10 −7 Pa. The cathode radius was 4 mm, and the divided anode was an existing magnetron (10 divisions, inner diameter 8 mm). When a voltage of -6000 V is applied to this cathode, a strong electric field (on the order of 10 7 V / cm) is generated at the tip of the needle-like particles 11 of the first electron emission source 12. Due to the extremely high electric field, the potential barrier at the tip of the needle-like particles 11 becomes thin, and the electrons at the vacuum level are directly emitted into the space due to the tunnel effect caused by the wave nature of the electrons. This field emission electron is hereinafter referred to as primary electron 40.
[0026]
A DC magnetic field T of 0.35T was generated in the axial direction. Due to the radial electric field generated by the voltage between the cathode and the cathode, and a DC magnetic field T in the axial direction, a part of the primary electrons 40 from the cathode moves in a cyclotron manner and enters the second electron emission source 15, and the second electron emission source 15 15 emitted secondary emission electrons. This secondary emission electron is hereinafter referred to as secondary electron 41. Further, the secondary electrons 41 re-enter the second electron emission source 15 and the secondary electrons 41 increase in an avalanche manner. When a current of 50 mA flows between the positive and negative electrodes, a microwave of 200 W maximum at 2.45 GHz is generated. Oscillation was confirmed.
[0027]
FIG. 4 is an axial sectional view showing a configuration of a main part of a magnetron according to a second embodiment of the present invention. FIG. 5 is an enlarged view of a main part of the second embodiment of the present invention. FIG. 4 is an enlarged view of a main part of an oxide film of a second electrode according to a second embodiment.
[0028]
In the figure, a second electrode 131 serving as a second electron emission source is formed in a cylindrical shape, and is arranged inside a first electrode 10 serving as a first electron emission source. When the second electrode 131 was made of a porous impregnated metal, the abnormal discharge rate was reduced, and the life was extended by about 10% as compared with the spiral shape shown in the first embodiment. Similarly, it goes without saying that a ceramic material, which is said to emit many secondary electrons when electrons collide, may be used for the second electrode.
[0029]
Next, a magnetron using the magnetron cathode according to the second embodiment will be described.
[0030]
A magnetron anode composed of a first electron emission source 12 to which a zinc oxide whisker 111 of the first electrode 10 is fixed and a second electron emission source 15 to which an oxide film 14 having a high secondary emission gain is fixed. And a cathode, a voltage of 6.0 kV was applied to generate an electric field in the radial direction, and a DC magnetic field of 0.35 T in the axial direction. Due to the electric field, a field emission current of maximum 10 mA was emitted from the surface of the zinc oxide whisker 111 of the cathode. With this current, the output of a microwave of 40 W at a maximum of 2.45 GHz was confirmed.
[0031]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0032]
After electrons emitted from the needle-shaped particles are emitted to the working space as primary electrons, the electrons move in a cyclotron by an axial DC magnetic field and re-enter the cathode. Secondary electrons are emitted from the material film into the working space. Since the secondary electrons re-enter the oxide film again, the total amount of electrons emitted from the cathode to the working space increases like an avalanche, and sufficient electron emission for oscillation can be obtained.
[0033]
Further, since it is not necessary to heat the cathode in order to emit electrons from the cathode, the power supply for the heater is omitted, and the power supply for the magnetron is simplified.
[0034]
Since the operating temperature of the cathode of the present invention is lower than that of a cathode made of a filament, a cheaper metal (nickel, iron, etc.) is used as compared with expensive refractory metals such as tungsten and molybdenum which have been conventionally used for parts around the cathode. , Stainless steel, etc.).
[0035]
Since the field emission electrons emitted from the cathode of the present invention have a narrow energy band and a small thermal disturbance, there are many effects such as a reduction in noise during magnetron operation.
[Brief description of the drawings]
FIG. 1 is an axial sectional view showing a configuration of a main part of a magnetron according to a first embodiment of the present invention; FIG. 2 is an enlarged view of a main part of the first embodiment according to the present invention; FIG. FIG. 4 is an enlarged cross-sectional view in the axial direction showing a main part configuration according to a second embodiment of the present invention. FIG. 5 is an enlarged main part view of a second embodiment according to the present invention. FIG. 6 is an enlarged view of a main part of a second electrode according to a second embodiment. FIG. 7 is a partial sectional view of a conventional magnetron. FIG. 8 is an enlarged view of a main part of a conventional magnetron.
10, 11, 12, 111 First electron emission source 13, 14, 15, 131 Second electron emission source 16 End hat 17 Cathode unit 40 Primary electron 41 Secondary electron

