JP2004239687A - Pyrolizing furnace - Google Patents

Pyrolizing furnace Download PDF

Info

Publication number
JP2004239687A
JP2004239687A JP2003027371A JP2003027371A JP2004239687A JP 2004239687 A JP2004239687 A JP 2004239687A JP 2003027371 A JP2003027371 A JP 2003027371A JP 2003027371 A JP2003027371 A JP 2003027371A JP 2004239687 A JP2004239687 A JP 2004239687A
Authority
JP
Japan
Prior art keywords
pyrolysis
furnace
porous partition
pyrolysis furnace
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003027371A
Other languages
Japanese (ja)
Inventor
Junji Torii
淳史 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003027371A priority Critical patent/JP2004239687A/en
Publication of JP2004239687A publication Critical patent/JP2004239687A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire pyrolysis gas having a small dust content, to control properly a pyrolytic reaction, and to miniaturize the whole device, concerning a pyrolizing furnace. <P>SOLUTION: This furnace comprises a tube furnace 2 having an inlet 21 of a processing object a such as an organic waste on one end and outlets 22b, 22c of the pyrolysis gas b and a pyrolysis residue c on the other end. The tube furnace 2 is provided with a tubular porous partition 6 constituting a furnace wall as a boundary for partitioning a pyrolytic reaction area 3 for pyrolizing the processing object a at the temperature of 300-600°C in a poor oxygen atmosphere from a pyrolysis gas discharge passage 4. On the outer circumferential side of the tube furnace 2, an induction coil 51 as an induction heating means for heating the processing object up to a pyrolysis temperature is provided. A moving means comprising a rotary screw 7 is disposed inside the porous partition 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機質廃棄物を熱分解する処理システムの改良に関する。
【0002】
【従来の技術】
従来、廃棄物中の有機物を熱分解するシステムとして、図3に例示するような廃棄物熱処理装置が知られている。(特許文献1を参照のこと)
【0003】
【特許文献1】
特開昭64−49816号公報:特許請求の範囲、図1、実施例(第5頁右下欄〜第6頁左下欄)の記載。
【0004】
この装置では、有機物を含む廃棄物aは、酸素遮断下、300〜600℃で運転される熱分解ドラム反応炉11において熱分解され、発生した熱分解ガスbは搬出装置12上部から取り出され、高温燃焼室13に送られ酸素の存在下、1200℃以上で完全燃焼するよう設定されている。熱分解ドラム反応炉11における不揮発性残留物は搬出装置12下部から取り出され、可燃分と不燃分とに分離回収される。
【0005】
前記高温燃焼室13において発生した高温の排ガスは、蒸気発生装置14、除塵装置16、排ガス浄化装置17、煙突18を経て大気に放出される。そして、蒸気発生装置14で得られる高圧蒸気はタービン発電機15の動力源として供給される。かくして、前記有機物を含む廃棄物aに有する潜在的熱エネルギーは電気エネルギーに変換される。
【0006】
このような熱分解ドラム反応炉の実機においては、被処理物が回転するドラム内を転動しつつ熱分解を受けるので、装置の小型化が困難であるうえ、段階的に起こる熱分解反応に対応して温度など雰囲気を制御することが困難であった。また、発生する熱分解ガスには多量のダストが含まれるため排ガス系の除塵装置などの負荷が大きくなるという解決すべき問題もあった。
【0007】
