JP2003242898A - Magnetron - Google Patents

Magnetron

Info

Publication number
JP2003242898A
JP2003242898A JP2002041077A JP2002041077A JP2003242898A JP 2003242898 A JP2003242898 A JP 2003242898A JP 2002041077 A JP2002041077 A JP 2002041077A JP 2002041077 A JP2002041077 A JP 2002041077A JP 2003242898 A JP2003242898 A JP 2003242898A
Authority
JP
Japan
Prior art keywords
cathode
magnetron
electron emission
emission source
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002041077A
Other languages
Japanese (ja)
Inventor
Isamu Aokura
勇 青倉
Masayuki Aiga
正幸 相賀
Toshiyuki Tsukada
敏行 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002041077A priority Critical patent/JP2003242898A/en
Publication of JP2003242898A publication Critical patent/JP2003242898A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetron in which a cathode part need not be heated. <P>SOLUTION: A cathode substrate 5 is kept at 800 to 900°C, dilution gas of hydrocarbon such as acetylene and methane is reacted with a surface of the cathode substrate 5 by a hot CVD method or a plasma CVD method. An electron emission source with orientation-carbon nano-tubes 6 oriented in the direction perpendicular the surface of the cathode substrate 5 with nickel or iron present in the surface of the cathode substrate 5 grown is held by upper and lower end hats 4 to constitute a cathode part 7 of the magnetron. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子レンジなどの
高周波加熱装置やレーダなどのパルス発生装置に用いら
れるマグネトロンの陰極部の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a cathode part of a magnetron used in a high frequency heating device such as a microwave oven or a pulse generator such as a radar.

【0002】[0002]

【従来の技術】現在使われているマグネトロンは、電子
源として熱陰極が用いられている。熱陰極は、熱電子放
出により電子を供給するものである。熱電子放出は、物
質を1500〜2700K程度に加熱することで、伝導
帯自由電子が熱エネルギーを得て表面ポテンシャル障壁
を乗り超え空間に放出される機構である。
2. Description of the Related Art In the currently used magnetron, a hot cathode is used as an electron source. The hot cathode supplies electrons by thermionic emission. Thermionic emission is a mechanism in which by heating a substance to about 1500 to 2700K, conduction band free electrons obtain thermal energy and get over the surface potential barrier to be emitted to the space.

【0003】図5は、従来のマグネトロンの一実施形態
を示す軸方向断面図である。図において、複数枚の陽極
ベイン1の中央部位に熱陰極2が配設されている。熱陰
極2は、トリウム含有のタングステン線材3を略等間隔
に螺旋状に形成し、両端部をエンドハット4により保持
され形成されている。
FIG. 5 is an axial sectional view showing an embodiment of a conventional magnetron. In the figure, a hot cathode 2 is arranged in the central portion of a plurality of anode vanes 1. The hot cathode 2 is formed by spirally forming thorium-containing tungsten wire rods 3 at substantially equal intervals, and holding both end portions by end hats 4.

【0004】ところで、マグネトロンの電子源としては
熱陰極体が主流である。
By the way, a hot cathode body is mainly used as an electron source of a magnetron.

【0005】熱陰極体は、加熱方法に応じて傍熱型と直
熱型に大別される。傍熱型は熱陰極付近にヒータを配置
し間接的に加熱するもので、比較的高い電流密度が得ら
れるが、間接加熱であるため電子放出の立ち上がりが遅
く、価格が高い。直熱型は熱陰極自身に電流を流すこと
により加熱するもので、直熱型は電子放出の立ち上がり
は早いが、高い電流密度が得られない。
The hot cathode body is roughly classified into an indirectly heated type and a direct heated type according to the heating method. In the indirectly heated type, a heater is arranged near the hot cathode to indirectly heat, and a relatively high current density can be obtained, but since it is indirectly heated, the rise of electron emission is slow and the cost is high. The direct heating type heats by applying an electric current to the hot cathode itself, and the direct heating type has a fast rise of electron emission, but cannot obtain a high current density.

【0006】この問題を解決するためには、電界放出型
の陰極構体が考えられる。
In order to solve this problem, a field emission type cathode assembly can be considered.