Claims (5)

電子放出源の表面の少なくとも一部に針状粒子または突起を備えたコイル状第1電極と、電子放出源の表面の少なくとも一部に二次電子放出利得の高い酸化物膜を備えた第2電極とからなるマグネトロン用陰極。A coil-shaped first electrode having needle-like particles or protrusions on at least a part of the surface of the electron emission source; and a second electrode having an oxide film having a high secondary electron emission gain on at least a part of the surface of the electron emission source. A magnetron cathode composed of electrodes. 前記第2電極がコイル状に形成されたことを特徴とする請求項1に記載のマグネトロン用陰極。The cathode according to claim 1, wherein the second electrode is formed in a coil shape. 前記第1電極の内側に、電子放出源の表面の少なくとも一部に二次電子放出利得の高い酸化物膜を備えた円筒あるいは円柱状第2電極が配設されてなることを特徴とする請求項1に記載のマグネトロン用陰極。A cylindrical or columnar second electrode provided with an oxide film having a high secondary electron emission gain on at least a part of the surface of the electron emission source, inside the first electrode. Item 2. The magnetron cathode according to Item 1. 多孔性金属に酸化物を含侵させて二次電子放出を安定化した第2電極を有することを特徴とする請求項1ないし請求項3に記載のマグネトロン用陰極。4. The magnetron cathode according to claim 1, further comprising a second electrode in which secondary electrons are stabilized by impregnating the porous metal with an oxide. 請求項1ないし4の何れかに記載されたマグネトロン用陰極を備えたことを特徴とするマグネトロン。A magnetron comprising the magnetron cathode according to any one of claims 1 to 4.
JP2003032150A 2003-02-10 2003-02-10 Cathode for magnetron, and magnetron using the same Withdrawn JP2004241352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032150A JP2004241352A (en) 2003-02-10 2003-02-10 Cathode for magnetron, and magnetron using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032150A JP2004241352A (en) 2003-02-10 2003-02-10 Cathode for magnetron, and magnetron using the same

Publications (1)

Publication Number Publication Date
JP2004241352A true JP2004241352A (en) 2004-08-26

Family

ID=32958491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032150A Withdrawn JP2004241352A (en) 2003-02-10 2003-02-10 Cathode for magnetron, and magnetron using the same

Country Status (1)

Country Link
JP (1) JP2004241352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022088906A (en) * 2020-12-03 2022-06-15 株式会社東芝 Electron emission electrode and magnetron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022088906A (en) * 2020-12-03 2022-06-15 株式会社東芝 Electron emission electrode and magnetron
US11387069B2 (en) 2020-12-03 2022-07-12 Kabushiki Kaisha Toshiba Electron-emitting electrode including multiple diamond members and magnetron including same
JP7427575B2 (en) 2020-12-03 2024-02-05 株式会社東芝 Electron emission electrode and magnetron

Similar Documents

Publication Publication Date Title
EP1505627B1 (en) Magnetron
KR0176876B1 (en) Magnetron
US6686696B2 (en) Magnetron with diamond coated cathode
US8498379B2 (en) Electron emitter and method of making same
US20030143356A1 (en) Carbon nanotube for electron emission source and manufacturing method therefor
EP0448133A2 (en) A directly heated cathode assembly
JP2008108540A (en) Magnetron
KR102027407B1 (en) Field emitter and cold cathod structure using cnt yarns
JP2004241352A (en) Cathode for magnetron, and magnetron using the same
US3896332A (en) High power quick starting magnetron
US2517726A (en) Ultra high frequency electron tube
JP2003242898A (en) Magnetron
RU2051439C1 (en) Magnetron
CN110379690B (en) Cold cathode electron gun using radio frequency excitation field to emit electron beam
JPS59228343A (en) Magnetron
JP2004047249A (en) Cathode for magnetron and method for manufacturing the same, and magnetron using the same
JP2003272537A (en) Magnetron
JPH09293456A (en) Cathode structure for magnetron
JP6959103B2 (en) Magnetron cathode
US1971812A (en) X-ray device
KR101961759B1 (en) X­ray source comprising bead structures and cnt yarn and x­ray emitting apparatus using the same
JP2000100339A (en) Magnetron
JP2006040573A (en) Magnetron
Kuznetsov Cathodes for electron guns
JPH0334042Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

RD01 Notification of change of attorney

Effective date: 20060314

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070730