放射性廃棄物を処理する場合、このような熱分解法によって大幅な減容化が期待できるのであるが、一方、放射性核種を可能な限り小さな領域に閉じ込めておくのが望ましいという要求に対して、この熱分解ドラム反応炉では、熱分解ガスが核種を随伴して取り出されるため、対応が困難であった。
特に、樹脂廃棄物などの、人が接近できないほど放射能濃度の高い放射性廃棄物を処理する場合、装置が大型であることは遠隔保守設備に多大の費用がかかるほか、トラブルからの復旧にも著しい困難を伴いやすい。
【0008】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであり、ダストの含有量の少ない熱分解ガスが得られ、熱分解反応を適正に制御でき、装置全体の小型化を可能とする熱分解炉を提供する。特に、放射能濃度の高い樹脂廃棄物など放射性廃棄物を、核種の拡散を抑制しながら熱分解できるコンパクトな熱分解炉を提供する。
【0009】
【課題を解決するための手段】
上記の問題は、被処理物を熱分解して熱分解ガスと熱分解残留物とを生成する熱分解炉において、熱分解炉本体の壁面の一部または全部を多孔質隔壁で構成し、この多孔質隔壁通じて前記熱分解ガスを取り出すようにしたことを特徴とする本発明の熱分解炉によって、解決することができる。この場合、好ましくは、その外側に熱分解ガス排出流路を設置する。
【0010】
また、本発明では、前記多孔質隔壁が、セラミック多孔体、燒結金属多孔体、金属繊維織物、金属ネットおよび金属ネット積層体の1種または2種以上の組み合わせから形成されたものが好ましく、さらに前記熱分解炉本体内に被処理物の移動手段を設けたものが好ましい。さらに、前記熱分解炉本体内の温度、酸素濃度、窒素濃度、水蒸気濃度などの雰囲気を前記移動手段の移動経路に沿って可変なものとするのがよい。
【0011】
また、本発明は、前記移動手段を回転スクリュウとすることで好ましく具体化される。この熱分解炉本体内の温度、酸素濃度、窒素濃度、水蒸気濃度などの雰囲気を調整するための流体を回転スクリュウのシャフト内に設けた供給路を通じて前記熱分解炉本体内に供給するのが好ましく、この目的の雰囲気調整用流体としては、窒素ガス、酸素ガス、空気、水蒸気、水の1種または2種以上の組み合わせであって、温度調整用流体がそれら流体を加熱したものが適用され得る。
【0012】
また、本発明では、熱分解炉の炉本体外部に配設した誘導加熱手段によって炉本体または炉本体と熱分解ガス排出流路を加熱するのが好ましく、この誘導加熱手段と炉本体との間に、その誘導加熱手段によって加熱される加熱媒体を配置し、その加熱媒体からの輻射、熱伝導によって炉本体または熱分解ガス排出流路を加熱するようにするのが特に好ましい。
なお。前記した移動手段の移動方向が水平方向に対して30°までの角度で下向きに設定するのも好ましい。
【0013】
【発明の実施の形態】
次に、本発明の熱分解炉に係る実施形態について、図1およびその部分拡大図である図2を参照しながら説明する。
この実施形態の熱分解炉は、一端を有機質廃棄物などの被処理物aの入口21、他端を熱分解ガスbと熱分解残留物cの出口22b、22cとし、熱分解ガス排出流路を外筒とした管状炉2からなり、この管状炉2の内部は、被処理物aを300〜600℃の温度貧酸素雰囲気で熱分解する熱分解反応域3と熱分解ガス排出流路4を区画する境界として熱分解炉本体の壁面を構成する管状の多孔質隔壁6が設けられている。
【0014】
そして、この管状炉2の外周側には、被処理物を前記熱分解温度に加熱するための誘導加熱手段としての誘導コイル51が設けられている。図1では、管状炉2と誘導コイル51との間には、その誘導コイル51によって加熱される加熱媒体52を環状に配置し、その加熱媒体52からの輻射、熱伝導によって炉体を加熱するようにしている。
【0015】
この加熱媒体52の好ましい材質は、ステンレス鋼、炭素鋼などの電気誘導材料であるが、管状炉本体2の外周構成材として電気誘導材料を使用した場合には、この加熱媒体52の配置を省略可能である。なお、図1で加熱媒体をわざわざ設置した理由は次のようなものである。即ち、熱分解炉本体は熱分解ガスによる腐食によって交換が必要となる場合があるので、交換範囲を極力小さくすることで、交換作業の負荷を軽減するとともに、発生する二次廃棄物を低減できるためである。
【0016】
次に、管状炉2の内部構造を詳述する。
前記多孔質隔壁6は、熱分解反応域3で発生した熱分解ガスを熱分解残留物から分離、抽出するため、熱分解残留物に直接に接触して用いられるもので、前記熱分解温度に耐える通気性耐熱材が用いられる。その好ましい材料は、セラミック多孔体、燒結金属多孔体、金属繊維織物、金属ネットおよび金属ネット積層体などであり、これらを単独で、または2種以上を組み合わせて用いるのが好適である。
【0017】
前記多孔質隔壁6の形状は管状の他、耐熱金属板と組み合わせてスリット状、斑点状、らせん状に構成することもできる。発生する熱分解ガスが多い場合には管状が、熱分解炉に強度が要求される場合はスリット状や斑点状が好ましい。らせん状は施工が面倒な反面、多量の熱分解ガスに対応できると同時に熱分解炉の強度を上げられる特長がある。
【0018】
前記多孔質隔壁6の設置方向は、管状炉内に設置された被処理物の移動手段7に沿って長く設けることが望ましい。これは、管状炉内の温度と雰囲気を段階的に設定した際、各条件に応じて発生する色々な性状の分解ガスを発生部分付近で速やか排出できるからであり、これによって系を非平衡状態に保つことで分解を促進することができるからである。
【0019】