【0007】電界放出は、物質の表面付近に高電界(1
09V/m程度)を加えることにより、表面ポテンシャ
ル障壁が下がり、そのために生じるトンネル現象により
伝導帯自由電子が放出する現象である。電界放出は、高
電界を必要とするので、一次電子を放出する一次電極は
電界集中の起こりやすい構造(針状など先端の曲率半径
が小さい構造)にしている。
Field emission is a high electric field (1
09 V / m), the surface potential barrier lowers, and the tunneling phenomenon that occurs causes the free electrons in the conduction band to be emitted. Since field emission requires a high electric field, the primary electrode that emits primary electrons has a structure in which electric field concentration is likely to occur (a needle-like structure having a small tip radius of curvature).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
マグネトロンでは、上記したように直熱型の熱陰極を用
いているため、高い電流密度を得ることができないばか
りでなく、針状など先端の曲率半径が小さい電界集中の
起こりやすい構造になっていなかった。さらに、マグネ
トロン自身の発熱による熱損失以外に、熱陰極自身も高
温で動作させるため、陰極周辺の部品には高価な高融点
金属を用いる必要があった。
However, in the conventional magnetron, since the direct heating type hot cathode is used as described above, not only a high current density cannot be obtained, but also the curvature of the tip such as a needle-like shape. The structure was not such that the electric field concentration was small and the radius was small. Further, in addition to heat loss due to heat generation of the magnetron itself, the hot cathode itself is also operated at a high temperature, so it is necessary to use expensive refractory metal for parts around the cathode.

【0009】本発明は、上記問題点を解決することを目
的としたマグネトロンを提供するものである。
The present invention provides a magnetron for solving the above problems.

【0010】[0010]

【課題を解決するための手段】本発明のマグネトロン
は、電子放出源の表面の少なくとも一部にカーボンナノ
チューブが形成された陰極部を備えたものである。
The magnetron of the present invention comprises a cathode portion having carbon nanotubes formed on at least a part of the surface of an electron emission source.

【0011】この構成により、カーボンナノチューブの
先端に電界集中が起こり、加熱することなく一次電子を
放出させることが可能となる。
With this configuration, electric field concentration occurs at the tip of the carbon nanotube, and it becomes possible to emit primary electrons without heating.

【0012】[0012]

【発明の実施の形態】以下、本発明のマグネトロンの一
実施の形態について図面を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the magnetron of the present invention will be described below with reference to the drawings.

【0013】図1は陰極表面にカーボンナノチューブを
形成した陰極部を備えたマグネトロンの要部構成を示し
た軸方向の断面図、図2はカーボンナノチューブを一次
電子放出源に用い、酸化物膜を二次電子放出源に用いた
冷陰極マグネトロンの軸方向断面図である。図3は粉体
カーボンナノチューブと炭酸化物スラリーを使用した陰
極表面の拡大断面図、図4はカーボンナノチューブとト
リウムタングステンフィラメントとを使用した陰極を備
えたマグネトロンの要部構成を示した軸方向の断面図で
ある。
FIG. 1 is a sectional view in the axial direction showing the structure of the main part of a magnetron having a cathode portion in which carbon nanotubes are formed on the cathode surface, and FIG. 2 uses carbon nanotubes as a primary electron emission source and an oxide film. FIG. 3 is an axial cross-sectional view of a cold cathode magnetron used as a secondary electron emission source. FIG. 3 is an enlarged cross-sectional view of a cathode surface using powdered carbon nanotubes and carbon oxide slurry, and FIG. 4 is an axial cross-sectional view showing a main part configuration of a magnetron including a cathode using carbon nanotubes and thorium tungsten filaments. It is a figure.

