JP2003272537A - Magnetron - Google Patents

Magnetron

Info

Publication number
JP2003272537A
JP2003272537A JP2002078400A JP2002078400A JP2003272537A JP 2003272537 A JP2003272537 A JP 2003272537A JP 2002078400 A JP2002078400 A JP 2002078400A JP 2002078400 A JP2002078400 A JP 2002078400A JP 2003272537 A JP2003272537 A JP 2003272537A
Authority
JP
Japan
Prior art keywords
magnetron
cathode
electron emission
cathode body
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002078400A
Other languages
Japanese (ja)
Inventor
Seiji Nakajima
誠二 中嶋
Isamu Aokura
勇 青倉
Masayuki Aiga
正幸 相賀
Toshiyuki Tsukada
敏行 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002078400A priority Critical patent/JP2003272537A/en
Publication of JP2003272537A publication Critical patent/JP2003272537A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetron not required to use a costly, high melting point metal not only in its cathode but also in the peripheral components. <P>SOLUTION: Using a lathe, etc., flange-shaped or needle-shaped projections 11 are coarsely processed at a certain spacing on the peripheral surface of the cathode body 10 in the form of hollow cylinder made of nickel, etc. Each projection 11 is subjected to polishing by an electric field polishing method or discharge machining method, wherein the radius of curvature at the tip of each projection 11 is formed within 1 μm, and with this cathode body 10 produced, the intended magnetron is accomplished. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子レンジなどの
高周波加熱装置やレーダなどのパルス発生装置で利用さ
れるマグネトロンの陰極部の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a cathode part of a magnetron used in a high frequency heating device such as a microwave oven or a pulse generator such as a radar.

【0002】[0002]

【従来の技術】現在使われているマグネトロンは、電子
源として熱陰極が用いられている。熱陰極は、熱電子放
出により電子を供給するものである。熱電子放出は、こ
れらの熱陰極を1500〜2700Kに加熱すること
で、陰極金属内の伝導帯の自由電子が熱エネルギーを得
て陰極金属表面のポテンシャル障壁を乗り超えて空間に
放出される機構である。
2. Description of the Related Art In the currently used magnetron, a hot cathode is used as an electron source. The hot cathode supplies electrons by thermionic emission. Thermionic emission is a mechanism in which, by heating these hot cathodes to 1500 to 2700K, free electrons in the conduction band in the cathode metal get thermal energy, get over the potential barrier on the cathode metal surface, and are emitted to the space. Is.

【0003】次に、従来のマグネトロンについて図面を
用いて説明する。図4は従来の熱陰極型マグネトロンの
一実施形態を示す要部断面図であり、図5は図4の要部
拡大図である。図において、軸方向に外部磁石1による
直流磁界Tがある。例えば、トリウムタングステンフィ
ラメントからなる陰極2が陽極3のほぼ中心に配設され
ている。陰極2に十数Aの直流電流を流し、1500〜
1800℃に加熱する。陽極3と陰極2との間に数kV
の電圧を印加し、半径方向に直流電界を生じさせると熱
電子4が陰極2から放出される。陽極3は、陽極本体5
の内面に中心軸へ向かって突設された複数枚の陽極ベイ
ン6により空洞共振器(図示せず)が形成された分割陽
極である。陰極2と陽極3との間の空間を作用空間7と
いう。陰極2の軸方向上下両側にはエンドハット8と呼
ぶ電極を配置する。エンドハット8を陰極2と同電位あ
るいは負電位にすることで、熱電子を作用空間7内に閉
じ込めることが可能である。電子は作用空間7におい
て、直流磁界Tにより曲げられ、サイクロイド運動をす
る。陽極3は空洞共振器による振動回路を持ち、陽極3
の分割間隙に生ずる高周波電界(図示せず)により電子
流は速度変調を受ける。やがて電子流は疎な部分と密な
部分になりベイン間の隣同士異なる極性と同期して回転
電子極を形成し、陽極3の空洞共振器に誘導電流が流れ
高周波電力が生じる。陽極3に発生した高周波電力は外
部出力端子9から外部へと取り出される。
Next, a conventional magnetron will be described with reference to the drawings. FIG. 4 is a cross-sectional view of an essential part showing an embodiment of a conventional hot cathode magnetron, and FIG. 5 is an enlarged view of the essential part of FIG. In the figure, there is a DC magnetic field T due to the external magnet 1 in the axial direction. For example, the cathode 2 made of thorium-tungsten filament is arranged substantially at the center of the anode 3. Apply a direct current of over a dozen A to the cathode 2 and
Heat to 1800 ° C. Several kV between anode 3 and cathode 2
When a voltage of 2 is applied to generate a direct current electric field in the radial direction, thermoelectrons 4 are emitted from the cathode 2. The anode 3 is the anode body 5
Is a split anode in which a cavity resonator (not shown) is formed by a plurality of anode vanes 6 provided on the inner surface of the above so as to project toward the central axis. The space between the cathode 2 and the anode 3 is called the working space 7. Electrodes called end hats 8 are arranged on both upper and lower sides of the cathode 2 in the axial direction. By setting the end hat 8 to have the same potential as the cathode 2 or a negative potential, it is possible to confine the thermoelectrons in the working space 7. In the working space 7, the electrons are bent by the DC magnetic field T and make a cycloidal motion. The anode 3 has a vibration circuit based on a cavity resonator,
The velocity of the electron flow is modulated by the high-frequency electric field (not shown) generated in the division gap of the. Eventually, the electron flow becomes a sparse part and a dense part to form a rotating electron pole in synchronization with the adjacent different polarities between the vanes, and an induction current flows in the cavity resonator of the anode 3 to generate high frequency power. The high frequency power generated in the anode 3 is taken out from the external output terminal 9.