更に、そうすることによって、分解ガスが発生部分とは別の領域に流れていって当該領域で本来期待される熱分解反応に好ましくない影響を与えることを防止するのにも役立つ。従って、被処理物の移動手段7に沿った方向に対する多孔質隔壁の延べ長さは、熱分解炉本体の全長に対し可能な限り大きい方が望ましく、好ましくは50%以上、理想的には70%以上が良い。
【0020】
本発明ではこのように熱分解炉本体の壁面を多孔質隔壁6としたところに重要な点があり、熱分解で発生するガスを多孔質隔壁6を通して炉外に排出するので、熱分解炉自体がコンパクトに構成されるうえ、熱分解ガス中のダストが多孔質隔壁6でろ過されるため、その後の排ガス処理系統の負荷が小さくなる、例えば、後段に設けられる除塵装置が小型化でき、保守負荷も低減可能となるなどの格別の利点が得られるのである。
【0021】
さらに、放射性廃棄物である廃樹脂を処理するために本発明の熱分解炉を応用すると、放射性固体物質が熱分解ガスに伴われて排出されることが抑制され、容積に小さな熱分解残留物中に大部分が残留することになるので、放射性廃棄物の処理には特に有利となる。また、本発明では、誘導加熱を採用しているので、通常の乾留炉に較べて保守管理が容易であり、放射性廃棄物の熱分解炉として、作業者のアクセスを極力抑制できるから、特に有利である。
【0022】
さらに本発明の好ましい実施形態について説明すると、多孔質隔壁6の内部に形成される熱分解反応域3には、回転スクリュウ7からなる移動手段を配設しているのである。そして、この回転スクリュウ7によって、入口21から送入された被処理物aを、熱分解反応域3中を順次出口に向かって移動させながら熱分解し、発生した熱分解ガスを、周囲の多孔質隔壁6を通じて、熱分解ガス排出流路4へと抽出し熱分解ガス出口22bから取り出す。一方、熱分解残留物を回転スクリュウ7によって熱分解残留物出口22cへ移動し、排出するのである。
【0023】
本発明では、好ましい移動手段として回転スクリュウが採用されるが、これに限定されることなく、例えば、押し込みプッシャー方式、バケットコンベヤ方式などの移動手段も用いられ得る。
本発明では、このように移動装置を組合せることにより、熱分解反応の均一性を高めることができ、さらに通常、炉外に設けられる移動装置が不要となってスペースなどが節約できる利点がある。
【0024】
また、図では、この熱分解炉は略水平に設置されているが、前記移動手段の移動方向が水平方向に対して30°までの角度で下向きになるよう、熱分解炉の設置角度を設定され得る。このように下向きにすることにより、分解残渣の排出性がよくなり、スクリューへの固着の可能性が減少するのでトラブルが低減しメンテナンスが容易になる利点が得られる。
【0025】
次に、本発明の前記熱分解反応域3においては、最も好ましい熱分解反応が進行するよう、その雰囲気、例えば温度、酸素濃度、窒素濃度、水蒸気濃度など反応条件を前記移動手段による移動経路に沿って適宜に可変なものに設定できるよう構成されている。
【0026】
具体的には、前記熱分解反応域3の温度、酸素濃度、窒素濃度、水蒸気濃度などの雰囲気を調整するための流体を熱分解反応域3に供給するため、回転スクリュウ7のシャフト内にそれら流体の供給路71を設け、かつ供給路71には適宜な間隔に複数の放出口72を設けてあり、一方の送給口73から所要の流体を送り込んで熱分解反応域3に分散して供給可能としている。
【0027】
かくして、前記放出口72の配置個数や配置場所を調整することによって得られる雰囲気を移動経路に沿って好ましく変化させることができるのである。
なお、この目的に用いられる雰囲気調整用流体としては、窒素ガス、酸素ガス、空気、水蒸気、水の1種または必要に応じて2種以上の組み合わせた流体であり、温度調整用流体とする場合には、それら流体を適宜な温度に加熱して用いればよい。
【0028】
このように、本発明では管状熱分解炉とスクリュー式移動装置を組み合わせたので、分解炉の設置スペースをさらに節約できる。また、スクリューのシャフト内に窒素ガス、酸素ガスなど雰囲気調整用流体の供給路を設けたので、炉内の雰囲気を制御するとともに、熱分解ガスを迅速に炉外に取り出すこともでき、別途配管装置が不要となる利点も得られる。
【0029】
さらに、本発明では、被処理物は熱分解反応域中において徐々に進行しながら、温度など適切な雰囲気中に誘導されるので、好ましい分解反応が生じるようコントロールできる。このため、分解ガスが爆発的に発生するようなトラブルも解消でき、処理の内容に応じて変化させていた複数の熱分解運転モードをこの一つの分解炉で行うことができるようになる、など多くのメリットが得られるのである。
【0030】
【発明の効果】
本発明の熱分解炉は、以上説明したように構成されているので、ダストの含有量の少ない熱分解ガスが得られ、熱分解反応を適正に制御でき、装置全体の小型化を実現できる。特に、放射能濃度の高い樹脂廃棄物など放射性廃棄物の処理装置として、核種の拡散を抑制しながら熱分解できるから、安全でメンテナンスの容易な熱分解炉を提供できるという優れた効果がある。よって本発明は、従来の問題点を解消した熱分解炉として、技術的価値はきわめて大なるものがある。
【図面の簡単な説明】
【図1】本発明の実施形態を説明するための要部断面構成図。
【図2】図1の部分拡大図。
【図3】従来の熱分解システムのフローを示す要部ブロック図。
【符号の説明】
2 炉本体、21 入口、22b、22c 出口、3 熱分解反応域、4 熱分解ガス排出流路、51 誘導コイル、52 加熱媒体、6 多孔質隔壁、a 被処理物、b 熱分解ガス、c 熱分解残留物。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a treatment system for thermally decomposing organic waste.