【0014】図1は陰極基板5を800〜900℃に保
ち、アセチレンやメタンなどの炭化水素系の希釈ガスを
熱CVD法やプラズマCVD法にて陰極基板5表面に反
応させることで、陰極基板5表面に存在するニッケルあ
るいは鉄などを核として陰極基板5表面と垂直に向きの
揃った配向性カーボンナノチューブ6を成長させた電子
放出源を上下のエンドハット4で挟持して陰極部7を構
成した第1の実施の形態のものである。
In FIG. 1, the cathode substrate 5 is kept at 800 to 900 ° C., and a hydrocarbon-based diluent gas such as acetylene or methane is reacted on the surface of the cathode substrate 5 by a thermal CVD method or a plasma CVD method. 5 A cathode part 7 is formed by sandwiching an electron emission source in which oriented carbon nanotubes 6 grown vertically with respect to the surface of a cathode substrate 5 with nickel or iron existing on the surface as a nucleus are sandwiched by upper and lower end hats 4. This is the first embodiment.

【0015】この陰極部の表面に強電界(107V/c
m)を加え、陰極表面のポテンシャル障壁を薄くするこ
とで、電子の波動性から生じるトンネル効果により、加
熱することなく電子を空間に放出することができる。
A strong electric field (107 V / c) is applied to the surface of the cathode portion.
By adding m) and thinning the potential barrier on the cathode surface, electrons can be emitted into the space without heating due to the tunnel effect caused by the wave nature of the electrons.

【0016】図2に示す第2の実施の形態であるマグネ
トロンの陰極部は、円筒状の陰極基板8の外周面表面に
炭酸バリウムを熱CVD法にて蒸着、後に800℃にて
加熱し酸化バリウムに分解し、酸化物膜9を形成した二
次電子放出源をカーボンナノチューブ6を生成した円筒
状の陰極基板10からなる一次電子放出源の軸方向両端
に配置したものである。
In the cathode part of the magnetron according to the second embodiment shown in FIG. 2, barium carbonate is vapor-deposited on the outer peripheral surface of the cylindrical cathode substrate 8 by the thermal CVD method, and then heated at 800 ° C. for oxidation. The secondary electron emission source decomposed into barium and having the oxide film 9 formed thereon is arranged at both axial ends of the primary electron emission source composed of the cylindrical cathode substrate 10 on which the carbon nanotubes 6 are formed.

【0017】分割陽極は既存のマグネトロン(10分
割、内径8mm)のものとして、上記の陰極部を持つマ
グネトロンの陽極と陰極間に電圧を6.0kV印加し、
軸方向に直流磁界11を0.35T生じさせた。陽陰極
間電圧のため生じる半径方向電界12によって、陰極の
配向性カーボンナノチューブ6にて電界放出電流放出現
象が生じ、電子が放出された。電子は軸方向の直流磁界
11によってサイクロトロン運動し酸化物膜9に再突入
し、二次電子放出により増倍され最大50mAの電流が
放出され、2.45GHzにて最大200Wの発振を得
られたことを確認した。
The divided anode is an existing magnetron (10 divisions, inner diameter 8 mm), and a voltage of 6.0 kV is applied between the anode and the cathode of the magnetron having the above-mentioned cathode portion,
A DC magnetic field 11 of 0.35 T was generated in the axial direction. The radial electric field 12 generated by the voltage between the positive and negative electrodes caused a field emission current emission phenomenon in the oriented carbon nanotubes 6 of the cathode, and emitted electrons. The electrons were cyclotron-moved by the axial DC magnetic field 11 and re-entered the oxide film 9. The electrons were multiplied by the secondary electron emission, the maximum current of 50 mA was emitted, and the maximum oscillation of 200 W was obtained at 2.45 GHz. It was confirmed.

【0018】図3に示す第3の実施の形態であるマグネ
トロンの陰極部は、陰極基板5の表面に粒径が数ミクロ
ン〜数十ミクロンの炭酸塩とバインダーとを混合したス
ラリーと粉体のカーボンナノチューブとを混合したもの
を塗布し、加熱して炭酸塩を酸化物13にし、カーボン
ナノチューブ6を一次電子放出の電子放出源に用い、陰
極表面の酸化物13を二次電子放出の電子放出源とした
ものである。この構成により、電子数をより増加させる
ことができる。
The cathode part of the magnetron according to the third embodiment shown in FIG. 3 is composed of a slurry and a powder obtained by mixing the surface of the cathode substrate 5 with a carbonate having a particle size of several microns to several tens of microns and a binder. A mixture of carbon nanotubes is applied and heated to form carbonate 13 as an oxide, carbon nanotubes 6 are used as an electron emission source for primary electron emission, and oxide 13 on the cathode surface is used for electron emission for secondary electron emission. It is the source. With this configuration, the number of electrons can be further increased.

