JP2004239300A - Vacuum heat insulating material, method for manufacturing the same, note type personal computer using the vacuum heat insulating material, and printing device - Google Patents

Vacuum heat insulating material, method for manufacturing the same, note type personal computer using the vacuum heat insulating material, and printing device Download PDF

Info

Publication number
JP2004239300A
JP2004239300A JP2003026751A JP2003026751A JP2004239300A JP 2004239300 A JP2004239300 A JP 2004239300A JP 2003026751 A JP2003026751 A JP 2003026751A JP 2003026751 A JP2003026751 A JP 2003026751A JP 2004239300 A JP2004239300 A JP 2004239300A
Authority
JP
Japan
Prior art keywords
core
heat insulating
insulating material
vacuum heat
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003026751A
Other languages
Japanese (ja)
Other versions
JP4419400B2 (en
Inventor
Hiroto Nakama
啓人 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2003026751A priority Critical patent/JP4419400B2/en
Publication of JP2004239300A publication Critical patent/JP2004239300A/en
Application granted granted Critical
Publication of JP4419400B2 publication Critical patent/JP4419400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material manufacturing method which is capable of efficiently and collectively manufacturing a large amount of vacuum heat insulating materials and suitable for mass production. <P>SOLUTION: A plurality of cores 2 separated from each other and disposed on a substantially same plane are covered by a laminate film 5 of gas barrier property, and the inside of the laminate film 5 is evacuated. A multi-core vacuum heat insulating material 18 having a heat-bonded portion 17 on the laminate film 5 located around each core is manufactured so that each of the plurality of cores 2 is located in an independent space. Next, the heat-bonded portion 17 of the laminate film 5 is cut so as to remain the heat-bonded portion of the predetermined width between the core and the heat-bonded portion. Since a desired vacuum heat insulating material is cut off from the multi-core vacuum heat insulating material 18, a large number of vacuum heat insulating materials or plurality of kinds of vacuum heat insulating materials of different size and shape can be manufactured in one evacuation of a vacuum packaging machine, and the vacuum packaging machine can be efficiently operated. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、真空断熱材とその製造方法、その真空断熱材を用いたノート型パーソナルコンピューター、印刷装置に関するものである。
【0002】
【従来の技術】
従来の真空断熱材としては、図63に示すように、複数の長方形の芯材201をガスバリア性の外被材202で覆い、外被材202の内部を減圧して成り、複数の芯材201は一方向に互いに所定間隔離れて略同一面上に配置されており、複数の芯材201のそれぞれが独立した空間内に位置するように隣接する芯材201の間に位置する外被材202が熱溶着されており、隣接する芯材201の間に位置する熱溶着部203を折曲線として折り曲げ可能な真空断熱材204があった(例えば、特許文献1参照)。
【0003】
この真空断熱材204は、図64に示すように、冷蔵庫などの断熱箱体の外箱205の内側に設けられるものである。外箱205は金属板206をコ字状に折り曲げたものである。
【0004】
この真空断熱材204は、長方形の外被材202の3辺を予め熱溶着することにより開口部を有する袋を作製し、その内部に芯材201を充填して、袋内部を減圧後、袋の開口部を熱溶着することにより作製される。
【0005】
この真空断熱材204をコ字状に折り曲げる前の状態の金属板206に、金属板206の折曲線に真空断熱材204の折曲線が対応するように接着固定されており、外箱205の内面となる面に真空断熱材204が接着固定された金属板206をコ字状に折り曲げることにより、図63に示す、内面に真空断熱材204を備えた外箱205が造られる。
【0006】
【特許文献1】
特開平7−98090号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の真空断熱材204は、外箱205の3つの内面に貼り付ける真空断熱材を一体化したものであり、一度に外箱205の3つの内面分の真空断熱材を製造できるメリットはあるものの、最適な適用箇所が限定され、汎用性がなかった。
【0008】
本発明は、真空断熱材をまとめて多量に効率よく製造できる量産に適した真空断熱材の製造方法と、その方法により製造された真空断熱材と、その真空断熱材を用いたノート型パーソナルコンピューター、印刷装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の請求項1に記載の真空断熱材の製造方法の発明は、略同一平面上に互いに離間して配置された複数の芯材を、ガスバリア性の外被材で覆い、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材を切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するものであり、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。
【0010】
請求項2に記載の真空断熱材の製造方法の発明は、請求項1に記載の発明の多芯真空断熱材製造工程において、前記外被材の内部が減圧状態を維持したまま密閉されるように減圧環境下で前記複数の芯材を覆う外被材の外周部を熱溶着した後、常圧環境下でそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着するものであり、請求項1に記載の発明の作用に加えて、常圧環境下で芯材の周囲に位置する外被材を熱溶着するので、減圧環境下で芯材の周囲に位置する外被材を熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機の使用時間が短くなり真空包装機が効率的に使用できる。また、複数の芯材を覆う外被材の外周部に熱溶着部を形成した状態で仕掛品を保管でき、都合の良い時間に芯材の周囲に位置する外被材を熱溶着する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0011】
請求項3に記載の真空断熱材の製造方法の発明は、請求項1に記載の発明の多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業を、減圧環境下で行うものであり、請求項1に記載の発明の作用に加えて、芯材の周囲に位置する外被材を熱溶着する際に、熱溶着部を設ける順番を任意に決定できる。すなわち、後回しにすると先の熱溶着作業の影響で皺ができていて熱溶着作業が困難になる熱溶着箇所を先に熱溶着することにより皺の発生を防ぎ、熱溶着部からのリークのない真空断熱材を得ることができる。また、複数の芯材を覆う外被材の外周部を熱溶着せずに、外被材における芯材の周囲に位置する部分のみを熱溶着することもできる。
【0012】
請求項4に記載の真空断熱材の製造方法の発明は、請求項1から3のいずれか一項に記載の発明の多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業に、押し当て面に複数の芯材の形状および配置パターンに対応した凹部を有し一度の前記外被材への押し当て及び加熱によりそれぞれの前記芯材の周囲に位置する前記外被材の熱溶着すべき部分を熱溶着できる熱溶着体を使用するものであり、請求項1から3のいずれか一項に記載の発明の作用に加えて、この熱溶着体による一度の外被材への押し当て及び加熱により、それぞれの芯材の周囲に位置する外被材の熱溶着すべき部分を熱溶着でき、熱溶着作業が簡単に短時間に行える。
【0013】
請求項5に記載の真空断熱材の製造方法の発明は、請求項1から3のいずれか一項に記載の発明の多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、1回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設けるものであり、請求項1から3のいずれか一項に記載の発明の作用に加えて、この被熱溶着物の形状に追従しやすい熱溶着体を用いることにより、芯材と芯材の距離が十分長くなくても熱溶着体は形状に追従しやすいため、芯材と芯材の間の熱溶着層をしっかりとらえ確実に熱溶着部を作製することができる。また、1度に外被材に対し芯材の周囲に熱溶着部を形成していくため効率的に真空断熱材を作製することができる。また、芯材の位置が少しずれてしまった場合や芯材の形状が少し変わった場合にも熱溶着体の形状を変える必要なく適用できる。
【0014】
請求項6に記載の真空断熱材の製造方法の発明は、請求項1から3のいずれか一項に記載の発明の多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、複数回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設けるものであり、請求項1から3のいずれか一項に記載の発明の作用に加えて、この被熱溶着物の形状に追従しやすい熱溶着体を用いることにより、芯材と芯材の距離が十分長くなくても熱溶着体は形状に追従しやすいため、芯材と芯材の間の熱溶着層をしっかりとらえ確実に熱溶着部を作製することができる。また、この熱溶着体を複数回外被材に押し当てることにより、外被材を細かく分けて熱溶着部を形成していくことにより芯材の周囲に確実に熱溶着部を形成し、熱溶着部からのリークを低減することができる。また、芯材の位置が少しずれてしまった場合や芯材の形状が少し変わった場合にも熱溶着体の形状を変える必要なく適用できる。
【0015】
請求項7に記載の真空断熱材の製造方法の発明は、ガスバリア性で開口部を有する袋状の外被材の中に、複数の芯材を略同一平面上に互いに離間して配置し、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材を切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するものであり、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。また、外被材に開口部を有する袋状のものを使用しているため、袋状の外被材の中に、複数の芯材を配置したものを真空包装機に設置することにより、真空包装機へのセッティングが簡単になると共に、袋状外被材の開口部の1ケ所(1辺)を熱溶着すれば、外被材による複数の芯材の密閉ができるため、外被材内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材を密閉する場合よりも確実に行える。
【0016】
請求項8に記載の真空断熱材の製造方法の発明は、請求項7に記載の発明の多芯真空断熱材製造工程において、前記外被材の内部が減圧状態を維持したまま密閉されるように減圧環境下で前記複数の芯材を覆う外被材の開口部を熱溶着した後、常圧環境下でそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着するものであり、請求項7に記載の発明の作用に加えて、常圧環境下で芯材の周囲に位置する外被材を熱溶着するので、減圧環境下で芯材の周囲に位置する外被材を熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機の使用時間が短くなり真空包装機が効率的に使用できる。また、複数の芯材を覆う袋状外被材の開口部に熱溶着部を形成した状態で仕掛品を保管でき、都合の良い時間に芯材の周囲に位置する外被材を熱溶着する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0017】
請求項9に記載の真空断熱材の製造方法の発明は、請求項7に記載の発明の多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業を、減圧環境下で行うものであり、請求項7に記載の発明の作用に加えて、芯材の周囲に位置する外被材を熱溶着する際に、熱溶着部を設ける順番を任意に決定できる。すなわち、後回しにすると先の熱溶着作業の影響で皺ができていて熱溶着作業が困難になる熱溶着箇所を先に熱溶着することにより皺の発生を防ぎ、熱溶着部からのリークのない真空断熱材を得ることができる。また、複数の芯材を覆う袋状外被材の開口部を熱溶着せずに、外被材における芯材の周囲に位置する部分のみを熱溶着することもできる。
【0018】
請求項10に記載の真空断熱材の製造方法の発明は、請求項7から9のいずれか一項に記載の発明の多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業に、押し当て面に複数の芯材の形状および配置パターンに対応した凹部を有し一度の前記外被材への押し当て及び加熱によりそれぞれの前記芯材の周囲に位置する前記外被材の熱溶着すべき部分を熱溶着できる熱溶着体を使用するものであり、請求項7から9のいずれか一項に記載の発明の作用に加えて、この熱溶着体による一度の外被材への押し当て及び加熱により、それぞれの芯材の周囲に位置する外被材の熱溶着すべき部分を熱溶着でき、熱溶着作業が簡単に短時間に行える。
【0019】
請求項11に記載の真空断熱材の製造方法の発明は、請求項7から9のいずれか一項に記載の発明の多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、1回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設けるものであり、請求項7から9のいずれか一項に記載の発明の作用に加えて、この被熱溶着物の形状に追従しやすい熱溶着体を用いることにより、芯材と芯材の距離が十分長くなくても熱溶着体は形状に追従しやすいため、芯材と芯材の間の熱溶着層をしっかりとらえ確実に熱溶着部を作製することができる。また、1度に外被材に対し芯材の周囲に熱溶着部を形成していくため効率的に真空断熱材を作製することができる。また、芯材の位置が少しずれてしまった場合や芯材の形状が少し変わった場合にも熱溶着体の形状を変える必要なく適用できる。
【0020】
請求項12に記載の真空断熱材の製造方法の発明は、請求項7から9のいずれか一項に記載の発明の多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、複数回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設けるものであり、請求項7から9のいずれか一項に記載の発明の作用に加えて、この被熱溶着物の形状に追従しやすい熱溶着体を用いることにより、芯材と芯材の距離が十分長くなくても熱溶着体は形状に追従しやすいため、芯材と芯材の間の熱溶着層をしっかりとらえ確実に熱溶着部を作製することができる。また、この熱溶着体を複数回外被材に押し当てることにより、外被材を細かく分けて熱溶着部を形成していくことにより芯材の周囲に確実に熱溶着部を形成し、熱溶着部からのリークを低減することができる。また、芯材の位置が少しずれてしまった場合や芯材の形状が少し変わった場合にも熱溶着体の形状を変える必要なく適用できる。
【0021】
請求項13に記載の真空断熱材の製造方法の発明は、請求項1から12のいずれか一項に記載の発明において、少なくとも一方の面に前記外被材の最内層の熱可塑樹脂材料に接着できる接着部を有する芯材を用いたものであり、請求項1から12のいずれか一項に記載の発明の作用に加えて、芯材を外被材の内面に接着できるため芯材の位置を固定でき、他の芯材の位置決め配置時や真空包装機へのセッティング時や減圧時に芯材に位置ずれが生じることを防止できる。
【0022】
請求項14に記載の真空断熱材の製造方法の発明は、略同一平面上に互いに離間して配置される複数の芯材と、熱可塑樹脂材料からなり前記複数の芯材の形状および配置パターンに対応した複数の孔を有するシート部材とを、前記シート部材の前記複数の孔のそれぞれに前記複数の芯材を一つずつ配設した状態で、ガスバリア性で最内層が前記シート部材と同じ熱可塑樹脂材料からなる外被材で覆い、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材と前記シート部材とを熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材と前記シート部材とを切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するものであり、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。また、外被材の最内層と同じ熱可塑樹脂材料からなり複数の芯材の形状および配置パターンに対応した複数の孔のそれぞれに複数の芯材を一つずつ配設したシート部材を外被材で覆うので、芯材の周囲に位置する外被材とシート部材とを熱溶着するまで、それぞれの芯材の位置関係や間隔を適正に保つことができ、他の芯材の位置決め配置時や真空包装機へのセッティング時や減圧時に芯材に位置ずれが生じることを抑制でき、外被材に対する複数の芯材の位置ずれが生じたとしても、その複数の芯材の位置ずれをシート部材を使って一度に修正することできる。
【0023】
請求項15に記載の真空断熱材の製造方法の発明は、ガスバリア性で開口部を有する袋状の外被材の中に、略同一平面上に互いに離間して配置される複数の芯材と、前記外被材の最内層と同じ熱可塑樹脂材料からなり前記複数の芯材の形状および配置パターンに対応した複数の孔を有するシート部材とを、前記シート部材の前記複数の孔のそれぞれに前記複数の芯材を一つずつ配設した状態で挿入し、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材と前記シート部材とを熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材と前記シート部材とを切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するものであり、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。また、外被材の最内層と同じ熱可塑樹脂材料からなり複数の芯材の形状および配置パターンに対応した複数の孔のそれぞれに複数の芯材を一つずつ配設したシート部材を、開口部を有する袋状の外被材の中に挿入するので、芯材の周囲に位置する外被材とシート部材とを熱溶着するまで、それぞれの芯材の位置関係や間隔を適正に保つことができ、他の芯材の位置決め配置時や真空包装機へのセッティング時や減圧時に芯材に位置ずれが生じることを抑制でき、外被材に対する複数の芯材の位置ずれが生じたとしても、その複数の芯材の位置ずれをシート部材を使って一度に修正することできる。また、外被材に開口部を有する袋状のものを使用しているため、袋状の外被材の中に、複数の孔に複数の芯材を一つずつ配設したシート部材を挿入したものを真空包装機に設置することにより、真空包装機へのセッティングが簡単になると共に、袋状外被材の開口部の1ケ所(1辺)を熱溶着すれば、外被材による複数の芯材の密閉ができるため、外被材内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材を密閉する場合よりも確実に行える。また、シート部材は、袋状外被材の袋形成時の熱溶着部よりも内側に存在するため、シート部材と袋状の外被材の袋形成時の熱溶着部が重なることがなく、重なることによるシート部材を透過しての外被材内部への空気の侵入の虞がない。
【0024】
請求項16に記載の真空断熱材の製造方法の発明は、略同一平面上に互いに離間して配置される複数の芯材と、熱可塑樹脂材料からなり前記複数の芯材の形状および配置パターンに対応した複数の凹部を上面に有するシート部材とを、前記シート部材の前記複数の凹部のそれぞれに前記複数の芯材を一つずつ配設した状態で、ガスバリア性で最内層が前記シート部材と同じ熱可塑樹脂材料からなる外被材で覆い、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材と前記シート部材とを熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材と前記シート部材とを切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するものであり、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。また、外被材の最内層と同じ熱可塑樹脂材料からなり複数の芯材の形状および配置パターンに対応した複数の凹部のそれぞれに複数の芯材を一つずつ配設したシート部材を外被材で覆うので、芯材の周囲に位置する外被材とシート部材とを熱溶着するまで、それぞれの芯材の位置関係や間隔を適正に保つことができ、他の芯材の位置決め配置時や真空包装機へのセッティング時や減圧時に芯材に位置ずれが生じることを抑制でき、外被材に対する複数の芯材の位置ずれが生じたとしても、その複数の芯材の位置ずれをシート部材を使って一度に修正することできる。また、芯材を設置するシート部材の凹部には底があるため、凹部に芯材を設置したシート部材の移動時に、芯材がシート部材より落ちることがなく位置が固定されているため、外被材へのシート部材のセッティングが簡単になる効果が得られる。
【0025】
請求項17に記載の真空断熱材の製造方法の発明は、請求項14から16のいずれか一項に記載の発明における前記シート部材はその表裏両面の表面層が前記外被材の最内層の熱可塑樹脂材料と同じ材料であり、前記表裏両面の表面層の間に前記熱可塑樹脂材料より融点が高い熱可塑樹脂材料の層を設けた多層樹脂フィルムであるものであり、請求項14から16のいずれか一項に記載の発明の作用に加えて、シート部材は、表裏両面の表面層が外被材の最内層の熱可塑樹脂材料と同じ材料であり、表裏両面の表面層の間に前記熱可塑樹脂材料より融点が高い熱可塑樹脂材料の層を設けた多層樹脂フィルムであるので、芯材の厚みが厚くなった場合でも、シート部材の中間層の熱可塑樹脂材料の厚みを増やすことにより、外被材の変形を小さくし熱溶着部の作製を確実に行うことができる。
【0026】
請求項18に記載の真空断熱材の製造方法の発明は、請求項1から17のいずれか一項に記載の発明における前記芯材は、外周部では外周端部に向かうほど厚みが薄くなる形状であるものであり、請求項1から17のいずれか一項記載の発明の作用に加えて、芯材の厚みが厚くなった場合でも、外被材の変形を比較的小さくできるので、芯材の周囲に形成する熱溶着部の作製を容易、確実に行うことができ、熱溶着部からの外気の進入による真空断熱材の内圧の上昇とそれによる真空断熱材の断熱性能の低下を抑えることができる。
【0027】
請求項19に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記外被材の最内層が無延伸ポリプロピレンフィルムであるものであり、無延伸ポリプロピレンフィルムは他の熱溶着材料である高密度ポリエチレン、低密度ポリエチレンに比較してその融点が高いため、高密度ポリエチレン、低密度ポリエチレンを外被材の最内層の熱溶着材料に使用した真空断熱材よりもより高温で使用できる。
【0028】
請求項20に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記外被材の最外層がフッ素系フィルムであるものであり、外被材の最外層にフッ素系フィルムを適用することにより、その難燃性、連続最高使用温度が優れるため、難燃性が必要とされまたその使用温度が高い用途に使用できる。
【0029】
請求項21に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記芯材に、乾式シリカとカーボンブラックが含まれているものであり、乾式シリカの低圧力依存性及びカーボンブラック添加による熱伝導率の低減効果により真空断熱材内に空気が流入してもその低圧力依存性効果及び熱伝導率の低減効果により真空断熱材の熱伝導率を長期間小さい値に抑えることができる。
【0030】
請求項22に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記芯材が、リサイクル可能な繊維材料または粉体材料からなるものであり、この芯材は芯材を切り取った端材を再生しこれを再生品としての使用が可能となるため資源の有効活用が可能となる。
【0031】
請求項23に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、切り離された外被材の切断面を難燃性テープで覆ったものであり、真空断熱材の外被材の切断面(端面)には燃えやすい熱溶着材料が露出するが、外被材の切断面(端面)を難燃性テープで覆うことにより、真空断熱材の難燃性レベルの向上を図ることができ、この真空断熱材を高温環境下で使用しやすくなる。
【0032】
請求項24に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、切り離された外被材の切断面に難燃性のシーラーを塗布したものであり、真空断熱材の外被材の切断面(端面)には燃えやすい熱溶着材料が露出するが、外被材の切断面(端面)に難燃性のシーラー(下塗り剤の一種)を塗布することにより、真空断熱材の難燃性レベルの向上を図ることができ、この真空断熱材を高温環境下で使用しやすくなる。また、難燃性シーラーはフレキシブルであり、真空断熱材がどのような形状であっても、その外被材の切断面(端面)に塗布し燃えやすい熱溶着材料を覆い隠すことができる。
【0033】
請求項25に記載のノート型パーソナルコンピューターの発明は、断熱部に、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造された真空断熱材あるいは請求項19から24のいずれか一項記載の真空断熱材を設けたものであり、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造された真空断熱材あるいは請求項19から24のいずれか一項記載の真空断熱材を、主な発熱源であるCPUが配置されているプリント基板の下のノート型パーソナルコンピューターの底面(の断熱部)またはCPUが配置されているプリント基板の上のノート型パーソナルコンピューターのキーボードの下面(の断熱部)に設置することにより、CPUの発熱による不快感の防止を行うことができる。
【0034】
請求項26に記載の印刷装置の発明は、断熱部に、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造された真空断熱材あるいは請求項19から24のいずれか一項記載の真空断熱材を設けたものであり、従来は加熱ユニットの熱がトナーに伝わるのを防ぐために、ファンなどの放熱部品を利用して排熱していたが、真空断熱材を加熱ユニットの断熱材に使用すると、通常のグラスウール等の断熱材に比較し断熱効果が大きいためファンなどの放熱部品を使用しなくて済み、印刷装置の省エネルギーを図ることができる。また、真空断熱材は通常のグラスウール等の断熱材に比較し同一断熱効果ではその厚みを約1/10程度に薄くできるため、印刷装置の中の断熱材のスペースを小さくできることにより印刷装置の小型化、あるいは内部に空間ができることによる同一寸法での高機能が図れるメリットがある。
【0035】
【発明の実施の形態】
以下、本発明の真空断熱材とその製造方法及び真空断熱材を用いたノート型パーソナルコンピューターと印刷装置の実施の形態について説明する。
【0036】
(実施の形態1)
図1は本発明の実施の形態1の真空断熱材の製造方法により作製される真空断熱材の縦断面図、図2は同実施の形態で使用する真空包装機の使用時の概略縦断面図、図3は同真空包装機の使用時の概略横断面図、図4は同真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図、図5は同実施の形態で使用する熱溶着装置の熱溶着前の状態の概略側面図、図6は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図、図7は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図である。
【0037】
本実施の形態の真空断熱材の製造方法により製造される真空断熱材1は、湿式シリカとカーボンブラックを含有し固形化された芯材2をガスバリア性のラミネートフィルムからなる外被材3で覆ったものであり、外被材3の内部は減圧され、芯材2の外周には芯材2を覆う外被材3のラミネートフィルムの最内層同士を熱溶着した熱溶着部4がある。
【0038】
この真空断熱材1の製造方法を次に説明する。
【0039】
まず、所定の長方形にカットされたガスバリア性のラミネートフィルム(外被材)5を、熱溶着材料層側が上側(上面)になるようにして真空包装機6の供試台7の上に載せる。この時、ラミネートフィルム5の四辺近傍部分(外周部分)が、供試台7の外周に配置された熱溶着バー8と対向するようにする。
【0040】
次に、そのラミネートフィルム5の上面に、複数の芯材2を互いに所定間隔離して配置し、さらに、その複数の芯材2の上に別のラミネートフィルム5を、熱溶着材料層側が下側(芯材2側)になるように且つ、上下2枚のラミネートフィルム5の各端面同士ができるだけ一致するように被せる。
【0041】
次に、真空包装機6の蓋9閉じて真空包装機6を起動すると、真空包装機6の内部空間と連通するように接続された真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気される。そして、真空包装機6の内部を0.1Torr以下に減圧した後、上下一対の熱溶着バー8で2枚のラミネートフィルム5の4辺近傍部分(外周部分)を挟んで、2枚のラミネートフィルム5の四辺近傍部分(外周部分)の内面同士を熱溶着することにより、4辺近傍に4辺に沿った4つの熱溶着部12を形成する。これにより多芯真空断熱材13が作製される。
【0042】
この多芯真空断熱材13を真空包装機6より取り出し、この多芯真空断熱材13を熱溶着体14を有する熱溶着装置15の作業台16の上に設置する。熱溶着体14はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台6の上に置かれた供試品(多芯真空断熱材13)に対し熱溶着を行う。
【0043】
この熱溶着装置15により、常圧環境下で多芯真空断熱材13の熱溶着部12で囲まれ、2枚のラミネートフィルム5の間に芯材2がなく、ラミネートフィルム5の最内層同士が接触している部分のすべてを熱溶着体14により熱溶着することにより、各芯材2が熱溶着部17に囲まれ、複数の芯材2のそれそれが独立した空間内に位置する多芯真空断熱材18が形成される。
【0044】
その後、多芯真空断熱材18よりそれぞれの芯材2を芯材2の周りに熱溶着部17を含んだ状態で切り離すことにより、芯材2を核とした複数の真空断熱材1を得ることができる。
【0045】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びそれらの記形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0046】
また、常圧環境下で芯材2の周囲にラミネートフィルム5の熱溶着部12を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部17を設ける作業を行うことができる。更に、ラミネートフィルム5の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネートフィルム5の熱溶着部17を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0047】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0048】
また、ラミネートフィルム5としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0049】
本実施の形態の真空断熱材の製造方法は、略同一平面上に互いに離間して配置された複数の芯材2を、ガスバリア性の外被材5で覆い、外被材5の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材5を熱溶着した多芯真空断熱材18を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材18における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部17が残るように外被材5を切断して、多芯真空断熱材18から所望の真空断熱材1を切り離す真空断熱材切り離し工程とを有するものである。
【0050】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材18を製造し、その後、多芯真空断熱材18から所望の真空断熱材1を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材1もしくは大きさ形の異なる複数種の真空断熱材1を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材5を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材1の芯材2外周のヒレ状の外被材5周縁部(熱溶着部4)の幅を小さくできる。
【0051】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材5の内部が減圧状態を維持したまま密閉されるように減圧環境下で複数の芯材2を覆う外被材5の外周部を熱溶着して熱溶着部12を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成するものである。
【0052】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成するので、減圧環境下で芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う外被材5の外周部に熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0053】
(実施の形態2)
以下、本発明の実施の形態2の真空断熱材の製造方法について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
【0054】
図8は本発明の実施の形態2の真空断熱材の製造方法で使用する真空包装機の使用時の概略縦断面、図9は同真空包装機により作製された多芯真空断熱材の平面図である。
【0055】
長方形にカットされたガスバリア性のラミネートフィルム(外被材)5が、熱溶着材料側を上側にしたものが真空包装機19の供試台20に設置されている。この供試台20にはコンベア(図示せず)が設置されており、ラミネートフィルム5を図中右から左へ移動させることができる。
【0056】
ラミネートフィルム5の上に芯材2が配置され、その上にラミネートフィルム5がその熱溶着材料側が芯材2側を向くようにかつ各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0057】
真空包装機19において、21は熱溶着体であり供試台20の中央及びその上方に位置しており、ラミネートフィルム5を図面の表側から裏側の方向に渡りラミネートフィルム5を熱溶着することができる位置に配置されている。
【0058】
また、芯材2はそれぞれが独立した空間内に位置するように配置されている。真空包装機19の蓋22閉じて真空包装機19を起動すると真空ポンプ23が運転を開始し、真空包装機19の内部は排気口24により排気され0.1Torr以下に減圧した後、コンベアが動いてラミネートフィルム5を所定距離移動させた後停止し、熱溶着体21によりラミネートフィルム5が熱溶着されることにより熱溶着部25が形成される。
【0059】
これを繰り返すことにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材26が作製される。この多芯真空断熱材26を真空包装機19より取り出し、その後、多芯真空断熱材26よりそれぞれの芯材2を熱溶着部25を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0060】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0061】
また、熱溶着部25はすべて減圧環境下で行われるため、芯材2の周囲にラミネートフィルム5の熱溶着部25を設ける際に、任意に熱溶着部25を設ける位置を決定できる。すなわち、熱溶着部25を設ける際に皺ができやすい場所を最初に熱溶着することにより皺の発生を防ぎ、熱溶着部25からのリークのない真空断熱材26を得ることができる。
【0062】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0063】
また、ラミネートフィルム5としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0064】
本実施の形態の真空断熱材の製造方法は、略同一平面上に互いに離間して配置された複数の芯材2を、ガスバリア性の外被材5で覆い、外被材5の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材5を熱溶着した多芯真空断熱材26を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材26における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部25が残るように外被材5を切断して、多芯真空断熱材26から所望の真空断熱材1を切り離す真空断熱材切り離し工程とを有するものである。
【0065】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材26を製造し、その後、多芯真空断熱材26から所望の真空断熱材1を順次切り離すようにしたので、真空包装機19の一回の減圧操作で、多数の真空断熱材1もしくは大きさ形の異なる複数種の真空断熱材1を作製することができ、真空包装機19を効率よく稼働でき、芯材2の周囲に位置する外被材5を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材1の芯材2外周のヒレ状の外被材5周縁部(熱溶着部4)の幅を小さくできる。
【0066】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、それぞれの芯材2の周囲に位置する外被材5を熱溶着する作業を、真空包装機19内の減圧環境下で行うものである。
【0067】
この真空断熱材の製造方法では、芯材2の周囲に位置する外被材5を熱溶着する際に、熱溶着部25を設ける順番を任意に決定できる。すなわち、後回しにすると先の熱溶着作業の影響で皺ができていて熱溶着作業が困難になる熱溶着箇所を先に熱溶着することにより皺の発生を防ぎ、熱溶着部25からのリークのない真空断熱材1を得ることができる。また、複数の芯材2を覆う外被材5の外周部を熱溶着せずに、外被材5における芯材2の周囲に位置する部分のみを熱溶着することもできる。
【0068】
(実施の形態3)
以下、本発明の実施の形態3の真空断熱材の製造方法について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
【0069】
図10は本発明の実施の形態3の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図である。
【0070】
長方形にカットされたガスバリア性のラミネートフィルム(外被材)5が、熱溶着材料側を上側にしたものが真空包装機6の供試台7に設置されている。このラミネートフィルム5の上に芯材2が配置され、その上にラミネートフィルム5がその熱溶着材料側が芯材2側を向くようにかつ各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0071】
真空包装機6において、8は熱溶着バーでありラミネートフィルム5の4つの外周部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0072】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネートフィルム5の4つの外周部を熱溶着することにより4つの熱溶着部12が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材13が作製される。
【0073】
この多芯真空断熱材13を真空包装機6より取り出し、この多芯真空断熱材13を熱溶着体27を有する熱溶着装置28の作業台29の上に設置する。
【0074】
熱溶着体27はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台29の上に置かれた供試品(多芯真空断熱材13)に対し熱溶着を行う。
【0075】
この熱溶着体27は、ラミネートフィルム5よりほぼ同寸法であり、ラミネートフィルム5への芯材2の配置形状に対し芯材2の周囲にラミネートフィルム5の熱溶着部が設けられる様に芯材2の位置は凹部になっており、この凹部に芯材2を位置させ残りのラミネートフィルム5の部分に対し熱溶着部を形成させる様に凹部以外は加熱できるようにヒーターが組み込まれている。
【0076】
この熱溶着装置28により、常圧環境下で多芯真空断熱材13の熱溶着部12で囲まれた部分をすべて熱溶着することにより、芯材2の周囲には熱溶着部17が形成され、芯材2と熱溶着部17によって多芯真空断熱材18が形成される。その後、多芯真空断熱材18よりそれぞれの芯材2を熱溶着部17を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0077】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0078】
また、常圧環境下で芯材2の周囲にラミネートフィルム5の熱溶着部12を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部17を設けるため手作業で行える。
【0079】
更に、ラミネートフィルム5の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネートフィルム5の熱溶着部17を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0080】
更に、熱溶着体27をラミネートフィルム5に押し当てることにより、一度の熱溶着操作で確実に芯材2の周囲に熱溶着部17を形成できる効果が得られる。
【0081】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0082】
また、ラミネートフィルム5としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0083】
本実施の形態の真空断熱材の製造方法は、略同一平面上に互いに離間して配置された複数の芯材2を、ガスバリア性の外被材5で覆い、外被材5の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材5を熱溶着した多芯真空断熱材18を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材18における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部17が残るように外被材5を切断して、多芯真空断熱材18から所望の真空断熱材1を切り離す真空断熱材切り離し工程とを有するものである。
【0084】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材18を製造し、その後、多芯真空断熱材18から所望の真空断熱材1を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材1もしくは大きさ形の異なる複数種の真空断熱材1を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材5を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材1の芯材2外周のヒレ状の外被材5周縁部(熱溶着部4)の幅を小さくできる。
【0085】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材5の内部が減圧状態を維持したまま密閉されるように減圧環境下で複数の芯材2を覆う外被材5の外周部を熱溶着して熱溶着部12を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成するものである。
【0086】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成するので、減圧環境下で芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う外被材5の外周部に熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0087】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、それぞれの芯材2の周囲に位置する外被材5を熱溶着する作業に、押し当て面に複数の芯材2の形状および配置パターンに対応した凹部を有し一度の外被材5への押し当て及び加熱によりそれぞれの芯材2の周囲に位置する外被材5の熱溶着すべき部分を熱溶着できる熱溶着体27を使用するものである。
【0088】
この真空断熱材の製造方法では、この熱溶着体27による一度の外被材5への押し当て及び加熱により、それぞれの芯材2の周囲に位置する外被材5の熱溶着すべき部分を熱溶着でき、熱溶着作業が簡単に短時間に行える。
【0089】
(実施の形態4)
以下、本発明の実施の形態4の真空断熱材の製造方法について説明するが、実施の形態1または3と同一構成については、同一符号を付してその詳細な説明は省略する。
【0090】
図11は本発明の実施の形態4の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図である。
【0091】
長方形にカットされたガスバリア性のラミネートフィルム(外被材)5が、熱溶着材料側を上側にしたものが真空包装機6の供試台7に設置されている。このラミネートフィルム5の上に芯材2が配置され、その上にラミネートフィルム5がその熱溶着材料側が芯材2側を向くようにかつ各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0092】
真空包装機6において、8は熱溶着バーでありラミネートフィルム5の4つの外周部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0093】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネートフィルム5の4つの外周部を熱溶着することにより4つの熱溶着部12が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材13が作製される。
【0094】
この多芯真空断熱材13を真空包装機6より取り出し、この真空断熱材13を熱溶着体30を有する熱溶着装置31の作業台32の上に設置する。熱溶着体30はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台32の上に置かれた供試品(多芯真空断熱材13)に対し熱溶着を行う。
【0095】
この熱溶着体30は、ラミネートフィルム5とほぼ同寸法のゴム製の熱溶着体であり、この熱溶着体30はそれを被熱溶着物に押し当てた場合、被熱溶着物の形状に非常に沿いやすい特性を有している。
【0096】
この熱溶着装置31により、常圧環境下で真空断熱材13の熱溶着部12で囲まれた部分に対し、熱溶着体30を上側より押し当てることにより、芯材2の周囲には熱溶着部17が形成され、芯材2と熱溶着部17によって多芯真空断熱材18が形成される。
【0097】
その後、多芯真空断熱材18よりそれぞれの芯材2を熱溶着部17を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0098】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0099】
また、常圧環境下で芯材2の周囲にラミネートフィルム5の熱溶着部12を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧で熱溶着部17を設けるため手作業で行える。
【0100】
更に、ラミネートフィルム5の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧環境下で芯材2の周囲にラミネートフィルム5の熱溶着部17を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0101】
更に、熱溶着体30をラミネートフィルム5に押し当てることにより、一度の熱溶着操作で確実に芯材2の周囲に熱溶着部17を形成できる効果が得られる。
【0102】
またこの形状に追従しやすい熱溶着体30を用いることにより、芯材2と芯材2の距離が十分長くなくても熱溶着体30は形状に追従しやすいため芯材2と芯材2の間の熱溶着層をしっかりとらえ確実に熱溶着部17を作製することができる効果が得られる。
【0103】
更に、この熱溶着体30を複数回ラミネートフィルム5に押し当てることにより、ラミネートフィルム5を細かく分けて熱溶着部17を形成していくことにより芯材2の周囲に確実に熱溶着部17を形成し、熱溶着部17からのリークを低減することができる効果が得られる。
【0104】
また、芯材2の位置がずれてしまった場合や芯材2の形状が変わった場合にも熱溶着体の形状を変える必要なく適用できる。
【0105】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0106】
また、ラミネートフィルム5としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0107】
本実施の形態の真空断熱材の製造方法は、略同一平面上に互いに離間して配置された複数の芯材2を、ガスバリア性の外被材5で覆い、外被材5の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材5を熱溶着した多芯真空断熱材18を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材18における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部17が残るように外被材5を切断して、多芯真空断熱材18から所望の真空断熱材1を切り離す真空断熱材切り離し工程とを有するものである。
【0108】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材18を製造し、その後、多芯真空断熱材18から所望の真空断熱材1を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材1もしくは大きさ形の異なる複数種の真空断熱材1を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材5を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材1の芯材2外周のヒレ状の外被材5周縁部(熱溶着部4)の幅を小さくできる。
【0109】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材5の内部が減圧状態を維持したまま密閉されるように減圧環境下で複数の芯材2を覆う外被材5の外周部を熱溶着して熱溶着部12を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成するものである。
【0110】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成するので、減圧環境下で芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う外被材5の外周部に熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0111】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体30を、1回外被材5に押し当てることにより芯材2の周囲に外被材5の熱溶着部17を設けるものである。
【0112】
この真空断熱材の製造方法では、この被熱溶着物の形状に追従しやすい熱溶着体30を用いることにより、芯材2と芯材2の距離が十分長くなくても熱溶着体30は形状に追従しやすいため、芯材2と芯材2の間の熱溶着層をしっかりとらえ確実に熱溶着部17を作製することができる。また、1度に外被材5に対し芯材2の周囲に熱溶着部17を形成していくため、効率的に真空断熱材を作製することができる。また、芯材2の位置が少しずれてしまった場合や芯材2の形状が少し変わった場合にも熱溶着体30の形状を変える必要なく適用できる。
【0113】
(実施の形態5)
以下、本発明の実施の形態5の真空断熱材の製造方法について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
【0114】
図12は本発明の実施の形態5の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図である。
【0115】
長方形にカットされたガスバリア性のラミネートフィルム(外被材)5が、熱溶着材料側を上側にしたものが真空包装機6の供試台7に設置されている。このラミネートフィルム5の上に芯材2が配置され、その上にラミネートフィルム5がその熱溶着材料側が芯材2側を向くようにかつ各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0116】
真空包装機6において、8は熱溶着バーでありラミネートフィルム5の4つの外周部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0117】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネートフィルム5の4つの外周部を熱溶着することにより4つの熱溶着部12が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材13が作製される。
【0118】
この多芯真空断熱材13を真空包装機6より取り出し、この多芯真空断熱材13を熱溶着体33を有する熱溶着装置34の作業台35の上に設置する。
【0119】
熱溶着体33はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台35の上に置かれた供試品(の多芯真空断熱材13)に対し熱溶着を行う。
【0120】
この熱溶着体33は、ラミネートフィルム5のY−Y’方向とほぼ同長さでその幅はラミネートフィルム5のX−X’方向より短いのゴム製の熱溶着体であり、この熱溶着体33はそれを被熱溶着物に押し当てた場合、被熱溶着物の形状に非常に沿いやすい特性を有している。
【0121】
この熱溶着装置31により、常圧環境下で多芯真空断熱材13の外周の熱溶着部12で囲まれた部分に対し、熱溶着体33を上側より複数回押し当てることにより、芯材2の周囲には熱溶着部17が形成され、芯材2と熱溶着部17によって多芯真空断熱材18が形成される。
【0122】
その後、多芯真空断熱材18よりそれぞれの芯材2を熱溶着部17を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0123】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0124】
また、常圧環境下で芯材2の周囲にラミネートフィルム5の熱溶着部17を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部17を設けるため手作業で行える。
【0125】
更に、ラミネートフィルム5の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネートフィルム5の熱溶着部17を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0126】
更に、熱溶着体33をラミネートフィルム5に押し当てることにより、一度の熱溶着操作で確実に芯材2の周囲に熱溶着部17を形成できる効果が得られる。またこの形状に追従しやすい熱溶着体33を用いることにより、芯材2と芯材2の距離が十分長くなくても熱溶着体33は形状に追従しやすいため芯材2と芯材2の間の熱溶着層をしっかりとらえ確実に熱溶着部17を作製することができる効果が得られる。
【0127】
また、1度にラミネートフィルム5に対し芯材2の周囲に熱溶着部17を形成していくため効率的に真空断熱材1を作製することができる効果が得られる。また、芯材2の位置がずれてしまった場合や芯材2の形状が変わった場合にも熱溶着体33の形状を変える必要なく適用できる。
【0128】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0129】
また、ラミネートフィルム5としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0130】
本実施の形態の真空断熱材の製造方法は、略同一平面上に互いに離間して配置された複数の芯材2を、ガスバリア性の外被材5で覆い、外被材5の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材5を熱溶着した多芯真空断熱材18を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材18における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部17が残るように外被材5を切断して、多芯真空断熱材18から所望の真空断熱材1を切り離す真空断熱材切り離し工程とを有するものである。
【0131】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材18を製造し、その後、多芯真空断熱材18から所望の真空断熱材1を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材1もしくは大きさ形の異なる複数種の真空断熱材1を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材5を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材1の芯材2外周のヒレ状の外被材5周縁部(熱溶着部4)の幅を小さくできる。
【0132】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材5の内部が減圧状態を維持したまま密閉されるように減圧環境下で複数の芯材2を覆う外被材5の外周部を熱溶着して熱溶着部12を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成するものである。
【0133】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成するので、減圧環境下で芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う外被材5の外周部に熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材5を熱溶着して熱溶着部17を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0134】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体33を、複数回外被材5に押し当てることにより芯材2の周囲に外被材5の熱溶着部17を設けるものである。
【0135】
この真空断熱材の製造方法では、この被熱溶着物の形状に追従しやすい熱溶着体33を用いることにより、芯材2と芯材2の距離が十分長くなくても熱溶着体33は形状に追従しやすいため、芯材2と芯材2の間の熱溶着層をしっかりとらえ確実に熱溶着部17を作製することができる。また、この熱溶着体33を複数回外被材5に押し当てることにより、外被材5を細かく分けて熱溶着部17を形成していくことにより芯材2の周囲に確実に熱溶着部17を形成し、熱溶着部17からのリークを低減することができる。また、芯材2の位置が少しずれてしまった場合や芯材2の形状が少し変わった場合にも熱溶着体33の形状を変える必要なく適用できる。
【0136】
(実施の形態6)
図13は本発明の実施の形態6の真空断熱材の製造方法により作製される真空断熱材の縦断面図、図14は同実施の形態で使用する真空包装機の使用時の概略縦断面図、図15は同真空包装機の使用時の概略横断面図、図16は同真空包装機により袋状の外被材の開口部を熱溶着した段階の多芯真空断熱材の平面図、図17は同実施の形態で使用する熱溶着装置の概略側面図、図18は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図、図19は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図である。
【0137】
本実施の形態の真空断熱材の製造方法により製造される真空断熱材36は、湿式シリカとカーボンブラックを含有し固形化された芯材2をガスバリア性のラミネート袋からなる外被材37で覆い外被材37の内部は減圧されることにより製造されている。芯材2の周囲に熱溶着部38が設けられる。
【0138】
この真空断熱材36の製造方法を次に説明する。
【0139】
ガスバリア性のラミネート袋(袋状の外被材)39が、真空包装機6の供試台7に設置されている。また、このラミネート袋39の中に芯材2が配置されている。
【0140】
真空包装機6において、熱溶着バー8がラミネート袋39の開口部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0141】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネート袋39の開口部を熱溶着することにより熱溶着部40が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材41が作製される。
【0142】
この多芯真空断熱材41を真空包装機6より取り出し、この多芯真空断熱材41を熱溶着体14を有する熱溶着装置15の作業台16の上に設置する。熱溶着体14はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台6の上に置かれた供試品(多芯真空断熱材41)に対し熱溶着を行う。
【0143】
この熱溶着装置15により、常圧環境下で多芯真空断熱材41の熱溶着部40とラミネート袋39の3つの熱溶着部40aで囲まれた部分をすべて熱溶着体14により熱溶着することにより、芯材2の周囲には熱溶着部42を含む多芯真空断熱材43が形成される。
【0144】
その後、多芯真空断熱材43よりそれぞれの芯材2を熱溶着部42を含んだ状態で切り離すことにより、芯材2を核とした複数の真空断熱材1を得ることができる。
【0145】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0146】
また、常圧環境下で前記芯材2の周囲にラミネート袋39の熱溶着部40を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧で熱溶着部42を設ける作業を行うことができる。
【0147】
更に、ラミネート袋39の開口部のみに熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に常圧環境下で芯材2の周囲にラミネート袋39の熱溶着部42を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0148】
それに加え、外被材37にはラミネート袋39を使用しているため、ラミネート袋39に芯材2をセッティングしたものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、開口部の熱溶着が1ケ所で済むためラミネート袋39内の真空度の保持が確実に行える効果が得られる。
【0149】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0150】
また、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0151】
尚、ラミネート袋39の袋形状を三方シール袋として説明を行ったが、ラミネート袋は他に四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0152】
本実施の形態の真空断熱材の製造方法は、ガスバリア性で開口部を有する袋状の外被材39の中に、複数の芯材2を略同一平面上に互いに離間して配置し、外被材39の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材39を熱溶着した多芯真空断熱材43を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材43における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部42が残るように外被材39を切断して、多芯真空断熱材43から所望の真空断熱材36を切り離す真空断熱材切り離し工程とを有するものである。
【0153】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材43を製造し、その後、多芯真空断熱材43から所望の真空断熱材36を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材36もしくは大きさ形の異なる複数種の真空断熱材36を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材39を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材36の芯材2外周のヒレ状の外被材39周縁部(熱溶着部38)を小さくできる。また、外被材39に開口部を有する袋状のものを使用しているため、袋状の外被材39の中に、複数の芯材2を配置したものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、袋状外被材39の開口部の1ケ所(1辺)を熱溶着して熱溶着部40を形成すれば、外被材39による複数の芯材2の密閉ができるため、外被材39内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材2を密閉する場合よりも確実に行える。
【0154】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材39の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材2を覆う外被材39の開口部を熱溶着して熱溶着部40を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するものである。
【0155】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するので、減圧環境下で芯材2の周囲に位置する外被材39を熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う袋状外被材39の開口部に熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0156】
(実施の形態7)
以下、本発明の実施の形態7の真空断熱材の製造方法について説明するが、実施の形態6と同一構成については、同一符号を付してその詳細な説明は省略する。
【0157】
図20は本発明の実施の形態7の真空断熱材の製造方法に使用する真空包装機の使用時の概略縦断面図、図21は同真空包装機により作製された多芯真空断熱材の平面図である。
【0158】
ガスバリア性のラミネート袋39が、真空包装機19の供試台20に設置されている。この供試台20にはコンベア(図示せず)が設置されており、ラミネート袋39を図中右から左へ移動させることができる。ラミネート袋39の中に芯材2が配置されている。
【0159】
真空包装機19において、熱溶着バー21が供試台20の中央及びその上方に位置しており、ラミネート袋39を図面の表側から裏側の方向に渡りラミネート袋39を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0160】
真空包装機19の蓋22閉じて真空包装機19を起動すると真空ポンプ23が運転を開始し、真空包装機19の内部は排気口24により排気され0.1Torr以下に減圧した後、コンベアが動いてラミネート袋39を所定距離移動させた後停止し、熱溶着バー21によりラミネート袋39が熱溶着されることにより熱溶着部44が形成される。
【0161】
これを繰り返すことにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材45が作製される。
【0162】
この多芯真空断熱材45を真空包装機19より取り出し、その後、多芯真空断熱材45よりそれぞれの芯材2を熱溶着部44を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0163】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0164】
また、熱溶着部44はすべて減圧環境下で行われるため、芯材2の周囲にラミネート袋39の熱溶着部44を設ける際に、任意に熱溶着部44を設ける位置を決定できる。すなわち、熱溶着部44を設ける際に皺ができやすい場所を最初に熱溶着することにより皺の発生を防ぎ、熱溶着部44からのリークのない真空断熱材45を得ることができる。
【0165】
それに加え、外被材37にはラミネート袋39を使用しているため、ラミネート袋39に芯材2をセッティングしたものを真空包装機19に設置することにより、真空包装機19へのセッティングが簡単になると共に、開口部の熱溶着が1ケ所で済むためラミネート袋39内の真空度の保持が確実に行える効果が得られる。
【0166】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0167】
また、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0168】
尚、ラミネート袋39の袋形状を三方シール袋として説明を行ったが、ラミネート袋は他に四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0169】
本実施の形態の真空断熱材の製造方法は、ガスバリア性で開口部を有する袋状の外被材39の中に、複数の芯材2を略同一平面上に互いに離間して配置し、外被材39の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材39を熱溶着した多芯真空断熱材45を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材45における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部44が残るように外被材39を切断して、多芯真空断熱材45から所望の真空断熱材36を切り離す真空断熱材切り離し工程とを有するものである。