[0002]
[Prior art]
Conventionally, as a system for thermally decomposing organic substances in waste, a waste heat treatment apparatus as illustrated in FIG. 3 is known. (See Patent Document 1)
[0003]
[Patent Document 1]
JP-A-64-49816: Claims, description of FIG. 1 and description of examples (page 5, lower right column to page 6, lower left column).
[0004]
In this apparatus, a waste a containing organic matter is thermally decomposed in a pyrolysis drum reactor 11 operated at 300 to 600 ° C. under an oxygen cutoff, and a generated pyrolysis gas b is taken out from an upper part of an unloading device 12. It is sent to the high temperature combustion chamber 13 and is set to completely burn at 1200 ° C. or more in the presence of oxygen. The non-volatile residue in the pyrolysis drum reactor 11 is taken out from the lower part of the carry-out device 12, and is separated and recovered into a combustible component and an incombustible component.
[0005]
The high-temperature exhaust gas generated in the high-temperature combustion chamber 13 is released to the atmosphere via a steam generator 14, a dust remover 16, an exhaust gas purifier 17, and a chimney 18. Then, the high-pressure steam obtained by the steam generator 14 is supplied as a power source of the turbine generator 15. Thus, the potential thermal energy in the waste a containing organic matter is converted into electric energy.
[0006]
In an actual pyrolysis drum reactor, the object to be processed undergoes pyrolysis while rolling in the rotating drum, so it is difficult to reduce the size of the apparatus, and the thermal decomposition reaction that occurs in stages is difficult. Correspondingly, it was difficult to control the atmosphere such as temperature. In addition, since the generated pyrolysis gas contains a large amount of dust, there is also a problem to be solved in that the load on an exhaust gas dust removing device or the like increases.
[0007]
When treating radioactive waste, such a pyrolysis method can be expected to greatly reduce the volume, but on the other hand, in response to the demand that it is desirable to keep the radionuclide in the smallest possible area, In this pyrolysis drum reactor, it was difficult to cope with the problem because the pyrolysis gas was taken out along with the nuclides.
In particular, when processing radioactive waste such as resin waste, which has a high radioactivity concentration that is inaccessible to humans, the large size of the equipment requires a great deal of cost for remote maintenance equipment, and it is also necessary to recover from trouble. It is likely to be accompanied by significant difficulties.
[0008]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and a pyrolysis gas having a low dust content can be obtained, a pyrolysis reaction can be appropriately controlled, and the entire apparatus can be downsized. Provide a pyrolysis furnace. In particular, the present invention provides a compact pyrolysis furnace capable of pyrolyzing radioactive waste such as resin waste having a high radioactivity concentration while suppressing the diffusion of nuclides.
[0009]
[Means for Solving the Problems]
The above problem is that, in a pyrolysis furnace that pyrolyzes an object to be processed to generate a pyrolysis gas and a pyrolysis residue, part or all of the wall surface of the pyrolysis furnace body is formed of porous partition walls. The problem can be solved by the pyrolysis furnace of the present invention, wherein the pyrolysis gas is taken out through the porous partition. In this case, preferably, a pyrolysis gas discharge flow path is provided outside the pyrolysis gas discharge flow path.