【0019】図4に示す第4の実施の形態であるマグネ
トロンの陰極部は、陰極部を部分的にトリウムタングス
テンフィラメント14で、他の部分にカーボンナノチュ
ーブ6を形成して構成したものである。このような構成
により、マグネトロンの初期動作をカーボンナノチュー
ブ6から放射される電子にて行い、その後陰極部15の
温度が上昇するとトリウムタングステンフィラメント1
4からの熱電子放出によりマグネトロン動作時の電子を
供給することができる。
The cathode portion of the magnetron according to the fourth embodiment shown in FIG. 4 is configured such that the cathode portion is partially formed by the thorium tungsten filament 14 and the carbon nanotube 6 is formed at the other portion. With such a configuration, the initial operation of the magnetron is performed by the electrons emitted from the carbon nanotubes 6, and then the temperature of the cathode portion 15 rises, the thorium tungsten filament 1
The thermionic emission from 4 makes it possible to supply electrons during the operation of the magnetron.

【0020】[0020]

【発明の効果】本発明によれば、以上説明したように、
以下に記載されるような効果を奏する。
According to the present invention, as described above,
The following effects are achieved.

【0021】陰極部にカーボンナノチューブを用いるこ
とで、陰極部を加熱する必要が無いので、動作電源から
ヒータ用のトランスが省かれ、簡素化される。
By using the carbon nanotubes for the cathode part, it is not necessary to heat the cathode part, so that the transformer for the heater is omitted from the operating power source and the structure is simplified.

【0022】ヒータを加熱するための電源電流は数〜十
数Aが一般的であり、そのため太い配線が必要であった
が、ヒータ電流が不必要となったため陽陰極間を流れる
電流のみ通電すれば良いこととなり、細い導線を用いる
ことが可能となった。
The power supply current for heating the heater is generally several to several tens of amperes, which requires thick wiring. However, since the heater current is not necessary, only the current flowing between the positive and negative electrodes can be supplied. It was good, and it became possible to use a thin conductor.

【0023】従来の熱陰極と比較し陰極の動作温度が低
くなるので、陰極周辺の部品に高融点金属と比較し安い
金属(Ni、Fe、SUS304など)が用いられるよ
うになる。
Since the operating temperature of the cathode is lower than that of the conventional hot cathode, metals (Ni, Fe, SUS304, etc.) which are cheaper than refractory metals are used for parts around the cathode.

【0024】陰極部からの電界放出電子はエネルギーバ
ンドが狭い為、熱擾乱が小さいのでマグネトロン動作時
のノイズが少なくなる。
Since the field emission electrons from the cathode portion have a narrow energy band, the thermal agitation is small and the noise during the operation of the magnetron is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による陰極表面にカーボンナノチューブ
を形成した陰極部を備えたマグネトロンの要部構成を示
した軸方向の断面図
FIG. 1 is an axial cross-sectional view showing a main structure of a magnetron including a cathode part in which carbon nanotubes are formed on a cathode surface according to the present invention.

【図2】本発明によるカーボンナノチューブと酸化物膜
を使用した陰極部を備えたマグネトロンの要部構成を示
した軸方向の断面図
FIG. 2 is an axial cross-sectional view showing the structure of a main part of a magnetron including a cathode part using a carbon nanotube and an oxide film according to the present invention.

【図3】本発明による粉体カーボンナノチューブと炭酸
化物スラリーを使用した陰極表面の拡大断面図
FIG. 3 is an enlarged cross-sectional view of a cathode surface using powdered carbon nanotubes and a carbonate slurry according to the present invention.

【図4】本発明によるカーボンナノチューブとトリウム
タングステンフィラメントとを使用した陰極部を備えた
マグネトロンの要部構成を示した軸方向の断面図
FIG. 4 is an axial cross-sectional view showing the configuration of a main part of a magnetron including a cathode part using a carbon nanotube and a thorium tungsten filament according to the present invention.