【0004】マグネトロンの場合、陰極から放出された
電子は磁場によってサイクロイド運動し陰極に再突入す
る。その際陰極表面の二次電子放出利得が大きいと二次
電子が放出される。この従来例はトリウムタングステン
フィラメント陰極であるが、酸化バリウム、酸化ストロ
ンチウムなどの酸化物陰極は加熱時に二次電子放出利得
がたいへん大きく、熱エミッション電流そのものは少な
くとも二次電子放出によって大電流を放出することが可
能である。
In the case of a magnetron, the electrons emitted from the cathode are cycloidally moved by the magnetic field and re-enter the cathode. At that time, if the secondary electron emission gain on the cathode surface is large, secondary electrons are emitted. This conventional example is a thorium-tungsten filament cathode, but oxide cathodes such as barium oxide and strontium oxide have a very large secondary electron emission gain when heated, and the thermal emission current itself emits a large current by at least secondary electron emission. It is possible.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
マグネトロンでは、上記したように熱陰極を用いている
ため、マグネトロンの発振時の熱損失以外に熱陰極自身
からの発熱があり、通常、マグネトロン自体を冷却させ
る必要があった。
However, in the conventional magnetron, since the hot cathode is used as described above, heat is generated from the hot cathode itself in addition to the heat loss during the oscillation of the magnetron, and the magnetron itself is usually present. Had to be cooled.

【0006】また、熱陰極は1500〜1800℃の高
温になるため、陰極自身はもちろんのこと周辺の部品に
も高価な高融点金属、例えばタングステンやモリブデン
等を用いる必要があった。
Further, since the hot cathode has a high temperature of 1500 to 1800 ° C., it is necessary to use expensive refractory metal such as tungsten or molybdenum not only in the cathode itself but also in the peripheral parts.

【0007】本発明は、上記問題点を解決することを目
的としてなしたもので、これら問題点を解決したマグネ
トロンを提供するものである。
The present invention has been made for the purpose of solving the above problems, and provides a magnetron which solves these problems.

【0008】[0008]

【課題を解決するための手段】本発明のマグネトロン
は、中空円筒状の陰極体で構成されるマグネトロンであ
って、電解研磨法あるいは放電加工法により、前記中空
円筒の外周面に少なくとも1つの電界電子放出電極を突
出形成させた構成を有している。
The magnetron of the present invention is a magnetron composed of a hollow cylindrical cathode body, wherein at least one electric field is formed on the outer peripheral surface of the hollow cylinder by electrolytic polishing or electric discharge machining. It has a structure in which an electron emission electrode is formed to project.

【0009】この構成により、陰極を加熱することなく
電子を放出することができる。
With this structure, electrons can be emitted without heating the cathode.

【0010】また、電界電子放出電極が鍔状に形成され
ていることや、針状に形成されていること、或いは、少
なくとも前記中空円筒の外周面に酸化物膜が形成されて
いることが好ましい。
Further, it is preferable that the field electron emission electrode is formed in a brim shape, a needle shape, or an oxide film is formed on at least the outer peripheral surface of the hollow cylinder. .

【0011】[0011]

【発明の実施の形態】以下、本発明のマグネトロンの実
施形態について図面を用いて説明する。なお、従来例と
同一構成要素には同一記号を付し説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the magnetron of the present invention will be described below with reference to the drawings. The same components as those of the conventional example are designated by the same reference numerals and the description thereof will be omitted.