[0010]
In the present invention, it is preferable that the porous partition wall is formed of one or a combination of two or more of a ceramic porous body, a sintered metal porous body, a metal fiber fabric, a metal net and a metal net laminate. It is preferable that a means for moving an object to be processed is provided in the pyrolysis furnace main body. Further, it is preferable that the atmosphere such as the temperature, the oxygen concentration, the nitrogen concentration, and the water vapor concentration in the pyrolysis furnace main body be variable along the moving path of the moving means.
[0011]
Further, the present invention is preferably embodied in that the moving means is a rotary screw. It is preferable to supply a fluid for adjusting the atmosphere such as temperature, oxygen concentration, nitrogen concentration, and water vapor concentration in the pyrolysis furnace main body into the pyrolysis furnace main body through a supply path provided in a shaft of the rotary screw. As the atmosphere adjusting fluid for this purpose, one or a combination of two or more of nitrogen gas, oxygen gas, air, steam, and water, and a fluid in which the temperature adjusting fluid heats the fluid may be applied. .
[0012]
Further, in the present invention, it is preferable to heat the furnace body or the furnace body and the pyrolysis gas discharge channel by induction heating means provided outside the furnace body of the pyrolysis furnace. It is particularly preferable to arrange a heating medium heated by the induction heating means, and to heat the furnace body or the pyrolysis gas discharge channel by radiation and heat conduction from the heating medium.
In addition. It is also preferable that the moving direction of the moving means is set downward at an angle of up to 30 ° with respect to the horizontal direction.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the pyrolysis furnace of the present invention will be described with reference to FIG. 1 and FIG. 2 which is a partially enlarged view of FIG.
The pyrolysis furnace of this embodiment has one end serving as an inlet 21 for an object a to be treated such as organic waste and the other end serving as outlets 22b and 22c for a pyrolysis gas b and a pyrolysis residue c. Is formed in a tubular furnace 2, and inside the tubular furnace 2, a pyrolysis reaction zone 3 and a pyrolysis gas discharge channel 4 for thermally decomposing the treatment target a in an oxygen-deficient atmosphere at a temperature of 300 to 600 ° C. A tubular porous partition 6 constituting the wall surface of the pyrolysis furnace main body is provided as a boundary for partitioning.
[0014]
On the outer peripheral side of the tubular furnace 2, an induction coil 51 is provided as induction heating means for heating the object to be processed to the pyrolysis temperature. In FIG. 1, a heating medium 52 heated by the induction coil 51 is annularly arranged between the tubular furnace 2 and the induction coil 51, and the furnace body is heated by radiation and heat conduction from the heating medium 52. Like that.
[0015]
A preferable material of the heating medium 52 is an electric induction material such as stainless steel or carbon steel. However, when an electric induction material is used as the outer peripheral component of the tubular furnace main body 2, the arrangement of the heating medium 52 is omitted. It is possible. In addition, the reason why the heating medium is purposely installed in FIG. 1 is as follows. That is, since the pyrolysis furnace body may need to be replaced due to corrosion by the pyrolysis gas, by reducing the replacement range as much as possible, the load of the replacement work can be reduced and the generated secondary waste can be reduced. That's why.
[0016]
Next, the internal structure of the tubular furnace 2 will be described in detail.
The porous partition wall 6 is used in direct contact with the pyrolysis residue to separate and extract the pyrolysis gas generated in the pyrolysis reaction zone 3 from the pyrolysis residue. A durable heat-resistant material is used. Preferred materials include a porous ceramic body, a sintered metal porous body, a metal fiber woven fabric, a metal net and a metal net laminate, and these are preferably used alone or in combination of two or more.
[0017]
The shape of the porous partition wall 6 may be a slit, a spot, or a spiral in combination with a heat-resistant metal plate, in addition to a tubular shape. When a large amount of pyrolysis gas is generated, a tubular shape is preferable, and when a pyrolysis furnace requires strength, a slit shape or a spot shape is preferable. The spiral shape is difficult to construct, but has the advantage of being able to cope with large amounts of pyrolysis gas and of increasing the strength of the pyrolysis furnace.
[0018]
It is desirable that the installation direction of the porous partition wall 6 be long along the moving means 7 of the object to be processed installed in the tubular furnace. This is because when the temperature and atmosphere in the tubular furnace are set stepwise, various types of decomposed gas generated according to each condition can be quickly discharged in the vicinity of the generated part, thereby bringing the system into a non-equilibrium state. This is because the decomposition can be promoted by keeping the temperature at.
[0019]
Further, by doing so, it is also useful to prevent the decomposition gas from flowing to a region other than the generation portion and adversely affecting the pyrolysis reaction originally expected in the region. Therefore, it is desirable that the total length of the porous partition wall in the direction along the moving means 7 for the object to be treated is as large as possible with respect to the entire length of the pyrolysis furnace main body, preferably 50% or more, and ideally 70% or more. % Or more is good.