【図5】従来例の熱陰極マグネトロンの要部構成を示し
た軸方向の断面図
FIG. 5 is an axial cross-sectional view showing the configuration of the main part of a conventional hot cathode magnetron.

【符号の説明】[Explanation of symbols]

5,10 陰極基板 6 カーボンナノチューブ 7,15 陰極部 9 酸化物膜 11 直流磁界 12 半径方向電界 13 酸化物 14 トリウムタングステンフィラメント 5,10 cathode substrate 6 carbon nanotubes 7,15 Cathode part 9 Oxide film 11 DC magnetic field 12 Radial electric field 13 oxides 14 Thorium tungsten filament

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚田 敏行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5C029 CC01 CC07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiyuki Tsukada             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5C029 CC01 CC07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電子放出源の表面の少なくとも一部にカ
ーボンナノチューブが形成された陰極部を備えたことを
特徴とするマグネトロン。
1. A magnetron comprising a cathode part having carbon nanotubes formed on at least a part of a surface of an electron emission source.
【請求項2】 電子放出源が円柱状に形成されているこ
とを特徴とする請求項1記載のマグネトロン。
2. The magnetron according to claim 1, wherein the electron emission source is formed in a cylindrical shape.
【請求項3】 電子放出源が多角柱状に形成されている
ことを特徴とする請求項1記載のマグネトロン。
3. The magnetron according to claim 1, wherein the electron emission source is formed in a polygonal column shape.
【請求項4】 電子放出源の表面を部分的に二次電子利
得の大きな酸化物膜が形成された陰極部を備えたことを
特徴とする請求項1乃至3に記載のマグネトロン。
4. The magnetron according to claim 1, wherein the surface of the electron emission source is provided with a cathode part in which an oxide film having a large secondary electron gain is partially formed.
【請求項5】 粒径数〜数十ミクロンの炭酸塩とバイン
ダーを混合したスラリーと粉体のカーボンナノチューブ
を混合したものを陰極表面に塗布し、加熱して炭酸塩を
酸化物にし、混合してあるカーボンナノチューブを電子
放出源としたことを特徴とする請求項1乃至4に記載の
マグネトロン。
5. A mixture of a slurry in which a carbonate having a particle size of several to several tens of microns is mixed with a binder and a powder of carbon nanotubes is applied to the surface of the cathode, heated to convert the carbonate into an oxide, and mixed. The magnetron according to any one of claims 1 to 4, wherein the present carbon nanotube is used as an electron emission source.
【請求項6】 電子放出源を部分的にトリウムタングス
テンフィラメントで構成したことを特徴とする請求項1
乃至5に記載のマグネトロン。
6. The electron emission source is partially composed of a thorium tungsten filament.
The magnetron according to any one of claims 1 to 5.
JP2002041077A 2002-02-19 2002-02-19 Magnetron Pending JP2003242898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041077A JP2003242898A (en) 2002-02-19 2002-02-19 Magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041077A JP2003242898A (en) 2002-02-19 2002-02-19 Magnetron

Publications (1)

Publication Number Publication Date
JP2003242898A true JP2003242898A (en) 2003-08-29

Family

ID=27781587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041077A Pending JP2003242898A (en) 2002-02-19 2002-02-19 Magnetron

Country Status (1)