【0170】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材45を製造し、その後、多芯真空断熱材45から所望の真空断熱材36を順次切り離すようにしたので、真空包装機19の一回の減圧操作で、多数の真空断熱材36もしくは大きさ形の異なる複数種の真空断熱材36を作製することができ、真空包装機19を効率よく稼働でき、芯材2の周囲に位置する外被材39を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材36の芯材2外周のヒレ状の外被材39周縁部(熱溶着部38)を小さくできる。また、外被材39に開口部を有する袋状のものを使用しているため、袋状の外被材39の中に、複数の芯材2を配置したものを真空包装機19に設置することにより、真空包装機19へのセッティングが簡単になる。
【0171】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、それぞれの芯材2の周囲に位置する外被材39を熱溶着する作業を、真空包装機19内の減圧環境下で行うものである。
【0172】
この真空断熱材の製造方法では、芯材2の周囲に位置する外被材39を熱溶着する際に、熱溶着部44を設ける順番を任意に決定できる。すなわち、後回しにすると先の熱溶着作業の影響で皺ができていて熱溶着作業が困難になる熱溶着箇所を先に熱溶着することにより皺の発生を防ぎ、熱溶着部44からのリークのない真空断熱材36を得ることができる。また、複数の芯材2を覆う袋状外被材39の開口部を熱溶着せずに、外被材39における芯材2の周囲に位置する部分のみを熱溶着することもできる。
【0173】
(実施の形態8)
以下、本発明の実施の形態8の真空断熱材の製造方法について説明するが、実施の形態6と同一構成については、同一符号を付してその詳細な説明は省略する。
【0174】
図22は本発明の実施の形態8の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図である。
【0175】
ガスバリア性のラミネート袋39が、真空包装機6の供試台7に設置されている。このラミネート袋39の中に芯材2が配置されている。
【0176】
真空包装機6において、熱溶着バー8がラミネート袋39の開口部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0177】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネート袋39の開口部を熱溶着することにより熱溶着部40が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材41が作製される。
【0178】
この多芯真空断熱材41を真空包装機6より取り出し、この多芯真空断熱材41を熱溶着体46を有する熱溶着装置47の作業台48の上に設置する。熱溶着体46はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台48の上に置かれた供試品(多芯真空断熱材41)に対し熱溶着を行う。
【0179】
この熱溶着体46は、ラミネート袋39よりほぼ同寸法であり、ラミネート袋39への芯材2の配置形状に対し芯材2の周囲にラミネート袋39の熱溶着部が設けられる様に芯材2の位置は凹部になっており、この凹部に芯材2を位置させ残りのラミネート袋39の部分に対し熱溶着部を形成させる様に凹部以外は加熱できるようにヒーターが組み込まれている。
【0180】
この熱溶着装置47により、常圧環境下で真空断熱材41の熱溶着部40とラミネート袋39の3つの熱溶着部40aで囲まれた部分をすべて熱溶着することにより、芯材2の周囲には熱溶着部42が形成され、芯材2と熱溶着部42によって多芯真空断熱材43が形成される。
【0181】
その後、真空断熱材43よりそれぞれの芯材2を熱溶着部42を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0182】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0183】
また、常圧環境下で芯材2の周囲にラミネート袋39の熱溶着部40を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部42を設けるため手作業で行える。
【0184】
更に、ラミネート袋39の外周部のみに熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネート袋39の熱溶着部42を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0185】
更に、熱溶着体46をラミネート袋39に押し当てることにより、一度の熱溶着操作で確実に芯材2の周囲に熱溶着部42を形成できる効果が得られる。それに加え、外被材37にはラミネート袋39を使用しているため、ラミネート袋39に芯材2をセッティングしたものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、開口部の熱溶着が1ケ所で済むためラミネート袋39内の真空度の保持が確実に行える効果が得られる。
【0186】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0187】
また、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0188】
尚、ラミネート袋39の袋形状を三方シール袋として説明を行ったが、ラミネート袋は他に四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0189】
本実施の形態の真空断熱材の製造方法は、ガスバリア性で開口部を有する袋状の外被材39の中に、複数の芯材2を略同一平面上に互いに離間して配置し、外被材39の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材39を熱溶着した多芯真空断熱材43を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材43における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部42が残るように外被材39を切断して、多芯真空断熱材43から所望の真空断熱材36を切り離す真空断熱材切り離し工程とを有するものである。
【0190】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材43を製造し、その後、多芯真空断熱材43から所望の真空断熱材36を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材36もしくは大きさ形の異なる複数種の真空断熱材36を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材39を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材36の芯材2外周のヒレ状の外被材39周縁部(熱溶着部38)を小さくできる。また、外被材39に開口部を有する袋状のものを使用しているため、袋状の外被材39の中に、複数の芯材2を配置したものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、袋状外被材39の開口部の1ケ所(1辺)を熱溶着して熱溶着部40を形成すれば、外被材39による複数の芯材2の密閉ができるため、外被材39内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材2を密閉する場合よりも確実に行える。
【0191】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材39の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材2を覆う外被材39の開口部を熱溶着して熱溶着部40を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するものである。
【0192】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するので、減圧環境下で芯材2の周囲に位置する外被材39を熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う袋状外被材39の開口部に熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0193】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、それぞれの芯材2の周囲に位置する外被材39を熱溶着する作業に、押し当て面に複数の芯材2の形状および配置パターンに対応した凹部を有し一度の外被材39への押し当て及び加熱によりそれぞれの芯材2の周囲に位置する外被材39の熱溶着すべき部分を熱溶着できる熱溶着体46を使用するものである。
【0194】
この真空断熱材の製造方法では、この熱溶着体46による一度の外被材39への押し当て及び加熱により、それぞれの芯材39の周囲に位置する外被材39の熱溶着すべき部分を熱溶着でき、熱溶着作業が簡単に短時間に行える。
【0195】
(実施の形態9)
以下、本発明の実施の形態9の真空断熱材の製造方法について説明するが、実施の形態6と同一構成については、同一符号を付してその詳細な説明は省略する。
【0196】
図23は本発明の実施の形態9の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図である。
【0197】
ガスバリア性のラミネートフィルム39が、真空包装機6の供試台7に設置されている。このラミネート袋39の中に芯材2が配置されている。
【0198】
真空包装機6において、熱溶着バー8がラミネート袋39の開口部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0199】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネート袋39の開口部を熱溶着することにより熱溶着部40が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材41が作製される。
【0200】
この多芯真空断熱材41を真空包装機6より取り出し、この多芯真空断熱材41を熱溶着体49を有する熱溶着装置50の作業台51の上に設置する。熱溶着体49はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台51の上に置かれた供試品(多芯真空断熱材41)に対し熱溶着を行う。
【0201】
この熱溶着体49は、ラミネート袋39とほぼ同寸法のゴム製の熱溶着体であり、この熱溶着体49はそれを被熱溶着物に押し当てた場合、被熱溶着物の形状に非常に沿いやすい特性を有している。
【0202】
この熱溶着装置50により、常圧環境下で真空断熱材41の熱溶着部40とラミネート袋39の3つの熱溶着部40aで囲まれた部分に対し、熱溶着体49を上側より押し当てることにより、芯材2の周囲には熱溶着部42が形成され、芯材2と熱溶着部42によって多芯真空断熱材43が形成される。
【0203】
その後、多芯真空断熱材43よりそれぞれの芯材2を熱溶着部42を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0204】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0205】
また、常圧環境下で芯材2の周囲にラミネート袋39の熱溶着部40を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部42を設けるため手作業で行える。
【0206】
更に、ラミネート袋39の外周部のみに熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネート袋39の熱溶着部42を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0207】
更に、熱溶着体49をラミネート袋39に押し当てることにより、一度の熱溶着操作で確実に芯材2の周囲に熱溶着部42を形成できる効果が得られる。またこの形状に追従しやすい熱溶着体49を用いることにより、芯材2と芯材2の距離が十分長くなくても熱溶着体49は形状に追従しやすいため芯材2と芯材2の間の熱溶着層をしっかりとらえ確実に熱溶着部42を作製することができる効果が得られる。
【0208】
また、芯材2の位置がずれてしまった場合や芯材2の形状が変わった場合にも熱溶着体の形状を変える必要なく適用できる。それに加え、外被材37にはラミネート袋39を使用しているため、ラミネート袋39に芯材2をセッティングしたものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、開口部の熱溶着が1ケ所で済むためラミネート袋39内の真空度の保持が確実に行える効果が得られる。
【0209】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0210】
また、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0211】
尚、ラミネート袋39の袋形状を三方シール袋として説明を行ったが、ラミネート袋は他に四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0212】
本実施の形態の真空断熱材の製造方法は、ガスバリア性で開口部を有する袋状の外被材39の中に、複数の芯材2を略同一平面上に互いに離間して配置し、外被材39の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材39を熱溶着した多芯真空断熱材43を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材43における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部42が残るように外被材39を切断して、多芯真空断熱材43から所望の真空断熱材36を切り離す真空断熱材切り離し工程とを有するものである。
【0213】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材43を製造し、その後、多芯真空断熱材43から所望の真空断熱材36を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材36もしくは大きさ形の異なる複数種の真空断熱材36を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材39を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材36の芯材2外周のヒレ状の外被材39周縁部(熱溶着部38)を小さくできる。また、外被材39に開口部を有する袋状のものを使用しているため、袋状の外被材39の中に、複数の芯材2を配置したものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、袋状外被材39の開口部の1ケ所(1辺)を熱溶着して熱溶着部40を形成すれば、外被材39による複数の芯材2の密閉ができるため、外被材39内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材2を密閉する場合よりも確実に行える。
【0214】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材39の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材2を覆う外被材39の開口部を熱溶着して熱溶着部40を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するものである。
【0215】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するので、減圧環境下で芯材2の周囲に位置する外被材39を熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う袋状外被材39の開口部に熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0216】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体49を、1回外被材39に押し当てることにより芯材2の周囲に外被材39の熱溶着部42を設けるものである。
【0217】
この真空断熱材の製造方法では、この被熱溶着物の形状に追従しやすい熱溶着体49を用いることにより、芯材2と芯材2の距離が十分長くなくても熱溶着体49は形状に追従しやすいため、芯材2と芯材2の間の熱溶着層をしっかりとらえ確実に熱溶着部42を作製することができる。また、1度に外被材39に対し芯材2の周囲に熱溶着部42を形成していくため効率的に真空断熱材を作製することができる。また、芯材2の位置が少しずれてしまった場合や芯材2の形状が少し変わった場合にも熱溶着体49の形状を変える必要なく適用できる。
【0218】
(実施の形態10)
以下、本発明の実施の形態10の真空断熱材の製造方法について説明するが、実施の形態6と同一構成については、同一符号を付してその詳細な説明は省略する。
【0219】
図24は本発明の実施の形態10の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図である。
【0220】
ガスバリア性のラミネートフィルム39が、真空包装機6の供試台7に設置されている。このラミネート袋39の中に芯材2が配置されている。
【0221】
真空包装機6において、熱溶着バー8がラミネート袋39の開口部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0222】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネート袋39の開口部を熱溶着することにより熱溶着部40が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材41が作製される。
【0223】
この多芯真空断熱材41を真空包装機6より取り出し、この多芯真空断熱材41を熱溶着体52を有する熱溶着装置53の作業台54の上に設置する。熱溶着体52はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台54の上に置かれた供試品に対し熱溶着を行う。
【0224】
この熱溶着体52は、ラミネート袋39のY−Y’方向とほぼ同長さでその幅はラミネート袋39のX−X’方向より短いのゴム製の熱溶着体であり、この熱溶着体52はそれを被熱溶着物に押し当てた場合、被熱溶着物の形状に非常にそいやすい特性を有している。
【0225】
この熱溶着装置50により、常圧環境下で真空断熱材41の熱溶着部40とラミネート袋39の3つの熱溶着部40aで囲まれた部分に対し、熱溶着体52を上側より複数回押し当てることにより、芯材2の周囲には熱溶着部42が形成され、芯材2と熱溶着部42によって多芯真空断熱材43が形成される。
【0226】
その後、多芯真空断熱材43よりそれぞれの芯材2を熱溶着部42を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0227】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0228】
また、常圧環境下で芯材2の周囲にラミネート袋39の熱溶着部40を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部42を設けるため手作業で行える。
【0229】
更に、ラミネート袋39の外周部のみに熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネート袋39の熱溶着部42を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0230】
更に、熱溶着体52をラミネート袋39に押し当てることにより、一度の熱溶着操作で確実に芯材2の周囲に熱溶着部42を形成できる効果が得られる。またこの形状に追従しやすい熱溶着体52を用いることにより、芯材2と芯材2の距離が十分長くなくても熱溶着体52は形状に追従しやすいため芯材2と芯材2の間の熱溶着層をしっかりとらえ確実に熱溶着部42を作製することができる効果が得られる。
【0231】
また、1度にラミネート袋39に対し芯材2の周囲に熱溶着部42を形成していくため効率的に真空断熱材1を作製することができる効果が得られる。また、芯材2の位置がずれてしまった場合や芯材2の形状が変わった場合にも熱溶着体52の形状を変える必要なく適用できる。
【0232】
それに加え、外被材37にはラミネート袋39を使用しているため、ラミネート袋39に芯材2をセッティングしたものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、開口部の熱溶着が1ケ所で済むためラミネート袋39内の真空度の保持が確実に行える効果が得られる。
【0233】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0234】
また、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0235】
尚、ラミネート袋39の袋形状を三方シール袋として説明を行ったが、ラミネート袋は他に四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0236】
本実施の形態の真空断熱材の製造方法は、ガスバリア性で開口部を有する袋状の外被材39の中に、複数の芯材2を略同一平面上に互いに離間して配置し、外被材39の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材39を熱溶着した多芯真空断熱材43を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材43における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部42が残るように外被材39を切断して、多芯真空断熱材43から所望の真空断熱材36を切り離す真空断熱材切り離し工程とを有するものである。
【0237】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材43を製造し、その後、多芯真空断熱材43から所望の真空断熱材36を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材36もしくは大きさ形の異なる複数種の真空断熱材36を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材39を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材36の芯材2外周のヒレ状の外被材39周縁部(熱溶着部38)を小さくできる。また、外被材39に開口部を有する袋状のものを使用しているため、袋状の外被材39の中に、複数の芯材2を配置したものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、袋状外被材39の開口部の1ケ所(1辺)を熱溶着して熱溶着部40を形成すれば、外被材39による複数の芯材2の密閉ができるため、外被材39内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材2を密閉する場合よりも確実に行える。
【0238】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材39の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材2を覆う外被材39の開口部を熱溶着して熱溶着部40を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するものである。
【0239】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するので、減圧環境下で芯材2の周囲に位置する外被材39を熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う袋状外被材39の開口部に熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0240】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体52を、複数回外被材39に押し当てることにより芯材2の周囲に外被材39の熱溶着部42を設けるものである。
【0241】
この真空断熱材の製造方法では、この被熱溶着物の形状に追従しやすい熱溶着体52を用いることにより、芯材2と芯材2の距離が十分長くなくても熱溶着体52は形状に追従しやすいため、芯材2と芯材2の間の熱溶着層をしっかりとらえ確実に熱溶着部42を作製することができる。また、この熱溶着体52を複数回外被材39に押し当てることにより、外被材39を細かく分けて熱溶着部42を形成していくことにより芯材2の周囲に確実に熱溶着部42を形成し、熱溶着部42からのリークを低減することができる。また、芯材2の位置が少しずれてしまった場合や芯材2の形状が少し変わった場合にも熱溶着体52の形状を変える必要なく適用できる。
【0242】
(実施の形態11)
以下、本発明の実施の形態11の真空断熱材の製造方法について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
【0243】
図25は本発明の実施の形態11の真空断熱材の製造方法に使用する芯材の縦断面図である。
【0244】
長方形にカットされたガスバリア性のラミネートフィルム5が、熱溶着材料側を上側にしたものが真空包装機6の供試台7に設置されている。ガス発生が非常に少ない両面粘着テープ55が芯材2の底面に貼られている。
【0245】
両面粘着テープ55がラミネートフィルム5の熱溶着材料側に粘着するようにラミネートフィルム5の上に芯材2が接着され、その上にラミネートフィルム5がその熱溶着材料側が芯材2側を向くようにかつ各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0246】
真空包装機6において、熱溶着バー8がラミネートフィルム5の4つの外周部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0247】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネートフィルム5の4つの外周部を熱溶着することにより4つの熱溶着部12が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材13が作製される。
【0248】
この多芯真空断熱材13を真空包装機6より取り出し、この多芯真空断熱材13を熱溶着体14を有する熱溶着装置15の作業台16の上に設置する。熱溶着体14はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台6の上に置かれた供試品に対し熱溶着を行う。
【0249】
この熱溶着装置15により、常圧環境下で真空断熱材13の熱溶着部12で囲まれた部分をすべて熱溶着体14により熱溶着することにより、芯材2の周囲には熱溶着部17を含む多芯真空断熱材18が形成される。
【0250】
その後、多芯真空断熱材18よりそれぞれの芯材2を熱溶着部17を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0251】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材1を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材1を作製することができる効果が得られる。
【0252】
また、常圧環境下で芯材2の周囲にラミネートフィルム5の熱溶着部12を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部17を設ける作業を行うことができる。
【0253】
更に、ラミネートフィルム5の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネートフィルム5の熱溶着部17を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0254】
その上、ラミネートフィルム5の最内層の熱可塑樹脂材料側に両面粘着テープ55により接着できるため芯材2の位置を固定でき、真空包装機6での減圧時に芯材2に位置ずれが生じることを防止できる効果が得られる。
【0255】
上記説明においては、外被材3がラミネートフィルム5として説明を行ったが外被材3はラミネート袋であっても同様の効果が得られる。また、ラミネートフィルム5、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。また、ラミネート袋は三方シール袋、四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0256】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0257】
本実施の形態の真空断熱材の製造方法は、ガスバリア性で開口部を有する袋状の外被材39の中に、複数の芯材2を略同一平面上に互いに離間して配置し、外被材39の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材39を熱溶着した多芯真空断熱材43を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材43における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部42が残るように外被材39を切断して、多芯真空断熱材43から所望の真空断熱材36を切り離す真空断熱材切り離し工程とを有するものである。
【0258】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材43を製造し、その後、多芯真空断熱材43から所望の真空断熱材36を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材36もしくは大きさ形の異なる複数種の真空断熱材36を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材39を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材36の芯材2外周のヒレ状の外被材39周縁部(熱溶着部38)を小さくできる。また、外被材39に開口部を有する袋状のものを使用しているため、袋状の外被材39の中に、複数の芯材2を配置したものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、袋状外被材39の開口部の1ケ所(1辺)を熱溶着して熱溶着部40を形成すれば、外被材39による複数の芯材2の密閉ができるため、外被材39内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材2を密閉する場合よりも確実に行える。
【0259】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材39の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材2を覆う外被材39の開口部を熱溶着して熱溶着部40を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するものである。
【0260】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成するので、減圧環境下で芯材2の周囲に位置する外被材39を熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う袋状外被材39の開口部に熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材39を熱溶着して熱溶着部42を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0261】
また、本実施の形態の真空断熱材の製造方法は、少なくとも一方の面に外被材39の最内層の熱可塑樹脂材料に接着できる接着部55を有する芯材(底面に両面粘着テープ55を貼り付けた芯材2)を用いたものである。
【0262】
この真空断熱材の製造方法では、芯材2を外被材39の内面に接着できるため芯材2の位置を固定でき、他の芯材2の位置決め配置時や真空包装機6へのセッティング時や減圧時に芯材2に位置ずれが生じることを防止できる。
【0263】
(実施の形態12)
以下、本発明の実施の形態12の真空断熱材の製造方法について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
【0264】
図26は本発明の実施の形態12の真空断熱材の製造方法により作製される真空断熱材の縦断面図、図27は同実施の形態で使用するシート部材の平面図、図28は同実施の形態で使用する真空包装機の使用時の概略縦断面図、図29は同真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図、図30は同実施の形態で使用する熱溶着装置の熱溶着前の状態の概略側面図、図31は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図、図32は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図である。
【0265】
本実施の形態の真空断熱材の製造方法により製造される真空断熱材56は、湿式シリカとカーボンブラックを含有し固形化された芯材2を外被材3の最内層の熱可塑樹脂材料と同じ材料から成り、かつ芯材2の形状と相似形の孔57を切り欠いたシート部材58の孔57に配置し、これを外被材3で覆い外被材3の内部は減圧されることにより製造されている。芯材2の周囲に熱溶着部59が設けられる。
【0266】
この真空断熱材56の製造方法を次に説明する。長方形にカットされたガスバリア性のラミネートフィルム5が、熱溶着材料側を上側にしたものが真空包装機6の供試台7に設置されている。このラミネートフィルム5の上にはラミネートフィルム5の最内層の熱可塑樹脂材料と同じ材料から成り、かつ芯材2の形状と相似形の孔57を切り欠いたシート部材58がその各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0267】
シート部材の孔57に芯材2が配置され、その上にラミネートフィルム5がその熱溶着材料側が芯材2側を向くようにかつ各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0268】
真空包装機6において、熱溶着バー8がラミネートフィルム5の4つの外周部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0269】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネートフィルム5の4つの外周部を熱溶着することにより4つの熱溶着部12が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材60が作製される。
【0270】
この多芯真空断熱材60を真空包装機6より取り出し、この多芯真空断熱材60を熱溶着体14を有する熱溶着装置15の作業台16の上に設置する。熱溶着体14はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台6の上に置かれた供試品(多芯真空断熱材60)に対し熱溶着を行う。
【0271】
この熱溶着装置15により、常圧環境下で真空断熱材60の熱溶着部12で囲まれた部分をすべて熱溶着体14により熱溶着することにより、芯材2の周囲には熱溶着部61を含む多芯真空断熱材62が形成される。
【0272】
その後、多芯真空断熱材62よりそれぞれの芯材2を熱溶着部61を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0273】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材56を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材56を作製することができる効果が得られる。
【0274】
また、常圧環境下で芯材2の周囲にラミネートフィルム5の熱溶着部12を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部61を設ける作業を行うことができる。
【0275】
更に、ラミネートフィルム5の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネートフィルム5の熱溶着部61を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0276】
その上に、シート部材58はラミネートフィルム5の最内層の熱可塑樹脂材料と同じ材料であり、芯材2の形状と相似形の孔57を切り欠いたものであるため、孔57に芯材2を配置し減圧して熱溶着をすることにより芯材2間に適正な距離を保つことができると共に減圧時の芯材2のズレを防止できる効果が得られる。
【0277】
上記説明においては、外被材3がラミネートフィルム5として説明を行ったが外被材3はラミネート袋であっても同様の効果が得られる。また、ラミネートフィルム5、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。また、ラミネート袋は三方シール袋、四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0278】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0279】
本実施の形態の真空断熱材の製造方法は、略同一平面上に互いに離間して配置される複数の芯材2と、熱可塑樹脂材料からなり複数の芯材2の形状および配置パターンに対応した複数の孔57を有するシート部材58とを、シート部材58の複数の孔57のそれぞれに複数の芯材2を一つずつ配設した状態で、ガスバリア性で最内層がシート部材58と同じ熱可塑樹脂材料からなる外被材5で覆い、外被材5の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材5とシート部材58とを熱溶着した多芯真空断熱材62を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材62における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部61が残るように外被材5とシート部材58とを切断して、多芯真空断熱材62から所望の真空断熱材56を切り離す真空断熱材切り離し工程とを有するものである。
【0280】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材62を製造し、その後、多芯真空断熱材62から所望の真空断熱材56を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材56もしくは大きさ形の異なる複数種の真空断熱材56を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材5を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材56の芯材2外周のヒレ状の外被材5周縁部(熱溶着部59)の幅をを小さくできる。また、外被材5の最内層と同じ熱可塑樹脂材料からなり複数の芯材2の形状および配置パターンに対応した複数の孔57のそれぞれに複数の芯材2を一つずつ配設したシート部材58を外被材5で覆うので、芯材2の周囲に位置する外被材5とシート部材58とを熱溶着するまで、それぞれの芯材2の位置関係や間隔を適正に保つことができ、他の芯材2の位置決め配置時や真空包装機6へのセッティング時や減圧時に芯材2に位置ずれが生じることを抑制でき、外被材5に対する複数の芯材2の位置ずれが生じたとしても、その複数の芯材2の位置ずれをシート部材58を使って一度に修正することできる。
【0281】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材5の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材2を覆う外被材5の外周部とシート部材58とを熱溶着して熱溶着部12を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材5とシート部材58とを熱溶着して熱溶着部61を形成するものである。
【0282】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材5とシート部材58とを熱溶着して熱溶着部61を形成するので、減圧環境下で芯材2の周囲に位置する外被材5とシート部材58とを熱溶着して熱溶着部61を形成する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う外被材5の外周部に熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材5とシート部材58とを熱溶着して熱溶着部61を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0283】
(実施の形態13)
以下、本発明の実施の形態13の真空断熱材の製造方法について説明するが、実施の形態6及び12と同一構成については、同一符号を付してその詳細な説明は省略する。
【0284】
図33は本発明の実施の形態13の真空断熱材の製造方法で使用する真空包装機により袋状の外被材の開口部を熱溶着した段階の多芯真空断熱材の平面図、図34は同実施の形態で使用する熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図、図35は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図である。
【0285】
ガスバリア性のラミネート袋39が、真空包装機6の供試台7に設置されている。ラミネート袋39の最内層の熱可塑樹脂材料と同じ材料から成り、かつ芯材2の形状と相似形の孔57を切り欠いたシート部材58の孔57には芯材2は配置されている。このシート部材58をラミネート袋39に挿入する。
【0286】
真空包装機6において、熱溶着バー8がラミネート袋39の開口部を熱溶着することができる位置に配置されている。また、芯材2はシート部材58によりそれぞれが独立した空間内に位置するように配置されている。
【0287】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネート袋39の開口部を熱溶着することにより熱溶着部40が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材64が作製される。
【0288】
この時、シート部材58はラミネート袋39よりその寸法が小さいため、熱溶着部40とラミネート袋39の製作時の熱溶着部40aの内側に存在することになる。
【0289】
この多芯真空断熱材64を真空包装機6より取り出し、この多芯真空断熱材64を熱溶着体14を有する熱溶着装置15の作業台16の上に設置する。熱溶着体14はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台6の上に置かれた供試品(多芯真空断熱材64)に対し熱溶着を行う。
【0290】
この熱溶着装置15により、常圧環境下で多芯真空断熱材64の熱溶着部で囲まれた部分をすべて熱溶着体14により熱溶着することにより、芯材2の周囲には熱溶着部61を含む多芯真空断熱材65が形成される。
【0291】
その後、多芯真空断熱材65よりそれぞれの芯材2を熱溶着部61を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材56を得ることができる。
【0292】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材56を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材56を作製することができる効果が得られる。
【0293】
また、常圧環境下で芯材2の周囲にラミネート袋39の熱溶着部12を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部61を設ける作業を行うことができる。
【0294】
更に、ラミネート袋39の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネート袋39の熱溶着部61を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0295】
その上に、シート部材58はラミネート袋39の最内層の熱可塑樹脂材料と同じ材料であり、芯材2の形状と相似形の孔57を切り欠いたものであるため、孔57に芯材2を配置し減圧して熱溶着をすることにより芯材2間に適正な距離を保つことができると共に減圧時の芯材2のズレを防止できる効果が得られる。
【0296】
その上に、シート部材58はラミネート袋の熱溶着部よりも内側に存在するため、シート部材58とラミネート袋39の袋形成時の熱溶着部が重なることがなく、重なることによるシート部材58を透過しての空気の侵入を抑えることができる効果が得られる。
【0297】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0298】
また、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネート袋39を使用できる。ラミネート袋39の袋形状を三方シール袋として説明を行ったが、ラミネート袋は他に四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0299】
また、今回の実施の形態はラミネート袋39にて説明を行ったが、ラミネートフィルム5を用いる場合でも、真空包装機6により作製された熱溶着部12よりも寸法の小さいシート部材58を利用して真空包装機6での熱溶着部12の作製時にシート部材58と熱溶着部12が重ならないようにして作製しても良い。
【0300】
本実施の形態の真空断熱材の製造方法は、ガスバリア性で開口部を有する袋状の外被材39の中に、略同一平面上に互いに離間して配置される複数の芯材2と、外被材39の最内層と同じ熱可塑樹脂材料からなり複数の芯材2の形状および配置パターンに対応した複数の孔57を有するシート部材58とを、シート部材58の複数の孔57のそれぞれに複数の芯材2を一つずつ配設した状態で挿入し、外被材39の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材39とシート部材58とを熱溶着した多芯真空断熱材65を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材65における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部61が残るように外被材39とシート部材58とを切断して、多芯真空断熱材65から所望の真空断熱材56を切り離す真空断熱材切り離し工程とを有するものである。
【0301】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材65を製造し、その後、多芯真空断熱材65から所望の真空断熱材56を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材56もしくは大きさ形の異なる複数種の真空断熱材56を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材39を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材56の芯材2外周のヒレ状の外被材39周縁部(熱溶着部59)の幅を小さくできる。また、外被材39の最内層と同じ熱可塑樹脂材料からなり複数の芯材2の形状および配置パターンに対応した複数の孔57のそれぞれに複数の芯材2を一つずつ配設したシート部材58を、開口部を有する袋状の外被材39の中に挿入するので、芯材2の周囲に位置する外被材39とシート部材58とを熱溶着するまで、それぞれの芯材2の位置関係や間隔を適正に保つことができ、他の芯材2の位置決め配置時や真空包装機6へのセッティング時や減圧時に芯材2に位置ずれが生じることを抑制でき、外被材39に対する複数の芯材2の位置ずれが生じたとしても、その複数の芯材2の位置ずれをシート部材58を使って一度に修正することできる。また、外被材39に開口部を有する袋状のものを使用しているため、袋状の外被材39の中に、複数の孔57に複数の芯材2を一つずつ配設したシート部材58を挿入したものを真空包装機6に設置することにより、真空包装機6へのセッティングが簡単になると共に、袋状外被材39の開口部の1ケ所(1辺)を熱溶着して熱溶着部40を形成すれば、外被材39による複数の芯材2の密閉ができるため、外被材39内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材2を密閉する場合よりも確実に行える。また、シート部材58は、袋状外被材39の袋形成時の熱溶着部40aよりも内側に存在するため、シート部材58と袋状の外被材39の袋形成時の熱溶着部40aが重なることがなく、重なることによるシート部材58を透過しての外被材39内部への空気の侵入の虞がない。
【0302】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材39の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材2を覆う外被材39の開口部を熱溶着して熱溶着部40を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材39とを熱溶着して熱溶着部42を形成するものである。
【0303】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材39とシート部材58とを熱溶着して熱溶着部61を形成するので、減圧環境下で芯材2の周囲に位置する外被材39とシート部材58とを熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う袋状外被材39の開口部に熱溶着部40を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材39とシート部材58とを熱溶着して熱溶着部61を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0304】
(実施の形態14)
以下、本発明の実施の形態14の真空断熱材の製造方法について説明するが、実施の形態12と同一構成については、同一符号を付してその詳細な説明は省略する。
【0305】
図36は本発明の実施の形態14の真空断熱材の製造方法で使用するシート部材の縦断面図、図37は同実施の形態で使用する真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図、図38は同実施の形態で使用する熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図、図39は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図である。
【0306】
長方形にカットされたガスバリア性のラミネートフィルム5が、熱溶着材料側を上側にしたものが真空包装機6の供試台7に設置されている。このラミネートフィルム5の上にはラミネートフィルム5の最内層の熱可塑樹脂材料と同じ材料66aから成り、その間にその熱可塑樹脂材料66aより融点が高い熱可塑樹脂材料66bを設け、かつ芯材2の形状と相似形の孔57を切り欠いたシート部材66が、その各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0307】
シート部材66の孔57に芯材2は配置されその上にラミネートフィルム5がその熱溶着材料側が芯材2側を向くようにかつ各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0308】
真空包装機6において、熱溶着バー8がラミネートフィルム5の4つの外周部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0309】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネートフィルム5の4つの外周部を熱溶着することにより4つの熱溶着部12が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する真空断熱材67が作製される。
【0310】
この多芯真空断熱材67を真空包装機6より取り出し、この多芯真空断熱材67を熱溶着体14を有する熱溶着装置15の作業台16の上に設置する。熱溶着体14はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台6の上に置かれた供試品(多芯真空断熱材67)に対し熱溶着を行う。
【0311】
この熱溶着装置15により、常圧環境下で真空断熱材67の熱溶着部12で囲まれた部分をすべて熱溶着体14により熱溶着することにより、芯材2の周囲には熱溶着部61を含む多芯真空断熱材68が形成される。
【0312】
その後、多芯真空断熱材68よりそれぞれの芯材2を熱溶着部61を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0313】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材56を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材56を作製することができる効果が得られる。
【0314】
また、常圧環境下で芯材2の周囲にラミネートフィルム5の熱溶着部12を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧で熱溶着部61を設ける作業を行うことができる。
【0315】
更に、ラミネートフィルム5の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネートフィルム5の熱溶着部61を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0316】
その上に、シート部材66はラミネートフィルム5の最内層の熱可塑樹脂材料と同じ材料であり、芯材2の形状と相似形の孔57を切り欠いたものであるため、孔57に芯材2を配置し減圧して熱溶着をすることにより芯材2間に適正な距離を保つことができると共に減圧時の芯材2のズレを防止できる効果が得られる。
【0317】
その上に、シート部材66は多層構造になっているため芯材2の厚みが厚くなった場合でもシート部材66の中間層の熱可塑樹脂材料66bの厚みを増やすことにより熱溶着部61の作製を確実に行うことができる効果が得られる。
【0318】
上記説明においては、外被材3がラミネートフィルム5として説明を行ったが外被材3はラミネート袋であっても同様の効果が得られる。また、ラミネートフィルム5、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。また、ラミネート袋は三方シール袋、四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0319】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0320】
本実施の形態の真空断熱材の製造方法は、略同一平面上に互いに離間して配置される複数の芯材2と、熱可塑樹脂材料からなり複数の芯材2の形状および配置パターンに対応した複数の孔57を有するシート部材66とを、シート部材66の複数の孔57のそれぞれに複数の芯材2を一つずつ配設した状態で、ガスバリア性で最内層がシート部材66の表面層66aと同じ熱可塑樹脂材料からなる外被材5で覆い、外被材5の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材5とシート部材66とを熱溶着した多芯真空断熱材68を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材68における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部61が残るように外被材5とシート部材66とを切断して、多芯真空断熱材68から所望の真空断熱材56を切り離す真空断熱材切り離し工程とを有するものである。
【0321】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材68を製造し、その後、多芯真空断熱材68から所望の真空断熱材56を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材56もしくは大きさ形の異なる複数種の真空断熱材56を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材5を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材56の芯材2外周のヒレ状の外被材5周縁部(熱溶着部59)の幅をを小さくできる。また、表面層66aが外被材5の最内層と同じ熱可塑樹脂材料からなり複数の芯材2の形状および配置パターンに対応した複数の孔57のそれぞれに複数の芯材2を一つずつ配設したシート部材66を外被材5で覆うので、芯材2の周囲に位置する外被材5とシート部材66とを熱溶着するまで、それぞれの芯材2の位置関係や間隔を適正に保つことができ、他の芯材2の位置決め配置時や真空包装機6へのセッティング時や減圧時に芯材2に位置ずれが生じることを抑制でき、外被材5に対する複数の芯材2の位置ずれが生じたとしても、その複数の芯材2の位置ずれをシート部材66を使って一度に修正することできる。
【0322】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材5の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材2を覆う外被材5の外周部とシート部材66とを熱溶着して熱溶着部12を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材5とシート部材66とを熱溶着して熱溶着部61を形成するものである。
【0323】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材5とシート部材66とを熱溶着して熱溶着部61を形成するので、減圧環境下で芯材2の周囲に位置する外被材5とシート部材66とを熱溶着して熱溶着部61を形成する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う外被材5の外周部に熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材5とシート部材66とを熱溶着して熱溶着部61を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0324】
また、本実施の形態の真空断熱材の製造方法は、表裏両面の表面層66aが外被材5の最内層の熱可塑樹脂材料と同じ材料であり、表裏両面の表面層66aの間に表面層66aの熱可塑樹脂材料より融点が高い熱可塑樹脂材料の層66bを設けた多層樹脂フィルムをシート部材66に使用するのである。
【0325】
この真空断熱材の製造方法では、芯材2の厚みが厚くなった場合でも、シート部材66の中間層66b(の熱可塑樹脂材料)の厚みを増やすことにより、外被材5の変形を小さくし熱溶着部61の作製を確実に行うことができる。
【0326】
(実施の形態15)
以下、本発明の実施の形態15の真空断熱材の製造方法について説明するが、実施の形態12と同一構成については、同一符号を付してその詳細な説明は省略する。
【0327】
図40は本発明の実施の形態15の真空断熱材の製造方法で使用するシート部材の縦断面図、図41は同実施の形態で使用する真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図、図42は同実施の形態で使用する熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図、図43は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図である。
【0328】
長方形にカットされたガスバリア性のラミネートフィルム5が、熱溶着材料側を上側にしたものが真空包装機6の供試台7に設置されている。このラミネートフィルム5の上にはラミネートフィルム5の最内層の熱可塑樹脂材料と同じ材料から成りかつ芯材2の形状と相似形の凹部69を有するシート部材70が、その各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。シート部材70の凹部69に芯材2は配置されその上にラミネートフィルム5がその熱溶着材料側が芯材2側を向くように、かつ各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0329】
真空包装機6において、熱溶着バー8がラミネートフィルム5の4つの外周部を熱溶着することができる位置に配置されている。また、芯材2はそれぞれが独立した空間内に位置するように配置されている。
【0330】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、熱溶着バー8によりラミネートフィルム5の4つの外周部を熱溶着することにより4つの熱溶着部12が形成され、これにより複数の芯材2が充填されかつその芯材2はそれぞれが独立した空間内に位置する多芯真空断熱材71が作製される。
【0331】
この多芯真空断熱材71を真空包装機6より取り出し、この多芯真空断熱材71を熱溶着体14を有する熱溶着装置15の作業台16の上に設置する。熱溶着体14はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台6の上に置かれた供試品(多芯真空断熱材71)に対し熱溶着を行う。
【0332】
この熱溶着装置15により、常圧環境下で多芯真空断熱材71の熱溶着部12で囲まれた部分をすべて熱溶着体14により熱溶着することにより、芯材2の周囲には熱溶着部61を含む多芯真空断熱材72が形成される。
【0333】
その後、多芯真空断熱材72よりそれぞれの芯材2を熱溶着部61を含んだ状態で切り離すことにより芯材2を核とした複数の真空断熱材1を得ることができる。
【0334】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材56を作製することができる。また、芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材56を作製することができる効果が得られる。
【0335】
また、常圧環境下で前記芯材2の周囲にラミネートフィルム5の熱溶着部12を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧で熱溶着部61を設ける作業を行うことができる。
【0336】
更に、ラミネートフィルム5の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材2の周囲にラミネートフィルム5の熱溶着部61を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0337】
その上に、シート部材70はラミネートフィルム5の最内層の熱可塑樹脂材料と同じ材料であり、芯材2の形状と相似形の凹部69を切り欠いたものであるため、凹部69に芯材2を配置し減圧して熱溶着をすることにより芯材2間に適正な距離を保つことができると共に減圧時の芯材2のズレを防止できる効果が得られる。
【0338】
その上にまた、シート部材70はラミネートフィルム5の最内層の熱可塑樹脂材料と同じ材料から成り、かつ芯材2の形状と相似形の凹部69を有しており、この凹部69に芯材2を配置した場合、凹部69には底があるためシート部材70の移動時に芯材2はシート部材70より落ちることがなく位置が固定されているため、ラミネートフィルム5へのシート部材70のセッティングが簡単になる効果が得られる。、
上記説明においては、外被材3がラミネートフィルム5として説明を行ったが外被材3はラミネート袋であっても同様の効果が得られる。また、ラミネートフィルム5、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。
【0339】
また、ラミネート袋は三方シール袋、四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0340】
尚、芯材2は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0341】
本実施の形態の真空断熱材の製造方法は、略同一平面上に互いに離間して配置される複数の芯材2と、熱可塑樹脂材料からなり複数の芯材2の形状および配置パターンに対応した複数の凹部69を上面に有するシート部材70とを、シート部材70の複数の凹部69のそれぞれに複数の芯材2を一つずつ配設した状態で、ガスバリア性で最内層がシート部材70と同じ熱可塑樹脂材料からなる外被材5で覆い、外被材5の内部を減圧すると共に複数の芯材2のそれぞれが独立した空間内に位置するようにそれぞれの芯材2の周囲に位置する外被材5とシート部材70とを熱溶着した多芯真空断熱材72を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材72における切断部分と前記切断部分に近接する芯材2との間に所定幅の熱溶着部61が残るように外被材5とシート部材70とを切断して、多芯真空断熱材72から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するものである。
【0342】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材2を有する多芯真空断熱材72を製造し、その後、多芯真空断熱材72から所望の真空断熱材を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機6を効率よく稼働でき、芯材2の周囲に位置する外被材5を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材2外周のヒレ状の外被材5周縁部を小さくできる。また、外被材5の最内層と同じ熱可塑樹脂材料からなり複数の芯材2の形状および配置パターンに対応した複数の凹部69のそれぞれに複数の芯材2を一つずつ配設したシート部材70を外被材5で覆うので、芯材2の周囲に位置する外被材5とシート部材70とを熱溶着するまで、それぞれの芯材2の位置関係や間隔を適正に保つことができ、他の芯材2の位置決め配置時や真空包装機6へのセッティング時や減圧時に芯材2に位置ずれが生じることを抑制でき、外被材5に対する複数の芯材2の位置ずれが生じたとしても、その複数の芯材2の位置ずれをシート部材70を使って一度に修正することできる。また、芯材2を設置するシート部材70の凹部69には底があるため、凹部69に芯材2を設置したシート部材70の移動時に、芯材2がシート部材70より落ちることがなく位置が固定されているため、外被材5へのシート部材70のセッティングが簡単になる効果が得られる。
【0343】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材5の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材2を覆う外被材5の外周部とシート部材70とを熱溶着して熱溶着部12を形成した後、常圧環境下でそれぞれの芯材2の周囲に位置する外被材5とシート部材70とを熱溶着して熱溶着部61を形成するものである。
【0344】
この真空断熱材の製造方法では、常圧環境下で芯材2の周囲に位置する外被材5とシート部材70とを熱溶着して熱溶着部61を形成するので、減圧環境下で芯材2の周囲に位置する外被材5とシート部材70とを熱溶着して熱溶着部61を形成する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材2を覆う外被材5の外周部に熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に芯材2の周囲に位置する外被材5とシート部材70とを熱溶着して熱溶着部61を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0345】
(実施の形態16)
以下、本発明の実施の形態16の真空断熱材の製造方法について説明するが、実施の形態12と同一構成については、同一符号を付してその詳細な説明は省略する。
【0346】
図44は本発明の実施の形態16の真空断熱材の製造方法で使用する芯材の縦断面図、図45は同実施の形態で使用する真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図、図46は同実施の形態で使用する熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図、図47は同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図である。
【0347】
本実施の形態の真空断熱材の製造方法により製造される真空断熱材56は、湿式シリカとカーボンブラックを含有し固形化された芯材2を外被材3の最内層の熱可塑樹脂材料と同じ材料から成り、かつ芯材2の形状と相似形の孔57を切り欠いたシート部材58の孔57に配置し、これを外被材3で覆い外被材3の内部は減圧されることにより製造されている。芯材2の周囲に熱溶着部59が設けられる。
【0348】
この真空断熱材56の製造方法を次に説明する。芯材73は湿式シリカとカーボンブラックを含有し固形化された芯材であり、の外周部が他の部分より薄くなっている。
【0349】
長方形にカットされたガスバリア性のラミネートフィルム5が、熱溶着材料側を上側にしたものが真空包装機6の供試台7に設置されている。このラミネートフィルム5の上にはラミネートフィルム5の最内層の熱可塑樹脂材料と同じ材料から成り、かつ芯材73の形状と相似形の孔57を切り欠いたシート部材58がその各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0350】
シート部材58の孔57に芯材73は配置され、その上にラミネートフィルム5がその熱溶着材料側が芯材73側を向くようにかつ各端面がその下のラミネートフィルム5の各端面にほぼ一致するように設置されている。
【0351】
真空包装機6において、熱溶着バー8がラミネートフィルム5の4つの外周部を熱溶着することができる位置に配置されている。また、芯材73はそれぞれが独立した空間内に位置するように配置されている。
【0352】
真空包装機6の蓋9閉じて真空包装機6を起動すると真空ポンプ10が運転を開始し、真空包装機6の内部は排気口11により排気され0.1Torr以下に減圧した後、前記熱溶着バー8によりラミネートフィルム5の4つの外周部を熱溶着することにより4つの熱溶着部12が形成され、これにより複数の芯材73が充填されかつその芯材73はそれぞれが独立した空間内に位置する多芯真空断熱材74が作製される。
【0353】
この多芯真空断熱材74を真空包装機6より取り出し、この多芯真空断熱材74を熱溶着体14を有する熱溶着装置15の作業台16の上に設置する。熱溶着体14はスイッチにより、内蔵されたヒーターが加熱されると共に、上下に移動し作業台6の上に置かれた供試品(多芯真空断熱材74)に対し熱溶着を行う。
【0354】
この熱溶着装置15により、常圧環境下で真空断熱材74の熱溶着部12で囲まれた部分をすべて熱溶着体14により熱溶着することにより、芯材73の周囲には熱溶着部61を含む多芯真空断熱材75が形成される。
【0355】
その後、多芯真空断熱材75よりそれぞれの芯材73を熱溶着部61を含んだ状態で切り離すことにより芯材73を核とした複数の真空断熱材56を得ることができる。
【0356】
この真空断熱材の製造方法により、一回の減圧操作で多数の真空断熱材56を作製することができる。また、芯材73の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよく、これらの形状及びこれらの形状に貫通孔を設けた形状の真空断熱材56を作製することができる効果が得られる。
【0357】
また、常圧環境下で芯材73の周囲にラミネートフィルム5の熱溶着部12を設けるため真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できると共に常圧環境下で熱溶着部61を設ける作業を行うことができる。
【0358】
更に、ラミネートフィルム5の外周部のみに熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に常圧で芯材73の周囲にラミネートフィルム5の熱溶着部61を設ける作業を行うことができるため、作業がフレキシブルに行える効果が得られる。
【0359】
その上に、シート部材58はラミネートフィルム5の最内層の熱可塑樹脂材料と同じ材料であり、芯材73の形状と相似形の孔57を切り欠いたものであるため、前記孔57に芯材73を配置し減圧して熱溶着をすることにより芯材73間に適正な距離を保つことができると共に減圧時の芯材73のズレを防止できる効果が得られる。
【0360】
また、芯材73の厚みが厚くなった場合でも芯材73の外周部は他より薄くなっているため芯材73の周囲に形成する熱溶着部61が作製しやすく熱溶着部61の作製を確実に行うことができ、それによる真空断熱材56のリークを抑える効果が得られる。
【0361】