[0020]
In the present invention, there is an important point in that the wall surface of the pyrolysis furnace main body is formed as the porous partition wall 6, and the gas generated by the pyrolysis is discharged outside the furnace through the porous partition wall 6. Is compact and the dust in the pyrolysis gas is filtered by the porous partition walls 6, so that the load on the subsequent exhaust gas treatment system is reduced. For example, the dust removal device provided at the subsequent stage can be downsized, and maintenance can be performed. Special advantages are obtained, such as the load can be reduced.
[0021]
Furthermore, when the pyrolysis furnace of the present invention is applied to treat waste resin, which is radioactive waste, radioactive solid substances are suppressed from being discharged along with pyrolysis gas, and the pyrolysis residue is small in volume. This is particularly advantageous for the treatment of radioactive waste, since most will remain in it. Further, in the present invention, since induction heating is employed, maintenance and management are easier than in a normal carbonization furnace, and as a pyrolysis furnace for radioactive waste, the access of workers can be suppressed as much as possible. It is.
[0022]
To explain a preferred embodiment of the present invention, a moving means including a rotary screw 7 is provided in the pyrolysis reaction zone 3 formed inside the porous partition wall 6. Then, the rotary screw 7 thermally decomposes the processing object a sent from the inlet 21 while sequentially moving the object a through the pyrolysis reaction zone 3 toward the outlet. Extracted into the pyrolysis gas discharge channel 4 through the porous partition 6 and taken out from the pyrolysis gas outlet 22b. On the other hand, the pyrolysis residue is moved to the pyrolysis residue outlet 22c by the rotary screw 7 and discharged.
[0023]
In the present invention, a rotating screw is adopted as a preferable moving means, but the present invention is not limited to this, and a moving means such as a push-in pusher method or a bucket conveyor method may be used.
In the present invention, by combining the moving devices in this manner, the uniformity of the thermal decomposition reaction can be improved, and further, there is an advantage that the moving device provided outside the furnace is not required and the space and the like can be saved. .
[0024]
Further, in the figure, the pyrolysis furnace is installed substantially horizontally, but the installation angle of the pyrolysis furnace is set so that the moving direction of the moving means is downward at an angle of up to 30 ° with respect to the horizontal direction. Can be done. By facing downward as described above, the dischargeability of the decomposition residue is improved, and the possibility of sticking to the screw is reduced, so that there is an advantage that trouble is reduced and maintenance is facilitated.
[0025]
Next, in the pyrolysis reaction zone 3 of the present invention, the reaction conditions such as temperature, oxygen concentration, nitrogen concentration, water vapor concentration, etc. are set on the moving route by the moving means so that the most preferable pyrolysis reaction proceeds. It is configured so that it can be set to be appropriately variable along the line.
[0026]
Specifically, a fluid for adjusting the atmosphere such as the temperature, the oxygen concentration, the nitrogen concentration, and the water vapor concentration in the pyrolysis reaction zone 3 is supplied to the pyrolysis reaction zone 3 so that the fluid is provided in the shaft of the rotary screw 7. A fluid supply path 71 is provided, and a plurality of discharge ports 72 are provided in the supply path 71 at appropriate intervals. A required fluid is fed from one of the supply ports 73 and dispersed in the thermal decomposition reaction zone 3. It can be supplied.
[0027]
Thus, the atmosphere obtained by adjusting the number and locations of the outlets 72 can be preferably changed along the movement path.
The atmosphere adjusting fluid used for this purpose is one of nitrogen gas, oxygen gas, air, water vapor, water, or a combination of two or more as necessary. The fluid may be heated to an appropriate temperature before use.
[0028]
As described above, in the present invention, the tubular pyrolysis furnace and the screw-type moving device are combined, so that the installation space for the decomposition furnace can be further reduced. In addition, since a supply path for atmosphere adjusting fluid such as nitrogen gas and oxygen gas is provided in the screw shaft, the atmosphere inside the furnace can be controlled and the pyrolysis gas can be quickly taken out of the furnace. Another advantage is that no device is required.
[0029]
Further, in the present invention, the object to be treated is guided into an appropriate atmosphere such as temperature while gradually progressing in the thermal decomposition reaction zone, so that it is possible to control the preferable decomposition reaction to occur. For this reason, troubles such as explosive generation of decomposition gas can be resolved, and multiple pyrolysis operation modes changed according to the content of processing can be performed in this single decomposition furnace. There are many benefits.