【0012】図1は本発明による陰極体の要部断面図を
示し、図2はその要部拡大断面図を示す。
FIG. 1 is a sectional view of a main part of a cathode body according to the present invention, and FIG. 2 is an enlarged sectional view of the main part.

【0013】図において、例えばニッケルからなる中空
円筒状の陰極体10の外周面に、旋盤加工等により鍔状
突起あるいは針状突起11を所定間隔に粗加工する。そ
の後、それぞれの突起に電解研磨法あるいは放電加工法
を用いて研磨を行い、突起の先端を仕上げていく。
In the figure, a collar-shaped projection or a needle-shaped projection 11 is roughly processed at a predetermined interval on the outer peripheral surface of a hollow cylindrical cathode body 10 made of nickel, for example, by lathing. After that, each protrusion is polished by using an electrolytic polishing method or an electric discharge machining method to finish the tip of the protrusion.

【0014】ここで、本発明者らは、鍔状突起をほぼ2
mm間隔で5個所粗加工を行った。その後、5個所の鍔
状突起11のそれぞれに放電加工による研磨を行い、鍔
状突起11の先端部分の曲率半径を1マイクロメートル
以内になるように仕上げた。図2は、研磨加工を終えた
鍔状突起11の要部断面拡大図であり、鍔状突起の幅W
を約0.1mmで高さHを約0.1mmにそれぞれ加工
し、鍔状突起による電界電子放出電極を備えた中空円筒
状の陰極体10を形成することができた。
Here, the present inventors have made the collar-shaped protrusions almost 2
Rough machining was performed at 5 points at intervals of mm. After that, each of the five flange-shaped projections 11 was polished by electric discharge machining to finish the tip portion of the flange-shaped projections 11 so that the radius of curvature was within 1 micrometer. FIG. 2 is an enlarged cross-sectional view of the main part of the collar-shaped projection 11 that has been subjected to the polishing process, and shows the width W of the collar-shaped projection.
Were processed to have a height H of about 0.1 mm and a height H of about 0.1 mm, whereby a hollow cylindrical cathode body 10 provided with a field electron emission electrode by a collar-shaped projection could be formed.

【0015】次に、第2の実施形態は、図3に示される
ように、陰極体10の表面に数マイクロメートルの酸化
膜12が形成されたものである。酸化膜12は、マグネ
トロンの製造時に真空排気工程で陰極体10が高温加熱
(約800℃)され、真空中における真空蒸着成膜法に
より炭酸バリウムを酸化バリウムへと熱分解させ、炭酸
バリウムの蒸着膜が形成されたものである。
Next, in the second embodiment, as shown in FIG. 3, an oxide film 12 of several micrometers is formed on the surface of the cathode body 10. The oxide film 12 is formed by heating the cathode body 10 at a high temperature (about 800 ° C.) in a vacuum evacuation process at the time of manufacturing a magnetron, and thermally decomposing barium carbonate into barium oxide by a vacuum vapor deposition film forming method in vacuum to deposit barium carbonate. A film is formed.

【0016】酸化膜が形成された陰極を用いてマグネト
ロンを発振動作させると、酸化膜12が二次電子放出源
となって次々と電子放出が繰り返され、さらに多くの電
子を放出することができる。
When the magnetron is oscillated using the cathode on which the oxide film is formed, the oxide film 12 serves as a secondary electron emission source and electron emission is repeated one after another, and more electrons can be emitted. .

【0017】そこで、本発明者らは、上述した陰極を用
いて、マグネトロンを試作し動作を確認した。そのとき
の陽極は、既存のマグネトロン(陽極分割数10個、陽
極内径8mm、共振周波数2.45GHz)のものを使
用した。そして、陰極体10と陽極ベイン6との距離を
1.8mmに設定し、陰極体10に直流電圧を−6.0
kV、軸方向に直流磁界Tを0.35テスラかけたとこ
ろ、陰極体10の表面に配置した鍔状突起11から電界
電子放出電流(一次電子)が放出され、その一次電子が
直流磁界によってサイクロイド運動し、陰極体10の表
面の酸化膜12に衝突するようになり、衝突した二次電
子が新たな二次電子放出源となって次々と二次電子放出
が繰り返され、さらに多くの電子放出をするようにな
り、双方合わせて最大50mAの電流が陽極・陰極間に
流れた。
Therefore, the present inventors have made a prototype of a magnetron using the above-mentioned cathode and confirmed the operation. As the anode at that time, an existing magnetron (10 divided anodes, anode inner diameter 8 mm, resonance frequency 2.45 GHz) was used. Then, the distance between the cathode body 10 and the anode vane 6 is set to 1.8 mm, and a DC voltage of -6.0 is applied to the cathode body 10.
When a direct current magnetic field T of 0.35 Tesla was applied in the axial direction of kV, a field electron emission current (primary electron) was emitted from the flange-shaped projection 11 arranged on the surface of the cathode body 10, and the primary electron was cycloidized by the direct current magnetic field. The secondary electrons move and collide with the oxide film 12 on the surface of the cathode body 10. The colliding secondary electrons serve as new secondary electron emission sources, and secondary electron emission is repeated one after another. Then, a maximum current of 50 mA in both flowed between the anode and the cathode.