上記説明においては、シート部材58を使用する場合について説明を行ったが、シート部材58を使用しない場合でも問題はない。また、外被材3がラミネートフィルム5として説明を行ったが外被材3はラミネート袋であっても同様の効果が得られる。
【0362】
また、ラミネートフィルム5、ラミネート袋39としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。また、ラミネート袋は三方シール袋、四方シール袋、ガゼット袋、ピロー袋、センターテープシール袋等があり特に指定するものではない。
【0363】
尚、芯材73は湿式シリカとカーボンブラックを含有し固形化されたものとして説明を行ったが、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機および有機の粉末、無機および有機の繊維材料、その他のシリカ粉末、発泡パーライト粉砕粉末、珪藻土粉末、珪酸カルシウム粉末、炭酸カルシウム粉末、クレーおよびタルクなどの無機粉末や、グラスウール、セラミックファイバーなどの無機繊維などが利用でき、シート状のガラス繊維を重ねて多層化したものでもよい。
【0364】
本実施の形態の真空断熱材の製造方法は、略同一平面上に互いに離間して配置される複数の芯材73と、熱可塑樹脂材料からなり複数の芯材73の形状および配置パターンに対応した複数の孔57を有するシート部材58とを、シート部材58の複数の孔57のそれぞれに複数の芯材73を一つずつ配設した状態で、ガスバリア性で最内層がシート部材58と同じ熱可塑樹脂材料からなる外被材5で覆い、外被材5の内部を減圧すると共に複数の芯材73のそれぞれが独立した空間内に位置するようにそれぞれの芯材73の周囲に位置する外被材5とシート部材58とを熱溶着した多芯真空断熱材75を製造する多芯真空断熱材製造工程と、多芯真空断熱材製造工程で製造された多芯真空断熱材75における切断部分と前記切断部分に近接する芯材73との間に所定幅の熱溶着部61が残るように外被材5とシート部材58とを切断して、多芯真空断熱材75から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するものである。
【0365】
この真空断熱材の製造方法では、一旦、略同一平面上に互いに離間して配置された複数の芯材73を有する多芯真空断熱材75を製造し、その後、多芯真空断熱材75から所望の真空断熱材を順次切り離すようにしたので、真空包装機6の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機6を効率よく稼働でき、芯材73周囲に位置する外被材5を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材73周のヒレ状の外被材5周縁部(熱溶着部59)の幅をを小さくできる。また、外被材5の最内層と同じ熱可塑樹脂材料からなり複数の芯材73の形状および配置パターンに対応した複数の孔57のそれぞれに複数の芯材73を一つずつ配設したシート部材58を外被材5で覆うので、芯材73の周囲に位置する外被材5とシート部材58とを熱溶着するまで、それぞれの芯材73の位置関係や間隔を適正に保つことができ、他の芯材73の位置決め配置時や真空包装機6へのセッティング時や減圧時に芯材73に位置ずれが生じることを抑制でき、外被材5に対する複数の芯材73の位置ずれが生じたとしても、その複数の芯材73の位置ずれをシート部材58を使って一度に修正することができる。
【0366】
また、本実施の形態の真空断熱材の製造方法は、多芯真空断熱材製造工程において、外被材5の内部が減圧状態を維持したまま密閉されるように真空包装機6内の減圧環境下で複数の芯材73を覆う外被材5の外周部とシート部材58とを熱溶着して熱溶着部12を形成した後、常圧環境下でそれぞれの芯材73の周囲に位置する外被材5とシート部材58とを熱溶着して熱溶着部61を形成するものである。
【0367】
この真空断熱材の製造方法では、常圧環境下で芯材73の周囲に位置する外被材5とシート部材58とを熱溶着して熱溶着部61を形成するので、減圧環境下で芯材73の周囲に位置する外被材5とシート部材58とを熱溶着して熱溶着部61を形成する場合より、熱溶着作業を行い易くなり、また、真空包装機6の使用時間が短くなり真空包装機6が効率的に使用できる。また、複数の芯材73を覆う外被材5の外周部に熱溶着部12を形成した状態で仕掛品を保管でき、都合の良い時間に芯材73の周囲に位置する外被材5とシート部材58とを熱溶着して熱溶着部61を形成する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0368】
また、本実施の形態の真空断熱材の製造方法では、芯材73は、外周部では外周端部に向かうほど厚みが薄くなる形状であるので、芯材73の厚みが厚くなった場合でも、外被材5の変形を比較的小さくできるので、芯材73の周囲に形成する熱溶着部61の作製を容易、確実に行うことができ、熱溶着部61からの外気の進入による真空断熱材の内圧の上昇とそれによる真空断熱材の断熱性能の低下を抑えることができる。
【0369】
(実施の形態17)
図48は本発明の実施の形態17による真空断熱材の縦断面図、図49は図48の要部拡大図である。
【0370】
本実施の形態の真空断熱材76は、湿式シリカとカーボンブラックを含有し固形化された芯材2をガスバリア性のラミネートフィルム77からなる外被材78で覆い外被材78の内部は減圧されている。芯材2の周囲に熱溶着部79が設けらる。
【0371】
また、外被材78は最外層80、ガスバリヤー層81、熱溶着層82から構成されている。ここで、最外層80はナイロン、ポエチレンテレフタレート等の熱可塑樹脂材料、ガスバリヤー層81はアルミ箔等の金属箔または金属蒸着合成樹脂が使用されている。熱溶着層81には無延伸ポリプロピレンフィルムが使用されている。
【0372】
一般的に、熱溶着層82としては、高密度ポリエチレンフィルム、低密度ポリエチレンフィルムが使用されるがこの熱溶着層82に無延伸ポリプロピレンフィルムを使用することにより、高密度ポリエチレンフィルム、低密度ポリエチレンフィルムを使用する場合に比較しその融点が約40℃高いためより高温まで使用できる効果が得られる。
【0373】
つまり、真空断熱材76はその形状を自由に作製することができるためノート型パーソナルコンピューターの発熱体であるCPUの熱対策に使用する場合、真空断熱材76の温度が高くなるため、融点の低い高密度ポリエチレンフィルム、低密度ポリエチレンフィルムでは温度による熱溶着層の剥離が生じ真空断熱材76としての長期信頼性が大幅に低下することより融点が高い無延伸ポリプロピレンフィルムを熱溶着層82適用することによりその長期信頼性を確保することができる効果が得られる。
【0374】
本実施の形態の真空断熱材76は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、外被材78の最内層(熱溶着層82)が無延伸ポリプロピレンフィルムであることを特徴とする。ここで、無延伸ポリプロピレンフィルムは他の熱溶着材料である高密度ポリエチレン、低密度ポリエチレンに比較してその融点が高いため、高密度ポリエチレン、低密度ポリエチレンを外被材の最内層の熱溶着材料に使用した真空断熱材よりもより高温で使用できる。
【0375】
(実施の形態18)
図50は本発明の実施の形態18による真空断熱材の縦断面図、図51は図50の要部拡大図である。
【0376】
本実施の形態の真空断熱材83は、湿式シリカとカーボンブラックを含有し固形化された芯材2をガスバリア性のラミネートフィルム84からなる外被材85で覆い外被材85の内部は減圧されている。芯材2の周囲に熱溶着部86が設けられる。
【0377】
また、外被材85は最外層87、ガスバリヤー層88、熱溶着層89から構成されている。ここで、ガスバリヤー層88はアルミ箔等の金属箔または金属蒸着合成樹脂が使用されている。また、熱溶着層89には融点が高い無延伸ポリプロピレンフィルムが使用されている。
【0378】
最外層87には一般的にナイロン、ポエチレンテレフタレート等の熱可塑樹脂材料が使用されるが、この最外層88にフッ素系フィルムを適用することにより、ナイロン、ポエチレンテレフタレート等の熱可塑樹脂材料に比較し、その難燃性、連続最高使用温度が優れるため、難燃性が必要とされまたその使用温度が高いノート型パーソナルコンピューターの熱対策、コピー機用ヒーターからのトナーの断熱等に適用できる効果が得られる。
【0379】
本実施の形態の真空断熱材83は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、外被材85の最内層(熱溶着層89)が無延伸ポリプロピレンフィルムであることを特徴とする。ここで、無延伸ポリプロピレンフィルムは他の熱溶着材料である高密度ポリエチレン、低密度ポリエチレンに比較してその融点が高いため、高密度ポリエチレン、低密度ポリエチレンを外被材の最内層の熱溶着材料に使用した真空断熱材よりもより高温で使用できる。
【0380】
本実施の形態の真空断熱材83は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、外被材85の最外層87がフッ素系フィルムであることを特徴とする。外被材85の最外層87にフッ素系フィルムを適用することにより、その難燃性、連続最高使用温度が優れるため、難燃性が必要とされまたその使用温度が高い用途に使用できる。
【0381】
(実施の形態19)
図52は本発明の実施の形態19による真空断熱材の縦断面図である。
【0382】
本実施の形態の真空断熱材90は、乾式シリカとカーボンブラックを含有し固形化された芯材91をガスバリア性のラミネートフィルム92からなる外被材93で覆い外被材93の内部は減圧されている。芯材2の周囲に熱溶着部94が設けられる。
【0383】
芯材91の作製は、乾式シリカとカーボンブラックを重量比95対5で混合し、これにバインダとしてガラス繊維を加えこれを加熱しながら圧縮して固形化したものである。この固形化したものを所定の寸法に切断して芯材91が得られる。
【0384】
これを実施の形態1から16のいずれかの真空断熱材の製造方法により製造された真空断熱材の芯材として適用することにより以下の効果が得られる。
【0385】
つまり、芯材91は乾式シリカ、カーボンブラックが含まれた固形化された芯材であるため、芯材91がラミネートフィルム92への設置、真空引き時においてバラバラ粉化することなく真空断熱材90を製造することができる。
【0386】
また、乾式シリカは圧力依存性が小さいため真空断熱材90への空気の流入に対しその影響度が小さい。また、カーボンブラックは芯材91の黒度を上げる点等により真空断熱材90の熱伝導率を引き下げる効果を有している。これより、真空断熱材90の熱伝導率を長期間小さい値に抑えることができる。
【0387】
本実施の形態の真空断熱材90は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、芯材91に、乾式シリカとカーボンブラックが含まれているので、乾式シリカの低圧力依存性及びカーボンブラック添加による熱伝導率の低減効果により真空断熱材90内に空気が流入してもその低圧力依存性効果及び熱伝導率の低減効果により真空断熱材90の熱伝導率を長期間小さい値に抑えることができる。
【0388】
(実施の形態20)
図53は本発明の実施の形態20による真空断熱材の縦断面図、図54は図53の要部拡大図である。
【0389】
本実施の形態の真空断熱材95は、湿式シリカとカーボンブラックを含有し固形化された芯材2をガスバリア性のラミネートフィルム96からなる外被材97で覆い外被材97の内部は減圧されている。芯材2の周囲に熱溶着部98が設けられる。
【0390】
また、外被材97の端面部100を難燃性の粘着テープ99が覆うように真空断熱材95の全周に亘って設けられている。外被材97は最外層101、ガスバリヤー層102、熱溶着層103から構成されている。
【0391】
ここで、ガスバリヤー層102はアルミ箔等の金属箔または金属蒸着合成樹脂が使用されている。最外層101にはフッ素系フィルム、ナイロン、ポエチレンテレフタレート等の熱可塑樹脂材料が使用されており、熱溶着層103には無延伸ポリプロピレンフィルムが使用されている。
【0392】
これら構成材料の難燃性を考えた場合、無延伸ポリプロピレンフィルムが最も燃焼しやすい。例えば、最外層101にフッ素系フィルム、ガスバリヤー層102に金属箔、熱溶着層103に無延伸ポリプロピレンフィルムを適用した場合、最外層101及びガスバリヤー層102は燃焼しにくいが、熱溶着層103である無延伸ポリプロピレンフィルムは燃焼しやすい。
【0393】
熱溶着層用の材料として他に高密度ポリエチレンフィルム、低密度ポリエチレンフィルムがあるがこれらも燃焼しやすく、熱溶着層103を燃焼しにくくするにはフッ素系フィルムを使用するしかないが、これらは熱溶着温度が高く最外層101がポエチレンテレフタレート、ナイロン等では熱溶着できない問題がある。
【0394】
これに対し、真空断熱材95の端面部100には無延伸ポリプロピレンフィルムが露出しているためここに難燃性の粘着テープ99を貼ることにより無延伸ポリプロピレンフィルムが難燃性の粘着テープ99に隠れるため真空断熱材95としての難燃性を確保できる。
【0395】
また、この真空断熱材95は実施の形態1から16のいずれかの真空断熱材の製造方法により製造されたものであるため、その熱溶着部98が十分な長さが取れなく、また真空断熱材95の芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよいため、熱溶着部98を折り曲げて真空断熱材95の端面部100から場所を移動させる必要があるが、これらは困難である。しかし、難燃性の粘着テープ95を用いることによりこれらを行う必要がない。
【0396】
本実施の形態の真空断熱材95は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、外被材97の最内層(熱溶着層103)が無延伸ポリプロピレンフィルムであることを特徴とする。ここで、無延伸ポリプロピレンフィルムは他の熱溶着材料である高密度ポリエチレン、低密度ポリエチレンに比較してその融点が高いため、高密度ポリエチレン、低密度ポリエチレンを外被材の最内層の熱溶着材料に使用した真空断熱材よりもより高温で使用できる。
【0397】
本実施の形態の真空断熱材95は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、切り離された外被材97の切断面を難燃性テープ(難燃性の粘着テープ)99で覆ったので、真空断熱材95の外被材97の切断面(端面)には燃えやすい熱溶着材料(最内層の熱溶着層103の無延伸ポリプロピレンフィルム)が露出するが、外被材97の切断面(端面部100)を難燃性テープ99で覆うことにより、真空断熱材95の難燃性レベルの向上を図ることができ、この真空断熱材95を高温環境下で使用しやすくなる。
【0398】
(実施の形態21)
以下、本発明の実施の形態21の真空断熱材の製造方法について説明するが、実施の形態20と同一構成については、同一符号を付してその詳細な説明は省略する。
【0399】
図55は本発明の実施の形態21による真空断熱材の縦断面図、図56は図55の要部拡大図である。
【0400】
本実施の形態の真空断熱材95は、湿式シリカとカーボンブラックを含有し固形化された芯材2をガスバリア性のラミネートフィルム96からなる外被材97で覆い外被材97の内部は減圧されている。芯材2の周囲に熱溶着部98が設けられる。
【0401】
また、外被材97の端面部100を難燃性のシーラー(下塗り剤の一種)99が覆うように真空断熱材95の全周に亘って設けられている。外被材97は最外層101、ガスバリヤー層102、熱溶着層103から構成されている。ここで、ガスバリヤー層102はアルミ箔等の金属箔または金属蒸着合成樹脂が使用されている。
【0402】
最外層101にはフッ素系フィルム、ナイロン、ポエチレンテレフタレート等の熱可塑樹脂材料が使用されており、熱溶着層103には無延伸ポリプロピレンフィルムが使用されている。
【0403】
これら構成材料の難燃性を考えた場合、無延伸ポリプロピレンフィルムが最も燃焼しやすい。例えば、最外層101にフッ素系フィルム、ガスバリヤー層102に金属箔、熱溶着層103に無延伸ポリプロピレンフィルムを適用した場合、最外層101及びガスバリヤー層102は燃焼しにくいが、熱溶着層103である無延伸ポリプロピレンフィルムは燃焼しやすい。
【0404】
熱溶着層用の材料として他に高密度ポリエチレンフィルム、低密度ポリエチレンフィルムがあるがこれらも燃焼しやすく、熱溶着層103を燃焼しにくくするにはフッ素系フィルムを使用するしかないが、これらは熱溶着温度が高く最外層101がポエチレンテレフタレート、ナイロン等では熱溶着できない問題がある。
【0405】
これに対し、真空断熱材95の端面部100には無延伸ポリプロピレンフィルムが露出しているためここに難燃性のシーラー104を塗布することにより無延伸ポリプロピレンフィルムが難燃性のシーラー104に隠れるため真空断熱材95としての難燃性を確保できる。
【0406】
また、この真空断熱材95は実施の形態1から16のいずれかの真空断熱材の製造方法により製造されたものであるためその熱溶着部98が十分な長さが取れなく、また真空断熱材95の芯材2の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよいため、熱溶着部98を折り曲げて真空断熱材95の端面部100から場所を移動させる必要があるが、これらは困難である。
【0407】
しかし、上記難燃性の粘着テープ95を用いることによりこれらを行う必要がない効果が得られる。また、難燃性シーラー104はフレキシブルであり、前記真空断熱材95がどのような形状であってもその熱溶着部98の端面部100に簡単に塗布することができる効果が得られる。
【0408】
本実施の形態の真空断熱材95は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、外被材97の最内層(熱溶着層103)が無延伸ポリプロピレンフィルムであることを特徴とする。ここで、無延伸ポリプロピレンフィルムは他の熱溶着材料である高密度ポリエチレン、低密度ポリエチレンに比較してその融点が高いため、高密度ポリエチレン、低密度ポリエチレンを外被材の最内層の熱溶着材料に使用した真空断熱材よりもより高温で使用できる。
【0409】
本実施の形態の真空断熱材95は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、切り離された外被材97の切断面に難燃性のシーラー104を塗布したので、真空断熱材95の外被材97の切断面(端面部100)には燃えやすい熱溶着材料(最内層の熱溶着層103の無延伸ポリプロピレンフィルム)が露出するが、外被材97の切断面(端面)に難燃性のシーラー104を塗布することにより、真空断熱材95の難燃性レベルの向上を図ることができ、この真空断熱材95を高温環境下で使用しやすくなる。また、難燃性シーラー104はフレキシブルであり、真空断熱材95がどのような形状であっても、その外被材97の切断面(端面)に塗布し燃えやすい熱溶着材料を覆い隠すことができる。
【0410】
(実施の形態22)
図57は本発明の実施の形態22による真空断熱材の縦断面図、図58は図57の要部拡大図、図59は同実施の形態による真空断熱材を装着したノート型パーソナルコンピューターの縦断面図である。
【0411】
本実施の実施の形態の真空断熱材105は、湿式シリカとカーボンブラックを含有し固形化された芯材2をガスバリア性のラミネートフィルム106からなる外被材107で覆い外被材107の内部は減圧されている。芯材2の周囲に熱溶着部108が設けられる。
【0412】
また、外被材107の端面部110を覆うように難燃性の粘着テープ109が真空断熱材105の全周に亘って設けられている。外被材107は最外層111、ガスバリヤー層112、熱溶着層113から構成されている。
【0413】
ここで、ガスバリヤー層112はアルミ箔等の金属箔と金属蒸着合成樹脂が使用されている。最外層111にはフッ素系フィルムが使用されており、熱溶着層113には無延伸ポリプロピレンフィルムが使用されている。
【0414】
図58において、ノート型パーソナルコンピューター114は、プリント基板115上にCPU116とその他各チップを実装している。CPU116の冷却装置117は、CPU116に接する伝熱ブロック118、熱を移送するヒートパイプ119より構成される。また、放熱板120が内部の熱を拡散かつ放熱する。
【0415】
真空断熱材105は、CPU116の真下のパソコン底面121の内側、およびCPU116の真上のキーボード裏面122に接着剤で密着させて装着している。
【0416】
このようなノート型パーソナルコンピューター114に最外層111にフッ素系フィルム、その端面部110に難燃性の粘着テープ109が適用されている真空断熱材105が使用されているため難燃性にすぐれており、精密部品同様、発火防止等の安全性を向上させる効果が得られる。
【0417】
また真空断熱材105の断熱効果によりパーソナルコンピューター底面121およびCPU116真上のキーボード表面の熱が伝わり、利用者に不快感を与えることがない。
【0418】
更に、この真空断熱材105は実施の形態1から16のいずれかの真空断熱材の製造方法により製造されたもの、つまり、小さい真空断熱材を大量に生産することができる方法によって生産された物であること及び真空断熱材105の形状は特に規定することなく3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであるため、ノート型パーソナルコンピューター114のCPU116の熱被対策用として小さい真空断熱材を大量に生産すること及び真空断熱材としていろいろな形状が要求される場合にも簡単に対応できる効果が得られる。
【0419】
なお、本実施の形態では、ノート型パーソナルコンピューターで説明したが、コピー機、プリンター、ファックス、コピー機・プリンター・ファックスの複合機等の他の情報機器にも適用可能である。
【0420】
本実施の形態の真空断熱材105は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、外被材107の最内層(熱溶着層113)が無延伸ポリプロピレンフィルムであることを特徴とする。ここで、無延伸ポリプロピレンフィルムは他の熱溶着材料である高密度ポリエチレン、低密度ポリエチレンに比較してその融点が高いため、高密度ポリエチレン、低密度ポリエチレンを外被材の最内層の熱溶着材料に使用した真空断熱材よりもより高温で使用できる。
【0421】
本実施の形態の真空断熱材105は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、外被材107の最外層111がフッ素系フィルムであることを特徴とする。外被材107の最外層111にフッ素系フィルムを適用することにより、その難燃性、連続最高使用温度が優れるため、難燃性が必要とされまたその使用温度が高い用途に使用できる。
【0422】
本実施の形態の真空断熱材105は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、切り離された外被材107の切断面を難燃性テープ(難燃性の粘着テープ)109で覆ったので、真空断熱材105の外被材107の切断面(端面)には燃えやすい熱溶着材料(最内層の熱溶着層113の無延伸ポリプロピレンフィルム)が露出するが、外被材107の切断面(端面部110)を難燃性テープ109で覆うことにより、真空断熱材105の難燃性レベルの向上を図ることができ、この真空断熱材105を高温環境下で使用しやすくなる。
【0423】
本実施の形態のノート型パーソナルコンピューター114は、真空断熱材105を、主な発熱源であるCPU116が配置されているプリント基板115の下のノート型パーソナルコンピューターの底面121(の断熱部)またはCPU116が配置されているプリント基板115の上のノート型パーソナルコンピューターのキーボード裏面122(の断熱部)に設置することにより、CPU116の発熱による不快感の防止を行うことができる。
【0424】
(実施の形態23)
以下、本発明の実施の形態23の真空断熱材及びそれを用いた印刷装置について説明するが、実施の形態22と同一構成については、同一符号を付してその詳細な説明は省略する。
【0425】
図60は本発明の実施の形態23による真空断熱材を装着した印刷装置の縦断面図である。
【0426】
本実施の実施の形態の真空断熱材105は、湿式シリカとカーボンブラックを含有し固形化された芯材2をガスバリア性のラミネートフィルム106からなる外被材107で覆い外被材107の内部は減圧されている。芯材2の周囲に熱溶着部108が設けられる。また、外被材107の端面部110を覆うように難燃性の粘着テープ109が真空断熱材105の全周に亘って設けられている。
【0427】
外被材107は最外層111、ガスバリヤー層112、熱溶着層113から構成されている。ここで、ガスバリヤー層112はアルミ箔等の金属箔と金属蒸着合成樹脂が使用されている。
【0428】
最外層111にはフッ素系フィルムが使用されており、熱溶着層113には無延伸ポリプロピレンフィルムが使用されている。
【0429】
図60は真空断熱材105を貼りつけている印刷装置内部の断面図で、印刷装置123は、加熱ユニット124と、熱定着ローラー125と、ヒーター126と、トナー127と、回収トナー128とを有する。
【0430】
図60に示すように、加熱ユニット124の壁面に、真空断熱材105をそのガスバリヤー層が金属箔側になるよう貼りつけているため、加熱ユニット124の温度が高温になっていても、真空断熱材105の断熱効果により長期間熱を断熱し、熱に弱いトナー127の固化を防ぐことができる。
【0431】
また、従来は加熱ユニット124の熱がトナー127に伝わるのを防ぐために、ファンなどの放熱部品を利用して排熱しており、省エネルギーと逆行していた。しかし真空断熱材105を加熱ユニット124の壁面に使用すると、通常のグラスウール等の断熱材に比較し断熱効果が大きいためファンなどの放熱部品を使用しなくて済み、印刷装置123の省エネルギーを図ることができる効果が得られる。
【0432】
また、真空断熱材105は通常の断熱材に比較し同一断熱効果ではその厚みを約1/10程度に薄くできるため、印刷装置123の中の断熱材のスペースを小さくできることにより印刷装置123の小型化、あるいは内部に空間ができることによる同一寸法での高機能が図れるメリットがある。
【0433】
真空断熱材105は、説明を行った印刷装置123であるコピー機やプリンターのヒーターからの熱以外にも、同じように高温の熱源から断熱する必要がある製品においても使用することができる。
【0434】
本実施の形態の真空断熱材105は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、外被材107の最内層(熱溶着層113)が無延伸ポリプロピレンフィルムであることを特徴とする。ここで、無延伸ポリプロピレンフィルムは他の熱溶着材料である高密度ポリエチレン、低密度ポリエチレンに比較してその融点が高いため、高密度ポリエチレン、低密度ポリエチレンを外被材の最内層の熱溶着材料に使用した真空断熱材よりもより高温で使用できる。
【0435】
本実施の形態の真空断熱材105は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、外被材107の最外層111がフッ素系フィルムであることを特徴とする。外被材107の最外層111にフッ素系フィルムを適用することにより、その難燃性、連続最高使用温度が優れるため、難燃性が必要とされまたその使用温度が高い用途に使用できる。
【0436】
本実施の形態の真空断熱材105は、実施の形態1から16のいずれかの真空断熱材の製造方法により製造され、切り離された外被材107の切断面を難燃性テープ(難燃性の粘着テープ)109で覆ったので、真空断熱材105の外被材107の切断面(端面)には燃えやすい熱溶着材料(最内層の熱溶着層113の無延伸ポリプロピレンフィルム)が露出するが、外被材107の切断面(端面部110)を難燃性テープ109で覆うことにより、真空断熱材105の難燃性レベルの向上を図ることができ、この真空断熱材105を高温環境下で使用しやすくなる。
【0437】
本実施の形態の印刷装置123は、断熱部に真空断熱材105を設けたものである。従来は加熱ユニット124の熱がトナー127に伝わるのを防ぐために、ファンなどの放熱部品を利用して排熱していたが、真空断熱材105を加熱ユニット124の断熱材に使用すると、通常のグラスウール等の断熱材に比較し断熱効果が大きいためファンなどの放熱部品を使用しなくて済み、印刷装置123の省エネルギーを図ることができる。また、真空断熱材105は通常のグラスウール等の断熱材に比較し同一断熱効果ではその厚みを約1/10程度に薄くできるため、印刷装置123の中の断熱材のスペースを小さくできることにより印刷装置123の小型化、あるいは内部に空間ができることによる同一寸法での高機能が図れるメリットがある。
【0438】
(実施の形態24)
以下、本発明の実施の形態24の真空断熱材について説明する
図61は本発明の実施の形態24で使用する真空断熱材の芯材及び芯材の残りの端材の斜視図、図62は同実施の形態による真空断熱材の縦断面図である。
【0439】
本実施の形態の真空断熱材129の芯材130は、ガラス繊維またはガラス繊維を無機系あるいは有機系のバインダーにより固めたものより任意の形状を切り出したもの、あるいは芯材130を切り出した残りの端材131を再生したもの、または粉体または粉体を無機系あるいは有機系のバインダーにより固めたものより任意の形状を切り出したもの、あるいは芯材130を切り出した残りの端材131を再生したものである。
【0440】
ガラス繊維の再生に関しては、端材131を細かく切断し、これの一部を新品の芯材に混合する方法、端材131を溶かして再生し再度ガラス繊維を製造する方法等が考えられる。
【0441】
また粉体の再生に関しては、端材131を再度粉化し、これを新品の粉体に混合して使用する方法等が考えられる。ガラス繊維の場合、端材131を新品のガラス繊維に一部混合したものを芯材130として用い、実施の形態1から16のいずれかの真空断熱材の製造方法により製造された真空断熱材129では、0.0005〜0.0010〔W/(m・k)〕程度の熱伝導率の低下レベル、また端材131を溶かして再生し再度ガラス繊維を製造する方法で作製された芯材130を用いた真空断熱材129では熱伝導率はほとんど変化しない。
【0442】
粉体の場合も、端材131を粉化しこれを新品の粉体に混合したものを芯材130として用い、実施の形態1から16のいずれかの真空断熱材の製造方法により製造された真空断熱材129では、0.0005〜0.0010〔W/(m・k)〕程度の熱伝導率の低下レベルであり、十分芯材130として適用は可能である。
【0443】
また、実施の形態1から16のいずれかの真空断熱材の製造方法では、芯材130の形状は3つ以上の角を有する多角形または略円形または略楕円形または3つ以上の角を有する多角形の少なくとも1つの角また辺を切り欠いた形状を有するもの及びこれらの形状に貫通孔が設けられたものであればよいため、所定形状のガラス繊維またはガラス繊維をホウ酸等のバインダーにより固めたものより芯材130を切り出す時に必ず端材131が発生するため、再生可能な芯材でなければその端材131をゴミとして廃棄しなければならないため、再生可能な芯材130を用いて真空断熱材129を作製することにより、芯材130が再生でき芯材130の有効活用が可能となる効果が得られる。
【0444】
なお、本発明の実施の形態1から16で説明した真空断熱材の製造方法は、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を多芯真空断熱材製造工程で製造し、次の真空断熱材切り離し工程において、多芯真空断熱材製造工程で製造された多芯真空断熱材から芯材が一つの真空断熱材を順次切り離すものであるが、切り離す真空断熱材は芯材が一つだけの真空断熱材である必要はなく、真空断熱材切り離し工程で複数の芯材を有する真空断熱材を切り離しても構わない。
【0445】
また、本発明の実施の形態1から16で説明した真空断熱材の製造方法は、多芯真空断熱材製造工程と真空断熱材切り離し工程とを有するが、多芯真空断熱材製造工程における多芯真空断熱材の製造方法は、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材のみを製造する場合にも優れた効果を有する。
【0446】
【発明の効果】
本発明の請求項1に記載の真空断熱材の製造方法の発明は、略同一平面上に互いに離間して配置された複数の芯材を、ガスバリア性の外被材で覆い、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材を切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するので、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。
【0447】
請求項2に記載の真空断熱材の製造方法の発明は、請求項1に記載の発明の多芯真空断熱材製造工程において、前記外被材の内部が減圧状態を維持したまま密閉されるように減圧環境下で前記複数の芯材を覆う外被材の外周部を熱溶着した後、常圧環境下でそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着するので、請求項1に記載の発明の効果に加えて、常圧環境下で芯材の周囲に位置する外被材を熱溶着するので、減圧環境下で芯材の周囲に位置する外被材を熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機の使用時間が短くなり真空包装機が効率的に使用できる。また、複数の芯材を覆う外被材の外周部に熱溶着部を形成した状態で仕掛品を保管でき、都合の良い時間に芯材の周囲に位置する外被材を熱溶着する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0448】
請求項3に記載の真空断熱材の製造方法の発明は、請求項1に記載の発明の多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業を、減圧環境下で行うので、請求項1に記載の発明の効果に加えて、芯材の周囲に位置する外被材を熱溶着する際に、熱溶着部を設ける順番を任意に決定できる。すなわち、後回しにすると先の熱溶着作業の影響で皺ができていて熱溶着作業が困難になる熱溶着箇所を先に熱溶着することにより皺の発生を防ぎ、熱溶着部からのリークのない真空断熱材を得ることができる。また、複数の芯材を覆う外被材の外周部を熱溶着せずに、外被材における芯材の周囲に位置する部分のみを熱溶着することもできる。
【0449】
請求項4に記載の真空断熱材の製造方法の発明は、請求項1から3のいずれか一項に記載の発明の多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業に、押し当て面に複数の芯材の形状および配置パターンに対応した凹部を有し一度の前記外被材への押し当て及び加熱によりそれぞれの前記芯材の周囲に位置する前記外被材の熱溶着すべき部分を熱溶着できる熱溶着体を使用するので、請求項1から3のいずれか一項に記載の発明の効果に加えて、この熱溶着体による一度の外被材への押し当て及び加熱により、それぞれの芯材の周囲に位置する外被材の熱溶着すべき部分を熱溶着でき、熱溶着作業が簡単に短時間に行える。
【0450】
請求項5に記載の真空断熱材の製造方法の発明は、請求項1から3のいずれか一項に記載の発明の多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、1回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設けるので、請求項1から3のいずれか一項に記載の発明の効果に加えて、この被熱溶着物の形状に追従しやすい熱溶着体を用いることにより、芯材と芯材の距離が十分長くなくても熱溶着体は形状に追従しやすいため、芯材と芯材の間の熱溶着層をしっかりとらえ確実に熱溶着部を作製することができる。また、1度に外被材に対し芯材の周囲に熱溶着部を形成していくため効率的に真空断熱材を作製することができる。また、芯材の位置が少しずれてしまった場合や芯材の形状が少し変わった場合にも熱溶着体の形状を変える必要なく適用できる。
【0451】
請求項6に記載の真空断熱材の製造方法の発明は、請求項1から3のいずれか一項に記載の発明の多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、複数回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設けるので、請求項1から3のいずれか一項に記載の発明の効果に加えて、この被熱溶着物の形状に追従しやすい熱溶着体を用いることにより、芯材と芯材の距離が十分長くなくても熱溶着体は形状に追従しやすいため、芯材と芯材の間の熱溶着層をしっかりとらえ確実に熱溶着部を作製することができる。また、この熱溶着体を複数回外被材に押し当てることにより、外被材を細かく分けて熱溶着部を形成していくことにより芯材の周囲に確実に熱溶着部を形成し、熱溶着部からのリークを低減することができる。また、芯材の位置が少しずれてしまった場合や芯材の形状が少し変わった場合にも熱溶着体の形状を変える必要なく適用できる。
【0452】
請求項7に記載の真空断熱材の製造方法の発明は、ガスバリア性で開口部を有する袋状の外被材の中に、複数の芯材を略同一平面上に互いに離間して配置し、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材を切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するので、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。また、外被材に開口部を有する袋状のものを使用しているため、袋状の外被材の中に、複数の芯材を配置したものを真空包装機に設置することにより、真空包装機へのセッティングが簡単になると共に、袋状外被材の開口部の1ケ所(1辺)を熱溶着すれば、外被材による複数の芯材の密閉ができるため、外被材内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材を密閉する場合よりも確実に行える。
【0453】
請求項8に記載の真空断熱材の製造方法の発明は、請求項7に記載の発明の多芯真空断熱材製造工程において、前記外被材の内部が減圧状態を維持したまま密閉されるように減圧環境下で前記複数の芯材を覆う外被材の開口部を熱溶着した後、常圧環境下でそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着するので、請求項7に記載の発明の効果に加えて、常圧環境下で芯材の周囲に位置する外被材を熱溶着するので、減圧環境下で芯材の周囲に位置する外被材を熱溶着する場合より、熱溶着作業を行い易くなり、また、真空包装機の使用時間が短くなり真空包装機が効率的に使用できる。また、複数の芯材を覆う袋状外被材の開口部に熱溶着部を形成した状態で仕掛品を保管でき、都合の良い時間に芯材の周囲に位置する外被材を熱溶着する作業を行うことができるため、多芯真空断熱材製造工程の作業がフレキシブルに行える。
【0454】
請求項9に記載の真空断熱材の製造方法の発明は、請求項7に記載の発明の多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業を、減圧環境下で行うので、請求項7に記載の発明の効果に加えて、芯材の周囲に位置する外被材を熱溶着する際に、熱溶着部を設ける順番を任意に決定できる。すなわち、後回しにすると先の熱溶着作業の影響で皺ができていて熱溶着作業が困難になる熱溶着箇所を先に熱溶着することにより皺の発生を防ぎ、熱溶着部からのリークのない真空断熱材を得ることができる。また、複数の芯材を覆う袋状外被材の開口部を熱溶着せずに、外被材における芯材の周囲に位置する部分のみを熱溶着することもできる。
【0455】
請求項10に記載の真空断熱材の製造方法の発明は、請求項7から9のいずれか一項に記載の発明の多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業に、押し当て面に複数の芯材の形状および配置パターンに対応した凹部を有し一度の前記外被材への押し当て及び加熱によりそれぞれの前記芯材の周囲に位置する前記外被材の熱溶着すべき部分を熱溶着できる熱溶着体を使用するので、請求項7から9のいずれか一項に記載の発明の効果に加えて、この熱溶着体による一度の外被材への押し当て及び加熱により、それぞれの芯材の周囲に位置する外被材の熱溶着すべき部分を熱溶着でき、熱溶着作業が簡単に短時間に行える。
【0456】
請求項11に記載の真空断熱材の製造方法の発明は、請求項7から9のいずれか一項に記載の発明の多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、1回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設けるので、請求項7から9のいずれか一項に記載の発明の効果に加えて、この被熱溶着物の形状に追従しやすい熱溶着体を用いることにより、芯材と芯材の距離が十分長くなくても熱溶着体は形状に追従しやすいため、芯材と芯材の間の熱溶着層をしっかりとらえ確実に熱溶着部を作製することができる。また、1度に外被材に対し芯材の周囲に熱溶着部を形成していくため効率的に真空断熱材を作製することができる。また、芯材の位置が少しずれてしまった場合や芯材の形状が少し変わった場合にも熱溶着体の形状を変える必要なく適用できる。
【0457】
請求項12に記載の真空断熱材の製造方法の発明は、請求項7から9のいずれか一項に記載の発明の多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、複数回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設けるので、請求項7から9のいずれか一項に記載の発明の効果に加えて、この被熱溶着物の形状に追従しやすい熱溶着体を用いることにより、芯材と芯材の距離が十分長くなくても熱溶着体は形状に追従しやすいため、芯材と芯材の間の熱溶着層をしっかりとらえ確実に熱溶着部を作製することができる。また、この熱溶着体を複数回外被材に押し当てることにより、外被材を細かく分けて熱溶着部を形成していくことにより芯材の周囲に確実に熱溶着部を形成し、熱溶着部からのリークを低減することができる。また、芯材の位置が少しずれてしまった場合や芯材の形状が少し変わった場合にも熱溶着体の形状を変える必要なく適用できる。
【0458】
請求項13に記載の真空断熱材の製造方法の発明は、請求項1から12のいずれか一項に記載の発明において、少なくとも一方の面に前記外被材の最内層の熱可塑樹脂材料に接着できる接着部を有する芯材を用いたので、請求項1から12のいずれか一項に記載の発明の効果に加えて、芯材を外被材の内面に接着できるため芯材の位置を固定でき、他の芯材の位置決め配置時や真空包装機へのセッティング時や減圧時に芯材に位置ずれが生じることを防止できる。
【0459】
請求項14に記載の真空断熱材の製造方法の発明は、略同一平面上に互いに離間して配置される複数の芯材と、熱可塑樹脂材料からなり前記複数の芯材の形状および配置パターンに対応した複数の孔を有するシート部材とを、前記シート部材の前記複数の孔のそれぞれに前記複数の芯材を一つずつ配設した状態で、ガスバリア性で最内層が前記シート部材と同じ熱可塑樹脂材料からなる外被材で覆い、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材と前記シート部材とを熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材と前記シート部材とを切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するので、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。また、外被材の最内層と同じ熱可塑樹脂材料からなり複数の芯材の形状および配置パターンに対応した複数の孔のそれぞれに複数の芯材を一つずつ配設したシート部材を外被材で覆うので、芯材の周囲に位置する外被材とシート部材とを熱溶着するまで、それぞれの芯材の位置関係や間隔を適正に保つことができ、他の芯材の位置決め配置時や真空包装機へのセッティング時や減圧時に芯材に位置ずれが生じることを抑制でき、外被材に対する複数の芯材の位置ずれが生じたとしても、その複数の芯材の位置ずれをシート部材を使って一度に修正することできる。
【0460】
請求項15に記載の真空断熱材の製造方法の発明は、ガスバリア性で開口部を有する袋状の外被材の中に、略同一平面上に互いに離間して配置される複数の芯材と、前記外被材の最内層と同じ熱可塑樹脂材料からなり前記複数の芯材の形状および配置パターンに対応した複数の孔を有するシート部材とを、前記シート部材の前記複数の孔のそれぞれに前記複数の芯材を一つずつ配設した状態で挿入し、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材と前記シート部材とを熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材と前記シート部材とを切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するので、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。また、外被材の最内層と同じ熱可塑樹脂材料からなり複数の芯材の形状および配置パターンに対応した複数の孔のそれぞれに複数の芯材を一つずつ配設したシート部材を、開口部を有する袋状の外被材の中に挿入するので、芯材の周囲に位置する外被材とシート部材とを熱溶着するまで、それぞれの芯材の位置関係や間隔を適正に保つことができ、他の芯材の位置決め配置時や真空包装機へのセッティング時や減圧時に芯材に位置ずれが生じることを抑制でき、外被材に対する複数の芯材の位置ずれが生じたとしても、その複数の芯材の位置ずれをシート部材を使って一度に修正することできる。また、外被材に開口部を有する袋状のものを使用しているため、袋状の外被材の中に、複数の孔に複数の芯材を一つずつ配設したシート部材を挿入したものを真空包装機に設置することにより、真空包装機へのセッティングが簡単になると共に、袋状外被材の開口部の1ケ所(1辺)を熱溶着すれば、外被材による複数の芯材の密閉ができるため、外被材内の真空度の保持が、一対のシート状外被材の4辺を熱溶着して複数の芯材を密閉する場合よりも確実に行える。また、シート部材は、袋状外被材の袋形成時の熱溶着部よりも内側に存在するため、シート部材と袋状の外被材の袋形成時の熱溶着部が重なることがなく、重なることによるシート部材を透過しての外被材内部への空気の侵入の虞がない。
【0461】
請求項16に記載の真空断熱材の製造方法の発明は、略同一平面上に互いに離間して配置される複数の芯材と、熱可塑樹脂材料からなり前記複数の芯材の形状および配置パターンに対応した複数の凹部を上面に有するシート部材とを、前記シート部材の前記複数の凹部のそれぞれに前記複数の芯材を一つずつ配設した状態で、ガスバリア性で最内層が前記シート部材と同じ熱可塑樹脂材料からなる外被材で覆い、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材と前記シート部材とを熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材と前記シート部材とを切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有するので、一旦、略同一平面上に互いに離間して配置された複数の芯材を有する多芯真空断熱材を製造し、その後、多芯真空断熱材から所望の真空断熱材を順次切り離すようにしたので、真空包装機の一回の減圧操作で、多数の真空断熱材もしくは大きさ形の異なる複数種の真空断熱材を作製することができ、真空包装機を効率よく稼働でき、芯材の周囲に位置する外被材を真空断熱材切り離し工程で切断する切断部分に至るまで熱溶着することにより、真空断熱材切り離し工程で切断した後の真空断熱材の芯材外周のヒレ状の外被材周縁部を小さくできる。また、外被材の最内層と同じ熱可塑樹脂材料からなり複数の芯材の形状および配置パターンに対応した複数の凹部のそれぞれに複数の芯材を一つずつ配設したシート部材を外被材で覆うので、芯材の周囲に位置する外被材とシート部材とを熱溶着するまで、それぞれの芯材の位置関係や間隔を適正に保つことができ、他の芯材の位置決め配置時や真空包装機へのセッティング時や減圧時に芯材に位置ずれが生じることを抑制でき、外被材に対する複数の芯材の位置ずれが生じたとしても、その複数の芯材の位置ずれをシート部材を使って一度に修正することできる。また、芯材を設置するシート部材の凹部には底があるため、凹部に芯材を設置したシート部材の移動時に、芯材がシート部材より落ちることがなく位置が固定されているため、外被材へのシート部材のセッティングが簡単になる効果が得られる。
【0462】
請求項17に記載の真空断熱材の製造方法の発明は、請求項14から16のいずれか一項に記載の発明における前記シート部材はその表裏両面の表面層が前記外被材の最内層の熱可塑樹脂材料と同じ材料であり、前記表裏両面の表面層の間に前記熱可塑樹脂材料より融点が高い熱可塑樹脂材料の層を設けた多層樹脂フィルムであるので、請求項14から16のいずれか一項に記載の発明の効果に加えて、シート部材は、表裏両面の表面層が外被材の最内層の熱可塑樹脂材料と同じ材料であり、表裏両面の表面層の間に前記熱可塑樹脂材料より融点が高い熱可塑樹脂材料の層を設けた多層樹脂フィルムであるので、芯材の厚みが厚くなった場合でも、シート部材の中間層の熱可塑樹脂材料の厚みを増やすことにより、外被材の変形を小さくし熱溶着部の作製を確実に行うことができる。
【0463】
請求項18に記載の真空断熱材の製造方法の発明は、請求項1から17のいずれか一項に記載の発明における前記芯材は、外周部では外周端部に向かうほど厚みが薄くなる形状であるので、請求項1から17のいずれか一項記載の発明の効果に加えて、芯材の厚みが厚くなった場合でも、外被材の変形を比較的小さくできるので、芯材の周囲に形成する熱溶着部の作製を容易、確実に行うことができ、熱溶着部からの外気の進入による真空断熱材の内圧の上昇とそれによる真空断熱材の断熱性能の低下を抑えることができる。
【0464】
請求項19に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記外被材の最内層が無延伸ポリプロピレンフィルムであるので、無延伸ポリプロピレンフィルムは他の熱溶着材料である高密度ポリエチレン、低密度ポリエチレンに比較してその融点が高いため、高密度ポリエチレン、低密度ポリエチレンを外被材の最内層の熱溶着材料に使用した真空断熱材よりもより高温で使用できる。
【0465】
請求項20に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記外被材の最外層がフッ素系フィルムであるので、外被材の最外層にフッ素系フィルムを適用することにより、その難燃性、連続最高使用温度が優れるため、難燃性が必要とされまたその使用温度が高い用途に使用できる。
【0466】
請求項21に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記芯材に、乾式シリカとカーボンブラックが含まれているので、乾式シリカの低圧力依存性及びカーボンブラック添加による熱伝導率の低減効果により真空断熱材内に空気が流入してもその低圧力依存性効果及び熱伝導率の低減効果により真空断熱材の熱伝導率を長期間小さい値に抑えることができる。
【0467】
請求項22に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記芯材が、リサイクル可能な繊維材料または粉体材料からなるので、この芯材は芯材を切り取った端材を再生しこれを再生品としての使用が可能となるため資源の有効活用が可能となる。
【0468】
請求項23に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、切り離された外被材の切断面を難燃性テープで覆ったので、真空断熱材の外被材の切断面(端面)には燃えやすい熱溶着材料が露出するが、外被材の切断面(端面)を難燃性テープで覆うことにより、真空断熱材の難燃性レベルの向上を図ることができ、この真空断熱材を高温環境下で使用しやすくなる。
【0469】
請求項24に記載の真空断熱材の発明は、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、切り離された外被材の切断面に難燃性のシーラーを塗布したので、真空断熱材の外被材の切断面(端面)には燃えやすい熱溶着材料が露出するが、外被材の切断面(端面)に難燃性のシーラー(下塗り剤の一種)を塗布することにより、真空断熱材の難燃性レベルの向上を図ることができ、この真空断熱材を高温環境下で使用しやすくなる。また、難燃性シーラーはフレキシブルであり、真空断熱材がどのような形状であっても、その外被材の切断面(端面)に塗布し燃えやすい熱溶着材料を覆い隠すことができる。
【0470】
請求項25に記載のノート型パーソナルコンピューターの発明は、断熱部に、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造された真空断熱材あるいは請求項19から24のいずれか一項記載の真空断熱材を設けたので、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造された真空断熱材あるいは請求項19から24のいずれか一項記載の真空断熱材を、主な発熱源であるCPUが配置されているプリント基板の下のノート型パーソナルコンピューターの底面(の断熱部)またはCPUが配置されているプリント基板の上のノート型パーソナルコンピューターのキーボードの下面(の断熱部)に設置することにより、CPUの発熱による不快感の防止を行うことができる。
【0471】
請求項26に記載の印刷装置の発明は、断熱部に、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造された真空断熱材あるいは請求項19から24のいずれか一項記載の真空断熱材を設けたので、従来は加熱ユニットの熱がトナーに伝わるのを防ぐために、ファンなどの放熱部品を利用して排熱していたが、真空断熱材を加熱ユニットの断熱材に使用すると、通常のグラスウール等の断熱材に比較し断熱効果が大きいためファンなどの放熱部品を使用しなくて済み、印刷装置の省エネルギーを図ることができる。また、真空断熱材は通常のグラスウール等の断熱材に比較し同一断熱効果ではその厚みを約1/10程度に薄くできるため、印刷装置の中の断熱材のスペースを小さくできることにより印刷装置の小型化、あるいは内部に空間ができることによる同一寸法での高機能が図れるメリットがある。
【図面の簡単な説明】
【図1】本発明の実施の形態1の真空断熱材の製造方法により作製される真空断熱材の縦断面図
【図2】同実施の形態で使用する真空包装機の使用時の概略縦断面図
【図3】同真空包装機の使用時の概略横断面図
【図4】同真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図
【図5】同実施の形態で使用する熱溶着装置の熱溶着前の状態の概略側面図
【図6】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図
【図7】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図
【図8】本発明の実施の形態2の真空断熱材の製造方法で使用する真空包装機の使用時の概略縦断面図
【図9】同真空包装機により作製された多芯真空断熱材の平面図
【図10】本発明の実施の形態3の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図
【図11】本発明の実施の形態4の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図
【図12】本発明の実施の形態5の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図
【図13】本発明の実施の形態6の真空断熱材の製造方法により作製される真空断熱材の縦断面図
【図14】同実施の形態で使用する真空包装機の使用時の概略縦断面図
【図15】同真空包装機の使用時の概略横断面図
【図16】同真空包装機により袋状の外被材の開口部を熱溶着した段階の多芯真空断熱材の平面図
【図17】同実施の形態で使用する熱溶着装置の熱溶着前の状態の概略側面図
【図18】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図
【図19】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図
【図20】本発明の実施の形態7の真空断熱材の製造方法に使用する真空包装機の使用時の概略縦断面図
【図21】同真空包装機により作製された多芯真空断熱材の平面図
【図22】本発明の実施の形態8の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図
【図23】本発明の実施の形態9の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図
【図24】本発明の実施の形態10の真空断熱材の製造方法で使用する熱溶着装置の熱溶着前の状態の概略側面図
【図25】本発明の実施の形態11の真空断熱材の製造方法に使用する芯材の縦断面図
【図26】本発明の実施の形態12の真空断熱材の製造方法により作製される真空断熱材の縦断面図
【図27】同実施の形態で使用するシート部材の平面図
【図28】同実施の形態で使用する真空包装機の使用時の概略縦断面図
【図29】同真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図
【図30】同実施の形態で使用する熱溶着装置の熱溶着前の状態の概略側面図
【図31】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図
【図32】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図
【図33】本発明の実施の形態13の真空断熱材の製造方法で使用する真空包装機により袋状の外被材の開口部を熱溶着した段階の多芯真空断熱材の平面図
【図34】同実施の形態で使用する熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図
【図35】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図
【図36】本発明の実施の形態14の真空断熱材の製造方法で使用するシート部材の縦断面図
【図37】同実施の形態で使用する真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図
【図38】同実施の形態で使用する熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図
【図39】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図
【図40】本発明の実施の形態15の真空断熱材の製造方法で使用するシート部材の縦断面図
【図41】同実施の形態で使用する真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図
【図42】同実施の形態で使用する熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図
【図43】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図
【図44】本発明の実施の形態16の真空断熱材の製造方法で使用する芯材の縦断面図
【図45】同実施の形態で使用する真空包装機により外被材の外周部を熱溶着した段階の多芯真空断熱材の平面図
【図46】同実施の形態で使用する熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の平面図
【図47】同熱溶着装置により芯材の周囲に位置する外被材を熱溶着した段階の多芯真空断熱材の縦断面図
【図48】本発明の実施の形態17による真空断熱材の縦断面図
【図49】図48の要部拡大図
【図50】本発明の実施の形態18による真空断熱材の縦断面図
【図51】図50の要部拡大図
【図52】本発明の実施の形態19による真空断熱材の縦断面図
【図53】本発明の実施の形態20による真空断熱材の縦断面図
【図54】図53の要部拡大図
【図55】本発明の実施の形態21による真空断熱材の縦断面図
【図56】図55の要部拡大図
【図57】本発明の実施の形態22による真空断熱材の縦断面図
【図58】図57の要部拡大図
【図59】同実施の形態による真空断熱材を装着したノート型パーソナルコンピューターの縦断面図
【図60】本発明の実施の形態23による真空断熱材を装着した印刷装置の縦断面図
【図61】本発明の実施の形態24で使用する真空断熱材の芯材及び芯材の残りの端材の斜視図
【図62】同実施の形態による真空断熱材の縦断面図
【図63】従来の真空断熱材の平面図
【図64】同従来の真空断熱材を断熱箱体の外箱に設けた状態の断面図
【符号の説明】
1 真空断熱材
2 芯材
3 外被材
4 熱溶着部
5 ラミネートフィルム(外被材)
6 真空包装機
12 熱溶着部
14 熱溶着体
17 熱溶着部
18 多芯真空断熱材
19 真空包装機
21 熱溶着体
25 熱溶着部
26 多芯真空断熱材
27 熱溶着体
30 熱溶着体
33 熱溶着体
36 真空断熱材
37 外被材
38 熱溶着部
39 ラミネート袋(袋状の外被材)
40 熱溶着部
42 熱溶着部
43 多芯真空断熱材
44 熱溶着部
45 多芯真空断熱材
46 熱溶着体
49 熱溶着体
52 熱溶着体
55 両面粘着テープ(接着部)
56 真空断熱材
57 孔
58 シート部材
59 熱溶着部
61 熱溶着部
62 多芯真空断熱材
65 多芯真空断熱材
66 シート部材
68 多芯真空断熱材
69 凹部
70 シート部材
72 多芯真空断熱材
73 芯材
75 多芯真空断熱材
76 真空断熱材
77 ラミネートフィルム
78 外被材
79 熱溶着部
82 熱溶着層(最内層)
83 真空断熱材
84 ラミネートフィルム
85 外被材
86 熱溶着部
87 最外層
90 真空断熱材
91 芯材
92 ラミネートフィルム
93 外被材
94 熱溶着部
95 真空断熱材
96 ラミネートフィルム
97 外被材
98 熱溶着部
99 難燃性の粘着テープ(難燃性テープ)
100 端面部
104 難燃性のシーラー
105 真空断熱材
106 ラミネートフィルム
107 外被材
108 熱溶着部
109 難燃性の粘着テープ
114 ノート型パーソナルコンピューター
123 印刷装置
129 真空断熱材
130 芯材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum heat insulating material, a method for manufacturing the same, a notebook personal computer using the vacuum heat insulating material, and a printing apparatus.
[0002]
[Prior art]
As a conventional vacuum heat insulating material, as shown in FIG. 63, a plurality of rectangular core members 201 are covered with a gas barrier outer covering material 202, and the inside of the outer covering member 202 is decompressed. Are disposed on substantially the same plane at a predetermined distance from each other in one direction, and the jacket material 202 positioned between adjacent core materials 201 so that each of the plurality of core materials 201 is located in an independent space. There is a vacuum heat insulating material 204 that can be bent with a heat welding portion 203 positioned between adjacent core materials 201 as a folding line (see, for example, Patent Document 1).
[0003]
As shown in FIG. 64, the vacuum heat insulating material 204 is provided inside an outer box 205 of a heat insulating box such as a refrigerator. The outer box 205 is obtained by bending a metal plate 206 into a U shape.
[0004]
This vacuum heat insulating material 204 is a bag having an opening by pre-welding three sides of a rectangular outer covering material 202, filling the inside with a core material 201, reducing the pressure inside the bag, It is produced by heat-welding the opening.
[0005]
The vacuum heat insulating material 204 is bonded and fixed to the metal plate 206 in a state before being folded into a U shape so that the folding curve of the vacuum heat insulating material 204 corresponds to the folding curve of the metal plate 206. A metal plate 206 having a vacuum heat insulating material 204 bonded and fixed to the surface to be bent is bent in a U shape, thereby producing an outer box 205 having the vacuum heat insulating material 204 on the inner surface as shown in FIG.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-98090
[0007]
[Problems to be solved by the invention]
However, the above-described conventional vacuum heat insulating material 204 is an integrated vacuum heat insulating material to be attached to the three inner surfaces of the outer box 205, and the merit of being able to manufacture the vacuum heat insulating material for the three inner surfaces of the outer box 205 at a time. However, the optimal application location was limited and there was no versatility.
[0008]
The present invention relates to a method for producing a vacuum heat insulating material suitable for mass production capable of efficiently producing a large amount of vacuum heat insulating materials together, a vacuum heat insulating material produced by the method, and a laptop personal computer using the vacuum heat insulating material. An object is to provide a printing apparatus.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for manufacturing a vacuum heat insulating material, comprising: covering a plurality of core members arranged substantially apart from each other on substantially the same plane with a gas barrier outer covering material; And producing a multi-core vacuum heat insulating material in which the jacket material positioned around each of the core materials is thermally welded so that each of the plurality of core materials is located in an independent space. The heat-welded portion remains between a cut portion in the core vacuum heat insulating material manufacturing step and the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing step and the core material adjacent to the cut portion. A vacuum heat insulating material separating step for cutting the outer cover material to separate a desired vacuum heat insulating material from the multi-core vacuum heat insulating material, and once disposed on substantially the same plane. Producing multi-core vacuum insulation material with multiple core materials, After that, since the desired vacuum insulation material was sequentially separated from the multi-core vacuum insulation material, a large number of vacuum insulation materials or multiple types of vacuum insulation materials with different sizes and shapes could be obtained by a single decompression operation of the vacuum packaging machine. The vacuum packaging machine can be operated efficiently, and the vacuum insulation material can be separated by thermally welding the jacket material located around the core material to the cutting part that is cut in the vacuum insulation material separation process. The fin-shaped outer periphery of the outer periphery of the core material of the vacuum heat insulating material after being cut in the process can be reduced.
[0010]