[0030]
【The invention's effect】
Since the pyrolysis furnace of the present invention is configured as described above, a pyrolysis gas having a low dust content can be obtained, the pyrolysis reaction can be appropriately controlled, and the size of the entire apparatus can be reduced. In particular, as an apparatus for treating radioactive waste such as resin waste having a high radioactivity concentration, thermal decomposition can be performed while suppressing the diffusion of nuclides. Therefore, there is an excellent effect that a pyrolysis furnace that is safe and easy to maintain can be provided. Therefore, the present invention has extremely high technical value as a pyrolysis furnace which has solved the conventional problems.
[Brief description of the drawings]
FIG. 1 is a sectional configuration view of a main part for describing an embodiment of the present invention.
FIG. 2 is a partially enlarged view of FIG.
FIG. 3 is a main block diagram showing a flow of a conventional thermal decomposition system.
[Explanation of symbols]
2 Furnace body, 21 inlet, 22b, 22c outlet, 3 pyrolysis reaction zone, 4 pyrolysis gas discharge channel, 51 induction coil, 52 heating medium, 6 porous partition, a workpiece, b pyrolysis gas, c Pyrolysis residue.

Claims (11)

被処理物を熱分解して熱分解ガスと熱分解残留物とを生成する熱分解炉において、熱分解炉本体の壁面の一部または全部を多孔質隔壁で構成したことを特徴とする熱分解炉。A pyrolysis furnace for pyrolyzing an object to be processed to generate a pyrolysis gas and a pyrolysis residue, wherein a part or all of a wall of a pyrolysis furnace body is constituted by a porous partition wall. Furnace. 前記多孔質隔壁の外側に熱分解ガス排出流路を設置し、前記多孔質隔壁を通じて熱分解ガスを取り出すようにしたことを特徴とする、請求項1に記載の熱分解炉。The pyrolysis furnace according to claim 1, wherein a pyrolysis gas discharge channel is provided outside the porous partition, and the pyrolysis gas is taken out through the porous partition. 前記多孔質隔壁が、セラミック多孔体、燒結金属多孔体、金属繊維織物、金属ネットおよび金属ネット積層体の1種または2種以上の組み合わせから形成されたものである請求項1または2に記載の熱分解炉。3. The porous partition according to claim 1, wherein the porous partition wall is formed of one or a combination of a ceramic porous body, a sintered metal porous body, a metal fiber fabric, a metal net, and a metal net laminate. Pyrolysis furnace. 前記熱分解炉本体内に被処理物の移動手段を設けた請求項1〜3のいずれかに記載の熱分解炉。The thermal decomposition furnace according to any one of claims 1 to 3, wherein a moving means of the object to be processed is provided in the thermal decomposition furnace main body. 前記熱分解炉本体内の温度、酸素濃度、窒素濃度、水蒸気濃度などの雰囲気を前記移動手段による移動経路に沿って可変なものとした請求項4に記載の熱分解炉。The pyrolysis furnace according to claim 4, wherein an atmosphere such as a temperature, an oxygen concentration, a nitrogen concentration, and a water vapor concentration in the pyrolysis furnace main body is variable along a moving path by the moving means. 前記移動手段を回転スクリュウとした請求項4または5に記載の熱分解炉。The pyrolysis furnace according to claim 4 or 5, wherein the moving means is a rotary screw. 前記熱分解炉本体内の温度、酸素濃度、窒素濃度、水蒸気濃度などの雰囲気を調整するための流体を回転スクリュウのシャフト内に設けた供給路を通じて供給するものとした請求項6に記載の熱分解炉。The heat according to claim 6, wherein a fluid for adjusting an atmosphere such as a temperature, an oxygen concentration, a nitrogen concentration, and a water vapor concentration in the pyrolysis furnace main body is supplied through a supply path provided in a shaft of the rotary screw. Decomposition furnace. 前記雰囲気調整用流体が、窒素ガス、酸素ガス、空気、水蒸気、水の1種または2種以上の組み合わせであって、温度調整用流体がそれら流体を加熱したものである請求項7に記載の熱分解炉。8. The atmosphere adjusting fluid according to claim 7, wherein the atmosphere adjusting fluid is one or a combination of two or more of nitrogen gas, oxygen gas, air, water vapor, and water, and the temperature adjusting fluid is obtained by heating the fluid. Pyrolysis furnace. 熱分解炉本体外部に配設した誘導加熱手段によって炉本体または炉本体と熱分解ガス排出流路を加熱するようにした請求項1〜8にいずれかに記載の熱分解炉。The pyrolysis furnace according to any one of claims 1 to 8, wherein the furnace main body or the furnace main body and the pyrolysis gas discharge channel are heated by induction heating means provided outside the pyrolysis furnace main body. 前記誘導加熱手段と炉本体または熱分解ガス排出流路との間に、その誘導加熱手段によって加熱される加熱媒体を配置し、その加熱媒体からの輻射、熱伝導によって炉本体または炉本体と熱分解ガス排出流路を加熱するようにした請求項9に記載の熱分解炉。A heating medium to be heated by the induction heating means is arranged between the induction heating means and the furnace body or the pyrolysis gas discharge flow path, and the furnace body or the furnace body is heated by radiation and heat conduction from the heating medium. The thermal cracking furnace according to claim 9, wherein the cracked gas discharge channel is heated. 前記移動手段の移動方向が水平方向に対して30°までの角度で下向きに設定されている請求項4〜10にいずれかに記載の熱分解炉。The pyrolysis furnace according to any one of claims 4 to 10, wherein a moving direction of the moving means is set downward at an angle of up to 30 ° with respect to a horizontal direction.