【0018】上記の結果、2.45GHzの周波数帯域
でマイクロ波出力が200Wの発振を確認した。
As a result of the above, it was confirmed that the microwave output was 200 W in the frequency band of 2.45 GHz.

【0019】なお、本発明の酸化膜12は図3の仮想線
13に示されるように鍔状突起11の表面に形成されて
も電界電子放出電流(一次電子)の放出に影響を与える
ものではない。
The oxide film 12 of the present invention does not affect the emission of the field electron emission current (primary electron) even if it is formed on the surface of the flange-shaped projection 11 as shown by the phantom line 13 in FIG. Absent.

【0020】[0020]

【発明の効果】以上に説明したように本発明のマグネト
ロンによれば、中空円筒の外周面に電解研磨法により少
なくとも1つの電界電子放出電極を突出形成させたので
安定して動作する陰極構体を備えたマグネトロンを得る
ことができる。
As described above, according to the magnetron of the present invention, since at least one field electron emission electrode is formed to project on the outer peripheral surface of the hollow cylinder by the electrolytic polishing method, a cathode assembly that operates stably can be obtained. It is possible to obtain the equipped magnetron.

【0021】また、従来の熱陰極と比較すると陰極の動
作温度が低くなるので、陰極周辺の部品に高価な高融点
金属を用いなくても安価な金属を用いることが可能とな
る。
Since the operating temperature of the cathode is lower than that of the conventional hot cathode, it is possible to use an inexpensive metal without using an expensive refractory metal for parts around the cathode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態によるマグネトロンの
要部断面図
FIG. 1 is a sectional view of an essential part of a magnetron according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態によるマグネトロンの
要部拡大断面図
FIG. 2 is an enlarged cross-sectional view of a main part of the magnetron according to the first embodiment of the present invention.

【図3】本発明の第2の実施形態によるマグネトロンの
要部拡大断面図
FIG. 3 is an enlarged cross-sectional view of a main part of a magnetron according to a second embodiment of the present invention.

【図4】従来の熱陰極型マグネトロンの実施形態を示す
要部断面図
FIG. 4 is a cross-sectional view of essential parts showing an embodiment of a conventional hot cathode magnetron.

【図5】図4の要部拡大図5 is an enlarged view of a main part of FIG.

【符号の説明】[Explanation of symbols]

10 陰極体 11 電界電子放出電極(鍔状突起あるいは針状突起) 12 酸化膜 10 Cathode body 11 Field electron emission electrode (collar-shaped protrusion or needle-shaped protrusion) 12 Oxide film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相賀 正幸 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 塚田 敏行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5C029 CC01 CC07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masayuki Aiga             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Toshiyuki Tsukada             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5C029 CC01 CC07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中空円筒状の陰極体で構成されるマグネ
トロンであって、電解研磨法により、前記中空円筒の外
周面に少なくとも1つの電界電子放出電極を突出形成さ
せたことを特徴とするマグネトロン。
1. A magnetron comprising a hollow cylindrical cathode body, characterized in that at least one field electron emission electrode is formed so as to project on the outer peripheral surface of said hollow cylinder by electrolytic polishing. .
【請求項2】 中空円筒状の陰極体で構成されるマグネ
トロンであって、放電加工法により、前記中空円筒の外
周面に少なくとも1つの電界電子放出電極を突出形成さ
せたことを特徴とするマグネトロン。
2. A magnetron comprising a hollow cylindrical cathode body, characterized in that at least one field electron emission electrode is projectingly formed on an outer peripheral surface of said hollow cylinder by an electric discharge machining method. .
【請求項3】 電界電子放出電極が鍔状に形成されてい
ることを特徴とする請求項1または請求項2に記載のマ
グネトロン。
3. The magnetron according to claim 1, wherein the field electron emission electrode is formed in a brim shape.
【請求項4】 電界電子放出電極が針状に形成されてい
ることを特徴とする請求項1または請求項2に記載のマ
グネトロン。
4. The magnetron according to claim 1 or 2, wherein the field electron emission electrode is formed in a needle shape.
【請求項5】 少なくとも前記中空円筒の外周面に酸化
物膜が形成されていることを特徴とする請求項1ないし
請求項4に記載のマグネトロン。
5. The magnetron according to claim 1, wherein an oxide film is formed on at least an outer peripheral surface of the hollow cylinder.
JP2002078400A 2002-03-20 2002-03-20 Magnetron Pending JP2003272537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078400A JP2003272537A (en) 2002-03-20 2002-03-20 Magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078400A JP2003272537A (en) 2002-03-20 2002-03-20 Magnetron