According to a second aspect of the present invention, there is provided a method for producing a vacuum heat insulating material, wherein in the multi-core vacuum heat insulating material manufacturing process according to the first aspect, the inside of the outer cover material is sealed while maintaining a reduced pressure state. The outer periphery of the jacket material covering the plurality of core materials in a reduced pressure environment is thermally welded, and then the jacket materials positioned around each of the core materials in a normal pressure environment are thermally welded. In addition to the action of the invention according to claim 1, since the jacket material positioned around the core material under the normal pressure environment is thermally welded, the jacket material positioned around the core material under the reduced pressure environment It is easier to perform the heat welding operation than when heat welding is performed, and the use time of the vacuum packaging machine is shortened so that the vacuum packaging machine can be used efficiently. In addition, work in progress can be stored in a state in which a heat-welded part is formed on the outer periphery of the jacket material covering a plurality of core materials, and the work of thermally welding the jacket material located around the core material at a convenient time Since it can be performed, the work of the multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0011]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 3 is the multicore vacuum heat insulating material manufacturing process according to claim 1, wherein the jacket material positioned around each of the core materials is thermally welded. The work to be performed is performed under a reduced pressure environment, and in addition to the action of the invention according to claim 1, the order in which the heat-welded portion is provided when the outer jacket material positioned around the core material is heat-welded. It can be decided arbitrarily. In other words, if it is post-rotated, flaws are generated due to the influence of the previous heat welding operation, and the heat welding portion where the heat welding operation becomes difficult is first heat-welded to prevent generation of flaws and no leakage from the heat-welded portion. A vacuum heat insulating material can be obtained. Moreover, only the part located in the circumference | surroundings of the core material in a jacket material can also be heat-welded, without heat-welding the outer peripheral part of the jacket material which covers a some core material.
[0012]
Invention of the manufacturing method of the vacuum heat insulating material of Claim 4 is located in the circumference | surroundings of each said core material in the multi-core vacuum heat insulating material manufacturing process of the invention as described in any one of Claim 1 to 3. In the operation of thermally welding the outer jacket material, the pressing surface has concave portions corresponding to the shapes and arrangement patterns of the plurality of core members, and each of the core members is pressed and heated once. A heat-welded body capable of heat-welding a portion to be heat-welded of the outer cover material located in the periphery is used, and in addition to the function of the invention according to any one of claims 1 to 3, this heat By pressing and heating the outer jacket material once by the welded body, the portions to be thermally welded of the outer jacket material located around the respective core materials can be thermally welded, and the thermal welding operation can be easily performed in a short time.
[0013]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 5 is the multi-core vacuum heat insulating material manufacturing process according to any one of claims 1 to 3, wherein a heater is built in and the shape of the heat-welded material is included. A heat welded portion made of an elastic body so as to easily follow the outer cover material is pressed against the outer cover material once to provide a heat welded portion of the outer cover material around the core material. In addition to the action of the invention described in any one of items 1 to 3, by using a heat-welded body that easily follows the shape of the heat-welded object, heat can be generated even if the distance between the core material and the core material is not sufficiently long. Since the welded body easily follows the shape, the heat welded portion between the core material and the core material can be firmly grasped and the heat welded part can be produced reliably. Moreover, since a heat welding part is formed in the circumference | surroundings of a core material with respect to a jacket material at a time, a vacuum heat insulating material can be produced efficiently. Further, even when the position of the core material is slightly shifted or when the shape of the core material is slightly changed, the present invention can be applied without changing the shape of the heat-welded body.
[0014]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 6 is the multi-core vacuum heat insulating material manufacturing process according to any one of claims 1 to 3, wherein a heater is built in and the shape of the heat-welded material is included. A heat-welded portion made of an elastic body so as to easily follow the outer surface is pressed against the outer shell material a plurality of times to provide a heat-welded portion of the outer shell material around the core material. In addition to the action of the invention described in any one of items 1 to 3, by using a heat-welded body that easily follows the shape of the heat-welded object, heat can be generated even if the distance between the core material and the core material is not sufficiently long. Since the welded body easily follows the shape, the heat welded portion between the core material and the core material can be firmly grasped and the heat welded part can be produced reliably. In addition, by pressing the heat welded body against the outer cover material a plurality of times, the outer cover material is divided into small portions to form the heat welded portion, thereby reliably forming the heat welded portion around the core material. Leakage from the welded portion can be reduced. Further, even when the position of the core material is slightly shifted or when the shape of the core material is slightly changed, the present invention can be applied without changing the shape of the heat-welded body.
[0015]
The invention of the manufacturing method of the vacuum heat insulating material according to claim 7, the plurality of core members are arranged apart from each other on substantially the same plane in the bag-shaped outer covering material having gas barrier properties and an opening, A multi-core vacuum heat insulating material obtained by thermally welding the jacket material positioned around each of the core materials so that the inside of the jacket material is decompressed and each of the plurality of core materials is located in an independent space. A multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing process, and the thermal welding between the cutting portion and the core material adjacent to the cutting portion Cutting the jacket material so that a part remains, and separating the desired vacuum heat insulating material from the multi-core vacuum heat insulating material, and once separating them from each other on a substantially same plane. A multi-core vacuum insulation material having a plurality of core materials arranged After that, since the desired vacuum insulation material was sequentially separated from the multi-core vacuum insulation material, a number of vacuum insulation materials or multiple types of vacuums with different sizes and shapes could be obtained with a single vacuum operation of the vacuum packaging machine. Insulation can be produced, vacuum packaging machine can be operated efficiently, and vacuum insulation is achieved by thermally welding the jacket material located around the core material to the cutting part where it is cut in the vacuum insulation material separation process The fin-shaped outer periphery of the core material outer periphery of the vacuum heat insulating material after being cut in the material cutting step can be reduced. Moreover, since the bag-shaped thing which has an opening part is used for a jacket material, a thing which has arranged a plurality of core materials in a bag-like jacket material is installed in a vacuum packaging machine, and vacuum The setting to the packaging machine becomes simple, and if one place (one side) of the opening of the bag-shaped outer jacket material is heat-welded, a plurality of core materials can be sealed by the outer jacket material. This degree of vacuum can be more reliably maintained than when a plurality of core members are sealed by heat-welding the four sides of a pair of sheet-shaped outer jacket materials.
[0016]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 8 is such that, in the multi-core vacuum heat insulating material manufacturing process of the invention according to claim 7, the inside of the outer cover material is sealed while maintaining a reduced pressure state. After heat-sealing the openings of the jacket material that covers the plurality of core materials in a reduced pressure environment, the jacket materials positioned around the core materials are thermally welded in a normal pressure environment. In addition to the action of the invention according to claim 7, since the outer jacket material positioned around the core material under the normal pressure environment is thermally welded, the outer jacket material positioned around the core material under the reduced pressure environment is It is easier to perform the heat welding operation than when heat welding is performed, and the use time of the vacuum packaging machine is shortened so that the vacuum packaging machine can be used efficiently. In addition, the work-in-process can be stored in a state where the heat-welded portion is formed in the opening of the bag-shaped outer covering material that covers the plurality of core materials, and the outer jacket material located around the core material is heat-welded at a convenient time. Since the work can be performed, the work of the multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0017]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 9 is the multi-core vacuum heat insulating material manufacturing process according to claim 7, in which the jacket material positioned around each of the core materials is thermally welded. The work to be performed is performed under a reduced pressure environment. In addition to the action of the invention according to claim 7, the order of providing the heat-welded portion when heat-sealing the jacket material positioned around the core material is performed. It can be decided arbitrarily. In other words, if it is post-rotated, flaws are generated due to the influence of the previous heat welding operation, and the heat welding portion where the heat welding operation becomes difficult is first heat-welded to prevent generation of flaws and no leakage from the heat-welded portion. A vacuum heat insulating material can be obtained. Moreover, only the part located in the circumference | surroundings of the core material in a jacket material can also be heat-welded, without heat-welding the opening part of the bag-shaped jacket material which covers a some core material.
[0018]
Invention of the vacuum heat insulating material manufacturing method of Claim 10 is located in the circumference | surroundings of each said core material in the multi-core vacuum heat insulating material manufacturing process of the invention as described in any one of Claim 7 to 9. In the operation of thermally welding the outer jacket material, the pressing surface has concave portions corresponding to the shapes and arrangement patterns of the plurality of core members, and each of the core members is pressed and heated once. A heat-welded body capable of heat-welding a portion to be heat-welded of the outer jacket material located in the periphery is used, and in addition to the action of the invention according to any one of claims 7 to 9, this heat By pressing and heating the outer jacket material once by the welded body, the portions to be thermally welded of the outer jacket material located around the respective core materials can be thermally welded, and the thermal welding operation can be easily performed in a short time.
[0019]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 11 is the multi-core vacuum heat insulating material manufacturing process according to any one of claims 7 to 9, wherein a heater is built in and the shape of the heat-welded material is included. A heat welded portion made of an elastic body so as to easily follow the outer cover material is pressed against the outer cover material once to provide a heat welded portion of the outer cover material around the core material. In addition to the action of the invention according to any one of items 1 to 9, by using a heat-welded body that easily follows the shape of the heat-welded object, heat can be generated even if the distance between the core material and the core material is not sufficiently long. Since the welded body easily follows the shape, the heat welded portion between the core material and the core material can be firmly grasped and the heat welded part can be produced reliably. Moreover, since a heat welding part is formed in the circumference | surroundings of a core material with respect to a jacket material at a time, a vacuum heat insulating material can be produced efficiently. Further, even when the position of the core material is slightly shifted or when the shape of the core material is slightly changed, the present invention can be applied without changing the shape of the heat-welded body.
[0020]
The invention of the manufacturing method of the vacuum heat insulating material according to claim 12 is the multi-core vacuum heat insulating material manufacturing process according to any one of claims 7 to 9, wherein a heater is incorporated and the shape of the heat-welded material is included. A heat-welded portion made of an elastic body so as to easily follow the outer surface is pressed against the jacket material a plurality of times to provide a heat-welded portion of the jacket material around the core material. In addition to the action of the invention according to any one of items 1 to 9, by using a heat-welded body that easily follows the shape of the heat-welded object, heat can be generated even if the distance between the core material and the core material is not sufficiently long. Since the welded body easily follows the shape, the heat welded portion between the core material and the core material can be firmly grasped and the heat welded part can be produced reliably. In addition, by pressing the heat welded body against the outer cover material a plurality of times, the outer cover material is divided into small portions to form the heat welded portion, thereby reliably forming the heat welded portion around the core material. Leakage from the welded portion can be reduced. Further, even when the position of the core material is slightly shifted or when the shape of the core material is slightly changed, the present invention can be applied without changing the shape of the heat-welded body.
[0021]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 13 is the invention according to any one of claims 1 to 12, wherein the thermoplastic resin material of the innermost layer of the jacket material is formed on at least one surface. A core material having an adhesive part that can be bonded is used, and in addition to the action of the invention according to any one of claims 1 to 12, the core material can be bonded to the inner surface of the jacket material. The position can be fixed, and it is possible to prevent the core material from being displaced at the time of positioning and positioning of another core material, setting to a vacuum packaging machine, or during decompression.
[0022]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 14 is composed of a plurality of core materials arranged on a substantially same plane and spaced apart from each other, and a shape and an arrangement pattern of the plurality of core materials made of a thermoplastic resin material. And a sheet member having a plurality of holes corresponding to the above, with the plurality of core members arranged one by one in each of the plurality of holes of the sheet member, the innermost layer being the same as the sheet member with gas barrier properties Covering with a jacket material made of a thermoplastic resin material, decompressing the interior of the jacket material and positioning the core material around each of the core materials so that each of the core materials is located in an independent space A multi-core vacuum heat insulating material manufacturing process for manufacturing a multi-core vacuum heat insulating material in which a jacket material and the sheet member are thermally welded, and a cut portion in the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing process And close to the cutting part A vacuum heat insulating material separating step of cutting a desired vacuum heat insulating material from the multi-core vacuum heat insulating material by cutting the outer cover material and the sheet member so that the heat-welded portion remains between the core materials. Once manufactured, a multi-core vacuum heat insulating material having a plurality of core materials spaced apart from each other on substantially the same plane is manufactured, and then the desired vacuum heat insulating material is sequentially separated from the multi-core vacuum heat insulating material. As a result, many vacuum insulation materials or multiple types of vacuum insulation materials with different sizes and shapes can be produced with a single vacuum operation of the vacuum packaging machine, the vacuum packaging machine can be operated efficiently, and the core By thermally welding the jacket material located around the material until it reaches the cutting part to be cut in the vacuum heat insulating material cutting step, the fin-like shape of the outer periphery of the core material of the vacuum heat insulating material after cutting in the vacuum heat insulating material cutting step The outer periphery of the jacket material can be reduced In addition, a sheet member made of the same thermoplastic resin material as the innermost layer of the jacket material and having a plurality of core materials arranged in each of a plurality of holes corresponding to the shape and arrangement pattern of the plurality of core materials is covered with the jacket. Since it is covered with a material, the position relationship and spacing of each core material can be properly maintained until the jacket material and the sheet member positioned around the core material are thermally welded. The position of the core material can be prevented from being displaced during setting to a vacuum packaging machine or during decompression, and even if multiple core materials are misaligned with respect to the jacket material, the misalignment of the multiple core materials It can be corrected at once using a member.
[0023]
The invention of the manufacturing method of the vacuum heat insulating material according to claim 15 includes a plurality of core members arranged in a bag-shaped outer covering material having gas barrier properties and having an opening, spaced apart from each other on substantially the same plane. A sheet member made of the same thermoplastic resin material as the innermost layer of the jacket material and having a plurality of holes corresponding to the shape and arrangement pattern of the plurality of core members, in each of the plurality of holes of the sheet member Each of the core materials is inserted in a state where the core materials are arranged one by one, the inside of the jacket material is decompressed, and each of the core materials is positioned in an independent space. A multi-core vacuum heat insulating material manufacturing step for manufacturing a multi-core vacuum heat insulating material in which the outer cover material and the sheet member positioned around are thermally welded, and the multi-core vacuum manufactured in the multi-core vacuum heat insulating material manufacturing step Close to the cutting part and the cutting part in the heat insulating material A vacuum heat insulating material separating step of cutting a desired vacuum heat insulating material from the multi-core vacuum heat insulating material by cutting the outer cover material and the sheet member so that the heat-welded portion remains between the core materials. Once manufactured, a multi-core vacuum heat insulating material having a plurality of core materials spaced apart from each other on substantially the same plane is manufactured, and then the desired vacuum heat insulating material is sequentially separated from the multi-core vacuum heat insulating material. As a result, many vacuum insulation materials or multiple types of vacuum insulation materials with different sizes and shapes can be produced with a single vacuum operation of the vacuum packaging machine, the vacuum packaging machine can be operated efficiently, and the core By thermally welding the jacket material located around the material until it reaches the cutting part to be cut in the vacuum heat insulating material cutting step, the fin-like shape of the outer periphery of the core material of the vacuum heat insulating material after cutting in the vacuum heat insulating material cutting step The outer periphery of the jacket material can be reduced In addition, a sheet member made of the same thermoplastic resin material as the innermost layer of the jacket material and having a plurality of core members arranged in each of a plurality of holes corresponding to the shape and arrangement pattern of the plurality of core members is opened. Since it is inserted into a bag-shaped outer jacket material having a portion, the positional relationship and spacing of the respective core materials should be properly maintained until the outer jacket material and the sheet member positioned around the core material are thermally welded. It is possible to prevent misalignment of the core material during positioning and placement of other core materials, setting to a vacuum packaging machine, or decompression, even if multiple core materials are misaligned with respect to the jacket material. The misalignment of the plurality of core members can be corrected at once using a sheet member. In addition, since a bag-shaped material having an opening is used for the jacket material, a sheet member in which a plurality of core materials are arranged one by one in a plurality of holes is inserted into the bag-shaped jacket material. By installing this product in a vacuum packaging machine, setting to the vacuum packaging machine becomes easy, and if one location (one side) of the opening of the bag-shaped outer jacket material is thermally welded, a plurality of outer jacket materials can be used. Since the core material can be sealed, the degree of vacuum in the jacket material can be more reliably maintained than when a plurality of core materials are sealed by thermally welding the four sides of the pair of sheet-like jacket materials. Further, since the sheet member is present inside the heat-welded portion at the time of bag formation of the bag-shaped outer jacket material, the heat-welded portion at the time of bag formation of the bag-shaped outer jacket material does not overlap, There is no risk of air entering the outer cover material through the sheet member due to overlapping.
[0024]
The invention of a manufacturing method of a vacuum heat insulating material according to claim 16 is composed of a plurality of core materials arranged on a substantially same plane and spaced apart from each other, and a shape and an arrangement pattern of the plurality of core materials made of a thermoplastic resin material. A sheet member having a plurality of recesses corresponding to the upper surface of the sheet member, and the innermost layer having a gas barrier property and the innermost layer being disposed in each of the plurality of recesses of the sheet member. Is covered with a jacket material made of the same thermoplastic resin material, and the inside of the jacket material is decompressed and positioned around each of the core materials so that each of the plurality of core materials is located in an independent space. In the multi-core vacuum heat insulating material manufacturing process for manufacturing a multi-core vacuum heat insulating material in which the outer cover material and the sheet member are thermally welded, and in the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing process Cutting part and said cutting part The vacuum insulation material is separated from the multi-core vacuum insulation material by cutting the jacket material and the sheet member so that the heat-welded portion remains between the core material adjacent to the core material. A multi-core vacuum heat insulating material having a plurality of core materials spaced apart from each other on substantially the same plane, and then producing a desired vacuum heat insulating material from the multi-core vacuum heat insulating material. As a result, the vacuum packaging machine can be manufactured in a single vacuum operation to produce a large number of vacuum insulation materials or multiple types of vacuum insulation materials with different sizes and operations. It is possible to heat-weld the jacket material located around the core material to the cutting part to be cut in the vacuum heat insulating material cutting step, so that the outer periphery of the core material of the vacuum heat insulating material after being cut in the vacuum heat insulating material cutting step Small peripheral edge of fin-shaped outer jacket material Kudekiru. In addition, a sheet member made of the same thermoplastic resin material as that of the innermost layer of the jacket material and having a plurality of core materials arranged in each of the plurality of recesses corresponding to the shape and arrangement pattern of the plurality of core materials is provided. Since it is covered with a material, the position relationship and spacing of each core material can be properly maintained until the jacket material and the sheet member positioned around the core material are thermally welded. The position of the core material can be prevented from being displaced during setting to a vacuum packaging machine or during decompression, and even if multiple core materials are misaligned with respect to the jacket material, the misalignment of the multiple core materials It can be corrected at once using a member. In addition, since the concave portion of the sheet member on which the core material is installed has a bottom, the position of the core material is fixed without being dropped from the sheet member when the sheet member with the core material installed in the concave portion is moved. The effect of simplifying the setting of the sheet member on the workpiece is obtained.
[0025]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 17 is the sheet member according to any one of claims 14 to 16, wherein the surface layer of both the front and back surfaces is the innermost layer of the outer cover material. It is the same material as the thermoplastic resin material, and is a multilayer resin film in which a layer of a thermoplastic resin material having a melting point higher than that of the thermoplastic resin material is provided between the front and back surface layers. In addition to the action of the invention according to any one of 16, the sheet member has a surface layer on both front and back surfaces that is the same material as the innermost thermoplastic resin material of the outer cover material, Since the multilayer resin film is provided with a layer of a thermoplastic resin material having a higher melting point than the thermoplastic resin material, the thickness of the thermoplastic resin material in the intermediate layer of the sheet member can be reduced even when the thickness of the core material is increased. By increasing, the deformation of the jacket material is reduced And it can be reliably produced in the heat seal parts.
[0026]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 18 is a shape in which the core material according to any one of claims 1 to 17 has a thickness that decreases toward an outer peripheral edge at an outer peripheral portion. In addition to the action of the invention according to any one of claims 1 to 17, since the deformation of the jacket material can be made relatively small even when the thickness of the core material is increased, the core material It is possible to easily and reliably produce the heat-welded part to be formed around the surface of the steel, and to suppress the increase in the internal pressure of the vacuum heat insulating material due to the entry of outside air from the heat-welded part and the resulting decrease in the heat insulating performance of the vacuum heat insulating material Can do.
[0027]
The invention of a vacuum heat insulating material according to claim 19 is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, wherein the innermost layer of the jacket material is an unstretched polypropylene film. The unstretched polypropylene film has a higher melting point than other high-temperature polyethylene and low-density polyethylene, so the high-temperature polyethylene and low-density polyethylene are the heat-sealing materials for the innermost layer of the jacket material. It can be used at a higher temperature than the vacuum heat insulating material used in the above.
[0028]
Invention of the vacuum heat insulating material of Claim 20 is manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 18, and the outermost layer of the said jacket material is a fluorine-type film. Yes, by applying a fluorine-based film to the outermost layer of the jacket material, the flame retardancy and continuous maximum use temperature are excellent, so that flame retardancy is required and the use temperature is high.
[0029]
Invention of the vacuum heat insulating material of Claim 21 is manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 18, and the dry silica and carbon black are contained in the said core material. Even if air flows into the vacuum insulation due to the low pressure dependence of dry silica and the effect of reducing the thermal conductivity due to the addition of carbon black, vacuum insulation is achieved due to the low pressure dependence and the reduction of thermal conductivity. The thermal conductivity of the material can be kept low for a long time.
[0030]
Invention of the vacuum heat insulating material of Claim 22 is manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 18, The said core material is from the recyclable fiber material or powder material. This core material regenerates the end material from which the core material has been cut, and can be used as a recycled product, so that resources can be effectively utilized.
[0031]
The invention of the vacuum heat insulating material according to claim 23 is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, and the cut surface of the separated outer cover material is made of a flame retardant tape. Although it is covered, a heat-welding material that is flammable is exposed on the cut surface (end surface) of the jacket material of the vacuum heat insulating material, but by covering the cut surface (end surface) of the jacket material with a flame-retardant tape, The flame retardant level of the vacuum heat insulating material can be improved, and the vacuum heat insulating material can be easily used in a high temperature environment.
[0032]
The invention of the vacuum heat insulating material according to claim 24 is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, and is a flame retardant sealer on a cut surface of the separated outer cover material. The heat-welding material that is flammable is exposed on the cut surface (end surface) of the jacket material of the vacuum heat insulating material, but the flame retardant sealer (primer) is exposed on the cut surface (end surface) of the jacket material. By applying a kind of the above, it is possible to improve the flame retardant level of the vacuum heat insulating material, and the vacuum heat insulating material can be easily used in a high temperature environment. In addition, the flame retardant sealer is flexible and can cover and cover the heat-welding material that is easily applied and burned to the cut surface (end surface) of the outer jacket material, regardless of the shape of the vacuum heat insulating material.
[0033]
The invention of the notebook personal computer according to claim 25 is the vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18 or the heat insulating portion according to claim 19 to 24. The vacuum heat insulating material according to any one of claims 1 to 18, or the vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, or any one of claims 19 to 24. The vacuum heat insulating material described in one item is used as a bottom surface of a notebook personal computer under a printed circuit board on which a CPU as a main heat source is disposed (a heat insulating portion thereof) or a notebook on a printed circuit board on which the CPU is disposed. By installing it on the lower surface (the heat insulating part) of the keyboard of the personal computer, it is possible to prevent discomfort due to the heat generated by the CPU.