Country Link
JP (1) JP2003242898A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505627A2 (en) * 2003-08-07 2005-02-09 Matsushita Electric Industrial Co., Ltd. Magnetron
JP2006040573A (en) * 2004-07-22 2006-02-09 Matsushita Electric Ind Co Ltd Magnetron
JP2006252883A (en) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd Magnetron
US7596032B2 (en) 2005-06-28 2009-09-29 Sapnsion Llc Semiconductor device and control method therefor
WO2011018958A1 (en) 2009-08-11 2011-02-17 東レ株式会社 Paste for electron emission source, and electron emission source
US8699283B2 (en) 2005-08-08 2014-04-15 Spansion Llc Semiconductor device and control method of the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505627A2 (en) * 2003-08-07 2005-02-09 Matsushita Electric Industrial Co., Ltd. Magnetron
EP1505627A3 (en) * 2003-08-07 2008-03-05 Matsushita Electric Industrial Co., Ltd. Magnetron
US7474042B2 (en) 2003-08-07 2009-01-06 Matsushita Electric Industrial Co., Ltd. Magnetron with graphite nano-fibers on cathode
JP2006040573A (en) * 2004-07-22 2006-02-09 Matsushita Electric Ind Co Ltd Magnetron
JP2006252883A (en) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd Magnetron
US7978523B2 (en) 2005-06-28 2011-07-12 Spansion Llc Semiconductor device and control method of the same
US7969787B2 (en) 2005-06-28 2011-06-28 Spansion Llc Semiconductor device and control method of the same
US7596032B2 (en) 2005-06-28 2009-09-29 Sapnsion Llc Semiconductor device and control method therefor
US8045388B2 (en) 2005-06-28 2011-10-25 Spansion Llc Semiconductor device and control method of the same
US8130584B2 (en) 2005-06-28 2012-03-06 Spansion Llc Semiconductor device and control method of the same
US8264901B2 (en) 2005-06-28 2012-09-11 Spansion Llc Semiconductor device and control method of the same
US8351268B2 (en) 2005-06-28 2013-01-08 Spansion Llc Semiconductor device and control method of the same
US8705303B2 (en) 2005-06-28 2014-04-22 Spansion Llc Semiconductor device and control method of the same
US8995215B2 (en) 2005-06-28 2015-03-31 Spansion Llc Semiconductor device and control method of the same
US8699283B2 (en) 2005-08-08 2014-04-15 Spansion Llc Semiconductor device and control method of the same
WO2011018958A1 (en) 2009-08-11 2011-02-17 東レ株式会社 Paste for electron emission source, and electron emission source
KR20120060200A (en) 2009-08-11 2012-06-11 도레이 카부시키가이샤 Paste for electron emission source, and electron emission source
US9159519B2 (en) 2009-08-11 2015-10-13 Toray Industries, Inc. Paste for electron emission source, and electron emission source

Similar Documents

Publication Publication Date Title
EP1505627B1 (en) Magnetron
US8498379B2 (en) Electron emitter and method of making same
US9734980B2 (en) Graphene serving as cathode of X-ray tube and X-ray tube thereof
JPS59146129A (en) Method of producing thermion cathode
JPH06509698A (en) Collector for thermionic energy conversion device
JP2002025425A (en) Electron emitter, its manufacturing method and electron beam device
US20080267354A1 (en) High-Dose X-Ray Tube
Glyavin et al. The concept of an electron-optical system with field emitter for a spectroscopic gyrotron
JP2003242898A (en) Magnetron
US8729787B2 (en) Field emission devices and methods for making the same
Hu et al. A novel cold cathode design for S-band continuous-wave magnetron
JP2741235B2 (en) Indirectly heated cathode of deuterium discharge tube
KR101956540B1 (en) X­ray source comprising cnt yarn and x­ray emitting apparatus using the same
JP2002022899A (en) Electron beam irradiator
Lim et al. X-ray tube based on carbon nanotube field emitter for low dose mini C-arm fluoroscopy
US1971812A (en) X-ray device
US2803772A (en) Apparatus for producing a hollow electron beam
JP2004241352A (en) Cathode for magnetron, and magnetron using the same
CN112798650B (en) Device and method for testing electron bombardment resistance of cathode
KR101961759B1 (en) X­ray source comprising bead structures and cnt yarn and x­ray emitting apparatus using the same
JPS63187527A (en) Electron tube cathode structure body
JPS59228343A (en) Magnetron
JP2005166565A (en) Negative electrode, x-ray generating device, and x-ray generation method
Kuznetsov Cathodes for electron guns
JP2004047249A (en) Cathode for magnetron and method for manufacturing the same, and magnetron using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Effective date: 20060621

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061205

Free format text: JAPANESE INTERMEDIATE CODE: A02