Publications (1)

Publication Number Publication Date
JP2003272537A true JP2003272537A (en) 2003-09-26

Family

ID=29206030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078400A Pending JP2003272537A (en) 2002-03-20 2002-03-20 Magnetron

Country Status (1)

Country Link
JP (1) JP2003272537A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252883A (en) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd Magnetron
JP2015216006A (en) * 2014-05-09 2015-12-03 旭硝子株式会社 Negative electrode of magnetron, magnetron and microwave heating apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524162A (en) * 1975-06-27 1977-01-13 Hitachi Ltd Electric field radiation cathode and its manufacturing method
JPS61181037A (en) * 1985-02-06 1986-08-13 New Japan Radio Co Ltd Cathode for magnetron
JPH06510629A (en) * 1992-04-15 1994-11-24 オトクリトエ・アクツィオネルノエ・オブスシェストボ・“プルトン” magnetron
JPH09185948A (en) * 1995-12-12 1997-07-15 Lg Electron Inc Magnetron
JP2000100339A (en) * 1998-09-25 2000-04-07 Sharp Corp Magnetron
JP2002501282A (en) * 1998-01-08 2002-01-15 リットン システムズ インコーポレイテッド M-type microwave device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524162A (en) * 1975-06-27 1977-01-13 Hitachi Ltd Electric field radiation cathode and its manufacturing method
JPS61181037A (en) * 1985-02-06 1986-08-13 New Japan Radio Co Ltd Cathode for magnetron
JPH06510629A (en) * 1992-04-15 1994-11-24 オトクリトエ・アクツィオネルノエ・オブスシェストボ・“プルトン” magnetron
JPH09185948A (en) * 1995-12-12 1997-07-15 Lg Electron Inc Magnetron
JP2002501282A (en) * 1998-01-08 2002-01-15 リットン システムズ インコーポレイテッド M-type microwave device
JP2000100339A (en) * 1998-09-25 2000-04-07 Sharp Corp Magnetron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252883A (en) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd Magnetron
JP2015216006A (en) * 2014-05-09 2015-12-03 旭硝子株式会社 Negative electrode of magnetron, magnetron and microwave heating apparatus

Similar Documents

Publication Publication Date Title
KR101100919B1 (en) Magnetron
KR0176876B1 (en) Magnetron
JPS59146129A (en) Method of producing thermion cathode
KR19990022701A (en) An impregnated negative electrode structure, a negative electrode substrate used therefor, an electron gun structure using the negative electrode substrate, and an electron tube
US2509053A (en) Space current device employing mutually bombarded electrodes
JP2003272537A (en) Magnetron
JP3038830B2 (en) Conduction-cooled multistage collector
US2998544A (en) Magnetron cathode
KR100210065B1 (en) Cathode structure of magnetron
JP2004241352A (en) Cathode for magnetron, and magnetron using the same
JP2582830Y2 (en) Bottom shield fixing structure of magnetron cathode assembly
JP2000100339A (en) Magnetron
US2535137A (en) Microwave dynatron oscillator
JPS59228343A (en) Magnetron
KR100191519B1 (en) Magnetron
JP2006040573A (en) Magnetron
KR200152142Y1 (en) Vane of magnetron
JP2004047249A (en) Cathode for magnetron and method for manufacturing the same, and magnetron using the same
US2440203A (en) Cathode structure
KR100291993B1 (en) magnetron
KR200152116Y1 (en) Magnetron
JPH11273554A (en) Electrode structure of cold cathode electron tube and method for activating electrode
JPH04215231A (en) Helical coil cathode for electronic tube
JP2693918B2 (en) Thermionic emission high current filament ion source
KR200161121Y1 (en) Emitter structure in magnetron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822