[0034]
The invention of the printing apparatus according to claim 26 is the vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, or any one of claims 19 to 24, in the heat insulating portion. In order to prevent the heat of the heating unit from being transferred to the toner, the heat is exhausted by using a heat radiating component such as a fan. When used as a heat insulating material, the heat insulating effect is greater than that of a normal heat insulating material such as glass wool, so that it is not necessary to use a heat radiating component such as a fan, and energy saving of the printing apparatus can be achieved. In addition, the vacuum insulation material can be reduced to about 1/10 of the thickness of the insulation with the same insulation effect compared to the usual insulation material such as glass wool. Therefore, the space of the insulation material in the printing device can be reduced, thereby reducing the size of the printing device. There is an advantage that high function with the same dimensions can be achieved by making it into a space or creating a space inside.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a vacuum heat insulating material, a manufacturing method thereof, and a notebook personal computer and a printing apparatus using the vacuum heat insulating material of the present invention will be described.
[0036]
(Embodiment 1)
FIG. 1 is a vertical cross-sectional view of a vacuum heat insulating material produced by the vacuum heat insulating material manufacturing method according to Embodiment 1 of the present invention, and FIG. 2 is a schematic vertical cross-sectional view when the vacuum packaging machine used in the same embodiment is used. 3 is a schematic cross-sectional view when the vacuum packaging machine is used, FIG. 4 is a plan view of the multi-core vacuum heat insulating material at the stage where the outer periphery of the jacket material is thermally welded by the vacuum packaging machine, and FIG. FIG. 6 is a schematic side view of a state before heat welding of the heat welding apparatus used in the embodiment, and FIG. 6 is a diagram of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat welded by the heat welding apparatus. FIG. 7 is a longitudinal sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is thermally welded by the heat welding apparatus.
[0037]
A vacuum heat insulating material 1 manufactured by the vacuum heat insulating material manufacturing method of the present embodiment covers a core material 2 containing wet silica and carbon black and solidified with an outer cover material 3 made of a gas barrier laminate film. Therefore, the inside of the jacket material 3 is decompressed, and the outer periphery of the core material 2 has a heat-welded portion 4 in which the innermost layers of the laminate film of the jacket material 3 covering the core material 2 are heat-welded.
[0038]
Next, the manufacturing method of this vacuum heat insulating material 1 is demonstrated.
[0039]
First, a gas barrier laminate film (cover material) 5 cut into a predetermined rectangle is placed on a test stand 7 of the vacuum packaging machine 6 so that the heat-welding material layer side is on the upper side (upper surface). At this time, the vicinity of the four sides (outer peripheral part) of the laminate film 5 is made to face the heat welding bar 8 arranged on the outer periphery of the test stand 7.
[0040]
Next, a plurality of core materials 2 are arranged on the upper surface of the laminate film 5 so as to be separated from each other by a predetermined distance. Further, another laminate film 5 is placed on the plurality of core materials 2 with the heat welding material layer side on the lower side. It covers so that it may become (core material 2 side), and each end surface of the upper and lower two laminated films 5 may correspond as much as possible.
[0041]
Next, when the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 connected to communicate with the internal space of the vacuum packaging machine 6 starts operation, and the inside of the vacuum packaging machine 6 Is exhausted through the exhaust port 11. Then, after the inside of the vacuum packaging machine 6 is depressurized to 0.1 Torr or less, two laminate films are sandwiched between a pair of upper and lower heat welding bars 8 in the vicinity of the four sides (outer periphery) of the two laminate films 5. By thermally welding the inner surfaces of the four side vicinity portions (outer peripheral portions) of five, four heat weld portions 12 along the four sides are formed in the vicinity of the four sides. Thereby, the multi-core vacuum heat insulating material 13 is produced.
[0042]
The multi-core vacuum heat insulating material 13 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 13 is installed on a work table 16 of a heat welding apparatus 15 having a heat welding body 14. The heat welded body 14 heats the built-in heater by a switch, and heat welds the specimen (multi-core vacuum heat insulating material 13) placed on the work table 6 by moving up and down.
[0043]
This thermal welding device 15 is surrounded by the thermal welding part 12 of the multi-core vacuum heat insulating material 13 under a normal pressure environment, and there is no core material 2 between the two laminated films 5, and the innermost layers of the laminated film 5 are in contact with each other. By heat-welding all of the contacted portions with the heat-welded body 14, each core material 2 is surrounded by the heat-welded portion 17, and each of the core materials 2 is located in an independent space. A vacuum heat insulating material 18 is formed.
[0044]
Thereafter, each core material 2 is separated from the multi-core vacuum heat insulating material 18 in a state including the heat welding portion 17 around the core material 2 to obtain a plurality of vacuum heat insulating materials 1 having the core material 2 as a core. Can do.
[0045]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single pressure reducing operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What is necessary is just to have a through-hole in what has a shape and those written shapes, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. It is done.
[0046]
Moreover, since the heat welding part 12 of the laminate film 5 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and at the normal pressure environment. The operation | work which provides the heat welding part 17 can be performed. Further, the work in progress can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate film 5, and an operation for providing the heat-welded portion 17 of the laminate film 5 around the core material 2 at normal pressure at a convenient time Therefore, the effect that the work can be performed flexibly is obtained.
[0047]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0048]
As the laminate film 5, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0049]
In the manufacturing method of the vacuum heat insulating material according to the present embodiment, a plurality of core members 2 that are spaced apart from each other on substantially the same plane are covered with a gas barrier outer covering material 5 and the inside of the outer covering material 5 is decompressed. At the same time, a multi-core vacuum heat insulating material 18 for manufacturing a multi-core vacuum heat insulating material 18 in which a jacket material 5 positioned around each core material 2 is thermally welded so that each of the plurality of core materials 2 is located in an independent space. A heat-welded portion 17 having a predetermined width remains between the cut portion of the multi-core vacuum heat insulating material 18 manufactured in the material manufacturing step and the multi-core vacuum heat insulating material manufacturing step and the core material 2 adjacent to the cut portion. And a step of cutting the outer jacket material 5 to separate the desired vacuum heat insulating material 1 from the multi-core vacuum heat insulating material 18.
[0050]
In this method for manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 18 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 18 is used. Since the vacuum heat insulating materials 1 are sequentially separated, a large number of vacuum heat insulating materials 1 or a plurality of types of vacuum heat insulating materials 1 having different sizes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 5 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The width | variety of the fin-shaped outer covering material 5 peripheral part (thermal welding part 4) of the core material 2 outer periphery of the vacuum heat insulating material 1 after having done can be made small.
[0051]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a multi-core vacuum heat insulating material manufacturing process. After heat-sealing the outer peripheral part of the covering material 5 covering 2 to form the heat-welding part 12, the covering material 5 positioned around each core material 2 is heat-welded by heat welding in a normal pressure environment The part 17 is formed.
[0052]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 5 positioned around the core material 2 is thermally welded under the normal pressure environment to form the heat welded portion 17, it is formed around the core material 2 under the reduced pressure environment. Compared with the case where the outer cover material 5 is heat-welded to form the heat-welded portion 17, it becomes easier to perform the heat-welding work, and the usage time of the vacuum packaging machine 6 is shortened, so that the vacuum packaging machine 6 is used efficiently it can. Further, the work-in-process can be stored in a state in which the heat-welded portion 12 is formed on the outer peripheral portion of the jacket material 5 covering the plurality of core materials 2, and the jacket material 5 positioned around the core material 2 can be placed at a convenient time. Since it is possible to perform the work of forming the heat welded portion 17 by heat welding, the work of the multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0053]
(Embodiment 2)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 2 of this invention is demonstrated, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0054]
FIG. 8 is a schematic longitudinal cross-sectional view of the vacuum packaging machine used in the method for manufacturing a vacuum thermal insulation material according to Embodiment 2 of the present invention, and FIG. 9 is a plan view of a multicore vacuum thermal insulation material produced by the vacuum packaging machine. It is.
[0055]
A gas barrier laminate film (cover material) 5 cut into a rectangular shape is placed on a test stand 20 of a vacuum packaging machine 19 with the heat welding material side facing up. A conveyor (not shown) is installed on the test stand 20, and the laminate film 5 can be moved from right to left in the figure.
[0056]
The core material 2 is disposed on the laminate film 5, and on the laminate film 5, the end surface of the laminate film 5 substantially coincides with each end surface of the laminate film 5 therebelow so that the heat welding material side faces the core material 2 side. It is installed as follows.
[0057]
In the vacuum packaging machine 19, reference numeral 21 denotes a heat welded body, which is located at the center of the test table 20 and above the test table 20. The laminate film 5 can be heat welded across the direction from the front side to the back side of the drawing. It is placed in a position where it can be done.
[0058]
Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space. When the lid 22 of the vacuum packaging machine 19 is closed and the vacuum packaging machine 19 is started up, the vacuum pump 23 starts operation. Then, the laminate film 5 is moved after a predetermined distance and then stopped, and the laminate film 5 is heat-welded by the heat-welded body 21, whereby the heat-welded portion 25 is formed.
[0059]
By repeating this, a plurality of core materials 2 are filled and a multi-core vacuum heat insulating material 26 in which the core materials 2 are located in independent spaces is produced. The multi-core vacuum heat insulating material 26 is taken out from the vacuum packaging machine 19, and then each core material 2 is separated from the multi-core vacuum heat insulating material 26 in a state including the heat-welded portion 25 to make a plurality of core materials 2 as cores. The vacuum heat insulating material 1 can be obtained.
[0060]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0061]
Moreover, since all the heat welding parts 25 are performed in a pressure-reduced environment, when providing the heat welding part 25 of the laminate film 5 around the core material 2, the position which provides the heat welding part 25 can be determined arbitrarily. That is, when a heat-welded portion 25 is provided, a place where it is likely to be wrinkled is first heat-welded to prevent generation of wrinkles, and the vacuum heat insulating material 26 free from leakage from the heat-welded portion 25 can be obtained.
[0062]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0063]
As the laminate film 5, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0064]
In the manufacturing method of the vacuum heat insulating material according to the present embodiment, a plurality of core members 2 that are spaced apart from each other on substantially the same plane are covered with a gas barrier outer covering material 5 and the inside of the outer covering material 5 is decompressed. In addition, the multi-core vacuum heat insulating material 26 for manufacturing the multi-core vacuum heat insulating material 26 in which the jacket material 5 positioned around each core material 2 is thermally welded so that each of the plurality of core materials 2 is located in an independent space. A heat-welded portion 25 having a predetermined width remains between the cut portion in the multi-core vacuum heat insulating material 26 manufactured in the material manufacturing step and the multi-core vacuum heat insulating material manufacturing step and the core material 2 adjacent to the cut portion. And a step of cutting the outer jacket material 5 to separate the desired vacuum heat insulating material 1 from the multi-core vacuum heat insulating material 26.
[0065]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 26 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 26 is used. Since the vacuum heat insulating materials 1 are sequentially separated, a large number of vacuum heat insulating materials 1 or a plurality of types of vacuum heat insulating materials 1 having different sizes can be produced by a single decompression operation of the vacuum packaging machine 19. The vacuum packaging machine 19 can be operated efficiently, and the outer cover material 5 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting step, thereby cutting in the vacuum heat insulating material cutting step. The width | variety of the fin-shaped outer covering material 5 peripheral part (thermal welding part 4) of the core material 2 outer periphery of the vacuum heat insulating material 1 after having done can be made small.
[0066]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is an operation | work in the vacuum packaging machine 19 in the multi-core vacuum heat insulating material manufacturing process. This is performed in a reduced pressure environment.
[0067]
In this method of manufacturing a vacuum heat insulating material, when the jacket material 5 positioned around the core material 2 is heat-welded, the order in which the heat-welded portions 25 are provided can be arbitrarily determined. In other words, if it is turned later, flaws are generated due to the influence of the previous heat welding operation, and the heat welding portion where the heat welding operation is difficult is first heat-welded to prevent generation of flaws, and leakage from the heat-welded portion 25 is prevented. A vacuum heat insulating material 1 can be obtained. Moreover, it is also possible to thermally weld only a portion of the jacket material 5 located around the core material 2 without thermally welding the outer peripheral portion of the jacket material 5 covering the plurality of core materials 2.
[0068]
(Embodiment 3)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 3 of this invention is demonstrated, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0069]
FIG. 10 is a schematic side view of the heat welding apparatus used in the method for manufacturing a vacuum heat insulating material according to Embodiment 3 of the present invention before heat welding.
[0070]
A gas barrier laminate film (covering material) 5 cut into a rectangular shape is placed on a test stand 7 of a vacuum packaging machine 6 with the heat welding material side facing up. The core material 2 is disposed on the laminate film 5, and the laminate film 5 has its end face substantially coincided with each end face of the laminate film 5 therebelow so that the heat welding material side faces the core material 2 side. It is installed to do.
[0071]
In the vacuum packaging machine 6, reference numeral 8 denotes a heat welding bar, which is arranged at a position where four outer peripheral portions of the laminate film 5 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0072]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar The four outer peripheral portions of the laminate film 5 are thermally welded by 8 to form four heat welded portions 12, so that the plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. A multi-core vacuum heat insulating material 13 is produced.
[0073]
The multi-core vacuum heat insulating material 13 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 13 is installed on a work table 29 of a heat welding apparatus 28 having a heat welding body 27.
[0074]
The heat welded body 27 heats the built-in heater by the switch, and also heat welds the specimen (multi-core vacuum heat insulating material 13) placed on the work table 29 by moving up and down.
[0075]
The heat welded body 27 has substantially the same dimensions as the laminate film 5, and the core material is provided so that the heat welded portion of the laminate film 5 is provided around the core material 2 with respect to the arrangement shape of the core material 2 on the laminate film 5. The position of 2 is a concave portion, and a heater is incorporated so that the portions other than the concave portion can be heated so that the core material 2 is positioned in the concave portion and a heat-welded portion is formed on the remaining laminate film 5 portion.
[0076]
With this thermal welding device 28, the portion surrounded by the thermal welding portion 12 of the multicore vacuum heat insulating material 13 is thermally welded under normal pressure environment, whereby the thermal welding portion 17 is formed around the core material 2. The multi-core vacuum heat insulating material 18 is formed by the core material 2 and the heat welding part 17. Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 18 in a state including the heat welding portion 17, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0077]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0078]
Moreover, since the heat welding part 12 of the laminate film 5 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and at the normal pressure environment. Since the heat welding part 17 is provided, it can be performed manually.
[0079]
Further, the work in progress can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate film 5, and an operation for providing the heat-welded portion 17 of the laminate film 5 around the core material 2 at normal pressure at a convenient time Therefore, the effect that the work can be performed flexibly is obtained.
[0080]
Furthermore, by pressing the heat welded body 27 against the laminate film 5, an effect that the heat welded portion 17 can be reliably formed around the core material 2 by a single heat welding operation is obtained.
[0081]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0082]
As the laminate film 5, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0083]
In the manufacturing method of the vacuum heat insulating material according to the present embodiment, a plurality of core members 2 that are spaced apart from each other on substantially the same plane are covered with a gas barrier outer covering material 5 and the inside of the outer covering material 5 is decompressed. At the same time, a multi-core vacuum heat insulating material 18 for manufacturing a multi-core vacuum heat insulating material 18 in which a jacket material 5 positioned around each core material 2 is thermally welded so that each of the plurality of core materials 2 is located in an independent space. A heat-welded portion 17 having a predetermined width remains between the cut portion of the multi-core vacuum heat insulating material 18 manufactured in the material manufacturing step and the multi-core vacuum heat insulating material manufacturing step and the core material 2 adjacent to the cut portion. And a step of cutting the outer jacket material 5 to separate the desired vacuum heat insulating material 1 from the multi-core vacuum heat insulating material 18.
[0084]
In this method for manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 18 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 18 is used. Since the vacuum heat insulating materials 1 are sequentially separated, a large number of vacuum heat insulating materials 1 or a plurality of types of vacuum heat insulating materials 1 having different sizes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 5 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The width | variety of the fin-shaped outer covering material 5 peripheral part (thermal welding part 4) of the core material 2 outer periphery of the vacuum heat insulating material 1 after having done can be made small.
[0085]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a multi-core vacuum heat insulating material manufacturing process. After heat-sealing the outer peripheral part of the covering material 5 covering 2 to form the heat-welding part 12, the covering material 5 positioned around each core material 2 is heat-welded by heat welding in a normal pressure environment The part 17 is formed.
[0086]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 5 positioned around the core material 2 is thermally welded under the normal pressure environment to form the heat welded portion 17, it is formed around the core material 2 under the reduced pressure environment. Compared with the case where the outer cover material 5 is heat-welded to form the heat-welded portion 17, it becomes easier to perform the heat-welding work, and the usage time of the vacuum packaging machine 6 is shortened, so that the vacuum packaging machine 6 is used efficiently it can. Further, the work-in-process can be stored in a state in which the heat-welded portion 12 is formed on the outer peripheral portion of the jacket material 5 covering the plurality of core materials 2, and the jacket material 5 positioned around the core material 2 can be placed at a convenient time. Since it is possible to perform the work of forming the heat welded portion 17 by heat welding, the work of the multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0087]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment WHEREIN: In the multi-core vacuum heat insulating material manufacturing process, in the operation | work which heat-seal | coats the outer covering material 5 located around each core material 2, it is a plurality on the pressing surface The portions to be heat-welded of the outer covering materials 5 that have recesses corresponding to the shape and arrangement pattern of the inner core material 2 and are pressed around the outer covering material 5 and heated around the core material 2 once. A heat-welded body 27 that can be heat-welded is used.
[0088]
In this method of manufacturing a vacuum heat insulating material, a portion to be thermally welded of the jacket material 5 located around each core material 2 is obtained by pressing and heating the jacket material 5 by the heat welded body 27 once. Heat welding can be performed, and the heat welding operation can be easily performed in a short time.
[0089]
(Embodiment 4)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 4 of this invention is demonstrated, about the same structure as Embodiment 1 or 3, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0090]
FIG. 11: is a schematic side view of the state before the heat welding of the heat welding apparatus used with the manufacturing method of the vacuum heat insulating material of Embodiment 4 of this invention.
[0091]
A gas barrier laminate film (covering material) 5 cut into a rectangular shape is placed on a test stand 7 of a vacuum packaging machine 6 with the heat welding material side facing up. The core material 2 is disposed on the laminate film 5, and the laminate film 5 has its end face substantially coincided with each end face of the laminate film 5 therebelow so that the heat welding material side faces the core material 2 side. It is installed to do.
[0092]
In the vacuum packaging machine 6, reference numeral 8 denotes a heat welding bar, which is arranged at a position where four outer peripheral portions of the laminate film 5 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0093]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar The four outer peripheral portions of the laminate film 5 are thermally welded by 8 to form four heat welded portions 12, so that the plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. A multi-core vacuum heat insulating material 13 is produced.
[0094]
The multi-core vacuum heat insulating material 13 is taken out from the vacuum packaging machine 6, and the vacuum heat insulating material 13 is installed on a work table 32 of a heat welding apparatus 31 having a heat welding body 30. The heat-welded body 30 heats the built-in heater by a switch, and heat-welds the specimen (multi-core vacuum heat insulating material 13) that moves up and down and is placed on the work table 32.
[0095]
The heat welded body 30 is a rubber heat welded body having substantially the same dimensions as the laminate film 5. When the heat welded body 30 is pressed against the heat welded material, the heat welded body 30 has a very similar shape to the heat welded material. It is easy to follow along.
[0096]
By this thermal welding device 31, the thermal welded body 30 is pressed against the portion surrounded by the thermal welded portion 12 of the vacuum heat insulating material 13 under the normal pressure environment, so that thermal welding is performed around the core material 2. The part 17 is formed, and the multi-core vacuum heat insulating material 18 is formed by the core material 2 and the heat welding part 17.
[0097]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 18 in a state including the heat welding portion 17, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0098]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0099]
Further, since the heat-welded portion 12 of the laminate film 5 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and is thermally welded at normal pressure. Since the part 17 is provided, it can be performed manually.
[0100]
Further, the work-in-process can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate film 5, and the heat-welded portion 17 of the laminate film 5 is provided around the core material 2 in a normal pressure environment at a convenient time. Since the work to be provided can be performed, an effect that the work can be performed flexibly is obtained.
[0101]
Furthermore, by pressing the heat-welded body 30 against the laminate film 5, an effect can be obtained in which the heat-welded portion 17 can be reliably formed around the core material 2 by a single heat-welding operation.
[0102]
Further, by using the heat welded body 30 that easily follows this shape, the heat welded body 30 can easily follow the shape even if the distance between the core material 2 and the core material 2 is not sufficiently long. It is possible to obtain an effect that the heat welded portion 17 can be reliably produced by firmly grasping the heat welded layer therebetween.
[0103]
Further, by pressing the heat welded body 30 against the laminate film 5 a plurality of times, the laminate film 5 is divided into small portions to form the heat welded portion 17, thereby ensuring the heat welded portion 17 around the core material 2. The effect which can be formed and the leak from the heat welding part 17 can be reduced is acquired.
[0104]
Moreover, even when the position of the core material 2 has shifted | deviated, or when the shape of the core material 2 changes, it can apply, without changing the shape of a heat welding body.
[0105]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0106]
As the laminate film 5, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0107]
In the manufacturing method of the vacuum heat insulating material according to the present embodiment, a plurality of core members 2 that are spaced apart from each other on substantially the same plane are covered with a gas barrier outer covering material 5 and the inside of the outer covering material 5 is decompressed. At the same time, a multi-core vacuum heat insulating material 18 for manufacturing a multi-core vacuum heat insulating material 18 in which a jacket material 5 positioned around each core material 2 is thermally welded so that each of the plurality of core materials 2 is located in an independent space. A heat-welded portion 17 having a predetermined width remains between the cut portion of the multi-core vacuum heat insulating material 18 manufactured in the material manufacturing step and the multi-core vacuum heat insulating material manufacturing step and the core material 2 adjacent to the cut portion. And a step of cutting the outer jacket material 5 to separate the desired vacuum heat insulating material 1 from the multi-core vacuum heat insulating material 18.
[0108]
In this method for manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 18 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 18 is used. Since the vacuum heat insulating materials 1 are sequentially separated, a large number of vacuum heat insulating materials 1 or a plurality of types of vacuum heat insulating materials 1 having different sizes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 5 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The width | variety of the fin-shaped outer covering material 5 peripheral part (thermal welding part 4) of the core material 2 outer periphery of the vacuum heat insulating material 1 after having done can be made small.
[0109]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a multi-core vacuum heat insulating material manufacturing process. After heat-sealing the outer peripheral part of the covering material 5 covering 2 to form the heat-welding part 12, the covering material 5 positioned around each core material 2 is heat-welded by heat welding in a normal pressure environment The part 17 is formed.
[0110]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 5 positioned around the core material 2 is thermally welded under the normal pressure environment to form the heat welded portion 17, it is formed around the core material 2 under the reduced pressure environment. Compared with the case where the outer cover material 5 is heat-welded to form the heat-welded portion 17, it becomes easier to perform the heat-welding work, and the usage time of the vacuum packaging machine 6 is shortened, so that the vacuum packaging machine 6 is used efficiently it can. Further, the work-in-process can be stored in a state in which the heat-welded portion 12 is formed on the outer peripheral portion of the jacket material 5 covering the plurality of core materials 2, and the jacket material 5 positioned around the core material 2 can be placed at a convenient time. Since it is possible to perform the work of forming the heat welded portion 17 by heat welding, the work of the multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0111]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is the heat welding body 30 comprised with the elastic body so that it may follow the shape of a to-be-heated welded material easily in a multi-core vacuum heat insulating material manufacturing process. Is pressed against the outer covering material 5 once to provide the heat welding portion 17 of the outer covering material 5 around the core material 2.
[0112]
In this vacuum heat insulating material manufacturing method, by using the heat welded body 30 that easily follows the shape of the heat-welded object, the heat welded body 30 is shaped even if the distance between the core material 2 and the core material 2 is not sufficiently long. Therefore, the heat-welded layer 17 between the core material 2 and the core material 2 can be firmly grasped, and the heat-welded portion 17 can be reliably produced. Moreover, since the heat welding part 17 is formed in the circumference | surroundings of the core material 2 with respect to the jacket material 5 at once, a vacuum heat insulating material can be produced efficiently. Further, even when the position of the core material 2 is slightly deviated or when the shape of the core material 2 is slightly changed, it is possible to apply without changing the shape of the heat-welded body 30.
[0113]
(Embodiment 5)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 5 of this invention is demonstrated, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0114]
FIG. 12 is a schematic side view of the heat welding apparatus used in the method for manufacturing a vacuum heat insulating material according to Embodiment 5 of the present invention before heat welding.
[0115]
A gas barrier laminate film (coating material) 5 cut into a rectangle is placed on a test stand 7 of a vacuum packaging machine 6 with the heat welding material side facing upward. The core material 2 is disposed on the laminate film 5, and the laminate film 5 has its end face substantially coincided with each end face of the laminate film 5 therebelow so that the heat welding material side faces the core material 2 side. It is installed to do.
[0116]
In the vacuum packaging machine 6, reference numeral 8 denotes a heat welding bar, which is arranged at a position where four outer peripheral portions of the laminate film 5 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0117]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar The four outer peripheral portions of the laminate film 5 are thermally welded by 8 to form four heat welded portions 12, so that the plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. A multi-core vacuum heat insulating material 13 is produced.
[0118]
The multi-core vacuum heat insulating material 13 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 13 is installed on a work table 35 of a heat welding apparatus 34 having a heat welding body 33.
[0119]
The heat welded body 33 heats the built-in heater by a switch, and heat welds the specimen (the multi-core vacuum heat insulating material 13) placed on the work table 35 by moving up and down.
[0120]
The heat welded body 33 is a rubber heat welded body having substantially the same length as the YY ′ direction of the laminate film 5 and a width shorter than that of the laminate film 5 in the XX ′ direction. When 33 is pressed against the object to be heated, it has a characteristic that it is very easy to follow the shape of the object to be heated.
[0121]
By this thermal welding apparatus 31, the core material 2 is pressed against the portion surrounded by the thermal welding portion 12 on the outer periphery of the multi-core vacuum heat insulating material 13 in the normal pressure environment a plurality of times from above. A heat welded portion 17 is formed around the core, and a multi-core vacuum heat insulating material 18 is formed by the core material 2 and the heat welded portion 17.
[0122]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 18 in a state including the heat welding portion 17, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0123]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0124]
Moreover, since the heat welding part 17 of the laminate film 5 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and at the normal pressure environment. Since the heat welding part 17 is provided, it can be performed manually.
[0125]
Further, the work in progress can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate film 5, and an operation for providing the heat-welded portion 17 of the laminate film 5 around the core material 2 at normal pressure at a convenient time Therefore, the effect that the work can be performed flexibly is obtained.
[0126]
Furthermore, by pressing the heat welded body 33 against the laminate film 5, an effect that the heat welded portion 17 can be reliably formed around the core material 2 by one heat welding operation is obtained. Further, by using the heat welded body 33 that easily follows this shape, the heat welded body 33 can easily follow the shape even if the distance between the core material 2 and the core material 2 is not sufficiently long. It is possible to obtain an effect that the heat welded portion 17 can be reliably produced by firmly grasping the heat welded layer therebetween.
[0127]
Moreover, since the heat welding part 17 is formed in the circumference | surroundings of the core material 2 with respect to the laminate film 5 at once, the effect that the vacuum heat insulating material 1 can be produced efficiently is acquired. Moreover, even when the position of the core material 2 has shifted | deviated or when the shape of the core material 2 changes, it can apply, without changing the shape of the heat welding body 33. FIG.
[0128]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0129]
As the laminate film 5, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0130]
In the manufacturing method of the vacuum heat insulating material according to the present embodiment, a plurality of core members 2 that are spaced apart from each other on substantially the same plane are covered with a gas barrier outer covering material 5 and the inside of the outer covering material 5 is decompressed. At the same time, a multi-core vacuum heat insulating material 18 for manufacturing a multi-core vacuum heat insulating material 18 in which a jacket material 5 positioned around each core material 2 is thermally welded so that each of the plurality of core materials 2 is located in an independent space. A heat-welded portion 17 having a predetermined width remains between the cut portion of the multi-core vacuum heat insulating material 18 manufactured in the material manufacturing step and the multi-core vacuum heat insulating material manufacturing step and the core material 2 adjacent to the cut portion. And a step of cutting the outer jacket material 5 to separate the desired vacuum heat insulating material 1 from the multi-core vacuum heat insulating material 18.
[0131]
In this method for manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 18 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 18 is used. Since the vacuum heat insulating materials 1 are sequentially separated, a large number of vacuum heat insulating materials 1 or a plurality of types of vacuum heat insulating materials 1 having different sizes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 5 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The width | variety of the fin-shaped outer covering material 5 peripheral part (thermal welding part 4) of the core material 2 outer periphery of the vacuum heat insulating material 1 after having done can be made small.
[0132]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a multi-core vacuum heat insulating material manufacturing process. After heat-sealing the outer peripheral part of the covering material 5 covering 2 to form the heat-welding part 12, the covering material 5 positioned around each core material 2 is heat-welded by heat welding in a normal pressure environment The part 17 is formed.
[0133]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 5 positioned around the core material 2 is thermally welded under the normal pressure environment to form the heat welded portion 17, it is formed around the core material 2 under the reduced pressure environment. Compared with the case where the outer cover material 5 is heat-welded to form the heat-welded portion 17, it becomes easier to perform the heat-welding work, and the usage time of the vacuum packaging machine 6 is shortened, so that the vacuum packaging machine 6 is used efficiently it can. Further, the work-in-process can be stored in a state in which the heat-welded portion 12 is formed on the outer peripheral portion of the jacket material 5 covering the plurality of core materials 2, and the jacket material 5 positioned around the core material 2 can be placed at a convenient time. Since it is possible to perform the work of forming the heat welded portion 17 by heat welding, the work of the multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0134]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is the heat welding body 33 comprised with the elastic body so that it may follow the shape of a to-be-heated welded material easily in a multi-core vacuum heat insulating material manufacturing process. Is pressed against the outer covering material 5 a plurality of times to provide the heat welding portion 17 of the outer covering material 5 around the core material 2.
[0135]
In this vacuum heat insulating material manufacturing method, by using the heat welded body 33 that easily follows the shape of the heat welded material, the heat welded body 33 is shaped even if the distance between the core material 2 and the core material 2 is not sufficiently long. Therefore, the heat-welded layer 17 between the core material 2 and the core material 2 can be firmly grasped, and the heat-welded portion 17 can be reliably produced. In addition, by pressing the heat-welded body 33 against the outer cover material 5 a plurality of times, the outer cover material 5 is divided into small portions to form the heat-welded portion 17 so that the heat-welded portion is surely provided around the core material 2. 17 can be formed, and leakage from the heat welding part 17 can be reduced. Further, even when the position of the core material 2 is slightly deviated or when the shape of the core material 2 is slightly changed, it is possible to apply without changing the shape of the heat welded body 33.
[0136]
(Embodiment 6)
FIG. 13 is a vertical cross-sectional view of a vacuum heat insulating material produced by the method for manufacturing a vacuum heat insulating material according to Embodiment 6 of the present invention, and FIG. 14 is a schematic vertical cross-sectional view when the vacuum packaging machine used in the same embodiment is used. FIG. 15 is a schematic cross-sectional view when the vacuum packaging machine is used, and FIG. 16 is a plan view of the multi-core vacuum heat insulating material at the stage where the opening of the bag-shaped outer jacket material is thermally welded by the vacuum packaging machine. 17 is a schematic side view of a heat welding apparatus used in the embodiment, FIG. 18 is a plan view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus, FIG. 19 is a longitudinal cross-sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus.
[0137]
The vacuum heat insulating material 36 manufactured by the method for manufacturing a vacuum heat insulating material of the present embodiment covers the core material 2 containing wet silica and carbon black and solidified with an outer cover material 37 made of a gas barrier laminate bag. The inside of the jacket material 37 is manufactured by reducing the pressure. A heat welding portion 38 is provided around the core material 2.
[0138]
Next, a method for manufacturing the vacuum heat insulating material 36 will be described.
[0139]
A gas barrier laminate bag (bag-shaped outer covering material) 39 is installed on the test stand 7 of the vacuum packaging machine 6. Further, the core material 2 is disposed in the laminate bag 39.
[0140]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the opening of the laminate bag 39 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0141]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar 8 is formed by thermally welding the opening of the laminating bag 39, whereby a plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. The heat insulating material 41 is produced.
[0142]
The multi-core vacuum heat insulating material 41 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 41 is installed on the work table 16 of the heat welding apparatus 15 having the heat welding body 14. The heat welded body 14 heats the built-in heater by a switch, and heat-welds the specimen (multi-core vacuum heat insulating material 41) that moves up and down and is placed on the work table 6.
[0143]
With this thermal welding device 15, all the portions surrounded by the thermal welding part 40 of the multi-core vacuum heat insulating material 41 and the three thermal welding parts 40 a of the laminate bag 39 are thermally welded by the thermal welding body 14 in a normal pressure environment. Thus, a multi-core vacuum heat insulating material 43 including a heat welding portion 42 is formed around the core material 2.
[0144]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 43 in a state including the heat welding portion 42, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0145]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0146]
Further, since the heat-sealed portion 40 of the laminate bag 39 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and heated at normal pressure. The operation of providing the weld portion 42 can be performed.
[0147]
Further, the work-in-process can be stored in a state in which the heat-welded portion 40 is formed only in the opening portion of the laminate bag 39, and the heat-welded portion 42 of the laminate bag 39 is provided around the core material 2 in a normal pressure environment at a convenient time. Since the work to be provided can be performed, an effect of performing the work flexibly is obtained.
[0148]
In addition, since the laminate bag 39 is used for the jacket material 37, setting the laminate bag 39 with the core material 2 set in the vacuum packaging machine 6 makes it easy to set the vacuum packaging machine 6 At the same time, since the heat welding of the opening is only required in one place, the effect of reliably maintaining the degree of vacuum in the laminate bag 39 can be obtained.
[0149]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0150]
Further, as the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0151]
Although the laminated bag 39 has been described as having a three-side sealed bag, the laminated bag includes a four-side sealed bag, a gusset bag, a pillow bag, a center tape seal bag, etc., and is not particularly specified.
[0152]
In the manufacturing method of the vacuum heat insulating material of the present embodiment, a plurality of core materials 2 are arranged on a substantially same plane and spaced apart from each other in a bag-like outer covering material 39 having gas barrier properties and having an opening. A multi-core vacuum heat insulating material 43 obtained by thermally welding the covering material 39 located around each core material 2 so that the inside of the material 39 is decompressed and each of the plurality of core materials 2 is located in an independent space. Heat of a predetermined width between the cutting part in the multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 43 manufactured in the multi-core vacuum heat insulating material manufacturing process and the core material 2 adjacent to the cutting part. A vacuum heat insulating material separating step of cutting the outer covering material 39 so that the welded portion 42 remains, and separating the desired vacuum heat insulating material 36 from the multi-core vacuum heat insulating material 43.
[0153]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 43 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 43 is manufactured. Since the vacuum heat insulating materials 36 are sequentially separated, a large number of vacuum heat insulating materials 36 or a plurality of types of vacuum heat insulating materials 36 having different sizes and shapes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 39 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The fin-shaped outer covering material 39 peripheral part (thermal welding part 38) of the outer periphery of the core material 2 of the vacuum heat insulating material 36 can be reduced. Moreover, since the bag-shaped thing which has an opening part is used for the jacket material 39, what arrange | positioned the several core material 2 in the bag-shaped jacket material 39 is installed in the vacuum packaging machine 6. Thus, setting to the vacuum packaging machine 6 is simplified, and if the heat-welded portion 40 is formed by thermally welding one place (one side) of the opening of the bag-shaped jacket material 39, the jacket material 39 is obtained. Since the plurality of core materials 2 can be sealed, the degree of vacuum in the jacket material 39 can be maintained more than when the four core materials 2 are sealed by heat-sealing the four sides of the pair of sheet-like jacket materials. It can be done reliably.
[0154]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a reduced pressure environment in the vacuum packaging machine 6 so that the inside of the jacket material 39 is sealed while maintaining a reduced pressure state in the multi-core vacuum heat insulating material manufacturing process. After forming the heat-welded portion 40 by thermally welding the openings of the jacket material 39 that covers the plurality of core materials 2 below, the jacket materials 39 positioned around the core materials 2 under the normal pressure environment The heat welding part 42 is formed by heat welding.
[0155]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 39 positioned around the core material 2 is thermally welded under a normal pressure environment to form the heat-welded portion 42, it is formed around the core material 2 under a reduced pressure environment. It is easier to perform the heat welding operation than when the outer covering material 39 is heat-welded, and the use time of the vacuum packaging machine 6 is shortened so that the vacuum packaging machine 6 can be used efficiently. In addition, the work in progress can be stored in a state in which the heat-welded portion 40 is formed in the opening of the bag-shaped outer covering material 39 covering the plurality of core members 2, and the outer covering member positioned around the core member 2 at a convenient time. Since the operation | work which heat-seal | fuses 39 and forms the heat welding part 42 can be performed, the operation | work of a multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0156]
(Embodiment 7)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 7 of this invention is demonstrated, about the same structure as Embodiment 6, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0157]
FIG. 20 is a schematic longitudinal sectional view of the vacuum packaging machine used in the manufacturing method of the vacuum thermal insulation material according to Embodiment 7 of the present invention, and FIG. 21 is a plan view of the multi-core vacuum thermal insulation material produced by the vacuum packaging machine. FIG.
[0158]
A gas barrier laminate bag 39 is installed on the test stand 20 of the vacuum packaging machine 19. The test stand 20 is provided with a conveyor (not shown), and the laminate bag 39 can be moved from right to left in the drawing. The core material 2 is disposed in the laminate bag 39.
[0159]
In the vacuum packaging machine 19, the heat welding bar 21 is located at the center of the test table 20 and above, and the laminate bag 39 can be heat welded from the front side to the back side of the drawing. Is arranged. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0160]
When the lid 22 of the vacuum packaging machine 19 is closed and the vacuum packaging machine 19 is started up, the vacuum pump 23 starts operation. After the inside of the vacuum packaging machine 19 is exhausted through the exhaust port 24 and depressurized to 0.1 Torr or less, the conveyor moves. Then, the laminate bag 39 is moved after a predetermined distance and then stopped, and the laminate bag 39 is heat-welded by the heat-welding bar 21 to form the heat-welded portion 44.
[0161]
By repeating this, a plurality of core materials 2 are filled and a multi-core vacuum heat insulating material 45 is produced in which the core materials 2 are located in independent spaces.
[0162]
The multi-core vacuum heat insulating material 45 is taken out from the vacuum packaging machine 19, and then each core material 2 is separated from the multi-core vacuum heat insulating material 45 in a state including the heat-welded portion 44, so that a plurality of core materials 2 are used as cores. The vacuum heat insulating material 1 can be obtained.
[0163]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0164]
Moreover, since all the heat welding parts 44 are performed in a pressure-reduced environment, when providing the heat welding part 44 of the laminate bag 39 around the core material 2, the position to provide the heat welding part 44 can be determined arbitrarily. That is, when a heat-welded portion 44 is provided, a place where it is likely to be wrinkled is first heat-welded to prevent generation of wrinkles, and a vacuum heat insulating material 45 free from leakage from the heat-welded portion 44 can be obtained.
[0165]
In addition, since a laminate bag 39 is used for the jacket material 37, setting the laminate bag 39 with the core material 2 set in the vacuum packaging machine 19 makes it easy to set the vacuum packaging machine 19 At the same time, since the heat welding of the opening is only required in one place, the effect of reliably maintaining the degree of vacuum in the laminate bag 39 can be obtained.
[0166]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0167]
Further, as the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0168]
Although the laminated bag 39 has been described as having a three-side sealed bag, the laminated bag includes a four-side sealed bag, a gusset bag, a pillow bag, a center tape seal bag, etc., and is not particularly specified.
[0169]
In the manufacturing method of the vacuum heat insulating material of the present embodiment, a plurality of core materials 2 are arranged on a substantially same plane and spaced apart from each other in a bag-like outer covering material 39 having gas barrier properties and having an opening. A multi-core vacuum heat insulating material 45 obtained by heat-welding the jacket material 39 positioned around each core material 2 so that the inside of the material 39 is decompressed and each of the plurality of core materials 2 is located in an independent space. Heat of a predetermined width between the cutting part in the multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 45 manufactured in the multi-core vacuum heat insulating material manufacturing process and the core material 2 adjacent to the cutting part. And a vacuum heat insulating material separating step of cutting the outer cover material 39 so that the welded portion 44 remains, and separating the desired vacuum heat insulating material 36 from the multi-core vacuum heat insulating material 45.
[0170]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 45 having a plurality of core materials 2 arranged on a substantially same plane and spaced apart from each other is once manufactured, and then desired from the multi-core vacuum heat insulating material 45. Since the vacuum heat insulating materials 36 are sequentially separated, a large number of vacuum heat insulating materials 36 or a plurality of types of vacuum heat insulating materials 36 having different sizes and shapes can be produced by a single decompression operation of the vacuum packaging machine 19. The vacuum packaging machine 19 can be operated efficiently, and the outer cover material 39 located around the core material 2 is thermally welded to the cutting part to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The fin-shaped outer covering material 39 peripheral part (thermal welding part 38) of the outer periphery of the core material 2 of the vacuum heat insulating material 36 can be reduced. Moreover, since the bag-shaped thing which has an opening part is used for the jacket material 39, what arrange | positioned the several core material 2 in the bag-shaped jacket material 39 is installed in the vacuum packaging machine 19. As a result, setting to the vacuum packaging machine 19 is simplified.
[0171]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is the operation | work which heat-seals the outer covering material 39 located in the circumference | surroundings of each core material 2 in the multi-core vacuum heat insulating material manufacturing process. This is performed in a reduced pressure environment.
[0172]
In this method for manufacturing a vacuum heat insulating material, when the jacket material 39 positioned around the core material 2 is heat-welded, the order in which the heat-welded portion 44 is provided can be arbitrarily determined. In other words, if it is turned later, flaws are generated due to the influence of the previous heat welding operation, and the heat welding portion where the heat welding operation becomes difficult is first heat-welded to prevent generation of flaws, and leakage from the heat-welded portion 44 is prevented. No vacuum insulation 36 can be obtained. Moreover, it is also possible to thermally weld only a portion of the jacket material 39 located around the core material 2 without thermally welding the openings of the bag-shaped jacket material 39 that covers the plurality of core materials 2.
[0173]
(Embodiment 8)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 8 of this invention is demonstrated, about the same structure as Embodiment 6, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0174]
FIG. 22 is a schematic side view of the heat welding apparatus used in the method for manufacturing a vacuum heat insulating material according to the eighth embodiment of the present invention before heat welding.
[0175]
A gas barrier laminate bag 39 is installed on the test stand 7 of the vacuum packaging machine 6. The core material 2 is disposed in the laminate bag 39.
[0176]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the opening of the laminate bag 39 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0177]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar 8 is formed by thermally welding the opening of the laminating bag 39, whereby a plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. The heat insulating material 41 is produced.
[0178]
The multi-core vacuum heat insulating material 41 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 41 is installed on a work table 48 of a heat welding apparatus 47 having a heat welding body 46. The heat welded body 46 heats the built-in heater by a switch, and also performs heat welding on the specimen (multi-core vacuum heat insulating material 41) that moves up and down and is placed on the work table 48.
[0179]
The heat-welded body 46 has substantially the same dimensions as the laminate bag 39, and the core material is provided so that the heat-welded portion of the laminate bag 39 is provided around the core material 2 with respect to the arrangement shape of the core material 2 on the laminate bag 39. A position 2 is a recess, and a heater is incorporated so as to heat the portions other than the recess so that the core material 2 is positioned in the recess and a heat-welded portion is formed on the remaining portion of the laminate bag 39.
[0180]
With this thermal welding device 47, all the portions surrounded by the three thermal welding portions 40a of the thermal welding portion 40 of the vacuum heat insulating material 41 and the laminate bag 39 are thermally welded under the normal pressure environment. Is formed with a heat-welded portion 42, and a multi-core vacuum heat insulating material 43 is formed by the core material 2 and the heat-welded portion 42.
[0181]
Thereafter, by separating each core material 2 from the vacuum heat insulating material 43 in a state including the heat welding portion 42, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0182]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0183]
Moreover, since the heat welding part 40 of the laminate bag 39 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and under the normal pressure environment. Since the heat welding part 42 is provided, it can be performed manually.
[0184]
Further, the work in progress can be stored in a state in which the heat-welded portion 40 is formed only on the outer peripheral portion of the laminate bag 39, and the work for providing the heat-welded portion 42 of the laminate bag 39 around the core material 2 at normal pressure at a convenient time Therefore, the effect that the work can be performed flexibly is obtained.