JP2003027371A 2003-02-04 2003-02-04 Pyrolizing furnace Pending JP2004239687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027371A JP2004239687A (en) 2003-02-04 2003-02-04 Pyrolizing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027371A JP2004239687A (en) 2003-02-04 2003-02-04 Pyrolizing furnace

Publications (1)

Publication Number Publication Date
JP2004239687A true JP2004239687A (en) 2004-08-26

Family

ID=32955131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027371A Pending JP2004239687A (en) 2003-02-04 2003-02-04 Pyrolizing furnace

Country Status (1)

Country Link
JP (1) JP2004239687A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015815A2 (en) * 2010-07-27 2012-02-02 Heritage Environmental Services, Llc Induction heated screw
JP2014132245A (en) * 2013-01-07 2014-07-17 Jdc Corp Volume reduction treatment apparatus and heat treatment device
US8945351B2 (en) 2010-07-27 2015-02-03 Heritage Environmental Services Llc Induction heated gasifier
KR20190071944A (en) * 2017-12-15 2019-06-25 재단법인 포항산업과학연구원 Method for preparing direct reduced iron and appratus for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015815A2 (en) * 2010-07-27 2012-02-02 Heritage Environmental Services, Llc Induction heated screw
WO2012015815A3 (en) * 2010-07-27 2012-05-31 Heritage Environmental Services, Llc Induction heated screw
US8945350B2 (en) 2010-07-27 2015-02-03 Heritage Environmental Services Llc Induction heated screw
US8945351B2 (en) 2010-07-27 2015-02-03 Heritage Environmental Services Llc Induction heated gasifier
JP2014132245A (en) * 2013-01-07 2014-07-17 Jdc Corp Volume reduction treatment apparatus and heat treatment device
KR20190071944A (en) * 2017-12-15 2019-06-25 재단법인 포항산업과학연구원 Method for preparing direct reduced iron and appratus for the same
KR102070163B1 (en) 2017-12-15 2020-01-28 재단법인 포항산업과학연구원 Method for preparing direct reduced iron and appratus for the same

Similar Documents

Publication Publication Date Title
RU2573872C1 (en) Barrel-type device for decomposition of coal material
JPH0451597B2 (en)
US4909162A (en) Installation for low-temperature carbonization of waste and impure materials
CN109351140A (en) A kind of hot plasma emission-control equipment and application
JPH11223476A (en) Method and system for carbonizing organic matter
KR101200478B1 (en) Carbonize apparatus of dried sludge
JP2008174654A (en) Method and facility for gasifying organic matter
JP2004239687A (en) Pyrolizing furnace
JP6083558B2 (en) Fuel gas generator
CN109052889A (en) Indirect heating packaged type industrial sludge continuous pyrolysis method and carbonizing plant
JP2014125508A5 (en)
JP2004307535A (en) Apparatus for treating heavy oil with supercritical water and power generation system equipped with apparatus for treating heavy oil
JP2005118611A (en) Waste gasifying method and system therefor
JP5129487B2 (en) Pyrolysis equipment
KR101416679B1 (en) Carbonization device using high frequency for food waste and industrial waste
CN209423302U (en) A kind of hot plasma emission-control equipment
JP4020486B2 (en) Externally heated rotary kiln
JP7165234B2 (en) Waste treatment furnace and treatment equipment having it
KR101300203B1 (en) Device of radioactive waste carbonization
JP2006035218A (en) Soil treating apparatus
KR20090131909A (en) Boiler device using desertedgas of a high temperature
JPS5852385A (en) Dry distillation of oil shale and equipment therefor
JPH09189410A (en) Heat insulation device for thermal decomposition gas piping
KR100515893B1 (en) Continuous type high-temperature incinerator
CN106152801A (en) A kind of baking flue gas tar controlling device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071207