[0185]
Further, by pressing the heat-welded body 46 against the laminate bag 39, an effect that the heat-welded portion 42 can be reliably formed around the core material 2 by a single heat-welding operation can be obtained. In addition, since the laminate bag 39 is used for the jacket material 37, setting the laminate bag 39 with the core material 2 set in the vacuum packaging machine 6 makes it easy to set the vacuum packaging machine 6 At the same time, since only one heat welding of the opening is required, the effect of reliably maintaining the degree of vacuum in the laminate bag 39 can be obtained.
[0186]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0187]
Further, as the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0188]
Although the laminated bag 39 has been described as having a three-side sealed bag, the laminated bag includes a four-side sealed bag, a gusset bag, a pillow bag, a center tape seal bag, etc., and is not particularly specified.
[0189]
In the manufacturing method of the vacuum heat insulating material of the present embodiment, a plurality of core materials 2 are arranged on a substantially same plane and spaced apart from each other in a bag-like outer covering material 39 having gas barrier properties and having an opening. A multi-core vacuum heat insulating material 43 obtained by thermally welding the covering material 39 located around each core material 2 so that the inside of the material 39 is decompressed and each of the plurality of core materials 2 is located in an independent space. Heat of a predetermined width between the cutting part in the multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 43 manufactured in the multi-core vacuum heat insulating material manufacturing process and the core material 2 adjacent to the cutting part. A vacuum heat insulating material separating step of cutting the outer covering material 39 so that the welded portion 42 remains, and separating the desired vacuum heat insulating material 36 from the multi-core vacuum heat insulating material 43.
[0190]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 43 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 43 is manufactured. Since the vacuum heat insulating materials 36 are sequentially separated, a large number of vacuum heat insulating materials 36 or a plurality of types of vacuum heat insulating materials 36 having different sizes and shapes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 39 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The fin-shaped outer covering material 39 peripheral part (thermal welding part 38) of the outer periphery of the core material 2 of the vacuum heat insulating material 36 can be reduced. Moreover, since the bag-shaped thing which has an opening part is used for the jacket material 39, what arrange | positioned the several core material 2 in the bag-shaped jacket material 39 is installed in the vacuum packaging machine 6. Thus, setting to the vacuum packaging machine 6 is simplified, and if the heat-welded portion 40 is formed by thermally welding one place (one side) of the opening of the bag-shaped jacket material 39, the jacket material 39 is obtained. Since the plurality of core materials 2 can be sealed, the degree of vacuum in the jacket material 39 can be maintained more than when the four core materials 2 are sealed by heat-sealing the four sides of the pair of sheet-like jacket materials. It can be done reliably.
[0191]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a reduced pressure environment in the vacuum packaging machine 6 so that the inside of the jacket material 39 is sealed while maintaining a reduced pressure state in the multi-core vacuum heat insulating material manufacturing process. After forming the heat-welded portion 40 by thermally welding the openings of the jacket material 39 that covers the plurality of core materials 2 below, the jacket materials 39 positioned around the core materials 2 under the normal pressure environment The heat welding part 42 is formed by heat welding.
[0192]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 39 positioned around the core material 2 is thermally welded under a normal pressure environment to form the heat-welded portion 42, it is formed around the core material 2 under a reduced pressure environment. It is easier to perform the heat welding operation than when the outer covering material 39 is heat-welded, and the use time of the vacuum packaging machine 6 is shortened so that the vacuum packaging machine 6 can be used efficiently. In addition, the work in progress can be stored in a state in which the heat-welded portion 40 is formed in the opening of the bag-shaped outer covering material 39 covering the plurality of core members 2, and the outer covering member positioned around the core member 2 at a convenient time. Since the operation | work which heat-seal | fuses 39 and forms the heat welding part 42 can be performed, the operation | work of a multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0193]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment WHEREIN: In the operation | work which heat-seal | coats the jacket material 39 located around each core material 2 in a multi-core vacuum heat insulating material manufacturing process, several on a pressing surface. The portions to be heat-welded of the jacket materials 39 that are provided around the respective core materials 2 by pressing and heating to the jacket materials 39 once and having recesses corresponding to the shape and arrangement pattern of the core materials 2 A heat-welded body 46 that can be heat-welded is used.
[0194]
In this method of manufacturing a vacuum heat insulating material, the portions to be thermally welded of the jacket materials 39 located around the respective core materials 39 are pressed and heated once by the heat welded body 46 and heated. Heat welding can be performed, and the heat welding operation can be easily performed in a short time.
[0195]
(Embodiment 9)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 9 of this invention is demonstrated, about the same structure as Embodiment 6, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0196]
FIG. 23 is a schematic side view showing a state before the thermal welding of the thermal welding apparatus used in the method for manufacturing a vacuum heat insulating material according to the ninth embodiment of the present invention.
[0197]
A gas barrier laminate film 39 is installed on the test stand 7 of the vacuum packaging machine 6. The core material 2 is disposed in the laminate bag 39.
[0198]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the opening of the laminate bag 39 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0199]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar 8 is formed by thermally welding the opening of the laminating bag 39, whereby a plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. The heat insulating material 41 is produced.
[0200]
The multi-core vacuum heat insulating material 41 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 41 is installed on a work table 51 of a heat welding apparatus 50 having a heat welding body 49. The heat welded body 49 heats the built-in heater by the switch, and also heat welds the specimen (multi-core vacuum heat insulating material 41) that moves up and down and is placed on the work table 51.
[0201]
This heat welded body 49 is a rubber heat welded body having substantially the same dimensions as the laminate bag 39, and when this heat welded body 49 is pressed against the heat welded material, the shape of the heat welded material is very large. It is easy to follow along.
[0202]
With this thermal welding apparatus 50, the thermal welded body 49 is pressed from the upper side against the part surrounded by the thermal welded part 40 of the vacuum heat insulating material 41 and the three thermal welded parts 40a of the laminate bag 39 in the normal pressure environment. As a result, a heat welding portion 42 is formed around the core material 2, and a multi-core vacuum heat insulating material 43 is formed by the core material 2 and the heat welding portion 42.
[0203]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 43 in a state including the heat welding portion 42, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0204]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0205]
Moreover, since the heat welding part 40 of the laminate bag 39 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and under the normal pressure environment. Since the heat welding part 42 is provided, it can be performed manually.
[0206]
Further, the work in progress can be stored in a state in which the heat-welded portion 40 is formed only on the outer peripheral portion of the laminate bag 39, and the work for providing the heat-welded portion 42 of the laminate bag 39 around the core material 2 at normal pressure at a convenient time Therefore, the effect that the work can be performed flexibly is obtained.
[0207]
Furthermore, by pressing the heat-welded body 49 against the laminate bag 39, an effect that the heat-welded portion 42 can be reliably formed around the core material 2 by a single heat-welding operation is obtained. In addition, by using the heat welded body 49 that easily follows this shape, the heat welded body 49 can easily follow the shape even if the distance between the core material 2 and the core material 2 is not sufficiently long. It is possible to obtain an effect that the heat-welded portion 42 can be reliably produced by firmly grasping the heat-welded layer therebetween.
[0208]
Moreover, even when the position of the core material 2 has shifted | deviated, or when the shape of the core material 2 changes, it can apply, without changing the shape of a heat welding body. In addition, since the laminate bag 39 is used for the jacket material 37, setting the laminate bag 39 with the core material 2 set in the vacuum packaging machine 6 makes it easy to set the vacuum packaging machine 6 At the same time, since the heat welding of the opening is only required in one place, the effect of reliably maintaining the degree of vacuum in the laminate bag 39 can be obtained.
[0209]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0210]
Further, as the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0211]
Although the laminated bag 39 has been described as having a three-side sealed bag, the laminated bag includes a four-side sealed bag, a gusset bag, a pillow bag, a center tape seal bag, etc., and is not particularly specified.
[0212]
In the manufacturing method of the vacuum heat insulating material of the present embodiment, a plurality of core materials 2 are arranged on a substantially same plane and spaced apart from each other in a bag-like outer covering material 39 having gas barrier properties and having an opening. A multi-core vacuum heat insulating material 43 obtained by thermally welding the covering material 39 located around each core material 2 so that the inside of the material 39 is decompressed and each of the plurality of core materials 2 is located in an independent space. Heat of a predetermined width between the cutting part in the multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 43 manufactured in the multi-core vacuum heat insulating material manufacturing process and the core material 2 adjacent to the cutting part. A vacuum heat insulating material separating step of cutting the outer covering material 39 so that the welded portion 42 remains, and separating the desired vacuum heat insulating material 36 from the multi-core vacuum heat insulating material 43.
[0213]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 43 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 43 is manufactured. Since the vacuum heat insulating materials 36 are sequentially separated, a large number of vacuum heat insulating materials 36 or a plurality of types of vacuum heat insulating materials 36 having different sizes and shapes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 39 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The fin-shaped outer covering material 39 peripheral part (thermal welding part 38) of the outer periphery of the core material 2 of the vacuum heat insulating material 36 can be reduced. Moreover, since the bag-shaped thing which has an opening part is used for the jacket material 39, what arrange | positioned the several core material 2 in the bag-shaped jacket material 39 is installed in the vacuum packaging machine 6. Thus, setting to the vacuum packaging machine 6 is simplified, and if the heat-welded portion 40 is formed by thermally welding one place (one side) of the opening of the bag-shaped jacket material 39, the jacket material 39 is obtained. Since the plurality of core materials 2 can be sealed, the degree of vacuum in the jacket material 39 can be maintained more than when the four core materials 2 are sealed by heat-sealing the four sides of the pair of sheet-like jacket materials. It can be done reliably.
[0214]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a reduced pressure environment in the vacuum packaging machine 6 so that the inside of the jacket material 39 is sealed while maintaining a reduced pressure state in the multi-core vacuum heat insulating material manufacturing process. After forming the heat-welded portion 40 by thermally welding the openings of the jacket material 39 that covers the plurality of core materials 2 below, the jacket materials 39 positioned around the core materials 2 under the normal pressure environment The heat welding part 42 is formed by heat welding.
[0215]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 39 positioned around the core material 2 is thermally welded under a normal pressure environment to form the heat-welded portion 42, it is formed around the core material 2 under a reduced pressure environment. It is easier to perform the heat welding operation than when the outer covering material 39 is heat-welded, and the use time of the vacuum packaging machine 6 is shortened so that the vacuum packaging machine 6 can be used efficiently. In addition, the work in progress can be stored in a state in which the heat-welded portion 40 is formed in the opening of the bag-shaped outer covering material 39 covering the plurality of core members 2, and the outer covering member positioned around the core member 2 at a convenient time. Since the operation | work which heat-seal | fuses 39 and forms the heat welding part 42 can be performed, the operation | work of a multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0216]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is the thermal welding body 49 comprised with the elastic body so that it may follow the shape of a to-be-heated welded material easily in a multi-core vacuum heat insulating material manufacturing process. Is pressed against the jacket material 39 once to provide a heat-welded portion 42 of the jacket material 39 around the core material 2.
[0217]
In this method for manufacturing a vacuum heat insulating material, by using the heat welded body 49 that easily follows the shape of the heat welded material, the heat welded body 49 is shaped even if the distance between the core material 2 and the core material 2 is not sufficiently long. Therefore, the heat-welded portion 42 can be reliably produced by firmly grasping the heat-welded layer between the core material 2 and the core material 2. Moreover, since the heat welding part 42 is formed in the circumference | surroundings of the core material 2 with respect to the jacket material 39 at a time, a vacuum heat insulating material can be produced efficiently. Moreover, even when the position of the core material 2 has shifted a little or when the shape of the core material 2 has changed a little, it can be applied without having to change the shape of the heat-welded body 49.
[0218]
(Embodiment 10)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 10 of this invention is demonstrated, about the same structure as Embodiment 6, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0219]
FIG. 24 is a schematic side view showing a state before the thermal welding of the thermal welding apparatus used in the method for manufacturing a vacuum heat insulating material according to the tenth embodiment of the present invention.
[0220]
A gas barrier laminate film 39 is installed on the test stand 7 of the vacuum packaging machine 6. The core material 2 is disposed in the laminate bag 39.
[0221]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the opening of the laminate bag 39 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0222]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar 8 is formed by thermally welding the opening of the laminating bag 39, whereby a plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. The heat insulating material 41 is produced.
[0223]
The multi-core vacuum heat insulating material 41 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 41 is installed on a work table 54 of a heat welding apparatus 53 having a heat welding body 52. The heat welded body 52 heats the built-in heater by a switch, and moves up and down to heat weld the specimen placed on the work table 54.
[0224]
The heat welded body 52 is a rubber heat welded body having substantially the same length as the YY ′ direction of the laminate bag 39 and a width shorter than that of the laminate bag 39 in the XX ′ direction. When 52 is pressed against the object to be heated, it has a characteristic that it is very easy to match the shape of the object to be heated.
[0225]
With this thermal welding apparatus 50, the thermal welded body 52 is pushed a plurality of times from the upper side against the portion surrounded by the thermal welded part 40 of the vacuum heat insulating material 41 and the three thermal welded parts 40a of the laminate bag 39 in the normal pressure environment. By applying, a heat welding portion 42 is formed around the core material 2, and a multi-core vacuum heat insulating material 43 is formed by the core material 2 and the heat welding portion 42.
[0226]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 43 in a state including the heat welding portion 42, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0227]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0228]
Moreover, since the heat welding part 40 of the laminate bag 39 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and under the normal pressure environment. Since the heat welding part 42 is provided, it can be performed manually.
[0229]
Further, the work in progress can be stored in a state in which the heat-welded portion 40 is formed only on the outer peripheral portion of the laminate bag 39, and the work for providing the heat-welded portion 42 of the laminate bag 39 around the core material 2 at normal pressure at a convenient time Therefore, the effect that the work can be performed flexibly is obtained.
[0230]
Furthermore, by pressing the heat-welded body 52 against the laminate bag 39, an effect that the heat-welded portion 42 can be reliably formed around the core material 2 by a single heat-welding operation can be obtained. Further, by using the heat welded body 52 that easily follows this shape, the heat welded body 52 can easily follow the shape even if the distance between the core material 2 and the core material 2 is not sufficiently long. It is possible to obtain an effect that the heat-welded portion 42 can be reliably produced by firmly grasping the heat-welded layer therebetween.
[0231]
Moreover, since the heat welding part 42 is formed in the circumference | surroundings of the core material 2 with respect to the laminate bag 39 at once, the effect that the vacuum heat insulating material 1 can be produced efficiently is acquired. Moreover, even when the position of the core material 2 has shifted | deviated or when the shape of the core material 2 changes, it can apply without the need to change the shape of the heat welded body 52. FIG.
[0232]
In addition, since the laminate bag 39 is used for the jacket material 37, setting the laminate bag 39 with the core material 2 set in the vacuum packaging machine 6 makes it easy to set the vacuum packaging machine 6 At the same time, since the heat welding of the opening is only required in one place, the effect of reliably maintaining the degree of vacuum in the laminate bag 39 can be obtained.
[0233]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0234]
Further, as the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0235]
Although the laminated bag 39 has been described as having a three-side sealed bag, the laminated bag includes a four-side sealed bag, a gusset bag, a pillow bag, a center tape seal bag, etc., and is not particularly specified.
[0236]
In the manufacturing method of the vacuum heat insulating material of the present embodiment, a plurality of core materials 2 are arranged on a substantially same plane and spaced apart from each other in a bag-like outer covering material 39 having gas barrier properties and having an opening. A multi-core vacuum heat insulating material 43 obtained by thermally welding the covering material 39 located around each core material 2 so that the inside of the material 39 is decompressed and each of the plurality of core materials 2 is located in an independent space. Heat of a predetermined width between the cutting part in the multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 43 manufactured in the multi-core vacuum heat insulating material manufacturing process and the core material 2 adjacent to the cutting part. A vacuum heat insulating material separating step of cutting the outer covering material 39 so that the welded portion 42 remains, and separating the desired vacuum heat insulating material 36 from the multi-core vacuum heat insulating material 43.
[0237]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 43 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 43 is manufactured. Since the vacuum heat insulating materials 36 are sequentially separated, a large number of vacuum heat insulating materials 36 or a plurality of types of vacuum heat insulating materials 36 having different sizes and shapes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 39 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The fin-shaped outer covering material 39 peripheral part (thermal welding part 38) of the outer periphery of the core material 2 of the vacuum heat insulating material 36 can be reduced. Moreover, since the bag-shaped thing which has an opening part is used for the jacket material 39, what arrange | positioned the several core material 2 in the bag-shaped jacket material 39 is installed in the vacuum packaging machine 6. Thus, setting to the vacuum packaging machine 6 is simplified, and if the heat-welded portion 40 is formed by thermally welding one place (one side) of the opening of the bag-shaped jacket material 39, the jacket material 39 is obtained. Since the plurality of core materials 2 can be sealed, the degree of vacuum in the jacket material 39 can be maintained more than when the four core materials 2 are sealed by heat-sealing the four sides of the pair of sheet-like jacket materials. It can be done reliably.
[0238]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a reduced pressure environment in the vacuum packaging machine 6 so that the inside of the jacket material 39 is sealed while maintaining a reduced pressure state in the multi-core vacuum heat insulating material manufacturing process. After forming the heat-welded portion 40 by thermally welding the openings of the jacket material 39 that covers the plurality of core materials 2 below, the jacket materials 39 positioned around the core materials 2 under the normal pressure environment The heat welding part 42 is formed by heat welding.
[0239]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 39 positioned around the core material 2 is thermally welded under a normal pressure environment to form the heat-welded portion 42, it is formed around the core material 2 under a reduced pressure environment. It is easier to perform the heat welding operation than when the outer covering material 39 is heat-welded, and the use time of the vacuum packaging machine 6 is shortened so that the vacuum packaging machine 6 can be used efficiently. In addition, the work in progress can be stored in a state in which the heat-welded portion 40 is formed in the opening of the bag-shaped outer covering material 39 covering the plurality of core members 2, and the outer covering member positioned around the core member 2 at a convenient time. Since the operation | work which heat-seal | fuses 39 and forms the heat welding part 42 can be performed, the operation | work of a multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0240]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is the thermal welding body 52 comprised with the elastic body so that it may follow the shape of a to-be-heated welded material easily in a multi-core vacuum heat insulating material manufacturing process. Is pressed against the outer covering material 39 a plurality of times to provide a thermal welding portion 42 of the outer covering material 39 around the core material 2.
[0241]
In this method of manufacturing a vacuum heat insulating material, by using the heat welded body 52 that easily follows the shape of the heat welded material, the heat welded body 52 is shaped even if the distance between the core material 2 and the core material 2 is not sufficiently long. Therefore, the heat-welded portion 42 can be reliably produced by firmly grasping the heat-welded layer between the core material 2 and the core material 2. In addition, by pressing the heat-welded body 52 against the outer covering material 39 a plurality of times, the outer covering material 39 is divided into small portions to form the heat-welding portion 42, thereby reliably ensuring the heat-welding portion around the core material 2. 42 can be formed, and leakage from the heat welding part 42 can be reduced. Further, even when the position of the core material 2 is slightly shifted or when the shape of the core material 2 is slightly changed, it is possible to apply without changing the shape of the heat-welded body 52.
[0242]
(Embodiment 11)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 11 of this invention is demonstrated, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0243]
FIG. 25 is a longitudinal sectional view of a core material used in the method for manufacturing a vacuum heat insulating material according to Embodiment 11 of the present invention.
[0244]
A gas barrier laminate film 5 cut into a rectangular shape is placed on a test stand 7 of a vacuum packaging machine 6 with the heat welding material side facing up. A double-sided pressure-sensitive adhesive tape 55 that generates very little gas is attached to the bottom surface of the core material 2.
[0245]
The core material 2 is bonded onto the laminate film 5 so that the double-sided adhesive tape 55 adheres to the heat-welding material side of the laminate film 5, and the laminate film 5 has its heat-welding material side facing the core material 2 side. And each end surface is installed so that it may correspond to each end surface of the laminate film 5 under it.
[0246]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the four outer peripheral portions of the laminate film 5 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0247]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar The four outer peripheral portions of the laminate film 5 are thermally welded by 8 to form four heat welded portions 12, so that the plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. A multi-core vacuum heat insulating material 13 is produced.
[0248]
The multi-core vacuum heat insulating material 13 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 13 is installed on a work table 16 of a heat welding apparatus 15 having a heat welding body 14. The heat welded body 14 heats the built-in heater by a switch, and moves to the top and bottom to heat-weld the specimen placed on the work table 6.
[0249]
With this thermal welding device 15, the portion surrounded by the thermal welding portion 12 of the vacuum heat insulating material 13 is thermally welded by the thermal welding body 14 under the normal pressure environment, so that the thermal welding portion 17 is provided around the core material 2. Is formed.
[0250]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 18 in a state including the heat welding portion 17, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0251]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 1 can be produced by a single decompression operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be sufficient, and the effect which can produce the vacuum heat insulating material 1 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0252]
Moreover, since the heat welding part 12 of the laminate film 5 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and at the normal pressure environment. The operation | work which provides the heat welding part 17 can be performed.
[0253]
Further, the work in progress can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate film 5, and an operation for providing the heat-welded portion 17 of the laminate film 5 around the core material 2 at normal pressure at a convenient time Therefore, the effect that the work can be performed flexibly is obtained.
[0254]
In addition, the position of the core material 2 can be fixed because it can be bonded to the innermost thermoplastic resin material side of the laminate film 5 by the double-sided adhesive tape 55, and the core material 2 is displaced during decompression in the vacuum packaging machine 6. The effect which can prevent is acquired.
[0255]
In the above description, the jacket material 3 is described as the laminate film 5, but the same effect can be obtained even if the jacket material 3 is a laminated bag. Moreover, as the laminate film 5 and the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used. Laminate bags include three-side seal bags, four-side seal bags, gusset bags, pillow bags, center tape seal bags and the like and are not particularly specified.
[0256]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0257]
In the manufacturing method of the vacuum heat insulating material of the present embodiment, a plurality of core materials 2 are arranged on a substantially same plane and spaced apart from each other in a bag-like outer covering material 39 having gas barrier properties and having an opening. A multi-core vacuum heat insulating material 43 obtained by thermally welding the covering material 39 located around each core material 2 so that the inside of the material 39 is decompressed and each of the plurality of core materials 2 is located in an independent space. Heat of a predetermined width between the cutting part in the multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 43 manufactured in the multi-core vacuum heat insulating material manufacturing process and the core material 2 adjacent to the cutting part. A vacuum heat insulating material separating step of cutting the outer covering material 39 so that the welded portion 42 remains, and separating the desired vacuum heat insulating material 36 from the multi-core vacuum heat insulating material 43.
[0258]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 43 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 43 is manufactured. Since the vacuum heat insulating materials 36 are sequentially separated, a large number of vacuum heat insulating materials 36 or a plurality of types of vacuum heat insulating materials 36 having different sizes and shapes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 39 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The fin-shaped outer covering material 39 peripheral part (thermal welding part 38) of the outer periphery of the core material 2 of the vacuum heat insulating material 36 can be reduced. Moreover, since the bag-shaped thing which has an opening part is used for the jacket material 39, what arrange | positioned the several core material 2 in the bag-shaped jacket material 39 is installed in the vacuum packaging machine 6. Thus, setting to the vacuum packaging machine 6 is simplified, and if the heat-welded portion 40 is formed by thermally welding one place (one side) of the opening of the bag-shaped jacket material 39, the jacket material 39 is obtained. Since the plurality of core materials 2 can be sealed, the degree of vacuum in the jacket material 39 can be maintained more than when the four core materials 2 are sealed by heat-sealing the four sides of the pair of sheet-like jacket materials. It can be done reliably.
[0259]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a reduced pressure environment in the vacuum packaging machine 6 so that the inside of the jacket material 39 is sealed while maintaining a reduced pressure state in the multi-core vacuum heat insulating material manufacturing process. After forming the heat-welded portion 40 by thermally welding the openings of the jacket material 39 that covers the plurality of core materials 2 below, the jacket materials 39 positioned around the core materials 2 under the normal pressure environment The heat welding part 42 is formed by heat welding.
[0260]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 39 positioned around the core material 2 is thermally welded under a normal pressure environment to form the heat-welded portion 42, it is formed around the core material 2 under a reduced pressure environment. It is easier to perform the heat welding operation than when the outer covering material 39 is heat-welded, and the use time of the vacuum packaging machine 6 is shortened so that the vacuum packaging machine 6 can be used efficiently. In addition, the work in progress can be stored in a state in which the heat-welded portion 40 is formed in the opening of the bag-shaped outer covering material 39 covering the plurality of core members 2, and the outer covering member positioned around the core member 2 at a convenient time. Since the operation | work which heat-seal | fuses 39 and forms the heat welding part 42 can be performed, the operation | work of a multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0261]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a core material (the double-sided adhesive tape 55 is attached to the bottom face) which has the adhesion part 55 which can adhere | attach to the thermoplastic resin material of the innermost layer of the jacket material 39 on at least one surface. The pasted core material 2) is used.
[0262]
In this method of manufacturing a vacuum heat insulating material, the core material 2 can be bonded to the inner surface of the jacket material 39, so that the position of the core material 2 can be fixed, and when the other core material 2 is positioned and placed or set to the vacuum packaging machine 6 In addition, it is possible to prevent the core material 2 from being displaced during decompression.
[0263]
(Embodiment 12)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 12 of this invention is demonstrated, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0264]
FIG. 26 is a longitudinal sectional view of a vacuum heat insulating material produced by the vacuum heat insulating material manufacturing method of Embodiment 12 of the present invention, FIG. 27 is a plan view of a sheet member used in the same embodiment, and FIG. FIG. 29 is a plan view of a multi-core vacuum heat insulating material at a stage where the outer peripheral portion of the outer cover material is thermally welded by the vacuum packaging machine, and FIG. 30 is the same. FIG. 31 is a schematic side view showing a state before heat welding of the heat welding apparatus used in the embodiment, and FIG. 31 is a diagram of a multi-core vacuum heat insulating material at a stage in which a jacket material positioned around the core material is heat welded by the heat welding apparatus. FIG. 32 is a longitudinal sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is thermally welded by the heat welding apparatus.
[0265]
The vacuum heat insulating material 56 manufactured by the method for manufacturing a vacuum heat insulating material of the present embodiment includes a solidified core material 2 containing wet silica and carbon black, and an innermost thermoplastic resin material of the outer cover material 3. The hole 57 of the sheet member 58 made of the same material and having a shape similar to the shape of the core material 2 is cut out, and this is covered with the jacket material 3 and the inside of the jacket material 3 is decompressed. It is manufactured by. A heat welding portion 59 is provided around the core material 2.
[0266]
Next, a method for manufacturing the vacuum heat insulating material 56 will be described. A gas barrier laminate film 5 cut into a rectangular shape is placed on a test stand 7 of a vacuum packaging machine 6 with the heat welding material side facing up. On the laminate film 5, a sheet member 58 made of the same material as the innermost thermoplastic resin material of the laminate film 5 and notched with a hole 57 similar to the shape of the core material 2 has its respective end faces. It is installed so as to substantially coincide with each end face of the lower laminate film 5.
[0267]
The core material 2 is disposed in the hole 57 of the sheet member, and the laminate film 5 is arranged so that the heat-welding material side thereof faces the core material 2 side, and each end face substantially coincides with each end face of the laminate film 5 therebelow. It is installed as follows.
[0268]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the four outer peripheral portions of the laminate film 5 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0269]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar The four outer peripheral portions of the laminate film 5 are thermally welded by 8 to form four heat welded portions 12, so that the plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. A multi-core vacuum heat insulating material 60 is produced.
[0270]
The multi-core vacuum heat insulating material 60 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 60 is installed on the work table 16 of the heat welding apparatus 15 having the heat welding body 14. The heat-welded body 14 heats the built-in heater by a switch, and heat-welds the specimen (multi-core vacuum heat insulating material 60) placed on the work table 6 by moving up and down.
[0271]
With this thermal welding device 15, the portion surrounded by the thermal welded portion 12 of the vacuum heat insulating material 60 is thermally welded by the thermal welded body 14 under the normal pressure environment, so that the thermal welded portion 61 is provided around the core material 2. Is formed.
[0272]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 62 in a state including the heat welding portion 61, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0273]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 56 can be produced by a single pressure reduction operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be, and the effect which can produce the vacuum heat insulating material 56 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0274]
Moreover, since the heat welding part 12 of the laminate film 5 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and at the normal pressure environment. The operation | work which provides the heat welding part 61 can be performed.
[0275]
Further, the work in progress can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate film 5, and the heat-welded portion 61 of the laminate film 5 is provided around the core material 2 at normal pressure at a convenient time. Therefore, the effect that the work can be performed flexibly is obtained.
[0276]
In addition, since the sheet member 58 is the same material as the thermoplastic resin material of the innermost layer of the laminate film 5 and has a hole 57 similar to the shape of the core material 2, the core material is formed in the hole 57. By arranging 2 and depressurizing and performing thermal welding, it is possible to maintain an appropriate distance between the core materials 2 and to prevent the core material 2 from being displaced during decompression.
[0277]
In the above description, the jacket material 3 is described as the laminate film 5, but the same effect can be obtained even if the jacket material 3 is a laminated bag. Moreover, as the laminate film 5 and the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used. Laminate bags include three-side seal bags, four-side seal bags, gusset bags, pillow bags, center tape seal bags and the like and are not particularly specified.
[0278]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0279]
The manufacturing method of the vacuum heat insulating material of this Embodiment respond | corresponds to the shape and arrangement | positioning pattern of the some core material 2 which are mutually spaced apart and arrange | positioned on the substantially same plane, and consist of a thermoplastic resin material. The sheet member 58 having the plurality of holes 57 is gas barrier and the innermost layer is the same as the sheet member 58 in a state in which the plurality of core members 2 are disposed in each of the plurality of holes 57 of the sheet member 58. Covering with a jacket material 5 made of a thermoplastic resin material, the inside of the jacket material 5 is decompressed and positioned around each core material 2 so that each of the core materials 2 is located in an independent space. The multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 62 in which the jacket material 5 and the sheet member 58 are thermally welded, and the cutting in the multi-core vacuum heat insulating material 62 manufactured in the multi-core vacuum heat insulating material manufacturing process. A core 2 adjacent to the portion and the cut portion; A vacuum heat insulating material separating step of cutting the outer cover material 5 and the sheet member 58 so as to leave a heat-welded portion 61 having a predetermined width therebetween and separating the desired vacuum heat insulating material 56 from the multi-core vacuum heat insulating material 62. Is.
[0280]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 62 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 62 is used. Since the vacuum heat insulating materials 56 are sequentially separated, a large number of vacuum heat insulating materials 56 or a plurality of types of vacuum heat insulating materials 56 having different sizes and shapes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 5 located around the core material 2 is thermally welded to the cutting part to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The width | variety of the fin-shaped outer covering material 5 peripheral part (thermal welding part 59) of the core material 2 outer periphery of the vacuum heat insulating material 56 after having done can be made small. Further, a sheet made of the same thermoplastic resin material as the innermost layer of the jacket material 5 and having a plurality of core members 2 disposed in each of a plurality of holes 57 corresponding to the shape and arrangement pattern of the plurality of core members 2 Since the member 58 is covered with the jacket material 5, it is possible to appropriately maintain the positional relationship and interval between the core materials 2 until the jacket material 5 and the sheet member 58 positioned around the core material 2 are thermally welded. It is possible to prevent the core material 2 from being displaced at the time of positioning and positioning of the other core material 2, setting to the vacuum packaging machine 6, or decompressing, and the misalignment of the plurality of core materials 2 with respect to the jacket material 5. Even if it occurs, the misalignment of the plurality of core members 2 can be corrected at once using the sheet member 58.
[0281]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is the pressure reduction environment in the vacuum packaging machine 6 so that the inside of the jacket material 5 may be sealed while maintaining the pressure reduction state in the multi-core vacuum heat insulating material manufacturing process. After the outer peripheral portion of the jacket material 5 covering the plurality of core members 2 and the sheet member 58 are heat-welded to form the heat-welded portion 12, the core member 2 is positioned around each of the core members 2 in a normal pressure environment. The outer cover material 5 and the sheet member 58 are heat-welded to form the heat-welded portion 61.
[0282]
In this method of manufacturing a vacuum heat insulating material, since the outer cover material 5 positioned around the core material 2 and the sheet member 58 are thermally welded to form the heat-welded portion 61 under a normal pressure environment, the core is formed under a reduced pressure environment. Compared with the case where the outer cover material 5 and the sheet member 58 positioned around the material 2 are heat-welded to form the heat-welded portion 61, the heat-welding operation is facilitated and the usage time of the vacuum packaging machine 6 is short. The vacuum packaging machine 6 can be used efficiently. In addition, the work-in-process can be stored in a state in which the heat-welded portion 12 is formed on the outer peripheral portion of the jacket material 5 covering the plurality of core materials 2, and the jacket material 5 positioned around the core material 2 at a convenient time Since the operation | work which heat-welds the sheet | seat member 58 and forms the heat welding part 61 can be performed, the operation | work of a multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0283]
(Embodiment 13)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 13 of this invention is demonstrated, about the same structure as Embodiment 6 and 12, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0284]
FIG. 33 is a plan view of the multi-core vacuum heat insulating material at the stage where the opening of the bag-shaped outer cover material is thermally welded by the vacuum packaging machine used in the manufacturing method of the vacuum heat insulating material according to the thirteenth embodiment of the present invention. Fig. 35 is a plan view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is thermally welded by the heat welding device used in the embodiment, and Fig. 35 is a view around the core material by the heat welding device. It is a longitudinal cross-sectional view of the multi-core vacuum heat insulating material of the stage which carried out the welding of the outer jacket material located.
[0285]
A gas barrier laminate bag 39 is installed on the test stand 7 of the vacuum packaging machine 6. The core material 2 is arranged in the hole 57 of the sheet member 58 which is made of the same material as the thermoplastic resin material of the innermost layer of the laminate bag 39 and has a shape similar to the shape of the core material 2. This sheet member 58 is inserted into the laminate bag 39.
[0286]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the opening of the laminate bag 39 can be heat welded. Further, the core member 2 is disposed by the sheet member 58 so as to be located in an independent space.
[0287]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar 8 is formed by thermally welding the opening of the laminating bag 39, whereby a plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. A heat insulating material 64 is produced.
[0288]
At this time, since the sheet member 58 is smaller in size than the laminate bag 39, the sheet member 58 is present inside the heat-welded portion 40 and the heat-welded portion 40a when the laminate bag 39 is manufactured.
[0289]
The multi-core vacuum heat insulating material 64 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 64 is installed on the work table 16 of the heat welding apparatus 15 having the heat welding body 14. The heat welded body 14 heats the built-in heater by a switch, and also heat welds the specimen (multi-core vacuum heat insulating material 64) placed on the work table 6 by moving up and down.
[0290]
With this thermal welding device 15, the portion surrounded by the thermal welding portion of the multi-core vacuum heat insulating material 64 is thermally welded by the thermal welding body 14 in a normal pressure environment, so that the thermal welding portion is provided around the core material 2. A multi-core vacuum heat insulating material 65 including 61 is formed.
[0291]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 65 in a state including the heat welding portion 61, a plurality of vacuum heat insulating materials 56 having the core material 2 as a core can be obtained.
[0292]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 56 can be produced by a single pressure reduction operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be, and the effect which can produce the vacuum heat insulating material 56 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0293]
In addition, since the heat-welded portion 12 of the laminate bag 39 is provided around the core material 2 in the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and in the normal pressure environment. The operation | work which provides the heat welding part 61 can be performed.
[0294]
Further, the work in progress can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate bag 39, and the operation for providing the heat-welded portion 61 of the laminate bag 39 around the core material 2 at normal pressure at a convenient time Therefore, the work can be performed flexibly.
[0295]
In addition, since the sheet member 58 is the same material as the thermoplastic resin material of the innermost layer of the laminate bag 39 and has a hole 57 similar to the shape of the core material 2, the core material is formed in the hole 57. By arranging 2 and depressurizing and performing thermal welding, it is possible to maintain an appropriate distance between the core materials 2 and to prevent the core material 2 from being displaced during decompression.
[0296]
In addition, since the sheet member 58 exists on the inner side of the heat-welded portion of the laminate bag, the heat-welded portion at the time of bag formation of the sheet member 58 and the laminate bag 39 does not overlap. The effect that the penetration | invasion of the air permeate | transmitted can be suppressed is acquired.
[0297]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0298]
Moreover, as the laminating bag 39, the laminating bag 39 which has an aluminum vapor deposition layer or an aluminum foil layer in an intermediate | middle layer can be used. Although the laminated bag 39 has been described as a three-side sealed bag, the laminated bag includes a four-side sealed bag, a gusset bag, a pillow bag, a center tape seal bag, etc., and is not particularly specified.
[0299]
Further, although the present embodiment has been described with the laminate bag 39, even when the laminate film 5 is used, a sheet member 58 having a size smaller than that of the heat welded portion 12 produced by the vacuum packaging machine 6 is used. In addition, the sheet member 58 and the heat welded portion 12 may be produced so as not to overlap when the heat welded portion 12 is produced by the vacuum packaging machine 6.
[0300]
The manufacturing method of the vacuum heat insulating material according to the present embodiment includes a plurality of core materials 2 disposed in a bag-like outer covering material 39 having gas barrier properties and having openings, and spaced apart from each other on substantially the same plane, A sheet member 58 made of the same thermoplastic resin material as the innermost layer of the jacket material 39 and having a plurality of holes 57 corresponding to the shape and arrangement pattern of the plurality of core members 2, and a plurality of holes 57 of the sheet member 58. Each core material 2 is inserted in a state where the core materials 2 are arranged one by one, the inside of the jacket material 39 is decompressed, and each of the core materials 2 is located in an independent space. The multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 65 in which the jacket material 39 and the sheet member 58 located around the core are heat-welded, and the multi-core vacuum manufactured in the multi-core vacuum heat insulating material manufacturing process The cutting part in the heat insulating material 65 and the core close to the cutting part 2, the outer cover material 39 and the sheet member 58 are cut so that the heat-welded portion 61 having a predetermined width remains between them, and the desired vacuum heat insulating material 56 is separated from the multi-core vacuum heat insulating material 65. It has.
[0301]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 65 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 65 is used. Since the vacuum heat insulating materials 56 are sequentially separated, a large number of vacuum heat insulating materials 56 or a plurality of types of vacuum heat insulating materials 56 having different sizes and shapes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 39 located around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The width | variety of the fin-shaped outer covering material 39 peripheral part (thermal welding part 59) of the core material 2 outer periphery of the vacuum heat insulating material 56 after having done can be made small. Also, a sheet made of the same thermoplastic resin material as the innermost layer of the jacket material 39 and having a plurality of core members 2 disposed in each of a plurality of holes 57 corresponding to the shape and arrangement pattern of the plurality of core members 2 Since the member 58 is inserted into the bag-shaped outer covering material 39 having an opening, each of the core members 2 until the outer covering member 39 positioned around the core member 2 and the sheet member 58 are thermally welded. The positional relationship and the interval of the core material 2 can be maintained appropriately, and it is possible to prevent the core material 2 from being displaced during positioning and placement of the other core material 2, setting to the vacuum packaging machine 6, or decompressing, Even if the misalignment of the plurality of core members 2 with respect to 39 occurs, the misalignment of the plurality of core members 2 can be corrected at once using the sheet member 58. Moreover, since the bag-shaped thing which has an opening part is used for the jacket material 39, in the bag-shaped jacket material 39, the several core material 2 was arrange | positioned one by one in the several hole 57, respectively. By installing the sheet member 58 inserted in the vacuum packaging machine 6, setting to the vacuum packaging machine 6 is simplified, and one opening (one side) of the opening of the bag-shaped outer covering material 39 is thermally welded. Then, if the heat welding part 40 is formed, the plurality of core members 2 can be sealed by the covering material 39, so that the vacuum degree in the covering material 39 is maintained on the four sides of the pair of sheet-shaped covering materials. This can be performed more reliably than when the plurality of core members 2 are sealed by heat welding. In addition, since the sheet member 58 exists inside the heat-welded portion 40a at the time of forming the bag of the bag-shaped covering material 39, the heat-welding portion 40a at the time of forming the bag of the sheet-shaped member 39 and the bag-shaped covering material 39. Do not overlap, and there is no risk of air entering the outer cover 39 through the sheet member 58 due to the overlap.
[0302]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is a reduced pressure environment in the vacuum packaging machine 6 so that the inside of the jacket material 39 is sealed while maintaining a reduced pressure state in the multi-core vacuum heat insulating material manufacturing process. After forming the heat-welded portion 40 by thermally welding the openings of the jacket material 39 that covers the plurality of core materials 2 below, the jacket materials 39 positioned around the core materials 2 under the normal pressure environment Are heat-welded to form the heat-welded portion 42.
[0303]
In this method for manufacturing a vacuum heat insulating material, the outer cover material 39 positioned around the core material 2 and the sheet member 58 are thermally welded to form the heat-welded portion 61 under a normal pressure environment. Compared to the case where the outer cover material 39 and the sheet member 58 positioned around the material 2 are heat-welded, the heat-welding operation becomes easier, and the usage time of the vacuum-packaging machine 6 is shortened and the vacuum-packaging machine 6 is more efficient. Can be used for In addition, the work in progress can be stored in a state in which the heat-welded portion 40 is formed in the opening of the bag-shaped outer covering material 39 covering the plurality of core members 2, and the outer covering member positioned around the core member 2 at a convenient time. 39 and the sheet member 58 can be heat-welded to form the heat-welded portion 61, so that the multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0304]
(Embodiment 14)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 14 of this invention is demonstrated, about the same structure as Embodiment 12, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0305]
FIG. 36 is a longitudinal sectional view of a sheet member used in the method for manufacturing a vacuum heat insulating material according to the fourteenth embodiment of the present invention. FIG. 37 is a diagram showing a method for thermally welding the outer peripheral portion of the outer jacket material with the vacuum packaging machine used in the same embodiment. FIG. 38 is a plan view of the multi-core vacuum heat insulating material at the stage where the outer cover material positioned around the core material is thermally welded by the heat welding apparatus used in the embodiment. FIG. 39 is a longitudinal sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus.
[0306]
A gas barrier laminate film 5 cut into a rectangular shape is placed on a test stand 7 of a vacuum packaging machine 6 with the heat welding material side facing up. The laminate film 5 is made of the same material 66a as the innermost thermoplastic resin material of the laminate film 5, and a thermoplastic resin material 66b having a melting point higher than that of the thermoplastic resin material 66a is provided between the laminate film 5 and the core material 2 A sheet member 66 obtained by cutting out a hole 57 having a shape similar to the above is installed so that each end face thereof substantially coincides with each end face of the underlying laminate film 5.
[0307]
The core material 2 is disposed in the hole 57 of the sheet member 66, and the laminate film 5 is arranged on the hole material 57 so that the heat welding material side faces the core material 2 side, and each end surface substantially coincides with each end surface of the laminate film 5 below. It is installed as follows.
[0308]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the four outer peripheral portions of the laminate film 5 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0309]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar The four outer peripheral portions of the laminate film 5 are thermally welded by 8 to form four heat welded portions 12, so that the plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. A vacuum heat insulating material 67 is produced.
[0310]
The multi-core vacuum heat insulating material 67 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 67 is installed on the work table 16 of the heat welding apparatus 15 having the heat welding body 14. The heat welded body 14 heats the built-in heater by a switch, and also heat welds the specimen (multi-core vacuum heat insulating material 67) placed on the work table 6 by moving up and down.
[0311]
With this thermal welding device 15, the portion surrounded by the thermal welded portion 12 of the vacuum heat insulating material 67 is thermally welded by the thermal welded body 14 under the normal pressure environment, so that the thermal welded portion 61 is provided around the core material 2. A multi-core vacuum heat insulating material 68 containing is formed.
[0312]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 68 in a state including the heat welding portion 61, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0313]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 56 can be produced by a single pressure reduction operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be, and the effect which can produce the vacuum heat insulating material 56 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0314]
Further, since the heat-welded portion 12 of the laminate film 5 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and is thermally welded at normal pressure. The operation of providing the portion 61 can be performed.
[0315]
Further, the work in progress can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate film 5, and the heat-welded portion 61 of the laminate film 5 is provided around the core material 2 at normal pressure at a convenient time. Therefore, the effect that the work can be performed flexibly is obtained.
[0316]
In addition, since the sheet member 66 is the same material as the thermoplastic resin material of the innermost layer of the laminate film 5 and has a hole 57 similar to the shape of the core material 2, the core material is formed in the hole 57. By arranging 2 and depressurizing and performing thermal welding, it is possible to maintain an appropriate distance between the core materials 2 and to prevent the core material 2 from being displaced during decompression.
[0317]
In addition, since the sheet member 66 has a multi-layer structure, even when the thickness of the core material 2 is increased, the thickness of the thermoplastic resin material 66b of the intermediate layer of the sheet member 66 is increased to produce the heat welded portion 61. The effect which can be performed reliably is acquired.
[0318]
In the above description, the jacket material 3 is described as the laminate film 5, but the same effect can be obtained even if the jacket material 3 is a laminated bag. Moreover, as the laminate film 5 and the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used. Laminate bags include three-side seal bags, four-side seal bags, gusset bags, pillow bags, center tape seal bags and the like and are not particularly specified.
[0319]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0320]
The manufacturing method of the vacuum heat insulating material of this Embodiment respond | corresponds to the shape and arrangement | positioning pattern of the some core material 2 which are mutually spaced apart and arrange | positioned on the substantially same plane, and consist of a thermoplastic resin material. The sheet member 66 having the plurality of holes 57 is a gas barrier property and the innermost layer is the surface of the sheet member 66 in a state in which the plurality of core members 2 are disposed in each of the plurality of holes 57 of the sheet member 66. The core material 2 is covered with the outer cover material 5 made of the same thermoplastic resin material as that of the layer 66a, the inside of the outer cover material 5 is decompressed, and each of the core materials 2 is positioned in an independent space. A multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 68 in which the outer cover material 5 and the sheet member 66 located on the periphery are thermally welded, and the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing process. Near the cutting portion and the cutting portion of the material 68 Vacuum insulation that cuts the desired vacuum insulation 56 from the multi-core vacuum insulation 68 by cutting the jacket material 5 and the sheet member 66 so that the heat-welded portion 61 having a predetermined width remains between the core 2 to be removed. A material separating step.
[0321]
In this method for manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 68 having a plurality of core materials 2 arranged at a distance from each other on a substantially same plane is manufactured, and then the desired multi-core vacuum heat insulating material 68 is manufactured. Since the vacuum heat insulating materials 56 are sequentially separated, a large number of vacuum heat insulating materials 56 or a plurality of types of vacuum heat insulating materials 56 having different sizes and shapes can be produced by a single decompression operation of the vacuum packaging machine 6. The vacuum packaging machine 6 can be operated efficiently, and the outer cover material 5 located around the core material 2 is thermally welded to the cutting part to be cut in the vacuum heat insulating material cutting process, thereby cutting in the vacuum heat insulating material cutting process. The width | variety of the fin-shaped outer covering material 5 peripheral part (thermal welding part 59) of the core material 2 outer periphery of the vacuum heat insulating material 56 after having done can be made small. In addition, the surface layer 66a is made of the same thermoplastic resin material as the innermost layer of the jacket material 5, and each of the plurality of core members 2 is placed in each of the plurality of holes 57 corresponding to the shape and arrangement pattern of the plurality of core members 2. Since the disposed sheet member 66 is covered with the jacket material 5, the positional relationship and interval of each core material 2 are appropriate until the jacket material 5 and the sheet member 66 positioned around the core material 2 are thermally welded. It is possible to keep the core material 2 from being displaced at the time of positioning and positioning of the other core material 2, setting to the vacuum packaging machine 6, or depressurization, and a plurality of core materials 2 with respect to the jacket material 5. Even if the positional deviation occurs, the positional deviation of the plurality of core members 2 can be corrected at once using the sheet member 66.
[0322]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is the pressure reduction environment in the vacuum packaging machine 6 so that the inside of the jacket material 5 may be sealed while maintaining the pressure reduction state in the multi-core vacuum heat insulating material manufacturing process. After the outer peripheral portion of the covering material 5 covering the plurality of core members 2 and the sheet member 66 are heat-welded to form the heat-welded portion 12, the core member 2 is positioned around each core member 2 under normal pressure environment. The outer cover material 5 and the sheet member 66 are heat-welded to form the heat-welded portion 61.
[0323]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 5 and the sheet member 66 positioned around the core material 2 are thermally welded under a normal pressure environment to form the heat welded portion 61, the core under a reduced pressure environment. Compared with the case where the outer cover material 5 and the sheet member 66 positioned around the material 2 are heat-welded to form the heat-welded portion 61, the heat-welding operation is facilitated, and the use time of the vacuum packaging machine 6 is short. The vacuum packaging machine 6 can be used efficiently. In addition, the work-in-process can be stored in a state in which the heat-welded portion 12 is formed on the outer peripheral portion of the jacket material 5 covering the plurality of core materials 2, and the jacket material 5 positioned around the core material 2 at a convenient time Since the operation | work which heat-welds the sheet | seat member 66 and forms the heat welding part 61 can be performed, the operation | work of a multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0324]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment WHEREIN: The surface layer 66a of front and back both surfaces is the same material as the thermoplastic resin material of the innermost layer of the jacket material 5, and surface between the surface layers 66a of both front and back surfaces A multilayer resin film provided with a layer 66b of a thermoplastic resin material having a melting point higher than that of the thermoplastic resin material of the layer 66a is used for the sheet member 66.
[0325]
In this method of manufacturing a vacuum heat insulating material, even when the thickness of the core material 2 is increased, the deformation of the outer cover material 5 is reduced by increasing the thickness of the intermediate layer 66b (the thermoplastic resin material) of the sheet member 66. The heat welded portion 61 can be reliably manufactured.
[0326]
(Embodiment 15)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 15 of this invention is demonstrated, about the same structure as Embodiment 12, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0327]
FIG. 40 is a longitudinal sectional view of a sheet member used in the method for manufacturing a vacuum heat insulating material according to the fifteenth embodiment of the present invention, and FIG. FIG. 42 is a plan view of a multi-core vacuum heat insulating material at a stage in which a jacket material positioned around the core material is thermally welded by the heat welding apparatus used in the embodiment. FIG. 43 is a longitudinal sectional view of the multi-core vacuum heat insulating material at the stage where the jacket material positioned around the core material is thermally welded by the heat welding apparatus.
[0328]
A gas barrier laminate film 5 cut into a rectangular shape is placed on a test stand 7 of a vacuum packaging machine 6 with the heat welding material side facing up. On the laminate film 5, a sheet member 70 made of the same material as the innermost thermoplastic resin material of the laminate film 5 and having a recess 69 similar to the shape of the core material 2, each end face thereof is below it. The laminate film 5 is installed so as to substantially coincide with each end face. The core material 2 is disposed in the concave portion 69 of the sheet member 70, and the laminate film 5 is disposed on the core material 2 so that the heat-welding material side faces the core material 2 side, and each end surface substantially coincides with each end surface of the laminate film 5 below. It is installed to do.
[0329]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the four outer peripheral portions of the laminate film 5 can be heat welded. Moreover, the core material 2 is arrange | positioned so that each may be located in the independent space.
[0330]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less, and then the heat welding bar The four outer peripheral portions of the laminate film 5 are thermally welded by 8 to form four heat welded portions 12, so that the plurality of core materials 2 are filled and the core materials 2 are located in independent spaces. A multi-core vacuum heat insulating material 71 is produced.
[0331]
The multi-core vacuum heat insulating material 71 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 71 is installed on the work table 16 of the heat welding apparatus 15 having the heat welding body 14. The heat welded body 14 heats the built-in heater by a switch, and heat-welds the specimen (multi-core vacuum heat insulating material 71) moved up and down and placed on the work table 6.
[0332]
With this thermal welding device 15, all the portions surrounded by the thermal welding portion 12 of the multi-core vacuum heat insulating material 71 are thermally welded by the thermal welding body 14 in the normal pressure environment, so that the thermal welding is performed around the core material 2. A multi-core vacuum heat insulating material 72 including the portion 61 is formed.
[0333]
Thereafter, by separating each core material 2 from the multi-core vacuum heat insulating material 72 in a state including the heat welding portion 61, a plurality of vacuum heat insulating materials 1 having the core material 2 as a core can be obtained.
[0334]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 56 can be produced by a single pressure reduction operation. Further, the shape of the core material 2 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be, and the effect which can produce the vacuum heat insulating material 56 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0335]
In addition, since the heat-welded portion 12 of the laminate film 5 is provided around the core material 2 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened so that the vacuum packaging machine 6 can be used efficiently and heated at normal pressure. The operation of providing the welded portion 61 can be performed.
[0336]
Further, the work in progress can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate film 5, and the heat-welded portion 61 of the laminate film 5 is provided around the core material 2 at normal pressure at a convenient time. Therefore, the effect that the work can be performed flexibly is obtained.
[0337]
In addition, since the sheet member 70 is the same material as the thermoplastic resin material of the innermost layer of the laminate film 5 and has a recess 69 that is similar to the shape of the core material 2, the core material is formed in the recess 69. By arranging 2 and depressurizing and performing thermal welding, it is possible to maintain an appropriate distance between the core materials 2 and to prevent the core material 2 from being displaced during decompression.
[0338]
In addition, the sheet member 70 is made of the same material as the innermost thermoplastic resin material of the laminate film 5 and has a concave portion 69 similar to the shape of the core material 2. 2, since the recess 69 has a bottom, the position of the core material 2 is fixed without falling from the sheet member 70 when the sheet member 70 is moved, so the setting of the sheet member 70 to the laminate film 5 is performed. The effect that becomes easy is obtained. ,
In the above description, the jacket material 3 is described as the laminate film 5, but the same effect can be obtained even if the jacket material 3 is a laminated bag. Moreover, as the laminate film 5 and the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used.
[0339]
Laminate bags include three-side seal bags, four-side seal bags, gusset bags, pillow bags, center tape seal bags and the like and are not particularly specified.
[0340]
Although the core material 2 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powder, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powder such as clay and talc, inorganic fiber such as glass wool and ceramic fiber, etc. can be used, sheet glass fiber It may be a multi-layered structure.
[0341]
The manufacturing method of the vacuum heat insulating material of this Embodiment respond | corresponds to the shape and arrangement | positioning pattern of the some core material 2 which are mutually spaced apart and arrange | positioned on the substantially same plane, and consist of a thermoplastic resin material. The sheet member 70 having the plurality of recesses 69 on the upper surface and the sheet member 70 with the gas barrier property and the innermost layer being in the state in which the plurality of core members 2 are disposed in each of the plurality of recesses 69 of the sheet member 70. Is covered with a jacket material 5 made of the same thermoplastic resin material, and the inside of the jacket material 5 is decompressed and around each core material 2 so that each of the plurality of core materials 2 is located in an independent space. A multi-core vacuum heat insulating material manufacturing process for manufacturing a multi-core vacuum heat insulating material 72 in which the outer cover material 5 and the sheet member 70 which are positioned are heat-welded, and a multi-core vacuum heat insulating material 72 manufactured in the multi-core vacuum heat insulating material manufacturing process. In the vicinity of the cut portion and the cut portion Cut off the outer insulation material 5 and the sheet member 70 so that the heat-welded portion 61 having a predetermined width remains between the core material 2 and separate the desired vacuum heat insulating material from the multi-core vacuum heat insulating material 72. It has a process.
[0342]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 72 having a plurality of core materials 2 arranged at a distance from each other on substantially the same plane is manufactured once, and then desired from the multi-core vacuum heat insulating material 72. Since the vacuum insulation materials are sequentially separated, a large number of vacuum insulation materials or a plurality of types of vacuum insulation materials having different sizes can be produced by a single decompression operation of the vacuum packaging machine 6. The machine 6 can be operated efficiently, and the outer cover material 5 positioned around the core material 2 is thermally welded to the cutting portion to be cut in the vacuum heat insulating material cutting step, and then cut in the vacuum heat insulating material cutting step. The peripheral part of the fin-shaped outer covering material 5 on the outer periphery of the core material 2 of the vacuum heat insulating material can be reduced. Further, a sheet made of the same thermoplastic resin material as that of the innermost layer of the jacket material 5 and having a plurality of core members 2 arranged in each of a plurality of recesses 69 corresponding to the shape and arrangement pattern of the plurality of core members 2. Since the member 70 is covered with the jacket material 5, it is possible to appropriately maintain the positional relationship and interval between the core materials 2 until the jacket material 5 and the sheet member 70 located around the core material 2 are thermally welded. It is possible to prevent the core material 2 from being displaced at the time of positioning and positioning of the other core material 2, setting to the vacuum packaging machine 6, or decompressing, and the misalignment of the plurality of core materials 2 with respect to the jacket material 5. Even if it occurs, the misalignment of the plurality of core members 2 can be corrected at once using the sheet member 70. Further, since the concave portion 69 of the sheet member 70 on which the core material 2 is installed has a bottom, the core material 2 does not fall from the sheet member 70 when the sheet member 70 on which the core material 2 is installed in the concave portion 69 is moved. Is fixed, the effect of simplifying the setting of the sheet member 70 to the jacket material 5 can be obtained.
[0343]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is the pressure reduction environment in the vacuum packaging machine 6 so that the inside of the jacket material 5 may be sealed while maintaining the pressure reduction state in the multi-core vacuum heat insulating material manufacturing process. After forming the heat-welded portion 12 by thermally welding the outer peripheral portion of the jacket material 5 that covers the plurality of core materials 2 below and the sheet member 70, they are positioned around the respective core materials 2 under normal pressure environment. The jacket material 5 and the sheet member 70 are heat-welded to form the heat-welded portion 61.
[0344]
In this method for manufacturing a vacuum heat insulating material, since the outer cover material 5 and the sheet member 70 positioned around the core material 2 are thermally welded under a normal pressure environment to form the heat welded portion 61, the core under a reduced pressure environment. Compared to the case where the outer cover material 5 and the sheet member 70 positioned around the material 2 are heat-welded to form the heat-welded portion 61, the heat-welding operation is facilitated and the usage time of the vacuum packaging machine 6 is short. The vacuum packaging machine 6 can be used efficiently. In addition, the work-in-process can be stored in a state in which the heat-welded portion 12 is formed on the outer peripheral portion of the jacket material 5 covering the plurality of core materials 2, and the jacket material 5 positioned around the core material 2 at a convenient time Since the operation | work which heat-welds with the sheet | seat member 70 and can form the heat welding part 61 can be performed, the operation | work of a multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0345]
(Embodiment 16)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 16 of this invention is demonstrated, about the same structure as Embodiment 12, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0346]
FIG. 44 is a longitudinal sectional view of a core material used in the method for manufacturing a vacuum heat insulating material according to the sixteenth embodiment of the present invention, and FIG. FIG. 46 is a plan view of the multi-core vacuum heat insulating material at the stage where the jacket material positioned around the core material is thermally welded by the heat welding apparatus used in the embodiment. 47 is a longitudinal cross-sectional view of the multi-core vacuum heat insulating material at the stage where the jacket material positioned around the core material is heat-welded by the heat welding apparatus.
[0347]
The vacuum heat insulating material 56 manufactured by the method for manufacturing a vacuum heat insulating material of the present embodiment includes a solidified core material 2 containing wet silica and carbon black, and an innermost thermoplastic resin material of the outer cover material 3. The hole 57 of the sheet member 58 made of the same material and having a shape similar to the shape of the core material 2 is cut out, and this is covered with the jacket material 3 and the inside of the jacket material 3 is decompressed. It is manufactured by. A heat welding portion 59 is provided around the core material 2.
[0348]
Next, a method for manufacturing the vacuum heat insulating material 56 will be described. The core material 73 is a solidified core material containing wet silica and carbon black, and the outer peripheral portion thereof is thinner than the other portions.
[0349]
A gas barrier laminate film 5 cut into a rectangular shape is placed on a test stand 7 of a vacuum packaging machine 6 with the heat welding material side facing up. On the laminate film 5, a sheet member 58 made of the same material as the innermost thermoplastic resin material of the laminate film 5 and notched with a hole 57 having a shape similar to the shape of the core 73 is formed at each end face thereof. It is installed so as to substantially coincide with each end face of the lower laminate film 5.
[0350]
The core member 73 is disposed in the hole 57 of the sheet member 58, and the laminate film 5 is disposed on the hole member 57 so that the heat welding material side faces the core member 73 side, and each end surface substantially coincides with each end surface of the laminate film 5 therebelow. It is installed to do.
[0351]
In the vacuum packaging machine 6, the heat welding bar 8 is disposed at a position where the four outer peripheral portions of the laminate film 5 can be heat welded. Further, the core members 73 are disposed so as to be located in independent spaces.
[0352]
When the lid 9 of the vacuum packaging machine 6 is closed and the vacuum packaging machine 6 is started, the vacuum pump 10 starts operation. The inside of the vacuum packaging machine 6 is exhausted through the exhaust port 11 and depressurized to 0.1 Torr or less. The four outer peripheral portions of the laminate film 5 are heat-welded by the bar 8 to form four heat-welded portions 12, thereby filling a plurality of core materials 73 and the core materials 73 are in independent spaces. A positioned multi-core vacuum insulation 74 is made.
[0353]
The multi-core vacuum heat insulating material 74 is taken out from the vacuum packaging machine 6, and the multi-core vacuum heat insulating material 74 is installed on the work table 16 of the heat welding apparatus 15 having the heat welding body 14. The heat welded body 14 heats the built-in heater by a switch, and heat-welds the specimen (multi-core vacuum heat insulating material 74) moved up and down and placed on the work table 6.
[0354]
With this thermal welding device 15, the portion surrounded by the thermal welded portion 12 of the vacuum heat insulating material 74 is thermally welded by the thermal welded body 14 in the normal pressure environment, so that the thermal welded portion 61 is formed around the core material 73. Is formed.
[0355]
Thereafter, a plurality of vacuum heat insulating materials 56 having the core material 73 as a core can be obtained by separating each core material 73 from the multi-core vacuum heat insulating material 75 in a state including the heat welding portion 61.
[0356]
By this vacuum heat insulating material manufacturing method, a large number of vacuum heat insulating materials 56 can be produced by a single pressure reduction operation. The shape of the core member 73 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. What has a shape and what was provided with the through-hole in these shapes should just be, and the effect which can produce the vacuum heat insulating material 56 of the shape which provided the through-hole in these shapes and these shapes is acquired. .
[0357]
Further, since the heat-welded portion 12 of the laminate film 5 is provided around the core material 73 under the normal pressure environment, the usage time of the vacuum packaging machine 6 is shortened, and the vacuum packaging machine 6 can be used efficiently and under the normal pressure environment. The operation | work which provides the heat welding part 61 can be performed.
[0358]
Further, the work in progress can be stored in a state in which the heat-welded portion 12 is formed only on the outer peripheral portion of the laminate film 5, and an operation of providing the heat-welded portion 61 of the laminate film 5 around the core material 73 at normal pressure at a convenient time. Therefore, the effect that the work can be performed flexibly is obtained.
[0359]
In addition, since the sheet member 58 is the same material as the thermoplastic resin material of the innermost layer of the laminate film 5 and has a hole 57 similar to the shape of the core material 73, the core member is formed in the hole 57. By disposing the material 73 and reducing the pressure and performing thermal welding, it is possible to maintain an appropriate distance between the core materials 73 and to prevent the core material 73 from being displaced at the time of pressure reduction.
[0360]
Further, even when the thickness of the core material 73 is increased, the outer peripheral portion of the core material 73 is thinner than the others, so that it is easy to produce the heat welded portion 61 formed around the core material 73, and the heat welded portion 61 is produced. This can be performed reliably, and the effect of suppressing the leakage of the vacuum heat insulating material 56 can be obtained.
[0361]
In the above description, the case where the sheet member 58 is used has been described, but there is no problem even if the sheet member 58 is not used. Further, the outer covering material 3 has been described as the laminate film 5, but the same effect can be obtained even when the outer covering material 3 is a laminated bag.
[0362]
Moreover, as the laminate film 5 and the laminate bag 39, a laminate film having an aluminum vapor deposition layer or an aluminum foil layer as an intermediate layer can be used. Laminate bags include three-side seal bags, four-side seal bags, gusset bags, pillow bags, center tape seal bags and the like and are not particularly specified.
[0363]
Although the core material 73 has been described as being solidified containing wet silica and carbon black, open-cell bodies of polymer materials such as polystyrene and polyurethane, inorganic and organic powders, inorganic and organic fibers Materials, other silica powders, foamed perlite ground powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, inorganic powders such as clay and talc, and inorganic fibers such as glass wool and ceramic fibers can be used. Sheet glass fiber It may be a multi-layered structure.
[0364]
The manufacturing method of the vacuum heat insulating material according to the present embodiment corresponds to a plurality of core materials 73 arranged on substantially the same plane and spaced apart from each other, and a shape and an arrangement pattern of the plurality of core materials 73 made of a thermoplastic resin material. The sheet member 58 having the plurality of holes 57 is gas barrier and has the same innermost layer as the sheet member 58 in a state in which the plurality of core members 73 are disposed in each of the plurality of holes 57 of the sheet member 58. Covering with a jacket material 5 made of a thermoplastic resin material, the inside of the jacket material 5 is decompressed and positioned around each core material 73 so that each of the core materials 73 is positioned in an independent space. The multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material 75 in which the jacket material 5 and the sheet member 58 are thermally welded, and the cutting in the multi-core vacuum heat insulating material 75 manufactured in the multi-core vacuum heat insulating material manufacturing process. Close to the part and the cutting part Cut off the outer cover material 5 and the sheet member 58 so that the heat-welded portion 61 with a predetermined width remains between the core material 73 and separate the desired vacuum heat insulating material from the multi-core vacuum heat insulating material 75. It has a process.
[0365]
In this method of manufacturing a vacuum heat insulating material, a multi-core vacuum heat insulating material 75 having a plurality of core materials 73 arranged on a substantially same plane and spaced apart from each other is manufactured once, and then desired from the multi-core vacuum heat insulating material 75. Since the vacuum insulation materials are sequentially separated, a large number of vacuum insulation materials or a plurality of types of vacuum insulation materials having different sizes can be produced by a single decompression operation of the vacuum packaging machine 6. The machine 6 can be operated efficiently, and the vacuum after being cut in the vacuum heat insulating material separating step by thermally welding the jacket material 5 positioned around the core material 73 to the cutting portion to be cut in the vacuum heat insulating material separating step. The width | variety of the fin-shaped outer covering material 5 peripheral part (thermal welding part 59) of the circumference | surroundings 73 of the core material of a heat insulating material can be made small. Further, a sheet made of the same thermoplastic resin material as the innermost layer of the jacket material 5 and having a plurality of core members 73 disposed in each of a plurality of holes 57 corresponding to the shape and arrangement pattern of the plurality of core members 73. Since the member 58 is covered with the jacket material 5, it is possible to appropriately maintain the positional relationship and interval between the core materials 73 until the jacket material 5 positioned around the core material 73 and the sheet member 58 are thermally welded. It is possible to prevent the core material 73 from being displaced at the time of positioning and positioning of the other core material 73, setting to the vacuum packaging machine 6 or during decompression, and the positional displacement of the plurality of core materials 73 with respect to the jacket material 5 can be suppressed. Even if it occurs, the misalignment of the plurality of core members 73 can be corrected at once using the sheet member 58.
[0366]
Moreover, the manufacturing method of the vacuum heat insulating material of this Embodiment is the pressure reduction environment in the vacuum packaging machine 6 so that the inside of the jacket material 5 may be sealed while maintaining the pressure reduction state in the multi-core vacuum heat insulating material manufacturing process. After forming the heat-welded portion 12 by thermally welding the outer peripheral portion of the covering material 5 that covers the plurality of core materials 73 and the sheet member 58 below, the core members 73 are positioned around the respective core materials 73 in a normal pressure environment. The outer cover material 5 and the sheet member 58 are heat-welded to form the heat-welded portion 61.
[0367]
In this method for manufacturing a vacuum heat insulating material, the outer cover material 5 positioned around the core material 73 and the sheet member 58 are thermally welded under a normal pressure environment to form the heat welding portion 61. Compared with the case where the outer cover material 5 and the sheet member 58 positioned around the material 73 are heat-welded to form the heat-welded portion 61, the heat-welding operation is facilitated and the usage time of the vacuum packaging machine 6 is short. The vacuum packaging machine 6 can be used efficiently. Further, the work-in-process can be stored in a state in which the heat-welded portion 12 is formed on the outer peripheral portion of the jacket material 5 covering the plurality of core materials 73, and the jacket material 5 positioned around the core material 73 at a convenient time Since the operation | work which heat-welds the sheet | seat member 58 and forms the heat welding part 61 can be performed, the operation | work of a multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0368]
Moreover, in the manufacturing method of the vacuum heat insulating material of this Embodiment, since the core material 73 is a shape where thickness becomes thin toward an outer peripheral edge part in an outer peripheral part, even when the thickness of the core material 73 becomes thick, Since the deformation of the jacket material 5 can be made relatively small, the heat-welded portion 61 formed around the core material 73 can be easily and reliably produced, and the vacuum heat insulating material by the entry of outside air from the heat-welded portion 61 It is possible to suppress an increase in the internal pressure and a decrease in the heat insulation performance of the vacuum heat insulating material.
[0369]
(Embodiment 17)
FIG. 48 is a longitudinal sectional view of a vacuum heat insulating material according to Embodiment 17 of the present invention, and FIG. 49 is an enlarged view of a main part of FIG.
[0370]
In the vacuum heat insulating material 76 of the present embodiment, the core material 2 containing wet silica and carbon black and solidified is covered with a jacket material 78 made of a gas barrier laminate film 77, and the inside of the jacket material 78 is decompressed. ing. A heat welding portion 79 is provided around the core material 2.
[0371]
The jacket material 78 includes an outermost layer 80, a gas barrier layer 81, and a heat welding layer 82. Here, the outermost layer 80 is made of a thermoplastic resin material such as nylon or polyethylene terephthalate, and the gas barrier layer 81 is made of a metal foil such as an aluminum foil or a metal-deposited synthetic resin. An unstretched polypropylene film is used for the heat welding layer 81.
[0372]
In general, a high-density polyethylene film and a low-density polyethylene film are used as the heat-welded layer 82. By using an unstretched polypropylene film for the heat-welded layer 82, a high-density polyethylene film and a low-density polyethylene film are used. Since the melting point is higher by about 40 ° C. compared to the case of using, the effect that it can be used up to a higher temperature is obtained.
[0373]
In other words, since the vacuum heat insulating material 76 can be freely formed in shape, the temperature of the vacuum heat insulating material 76 becomes high when used as a heat countermeasure for the CPU, which is a heating element of the notebook personal computer, and therefore has a low melting point. For high-density polyethylene film and low-density polyethylene film, the heat-bonded layer is peeled off due to temperature, and the long-term reliability as the vacuum heat insulating material 76 is greatly reduced. Thus, the effect of ensuring the long-term reliability can be obtained.
[0374]
The vacuum heat insulating material 76 of the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to 16th embodiments, and the innermost layer (thermal welding layer 82) of the jacket material 78 is an unstretched polypropylene film. It is characterized by being. Here, the unstretched polypropylene film has a higher melting point than other high-temperature polyethylene and low-density polyethylene, so the high-temperature polyethylene and low-density polyethylene are the heat-sealing materials for the innermost layer of the jacket material. It can be used at a higher temperature than the vacuum heat insulating material used in the above.
[0375]
(Embodiment 18)
50 is a longitudinal sectional view of a vacuum heat insulating material according to the eighteenth embodiment of the present invention, and FIG. 51 is an enlarged view of a main part of FIG.
[0376]
In the vacuum heat insulating material 83 of the present embodiment, the core material 2 containing wet silica and carbon black and solidified is covered with a jacket material 85 made of a gas barrier laminate film 84, and the inside of the jacket material 85 is decompressed. ing. A heat welding portion 86 is provided around the core material 2.
[0377]
The jacket material 85 includes an outermost layer 87, a gas barrier layer 88, and a heat welding layer 89. Here, the gas barrier layer 88 is made of a metal foil such as an aluminum foil or a metal-deposited synthetic resin. Further, an unstretched polypropylene film having a high melting point is used for the heat welding layer 89.
[0378]
Generally, a thermoplastic resin material such as nylon or polyethylene terephthalate is used for the outermost layer 87. By applying a fluorine-based film to the outermost layer 88, a thermoplastic resin material such as nylon or polyethylene terephthalate is used. Compared to the above, its flame retardancy and continuous maximum use temperature are superior, so it is applied to heat countermeasures for notebook personal computers that require flame retardancy and high use temperature, and heat insulation of toner from copier heaters, etc. The effect that can be obtained.
[0379]
The vacuum heat insulating material 83 of the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to 16th embodiments, and the innermost layer (thermal welding layer 89) of the jacket material 85 is an unstretched polypropylene film. It is characterized by being. Here, the unstretched polypropylene film has a higher melting point than other high-temperature polyethylene and low-density polyethylene, so the high-temperature polyethylene and low-density polyethylene are the heat-sealing materials for the innermost layer of the jacket material. It can be used at a higher temperature than the vacuum heat insulating material used in the above.
[0380]
The vacuum heat insulating material 83 according to the present embodiment is manufactured by the vacuum heat insulating material manufacturing method according to any one of the first to 16th embodiments, and the outermost layer 87 of the outer cover material 85 is a fluorine-based film. . By applying a fluorine-based film to the outermost layer 87 of the jacket material 85, the flame retardancy and the continuous maximum use temperature are excellent, so that the flame retardance is required and the use temperature can be high.
[0381]
(Embodiment 19)
FIG. 52 is a longitudinal sectional view of a vacuum heat insulating material according to the nineteenth embodiment of the present invention.
[0382]
The vacuum heat insulating material 90 of the present embodiment covers a solid core material 91 containing dry silica and carbon black with a jacket material 93 made of a gas barrier laminate film 92, and the inside of the jacket material 93 is decompressed. ing. A heat welding portion 94 is provided around the core material 2.
[0383]
The core material 91 is produced by mixing dry silica and carbon black at a weight ratio of 95: 5, adding glass fiber as a binder to this, and compressing and solidifying it while heating. The solid material 91 is cut into a predetermined size to obtain a core material 91.
[0384]
By applying this as the core material of the vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of Embodiments 1 to 16, the following effects can be obtained.
[0385]
That is, since the core material 91 is a solidified core material containing dry silica and carbon black, the vacuum heat insulating material 90 is formed without the core material 91 being disintegrated into powder when the core material 91 is placed on the laminate film 92 and evacuated. Can be manufactured.
[0386]
Further, since dry silica has a small pressure dependency, its influence on the inflow of air into the vacuum heat insulating material 90 is small. Carbon black has the effect of lowering the thermal conductivity of the vacuum heat insulating material 90, for example, by increasing the blackness of the core material 91. Thereby, the thermal conductivity of the vacuum heat insulating material 90 can be suppressed to a small value for a long time.
[0387]
The vacuum heat insulating material 90 according to the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of Embodiments 1 to 16, and the core material 91 contains dry silica and carbon black. Even if air flows into the vacuum heat insulating material 90 due to the low pressure dependency of carbon and the effect of reducing the heat conductivity due to the addition of carbon black, the heat conduction of the vacuum heat insulating material 90 due to the low pressure dependency effect and the heat conductivity reducing effect. The rate can be kept low for a long time.
[0388]
(Embodiment 20)
53 is a longitudinal sectional view of the vacuum heat insulating material according to the twentieth embodiment of the present invention, and FIG. 54 is an enlarged view of a main part of FIG.
[0389]
In the vacuum heat insulating material 95 of the present embodiment, the core material 2 containing wet silica and carbon black and solidified is covered with a covering material 97 made of a gas barrier laminate film 96, and the inside of the covering material 97 is decompressed. ing. A heat welding portion 98 is provided around the core material 2.
[0390]
Moreover, it is provided over the perimeter of the vacuum heat insulating material 95 so that the end surface part 100 of the jacket material 97 may be covered with the flame-retardant adhesive tape 99. The jacket material 97 is composed of an outermost layer 101, a gas barrier layer 102, and a heat welding layer 103.
[0390]
Here, the gas barrier layer 102 is made of a metal foil such as an aluminum foil or a metal-deposited synthetic resin. A thermoplastic resin material such as a fluorine-based film, nylon, or polyethylene terephthalate is used for the outermost layer 101, and an unstretched polypropylene film is used for the heat welding layer 103.
[0392]
When considering the flame retardancy of these constituent materials, the unstretched polypropylene film is most likely to burn. For example, when a fluorine-based film is applied to the outermost layer 101, a metal foil is applied to the gas barrier layer 102, and an unstretched polypropylene film is applied to the heat welding layer 103, the outermost layer 101 and the gas barrier layer 102 are difficult to burn, but the heat welding layer 103 The unstretched polypropylene film is easy to burn.
[0393]
There are other high-density polyethylene films and low-density polyethylene films as materials for the heat-welded layer, but these are also easily combusted, and the only way to make the heat-welded layer 103 difficult to burn is to use a fluorine-based film. There is a problem that the heat welding temperature is high and the outermost layer 101 cannot be heat welded with polyethylene terephthalate, nylon or the like.
[0394]
On the other hand, since the non-stretched polypropylene film is exposed at the end face portion 100 of the vacuum heat insulating material 95, the non-stretched polypropylene film is made into the flame-retardant adhesive tape 99 by applying a flame-retardant adhesive tape 99 here. Since it is hidden, the flame retardancy as the vacuum heat insulating material 95 can be secured.
[0395]
Further, since this vacuum heat insulating material 95 is manufactured by any one of the manufacturing methods of the vacuum heat insulating material of Embodiments 1 to 16, the heat welded portion 98 cannot have a sufficient length, and the vacuum heat insulating material The shape of the core material 2 of the material 95 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. It is necessary to move the place from the end surface portion 100 of the vacuum heat insulating material 95 by bending the heat welded portion 98, as long as the shape has the shape and the through holes provided in these shapes. Have difficulty. However, it is not necessary to perform these by using the flame-retardant adhesive tape 95.
[0396]
The vacuum heat insulating material 95 of this embodiment is manufactured by the method for manufacturing a vacuum heat insulating material of any one of the first to 16th embodiments, and the innermost layer (thermal welding layer 103) of the jacket material 97 is an unstretched polypropylene film. It is characterized by being. Here, the unstretched polypropylene film has a higher melting point than other high-temperature polyethylene and low-density polyethylene, so the high-temperature polyethylene and low-density polyethylene are the heat-sealing materials for the innermost layer of the jacket material. It can be used at a higher temperature than the vacuum heat insulating material used in the above.
[0397]
The vacuum heat insulating material 95 according to the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to 16th embodiments, and the cut surface of the separated outer cover material 97 is formed with a flame retardant tape (flame retardant). In this case, a flammable heat-welding material (an unstretched polypropylene film of the innermost heat-welding layer 103) is exposed on the cut surface (end surface) of the jacket material 97 of the vacuum heat insulating material 95. By covering the cut surface (end surface portion 100) of the jacket material 97 with the flame retardant tape 99, the flame retardant level of the vacuum heat insulating material 95 can be improved. Easy to use.
[0398]
(Embodiment 21)
Hereinafter, although the manufacturing method of the vacuum heat insulating material of Embodiment 21 of this invention is demonstrated, about the same structure as Embodiment 20, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0399]
FIG. 55 is a longitudinal sectional view of a vacuum heat insulating material according to Embodiment 21 of the present invention, and FIG. 56 is an enlarged view of a main part of FIG.
[0400]
In the vacuum heat insulating material 95 of the present embodiment, the core material 2 containing wet silica and carbon black and solidified is covered with a covering material 97 made of a gas barrier laminate film 96, and the inside of the covering material 97 is decompressed. ing. A heat welding portion 98 is provided around the core material 2.
[0401]
Moreover, it is provided over the perimeter of the vacuum heat insulating material 95 so that the flame retardant sealer (a kind of undercoat) 99 covers the end face portion 100 of the jacket material 97. The jacket material 97 is composed of an outermost layer 101, a gas barrier layer 102, and a heat welding layer 103. Here, the gas barrier layer 102 is made of a metal foil such as an aluminum foil or a metal-deposited synthetic resin.
[0402]
A thermoplastic resin material such as a fluorine-based film, nylon, or polyethylene terephthalate is used for the outermost layer 101, and an unstretched polypropylene film is used for the heat welding layer 103.
[0403]
When considering the flame retardancy of these constituent materials, the unstretched polypropylene film is most likely to burn. For example, when a fluorine-based film is applied to the outermost layer 101, a metal foil is applied to the gas barrier layer 102, and an unstretched polypropylene film is applied to the heat welding layer 103, the outermost layer 101 and the gas barrier layer 102 are difficult to burn, but the heat welding layer 103 The unstretched polypropylene film is easy to burn.
[0404]
There are other high-density polyethylene films and low-density polyethylene films as materials for the heat-welded layer, but these are also easily combusted, and the only way to make the heat-welded layer 103 difficult to burn is to use a fluorine-based film. There is a problem that the heat welding temperature is high and the outermost layer 101 cannot be heat welded with polyethylene terephthalate, nylon or the like.
[0405]
On the other hand, since the non-stretched polypropylene film is exposed at the end face portion 100 of the vacuum heat insulating material 95, the non-stretched polypropylene film is hidden by the flame-retardant sealer 104 by applying the flame-retardant sealer 104 here. Therefore, the flame retardance as the vacuum heat insulating material 95 can be ensured.
[0406]
Further, since this vacuum heat insulating material 95 is manufactured by any one of the methods for manufacturing a vacuum heat insulating material of the first to sixteenth embodiments, the heat welded portion 98 cannot have a sufficient length, and the vacuum heat insulating material can be removed. The shape of the core material 2 of 95 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is cut out. Since what is necessary is just to have what has a shape and a through-hole was provided in these shapes, it is necessary to bend the heat welding part 98 and to move a place from the end surface part 100 of the vacuum heat insulating material 95, but these are difficult It is.
[0407]
However, the use of the flame-retardant adhesive tape 95 provides an effect that there is no need to perform these. In addition, the flame retardant sealer 104 is flexible, and an effect that it can be easily applied to the end face portion 100 of the heat welded portion 98 is obtained regardless of the shape of the vacuum heat insulating material 95.
[0408]
The vacuum heat insulating material 95 of this embodiment is manufactured by the method for manufacturing a vacuum heat insulating material of any one of the first to 16th embodiments, and the innermost layer (thermal welding layer 103) of the jacket material 97 is an unstretched polypropylene film. It is characterized by being. Here, the unstretched polypropylene film has a higher melting point than other high-temperature polyethylene and low-density polyethylene, so the high-temperature polyethylene and low-density polyethylene are the heat-sealing materials for the innermost layer of the jacket material. It can be used at a higher temperature than the vacuum heat insulating material used in the above.
[0409]
The vacuum heat insulating material 95 according to the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to sixteenth embodiments, and a flame retardant sealer 104 is applied to the cut surface of the separated outer cover material 97. As a result, a flammable heat-welding material (unstretched polypropylene film of the innermost heat-welding layer 103) is exposed on the cut surface (end surface portion 100) of the outer sheath material 97 of the vacuum heat insulating material 95. By applying the flame retardant sealer 104 to the cut surface (end surface), the flame retardant level of the vacuum heat insulating material 95 can be improved, and the vacuum heat insulating material 95 can be easily used in a high temperature environment. . In addition, the flame retardant sealer 104 is flexible and can cover a heat-welding material that is applied to the cut surface (end surface) of the outer cover material 97 and easily burns regardless of the shape of the vacuum heat insulating material 95. it can.
[0410]
(Embodiment 22)
57 is a longitudinal sectional view of a vacuum heat insulating material according to Embodiment 22 of the present invention, FIG. 58 is an enlarged view of the main part of FIG. 57, and FIG. 59 is a longitudinal section of a notebook personal computer equipped with the vacuum heat insulating material according to the same embodiment. FIG.
[0411]
In the vacuum heat insulating material 105 of the present embodiment, the core material 2 containing wet silica and carbon black and solidified is covered with a jacket material 107 made of a gas barrier laminate film 106, and the inside of the jacket material 107 is The pressure is reduced. A heat welding portion 108 is provided around the core material 2.
[0412]
In addition, a flame-retardant adhesive tape 109 is provided over the entire circumference of the vacuum heat insulating material 105 so as to cover the end surface portion 110 of the jacket material 107. The jacket material 107 is composed of an outermost layer 111, a gas barrier layer 112, and a heat welding layer 113.
[0413]
Here, the gas barrier layer 112 is made of a metal foil such as an aluminum foil and a metal vapor-deposited synthetic resin. A fluorine-based film is used for the outermost layer 111, and an unstretched polypropylene film is used for the heat welding layer 113.
[0414]
In FIG. 58, a notebook personal computer 114 has a CPU 116 and other chips mounted on a printed circuit board 115. The cooling device 117 of the CPU 116 includes a heat transfer block 118 that contacts the CPU 116 and a heat pipe 119 that transfers heat. Moreover, the heat sink 120 diffuses and dissipates the internal heat.
[0415]
The vacuum heat insulating material 105 is attached to the inside of the personal computer bottom surface 121 directly below the CPU 116 and the keyboard back surface 122 directly above the CPU 116 with an adhesive.
[0416]
Such a notebook personal computer 114 uses a vacuum heat insulating material 105 in which a fluorine-based film is applied to the outermost layer 111 and a flame-retardant adhesive tape 109 is applied to the end face portion 110, so that it has excellent flame resistance. As with precision parts, the effect of improving safety, such as preventing ignition, can be obtained.
[0417]
Further, the heat insulating effect of the vacuum heat insulating material 105 transmits the heat of the personal computer bottom surface 121 and the keyboard surface directly above the CPU 116, so that the user does not feel uncomfortable.
[0418]
Further, this vacuum heat insulating material 105 is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of Embodiments 1 to 16, that is, a product manufactured by a method capable of mass-producing small vacuum heat insulating materials. The shape of the vacuum heat insulating material 105 is not particularly specified, and at least one corner or side of a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or a polygon having three or more corners is defined. Production of a small amount of vacuum heat insulating material for heat protection of CPU 116 of notebook type personal computer 114 and vacuum heat insulating material because of having cutout shapes and through holes provided in these shapes As a result, it is possible to easily cope with the case where various shapes are required.
[0419]
In the present embodiment, the notebook personal computer has been described. However, the present invention can also be applied to other information devices such as a copier, a printer, a fax machine, a copier / printer / fax multifunction machine.
[0420]
The vacuum heat insulating material 105 of the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to 16th embodiments, and the innermost layer (thermal welding layer 113) of the outer cover material 107 is an unstretched polypropylene film. It is characterized by being. Here, the unstretched polypropylene film has a higher melting point than other high-temperature polyethylene and low-density polyethylene, so the high-density polyethylene and low-density polyethylene are the innermost layer heat-sealing materials. It can be used at a higher temperature than the vacuum heat insulating material used in the above.
[0421]
The vacuum heat insulating material 105 according to the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to 16th embodiments, and the outermost layer 111 of the covering material 107 is a fluorine-based film. . By applying a fluorine-based film to the outermost layer 111 of the outer cover material 107, the flame retardancy and the continuous maximum use temperature are excellent, so that the flame retardance is required and the use can be performed for a high use temperature.
[0422]
The vacuum heat insulating material 105 of the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to 16th embodiments, and the cut surface of the cut outer cover material 107 is bonded to a flame retardant tape (flame retardant). In this case, the flammable heat-welding material (the unstretched polypropylene film of the innermost heat-welding layer 113) is exposed on the cut surface (end surface) of the jacket material 107 of the vacuum heat insulating material 105. Further, by covering the cut surface (end surface portion 110) of the jacket material 107 with the flame retardant tape 109, the flame retardant level of the vacuum heat insulating material 105 can be improved. Easy to use.
[0423]
In the notebook personal computer 114 of this embodiment, the vacuum heat insulating material 105 is used as the bottom surface 121 (heat insulating part) of the notebook personal computer under the printed circuit board 115 on which the CPU 116 which is a main heat source is arranged, or the CPU 116. By disposing it on the back surface 122 (the heat insulating part) of the notebook personal computer on the printed circuit board 115 on which the CPU is disposed, it is possible to prevent discomfort due to the heat generated by the CPU.
[0424]
(Embodiment 23)
Hereinafter, although the vacuum heat insulating material of Embodiment 23 of this invention and a printing apparatus using the same are demonstrated, about the same structure as Embodiment 22, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
[0425]
FIG. 60 is a longitudinal sectional view of a printing apparatus equipped with a vacuum heat insulating material according to Embodiment 23 of the present invention.
[0426]
The vacuum heat insulating material 105 according to the present embodiment covers the solid core material 2 containing wet silica and carbon black with a covering material 107 made of a gas barrier laminate film 106, and the inside of the covering material 107 is The pressure is reduced. A heat welding part 108 is provided around the core material 2. In addition, a flame-retardant adhesive tape 109 is provided over the entire circumference of the vacuum heat insulating material 105 so as to cover the end surface portion 110 of the jacket material 107.
[0427]
The jacket material 107 is composed of an outermost layer 111, a gas barrier layer 112, and a heat welding layer 113. Here, the gas barrier layer 112 is made of a metal foil such as an aluminum foil and a metal vapor-deposited synthetic resin.
[0428]
A fluorine-based film is used for the outermost layer 111, and an unstretched polypropylene film is used for the heat welding layer 113.
[0429]
60 is a cross-sectional view of the inside of the printing apparatus to which the vacuum heat insulating material 105 is attached. The printing apparatus 123 includes a heating unit 124, a heat fixing roller 125, a heater 126, toner 127, and recovered toner 128. .
[0430]
As shown in FIG. 60, the vacuum heat insulating material 105 is attached to the wall surface of the heating unit 124 so that the gas barrier layer is on the metal foil side. Therefore, even if the temperature of the heating unit 124 is high, a vacuum is formed. The heat insulating effect of the heat insulating material 105 can insulate heat for a long period of time and prevent solidification of the heat-sensitive toner 127.
[0431]
Further, conventionally, in order to prevent the heat of the heating unit 124 from being transmitted to the toner 127, heat is exhausted using a heat radiating component such as a fan, which is contrary to energy saving. However, when the vacuum heat insulating material 105 is used for the wall surface of the heating unit 124, the heat insulating effect is larger than that of a normal heat insulating material such as glass wool, so that it is not necessary to use a heat radiating component such as a fan, and the printing device 123 can save energy. The effect that can be obtained.
[0432]
Further, the vacuum heat insulating material 105 can be reduced to about 1/10 of the thickness with the same heat insulating effect as compared with a normal heat insulating material. There is an advantage that high function with the same dimensions can be achieved by making it into a space or creating a space inside.
[0433]
The vacuum heat insulating material 105 can also be used in products that need to be insulated from a high-temperature heat source in addition to the heat from the heater of the copying machine or printer that is the printing apparatus 123 described.
[0434]
The vacuum heat insulating material 105 of the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to 16th embodiments, and the innermost layer (thermal welding layer 113) of the outer cover material 107 is an unstretched polypropylene film. It is characterized by being. Here, the unstretched polypropylene film has a higher melting point than other high-temperature polyethylene and low-density polyethylene, so the high-temperature polyethylene and low-density polyethylene are the heat-sealing materials for the innermost layer of the jacket material. It can be used at a higher temperature than the vacuum heat insulating material used in the above.
[0435]
The vacuum heat insulating material 105 according to the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to 16th embodiments, and the outermost layer 111 of the covering material 107 is a fluorine-based film. . By applying a fluorine-based film to the outermost layer 111 of the outer cover material 107, the flame retardancy and the continuous maximum use temperature are excellent, so that the flame retardance is required and the use can be performed for a high use temperature.
[0436]
The vacuum heat insulating material 105 of the present embodiment is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of the first to 16th embodiments, and the cut surface of the cut outer cover material 107 is bonded to a flame retardant tape (flame retardant). In this case, the flammable heat-welding material (the unstretched polypropylene film of the innermost heat-welding layer 113) is exposed on the cut surface (end surface) of the jacket material 107 of the vacuum heat insulating material 105. Further, by covering the cut surface (end surface portion 110) of the jacket material 107 with the flame retardant tape 109, the flame retardant level of the vacuum heat insulating material 105 can be improved. Easy to use.
[0437]
The printing apparatus 123 according to the present embodiment is provided with a vacuum heat insulating material 105 in a heat insulating portion. Conventionally, in order to prevent the heat of the heating unit 124 from being transmitted to the toner 127, heat is exhausted by using a heat radiating component such as a fan. However, if the vacuum heat insulating material 105 is used as the heat insulating material of the heating unit 124, ordinary glass wool is used. Since the heat insulating effect is larger than that of a heat insulating material such as the above, it is not necessary to use a heat dissipating component such as a fan, and energy saving of the printing device 123 can be achieved. Further, the vacuum heat insulating material 105 can be reduced to about 1/10 the thickness of the heat insulating material in the same heat insulating effect as compared with a normal heat insulating material such as glass wool. There is an advantage that high function with the same size can be achieved by downsizing 123 or creating a space inside.
[0438]
(Embodiment 24)
Hereinafter, the vacuum heat insulating material of Embodiment 24 of this invention is demonstrated.
61 is a perspective view of the vacuum heat insulating material core used in Embodiment 24 of the present invention and the remaining end material of the core material, and FIG. 62 is a longitudinal sectional view of the vacuum heat insulating material according to the same embodiment.
[0439]
The core material 130 of the vacuum heat insulating material 129 of the present embodiment is obtained by cutting glass fiber or glass fiber with an inorganic or organic binder and cutting an arbitrary shape, or the remaining core material 130 cut out. Recycled end material 131, or powder or powder obtained by cutting an arbitrary shape from an inorganic or organic binder, or the remaining end material 131 from which core material 130 was cut was regenerated. Is.
[0440]
Regarding the regeneration of the glass fiber, a method of cutting the end material 131 finely and mixing a part thereof with a new core material, a method of melting and regenerating the end material 131, and manufacturing the glass fiber again can be considered.
[0441]
Further, regarding the powder regeneration, a method of pulverizing the end material 131 again and mixing it with a new powder can be considered. In the case of glass fiber, a vacuum heat insulating material 129 manufactured by the method for manufacturing a vacuum heat insulating material according to any one of Embodiments 1 to 16 using a material obtained by partially mixing the end material 131 with new glass fiber as the core material 130. Then, a core material 130 produced by a method of lowering the thermal conductivity of about 0.0005 to 0.0010 [W / (m · k)], and melting and regenerating the end material 131 to produce glass fiber again. In the vacuum heat insulating material 129 using, the thermal conductivity hardly changes.
[0442]
Also in the case of powder, a vacuum manufactured by the method for manufacturing a vacuum heat insulating material according to any one of Embodiments 1 to 16 using powder obtained by mixing the end material 131 with a new powder as the core material 130. In the heat insulating material 129, the heat conductivity is about a decrease level of about 0.0005 to 0.0010 [W / (m · k)], and can be sufficiently applied as the core material 130.
[0443]
In the method for manufacturing a vacuum heat insulating material according to any one of Embodiments 1 to 16, the shape of the core material 130 is a polygon having three or more corners, a substantially circular shape, a substantially elliptical shape, or three or more corners. Since it is sufficient that the polygonal shape has at least one corner or side notched and a shape having a through-hole provided in these shapes, the glass fiber or glass fiber having a predetermined shape is bonded with a binder such as boric acid. Since the end material 131 is always generated when the core material 130 is cut out from the hardened material, the end material 131 must be discarded as garbage unless it is a recyclable core material. By producing the vacuum heat insulating material 129, it is possible to regenerate the core material 130 and obtain an effect that the core material 130 can be effectively used.
[0444]
In addition, the manufacturing method of the vacuum heat insulating material demonstrated in Embodiment 1 to 16 of this invention WHEREIN: The multi-core vacuum heat insulating material which has the several core material arrange | positioned mutually spaced apart on substantially the same plane is multi-core vacuum heat insulating. In the next vacuum insulation material separation process, the core material sequentially separates one vacuum insulation material from the multicore vacuum insulation material produced in the multicore vacuum insulation material production process. The vacuum heat insulating material does not need to be a vacuum heat insulating material having only one core material, and the vacuum heat insulating material having a plurality of core materials may be separated in the vacuum heat insulating material separating step.
[0445]
Moreover, although the manufacturing method of the vacuum heat insulating material demonstrated in Embodiment 1 to 16 of this invention has a multi-core vacuum heat insulating material manufacturing process and a vacuum heat insulating material cutting-off process, the multi-core in a multi-core vacuum heat insulating material manufacturing process The method for manufacturing a vacuum heat insulating material has an excellent effect even when only a multi-core vacuum heat insulating material having a plurality of core materials spaced apart from each other on substantially the same plane is manufactured.
[0446]
【The invention's effect】
According to a first aspect of the present invention, there is provided a method for manufacturing a vacuum heat insulating material, comprising: covering a plurality of core members arranged substantially apart from each other on substantially the same plane with a gas barrier outer covering material; And producing a multi-core vacuum heat insulating material in which the jacket material positioned around each of the core materials is thermally welded so that each of the plurality of core materials is located in an independent space. The heat-welded portion remains between a cut portion in the core vacuum heat insulating material manufacturing step and the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing step and the core material adjacent to the cut portion. A vacuum heat insulating material separating step of cutting the outer cover material and separating the desired vacuum heat insulating material from the multi-core vacuum heat insulating material, so that a plurality of the heat insulating materials once disposed on the substantially same plane are separated from each other. Manufacture multi-core vacuum insulation material with core material, then Since the desired vacuum insulation material is sequentially separated from the multi-core vacuum insulation material, a large number of vacuum insulation materials or multiple types of vacuum insulation materials with different sizes and shapes are produced by a single vacuum operation of the vacuum packaging machine. The vacuum packaging machine can be operated efficiently, and the outer cover material located around the core material is thermally welded to the cutting part where it is cut in the vacuum heat insulating material cutting process. The fin-shaped outer periphery of the outer periphery of the core material of the vacuum heat insulating material can be reduced.
[0447]
According to a second aspect of the present invention, there is provided a method for producing a vacuum heat insulating material, wherein in the multi-core vacuum heat insulating material manufacturing process according to the first aspect, the inside of the outer cover material is sealed while maintaining a reduced pressure state. Since the outer periphery of the jacket material covering the plurality of core materials in a reduced pressure environment is thermally welded, the jacket materials positioned around each of the core materials in a normal pressure environment are thermally welded. In addition to the effect of the invention described in Item 1, since the jacket material positioned around the core material is thermally welded under a normal pressure environment, the jacket material positioned around the core material is thermally welded under a reduced pressure environment This makes it easier to perform the heat welding operation, and also shortens the usage time of the vacuum packaging machine, so that the vacuum packaging machine can be used efficiently. In addition, work in progress can be stored in a state in which a heat-welded part is formed on the outer periphery of the jacket material covering a plurality of core materials, and the work of thermally welding the jacket material located around the core material at a convenient time Since it can be performed, the work of the multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0448]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 3 is the multicore vacuum heat insulating material manufacturing process according to claim 1, wherein the jacket material positioned around each of the core materials is thermally welded. Since the work to be performed is performed under a reduced pressure environment, in addition to the effect of the invention according to claim 1, the order of providing the heat-welded portion is arbitrarily determined when the outer cover material positioned around the core material is heat-welded. Can be determined. In other words, if it is post-rotated, flaws are generated due to the influence of the previous heat welding operation, and the heat welding portion where the heat welding operation becomes difficult is first heat-welded to prevent generation of flaws and no leakage from the heat-welded portion. A vacuum heat insulating material can be obtained. Moreover, only the part located in the circumference | surroundings of the core material in a jacket material can also be heat-welded, without heat-welding the outer peripheral part of the jacket material which covers a some core material.
[0449]
Invention of the manufacturing method of the vacuum heat insulating material of Claim 4 is located in the circumference | surroundings of each said core material in the multi-core vacuum heat insulating material manufacturing process of the invention as described in any one of Claim 1 to 3. In the operation of thermally welding the outer jacket material, the pressing surface has concave portions corresponding to the shapes and arrangement patterns of the plurality of core members, and each of the core members is pressed and heated once. In addition to the effect of the invention according to any one of claims 1 to 3, since the heat welded body that can heat weld a portion to be heat welded of the outer jacket material located in the periphery is used. By pressing and heating to the outer jacket material once, the portions to be thermally welded of the outer jacket material located around the respective core materials can be thermally welded, and the thermal welding work can be easily performed in a short time.
[0450]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 5 is the multi-core vacuum heat insulating material manufacturing process according to any one of claims 1 to 3, wherein a heater is built in and the shape of the heat-welded material is included. Since the thermal welding part comprised with the elastic body so that it may follow easily is pressed against the said jacket material once, the thermal welding part of a jacket material is provided in the circumference | surroundings of the said core material, Claim 1 to 3 In addition to the effect of the invention described in any one of the above, by using a heat-welded body that easily follows the shape of the heat-welded object, the heat-welded body even if the distance between the core material and the core material is not sufficiently long Since it is easy to follow the shape, the heat-welded layer between the core material and the core material can be firmly grasped, and the heat-welded portion can be produced with certainty. Moreover, since a heat welding part is formed in the circumference | surroundings of a core material with respect to a jacket material at a time, a vacuum heat insulating material can be produced efficiently. Further, even when the position of the core material is slightly shifted or when the shape of the core material is slightly changed, the present invention can be applied without changing the shape of the heat-welded body.
[0451]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 6 is the multi-core vacuum heat insulating material manufacturing process according to any one of claims 1 to 3, wherein a heater is built in and the shape of the heat-welded material is included. Since the heat welding part comprised by the elastic body so that it may follow easily is pressed against the said jacket material in multiple times, the thermal welding part of a jacket material is provided in the circumference | surroundings of the said core material, Claim 1 to 3 In addition to the effect of the invention described in any one of the above, by using a heat-welded body that easily follows the shape of the heat-welded object, the heat-welded body even if the distance between the core material and the core material is not sufficiently long Since it is easy to follow the shape, the heat-welded layer between the core material and the core material can be firmly grasped, and the heat-welded portion can be produced with certainty. In addition, by pressing the heat welded body against the outer cover material a plurality of times, the outer cover material is divided into small portions to form the heat welded portion, thereby reliably forming the heat welded portion around the core material. Leakage from the welded portion can be reduced. Further, even when the position of the core material is slightly shifted or when the shape of the core material is slightly changed, the present invention can be applied without changing the shape of the heat-welded body.
[0452]
The invention of the manufacturing method of the vacuum heat insulating material according to claim 7, the plurality of core members are arranged apart from each other on substantially the same plane in the bag-shaped outer covering material having gas barrier properties and an opening, A multi-core vacuum heat insulating material obtained by thermally welding the jacket material positioned around each of the core materials so that the inside of the jacket material is decompressed and each of the plurality of core materials is located in an independent space. A multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing process, and the thermal welding between the cutting portion and the core material adjacent to the cutting portion The outer cover material is cut so that a portion remains, and the vacuum heat insulating material separating step is performed to separate the desired vacuum heat insulating material from the multi-core vacuum heat insulating material. A multi-core vacuum insulation material having a plurality of core materials After that, since the desired vacuum insulation was sequentially separated from the multi-core vacuum insulation, a large number of vacuum insulations or multiple types of vacuum insulations with different sizes and shapes could be obtained with a single vacuum operation of the vacuum packaging machine. The vacuum insulation material separation process can be manufactured, the vacuum packaging machine can be operated efficiently, and the outer cover material located around the core material is thermally welded to the cutting part that is cut in the vacuum insulation material separation process. It is possible to reduce the fin-shaped outer periphery of the outer periphery of the core material of the vacuum heat insulating material after being cut by. Moreover, since the bag-shaped thing which has an opening part is used for a jacket material, a thing which has arranged a plurality of core materials in a bag-like jacket material is installed in a vacuum packaging machine, and vacuum The setting to the packaging machine becomes simple, and if one place (one side) of the opening of the bag-shaped outer jacket material is heat-welded, a plurality of core materials can be sealed by the outer jacket material. This degree of vacuum can be more reliably maintained than when a plurality of core members are sealed by heat-welding the four sides of a pair of sheet-shaped outer jacket materials.
[0453]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 8 is such that, in the multi-core vacuum heat insulating material manufacturing process of the invention according to claim 7, the inside of the outer cover material is sealed while maintaining a reduced pressure state. After heat-sealing the openings of the jacket material covering the plurality of core materials in a reduced pressure environment, the jacket materials positioned around each of the core materials in a normal pressure environment are thermally welded. In addition to the effect of the invention described in Item 7, since the jacket material positioned around the core material is thermally welded under a normal pressure environment, the jacket material positioned around the core material is thermally welded under a reduced pressure environment This makes it easier to perform the heat welding operation, and also shortens the usage time of the vacuum packaging machine, so that the vacuum packaging machine can be used efficiently. In addition, the work-in-process can be stored in a state where the heat-welded portion is formed in the opening of the bag-shaped outer covering material that covers the plurality of core materials, and the outer jacket material located around the core material is heat-welded at a convenient time. Since the work can be performed, the work of the multi-core vacuum heat insulating material manufacturing process can be performed flexibly.
[0454]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 9 is the multi-core vacuum heat insulating material manufacturing process according to claim 7, in which the jacket material positioned around each of the core materials is thermally welded. Since the work to be performed is performed under a reduced pressure environment, in addition to the effect of the invention according to claim 7, the order of providing the heat-welded portion is arbitrarily determined when the outer cover material positioned around the core material is heat-welded. Can be determined. In other words, if it is post-rotated, flaws are generated due to the influence of the previous heat welding operation, and the heat welding portion where the heat welding operation becomes difficult is first heat-welded to prevent generation of flaws and no leakage from the heat-welded portion. A vacuum heat insulating material can be obtained. Moreover, only the part located in the circumference | surroundings of the core material in a jacket material can also be heat-welded, without heat-welding the opening part of the bag-shaped jacket material which covers a some core material.
[0455]
Invention of the vacuum heat insulating material manufacturing method of Claim 10 is located in the circumference | surroundings of each said core material in the multi-core vacuum heat insulating material manufacturing process of the invention as described in any one of Claim 7 to 9. For the operation of thermally welding the jacket material, the pressing surface has recesses corresponding to the shapes and arrangement patterns of the plurality of core materials, and pressing the core material and heating each of the core materials once. 10. In addition to the effect of the invention according to any one of claims 7 to 9, in addition to the effect of the invention according to claim 7, this heat welded body is used because a heat welded body capable of heat welding a portion to be thermally welded of the outer jacket material located in the periphery is used. By pressing and heating to the outer jacket material once, the portions to be thermally welded of the outer jacket material located around the respective core materials can be thermally welded, and the thermal welding work can be easily performed in a short time.
[0456]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 11 is the multi-core vacuum heat insulating material manufacturing process according to any one of claims 7 to 9, wherein a heater is built in and the shape of the heat-welded material is included. Since the heat welding part comprised with the elastic body so that it may follow easily is pressed against the said jacket material once, the thermal welding part of a jacket material is provided in the circumference | surroundings of the said core material, Claims 7-9 In addition to the effect of the invention described in any one of the above, by using a heat-welded body that easily follows the shape of the heat-welded object, the heat-welded body even if the distance between the core material and the core material is not sufficiently long Since it is easy to follow the shape, the heat-welded layer between the core material and the core material can be firmly grasped, and the heat-welded portion can be produced with certainty. Moreover, since a heat welding part is formed in the circumference | surroundings of a core material with respect to a jacket material at a time, a vacuum heat insulating material can be produced efficiently. Further, even when the position of the core material is slightly shifted or when the shape of the core material is slightly changed, the present invention can be applied without changing the shape of the heat-welded body.
[0457]
The invention of the manufacturing method of the vacuum heat insulating material according to claim 12 is the multi-core vacuum heat insulating material manufacturing process according to any one of claims 7 to 9, wherein a heater is incorporated and the shape of the heat-welded material is included. Since the heat welding part comprised by the elastic body so that it may follow easily is pressed against the said jacket material in multiple times, the thermal welding part of a jacket material is provided in the circumference | surroundings of the said core material. In addition to the effect of the invention described in any one of the above, by using a heat-welded body that easily follows the shape of the heat-welded object, the heat-welded body even if the distance between the core material and the core material is not sufficiently long Since it is easy to follow the shape, the heat-welded layer between the core material and the core material can be firmly grasped, and the heat-welded portion can be produced with certainty. In addition, by pressing the heat welded body against the outer cover material a plurality of times, the outer cover material is divided into small portions to form the heat welded portion, thereby reliably forming the heat welded portion around the core material. Leakage from the welded portion can be reduced. Further, even when the position of the core material is slightly shifted or when the shape of the core material is slightly changed, the present invention can be applied without changing the shape of the heat-welded body.
[0458]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 13 is the invention according to any one of claims 1 to 12, wherein the thermoplastic resin material of the innermost layer of the jacket material is formed on at least one surface. Since the core material having an adhesive portion that can be bonded is used, in addition to the effect of the invention according to any one of claims 1 to 12, the core material can be bonded to the inner surface of the jacket material, and therefore the position of the core material is determined. It can be fixed, and it is possible to prevent the core material from being displaced at the time of positioning and positioning of another core material, setting to a vacuum packaging machine or decompressing.
[0459]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 14 is composed of a plurality of core materials arranged on a substantially same plane and spaced apart from each other, and a shape and an arrangement pattern of the plurality of core materials made of a thermoplastic resin material. And a sheet member having a plurality of holes corresponding to the above, with the plurality of core members arranged one by one in each of the plurality of holes of the sheet member, the innermost layer being the same as the sheet member with gas barrier properties Covering with a jacket material made of a thermoplastic resin material, decompressing the interior of the jacket material and positioning the core material around each of the core materials so that each of the core materials is located in an independent space A multi-core vacuum heat insulating material manufacturing process for manufacturing a multi-core vacuum heat insulating material in which a jacket material and the sheet member are thermally welded, and a cut portion in the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing process And close to the cutting part A vacuum heat insulating material separating step of cutting a desired vacuum heat insulating material from the multi-core vacuum heat insulating material by cutting the outer cover material and the sheet member so that the heat-welded portion remains between the core materials. So as to once manufacture a multi-core vacuum heat insulating material having a plurality of core materials spaced apart from each other on substantially the same plane, and then sequentially separate the desired vacuum heat insulating material from the multi-core vacuum heat insulating material. As a result, many vacuum insulation materials or multiple types of vacuum insulation materials with different sizes and shapes can be produced with a single decompression operation of the vacuum packaging machine, the vacuum packaging machine can be operated efficiently, and the core material The outer cover material around the core of the vacuum insulation material after being cut in the vacuum insulation material cutting step is thermally welded until it reaches the cut portion to be cut in the vacuum insulation material separation step. The material peripheral part can be made small. In addition, a sheet member made of the same thermoplastic resin material as the innermost layer of the jacket material and having a plurality of core materials arranged in each of a plurality of holes corresponding to the shape and arrangement pattern of the plurality of core materials is covered with the jacket. Since it is covered with a material, the position relationship and spacing of each core material can be properly maintained until the jacket material and the sheet member positioned around the core material are thermally welded. The position of the core material can be prevented from being displaced during setting to a vacuum packaging machine or during decompression, and even if multiple core materials are misaligned with respect to the jacket material, the misalignment of the multiple core materials It can be corrected at once using a member.
[0460]
The invention of the manufacturing method of the vacuum heat insulating material according to claim 15 includes a plurality of core members arranged in a bag-shaped outer covering material having gas barrier properties and having an opening, spaced apart from each other on substantially the same plane. A sheet member made of the same thermoplastic resin material as the innermost layer of the jacket material and having a plurality of holes corresponding to the shape and arrangement pattern of the plurality of core members, in each of the plurality of holes of the sheet member Each of the core materials is inserted in a state where the core materials are arranged one by one, the inside of the jacket material is decompressed, and each of the core materials is positioned in an independent space. A multi-core vacuum heat insulating material manufacturing step for manufacturing a multi-core vacuum heat insulating material in which the outer cover material and the sheet member positioned around are thermally welded, and the multi-core vacuum manufactured in the multi-core vacuum heat insulating material manufacturing step Close to the cutting part and the cutting part in the heat insulating material A vacuum heat insulating material separating step of cutting a desired vacuum heat insulating material from the multi-core vacuum heat insulating material by cutting the outer cover material and the sheet member so that the heat-welded portion remains between the core materials. So as to once manufacture a multi-core vacuum heat insulating material having a plurality of core materials spaced apart from each other on substantially the same plane, and then sequentially separate the desired vacuum heat insulating material from the multi-core vacuum heat insulating material As a result, many vacuum insulation materials or multiple types of vacuum insulation materials with different sizes and shapes can be produced with a single decompression operation of the vacuum packaging machine, the vacuum packaging machine can be operated efficiently, and the core material The outer cover material around the core of the vacuum insulation material after being cut in the vacuum insulation material cutting step is thermally welded until it reaches the cut portion to be cut in the vacuum insulation material separation step. The material peripheral part can be made small. In addition, a sheet member made of the same thermoplastic resin material as the innermost layer of the jacket material and having a plurality of core members arranged in each of a plurality of holes corresponding to the shape and arrangement pattern of the plurality of core members is opened. Since it is inserted into a bag-shaped outer jacket material having a portion, the positional relationship and spacing of the respective core materials should be properly maintained until the outer jacket material and the sheet member positioned around the core material are thermally welded. It is possible to prevent misalignment of the core material during positioning and placement of other core materials, setting to a vacuum packaging machine, or decompression, even if multiple core materials are misaligned with respect to the jacket material. The misalignment of the plurality of core members can be corrected at once using a sheet member. In addition, since a bag-shaped material having an opening is used for the jacket material, a sheet member in which a plurality of core materials are arranged one by one in a plurality of holes is inserted into the bag-shaped jacket material. By installing this product in a vacuum packaging machine, setting to the vacuum packaging machine becomes easy, and if one location (one side) of the opening of the bag-shaped outer jacket material is thermally welded, a plurality of outer jacket materials can be used. Since the core material can be sealed, the degree of vacuum in the jacket material can be more reliably maintained than when a plurality of core materials are sealed by thermally welding the four sides of the pair of sheet-like jacket materials. Further, since the sheet member is present inside the heat-welded portion at the time of bag formation of the bag-shaped outer jacket material, the heat-welded portion at the time of bag formation of the bag-shaped outer jacket material does not overlap, There is no risk of air entering the outer cover material through the sheet member due to overlapping.
[0461]
The invention of a manufacturing method of a vacuum heat insulating material according to claim 16 is composed of a plurality of core materials arranged on a substantially same plane and spaced apart from each other, and a shape and an arrangement pattern of the plurality of core materials made of a thermoplastic resin material. A sheet member having a plurality of recesses corresponding to the upper surface of the sheet member, and the innermost layer having a gas barrier property and the innermost layer being disposed in each of the plurality of recesses of the sheet member. Is covered with a jacket material made of the same thermoplastic resin material, and the inside of the jacket material is decompressed and positioned around each of the core materials so that each of the plurality of core materials is located in an independent space. In the multi-core vacuum heat insulating material manufacturing process for manufacturing a multi-core vacuum heat insulating material in which the outer cover material and the sheet member are thermally welded, and in the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing process Cutting part and said cutting part The vacuum insulation material is separated from the multi-core vacuum insulation material by cutting the jacket material and the sheet member so that the heat-welded portion remains between the core material adjacent to the core material. A multi-core vacuum heat insulating material having a plurality of core materials spaced apart from each other on substantially the same plane, and then sequentially producing desired vacuum heat insulating materials from the multi-core vacuum heat insulating material. Since it was cut off, many vacuum insulation materials or multiple types of vacuum insulation materials with different sizes and shapes can be produced with a single vacuum operation of the vacuum packaging machine, and the vacuum packaging machine can be operated efficiently. The outer shell material located around the core material is thermally welded to the cutting part to be cut in the vacuum heat insulating material cutting process, so that the fin shape on the outer periphery of the vacuum heat insulating material core after cutting in the vacuum heat insulating material cutting process The outer periphery of the outer jacket material That. In addition, a sheet member made of the same thermoplastic resin material as that of the innermost layer of the jacket material and having a plurality of core materials arranged in each of the plurality of recesses corresponding to the shape and arrangement pattern of the plurality of core materials is provided. Since it is covered with a material, the position relationship and spacing of each core material can be properly maintained until the jacket material and the sheet member positioned around the core material are thermally welded. The position of the core material can be prevented from being displaced during setting to a vacuum packaging machine or during decompression, and even if multiple core materials are misaligned with respect to the jacket material, the misalignment of the multiple core materials It can be corrected at once using a member. In addition, since the concave portion of the sheet member on which the core material is installed has a bottom, the position of the core material is fixed without being dropped from the sheet member when the sheet member with the core material installed in the concave portion is moved. The effect of simplifying the setting of the sheet member on the workpiece is obtained.
[0462]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 17 is the sheet member according to any one of claims 14 to 16, wherein the surface layer of both the front and back surfaces is the innermost layer of the outer cover material. It is the same material as the thermoplastic resin material, and is a multilayer resin film in which a layer of a thermoplastic resin material having a melting point higher than that of the thermoplastic resin material is provided between the front and back surface layers. In addition to the effect of the invention according to any one of the above, the sheet member has a surface layer on both the front and back surfaces that is the same material as the innermost thermoplastic resin material of the outer cover material, and the surface member is disposed between the surface layers on the front and back surfaces. Since the multilayer resin film is provided with a layer of thermoplastic resin material having a melting point higher than that of the thermoplastic resin material, the thickness of the thermoplastic resin material in the intermediate layer of the sheet member is increased even when the thickness of the core material is increased. To reduce the deformation of the jacket material and heat It is possible to perform the production of wearing parts reliably.
[0463]
The invention of the method for manufacturing a vacuum heat insulating material according to claim 18 is a shape in which the core material according to any one of claims 1 to 17 has a thickness that decreases toward an outer peripheral edge at an outer peripheral portion. Therefore, in addition to the effect of the invention according to any one of claims 1 to 17, even when the thickness of the core material is increased, the deformation of the jacket material can be made relatively small. It is possible to easily and reliably produce the heat-welded part to be formed on the surface, and to suppress the increase in the internal pressure of the vacuum heat insulating material due to the entry of outside air from the heat-welded part and the resulting decrease in the heat insulating performance of the vacuum heat insulating material. .
[0464]
Invention of the vacuum heat insulating material of Claim 19 is manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 18, Since the innermost layer of the said jacket material is an unstretched polypropylene film. The unstretched polypropylene film has a higher melting point than other high-temperature polyethylene and low-density polyethylene, so high-density polyethylene and low-density polyethylene are used as the innermost layer heat-sealing material. It can be used at a higher temperature than the vacuum insulation material.
[0465]
The invention of the vacuum heat insulating material according to claim 20 is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, and the outermost layer of the jacket material is a fluorine-based film. By applying a fluorine-based film to the outermost layer of the jacket material, the flame retardancy and continuous maximum use temperature are excellent, so that flame retardance is required and the use temperature is high.
[0466]
Invention of the vacuum heat insulating material of Claim 21 is manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 18, and the dry silica and carbon black are contained in the said core material. Therefore, even if air flows into the vacuum heat insulating material due to the low pressure dependency of dry silica and the effect of reducing the thermal conductivity by adding carbon black, the low pressure dependency effect and the heat conductivity reducing effect of the vacuum heat insulating material The thermal conductivity can be kept low for a long time.
[0467]
Invention of the vacuum heat insulating material of Claim 22 is manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 18, The said core material is from the recyclable fiber material or powder material. Therefore, this core material can recycle the end material from which the core material has been cut and use it as a recycled product, so that resources can be effectively utilized.
[0468]
The invention of the vacuum heat insulating material according to claim 23 is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, and the cut surface of the separated outer cover material is made of a flame retardant tape. Because it is covered, a heat-welding material that is flammable is exposed on the cut surface (end surface) of the outer cover material of the vacuum heat insulating material, but by covering the cut surface (end surface) of the outer cover material with a flame-retardant tape, vacuum insulation is achieved. The flame retardant level of the material can be improved, and the vacuum heat insulating material can be easily used in a high temperature environment.
[0469]
The invention of the vacuum heat insulating material according to claim 24 is manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, and is a flame retardant sealer on a cut surface of the separated outer cover material. Because of the coating, the heat-welding material that is flammable is exposed on the cut surface (end surface) of the outer cover material of the vacuum heat insulating material, but the flame retardant sealer (a kind of primer) is exposed on the cut surface (end surface) of the cover material ) Can improve the flame retardant level of the vacuum heat insulating material, and this vacuum heat insulating material can be easily used in a high temperature environment. In addition, the flame retardant sealer is flexible and can cover and cover the heat-welding material that is easily applied and burned to the cut surface (end surface) of the outer jacket material, regardless of the shape of the vacuum heat insulating material.
[0470]
The invention of the notebook personal computer according to claim 25 is the vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18 or the heat insulating portion according to claim 19 to 24. Since the vacuum heat insulating material according to any one of claims 1 to 18 is provided, the vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18 or any one of claims 19 to 24. The vacuum heat insulating material described above is used as the bottom of the notebook personal computer under the printed circuit board on which the CPU, which is the main heat source, is disposed, or on the printed circuit board on which the CPU is disposed. By installing it on the lower surface (the heat insulating part) of the keyboard of the computer, it is possible to prevent discomfort due to heat generated by the CPU.
[0471]
The invention of the printing apparatus according to claim 26 is the vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, or any one of claims 19 to 24, in the heat insulating portion. In order to prevent the heat of the heating unit from being transferred to the toner, the heat is exhausted by using a heat radiating component such as a fan. When used as a material, the heat insulating effect is greater than that of a normal heat insulating material such as glass wool, so that it is not necessary to use a heat dissipating part such as a fan, and energy saving of the printing apparatus can be achieved. In addition, the vacuum insulation material can be reduced to about 1/10 of the thickness of the insulation with the same insulation effect compared to the usual insulation material such as glass wool. Therefore, the space of the insulation material in the printing device can be reduced, thereby reducing the size of the printing device. There is an advantage that high function with the same dimensions can be achieved by making it into a space or creating a space inside.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a vacuum heat insulating material produced by the method for manufacturing a vacuum heat insulating material according to Embodiment 1 of the present invention.
FIG. 2 is a schematic longitudinal sectional view when the vacuum packaging machine used in the embodiment is used.
FIG. 3 is a schematic cross-sectional view when the vacuum packaging machine is used.
FIG. 4 is a plan view of a multi-core vacuum heat insulating material at a stage where the outer peripheral portion of the jacket material is thermally welded by the vacuum packaging machine.
FIG. 5 is a schematic side view showing a state before heat welding of the heat welding apparatus used in the embodiment.
FIG. 6 is a plan view of a multi-core vacuum heat insulating material at a stage in which a jacket material positioned around the core material is heat-welded by the heat welding apparatus.
FIG. 7 is a longitudinal sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus.
FIG. 8 is a schematic longitudinal sectional view of a vacuum packaging machine used in the method for manufacturing a vacuum heat insulating material according to Embodiment 2 of the present invention.
FIG. 9 is a plan view of a multi-core vacuum heat insulating material produced by the same vacuum packaging machine.
FIG. 10 is a schematic side view showing a state before heat welding of a heat welding apparatus used in the method for manufacturing a vacuum heat insulating material according to Embodiment 3 of the present invention.
FIG. 11 is a schematic side view of a heat welding apparatus used in the method for manufacturing a vacuum heat insulating material according to the fourth embodiment of the present invention before heat welding.
12 is a schematic side view showing a state before heat welding of a heat welding apparatus used in the method for manufacturing a vacuum heat insulating material according to Embodiment 5 of the present invention. FIG.
FIG. 13 is a longitudinal sectional view of a vacuum heat insulating material produced by the method for manufacturing a vacuum heat insulating material according to Embodiment 6 of the present invention.
FIG. 14 is a schematic longitudinal sectional view when the vacuum packaging machine used in the embodiment is used.
FIG. 15 is a schematic cross-sectional view when the vacuum packaging machine is used.
FIG. 16 is a plan view of the multi-core vacuum heat insulating material at the stage where the opening of the bag-shaped outer jacket material is thermally welded by the vacuum packaging machine
FIG. 17 is a schematic side view showing a state before heat welding of the heat welding apparatus used in the embodiment.
FIG. 18 is a plan view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus.
FIG. 19 is a longitudinal sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus.
FIG. 20 is a schematic longitudinal sectional view of a vacuum packaging machine used in the method for manufacturing a vacuum heat insulating material according to Embodiment 7 of the present invention.
FIG. 21 is a plan view of a multi-core vacuum heat insulating material produced by the same vacuum packaging machine.
FIG. 22 is a schematic side view showing a state before heat welding of a heat welding apparatus used in the method for manufacturing a vacuum heat insulating material according to the eighth embodiment of the present invention.
FIG. 23 is a schematic side view of a heat welding apparatus used in the method for manufacturing a vacuum heat insulating material according to the ninth embodiment of the present invention before heat welding.
FIG. 24 is a schematic side view showing a state before the thermal welding of the thermal welding apparatus used in the method for manufacturing a vacuum heat insulating material according to the tenth embodiment of the present invention.
FIG. 25 is a longitudinal sectional view of a core material used in the method for manufacturing a vacuum heat insulating material according to the eleventh embodiment of the present invention.
FIG. 26 is a longitudinal sectional view of a vacuum heat insulating material produced by the vacuum heat insulating material manufacturing method of Embodiment 12 of the present invention.
FIG. 27 is a plan view of a sheet member used in the embodiment.
FIG. 28 is a schematic longitudinal sectional view when the vacuum packaging machine used in the embodiment is used.
FIG. 29 is a plan view of a multi-core vacuum heat insulating material at a stage where the outer peripheral portion of the jacket material is thermally welded by the vacuum packaging machine.
FIG. 30 is a schematic side view showing a state before heat welding of the heat welding apparatus used in the embodiment.
FIG. 31 is a plan view of a multi-core vacuum heat insulating material at a stage in which a jacket material positioned around the core material is heat-welded by the heat welding apparatus.
FIG. 32 is a longitudinal cross-sectional view of a multi-core vacuum heat insulating material at a stage in which a jacket material positioned around the core material is heat-welded by the heat welding apparatus
FIG. 33 is a plan view of the multi-core vacuum heat insulating material at the stage where the opening of the bag-shaped outer cover material is thermally welded by the vacuum packaging machine used in the manufacturing method of the vacuum heat insulating material according to the thirteenth embodiment of the present invention.
FIG. 34 is a plan view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus used in the same embodiment;
FIG. 35 is a longitudinal sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the same heat welding apparatus.
FIG. 36 is a longitudinal sectional view of a sheet member used in the method for manufacturing a vacuum heat insulating material according to the fourteenth embodiment of the present invention.
FIG. 37 is a plan view of the multi-core vacuum heat insulating material at the stage where the outer peripheral portion of the jacket material is thermally welded by the vacuum packaging machine used in the same embodiment;
FIG. 38 is a plan view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus used in the same embodiment;
FIG. 39 is a longitudinal cross-sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus
FIG. 40 is a longitudinal sectional view of a sheet member used in the method for manufacturing a vacuum heat insulating material according to the fifteenth embodiment of the present invention.
FIG. 41 is a plan view of a multi-core vacuum heat insulating material at a stage where the outer peripheral portion of the jacket material is thermally welded by the vacuum packaging machine used in the same embodiment;
FIG. 42 is a plan view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus used in the embodiment;
FIG. 43 is a longitudinal sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus.
FIG. 44 is a longitudinal sectional view of a core material used in the method for manufacturing a vacuum heat insulating material according to the sixteenth embodiment of the present invention.
FIG. 45 is a plan view of the multi-core vacuum heat insulating material at the stage where the outer peripheral portion of the jacket material is thermally welded by the vacuum packaging machine used in the same embodiment
FIG. 46 is a plan view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus used in the same embodiment;
FIG. 47 is a longitudinal sectional view of a multi-core vacuum heat insulating material at a stage where a jacket material positioned around the core material is heat-welded by the heat welding apparatus.
FIG. 48 is a longitudinal sectional view of a vacuum heat insulating material according to a seventeenth embodiment of the present invention.
49 is an enlarged view of the main part of FIG. 48.
FIG. 50 is a longitudinal sectional view of a vacuum heat insulating material according to the eighteenth embodiment of the present invention.
51 is an enlarged view of the main part of FIG. 50.
FIG. 52 is a longitudinal sectional view of the vacuum heat insulating material according to the nineteenth embodiment of the present invention.
FIG. 53 is a longitudinal sectional view of a vacuum heat insulating material according to a twentieth embodiment of the present invention.
54 is an enlarged view of the main part of FIG. 53.
55 is a longitudinal sectional view of a vacuum heat insulating material according to a twenty-first embodiment of the present invention. FIG.
56 is an enlarged view of the main part of FIG. 55.
FIG. 57 is a longitudinal sectional view of a vacuum heat insulating material according to a twenty-second embodiment of the present invention.
58 is an enlarged view of the main part of FIG.
FIG. 59 is a longitudinal sectional view of a notebook personal computer equipped with a vacuum heat insulating material according to the embodiment;
FIG. 60 is a longitudinal sectional view of a printing apparatus equipped with a vacuum heat insulating material according to a twenty-third embodiment of the present invention.
61 is a perspective view of the vacuum heat insulating material core material and the remaining end material of the core material used in the twenty-fourth embodiment of the present invention. FIG.
FIG. 62 is a longitudinal sectional view of the vacuum heat insulating material according to the embodiment.
FIG. 63 is a plan view of a conventional vacuum heat insulating material.
FIG. 64 is a cross-sectional view of the conventional vacuum heat insulating material provided in the outer box of the heat insulating box
[Explanation of symbols]
1 Vacuum insulation
2 Core material
3 Jacket material
4 Heat welding part
5 Laminate film (cover material)
6 Vacuum packaging machine
12 Heat welding part
14 Thermal welded body
17 Heat welding part
18 Multi-core vacuum insulation
19 Vacuum packaging machine
21 Thermal welded body
25 Heat welding part
26 Multi-core vacuum insulation
27 Heat welded body
30 Heat welded body
33 Heat welded body
36 Vacuum insulation
37 Jacket material
38 Thermal weld
39 Laminate bag (bag-shaped jacket)
40 Heat welding part
42 Thermal weld
43 Multi-core vacuum insulation
44 Thermal weld
45 Multi-core vacuum insulation
46 Thermal welded body
49 Heat welded body
52 Thermal welded body
55 Double-sided adhesive tape (adhesive part)
56 Vacuum insulation
57 holes
58 Sheet material
59 Thermal weld
61 Thermal weld
62 Multi-core vacuum insulation
65 Multi-core vacuum insulation
66 Sheet material
68 Multi-core vacuum insulation
69 recess
70 Sheet member
72 Multi-core vacuum insulation
73 Core
75 Multi-core vacuum insulation
76 Vacuum insulation
77 Laminate film
78 Jacket material
79 Heat welding part
82 Thermal welding layer (innermost layer)
83 Vacuum insulation
84 Laminate film
85 Jacket material
86 Heat welding part
87 Outermost layer
90 Vacuum insulation
91 Core material
92 Laminate film
93 Jacket material
94 Thermal weld
95 Vacuum insulation
96 Laminate film
97 Jacket material
98 Thermal weld
99 Flame retardant adhesive tape (flame retardant tape)
100 end face
104 Flame retardant sealer
105 Vacuum insulation
106 Laminate film
107 Jacket material
108 Thermal weld
109 Flame retardant adhesive tape
114 notebook personal computer
123 Printing device
129 Vacuum insulation
130 Core

Claims (26)

略同一平面上に互いに離間して配置された複数の芯材を、ガスバリア性の外被材で覆い、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、
前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材を切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有する真空断熱材の製造方法。
Covering a plurality of core members arranged substantially apart from each other on substantially the same plane with a gas barrier outer cover material, decompressing the inner portion of the outer cover material, and each of the plurality of core members in an independent space A multi-core vacuum heat insulating material manufacturing process for manufacturing a multi-core vacuum heat insulating material in which the jacket material positioned around each of the core materials to be positioned is thermally welded;
The outer cover material is cut so that the heat-welded portion remains between the cut portion in the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing step and the core material adjacent to the cut portion. And a vacuum heat insulating material separating step of separating a desired vacuum heat insulating material from the multi-core vacuum heat insulating material.
前記多芯真空断熱材製造工程において、前記外被材の内部が減圧状態を維持したまま密閉されるように減圧環境下で前記複数の芯材を覆う外被材の外周部を熱溶着した後、常圧環境下でそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着する請求項1記載の真空断熱材の製造方法。In the multi-core vacuum heat insulating material manufacturing process, after the outer periphery of the jacket material covering the plurality of core materials is thermally welded in a reduced pressure environment so that the inside of the jacket material is sealed while maintaining the reduced pressure state The manufacturing method of the vacuum heat insulating material of Claim 1 which heat-welds the said jacket material located in the circumference | surroundings of each said core material in a normal pressure environment. 前記多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業を、減圧環境下で行う請求項1記載の真空断熱材の製造方法。The method for manufacturing a vacuum heat insulating material according to claim 1, wherein, in the multi-core vacuum heat insulating material manufacturing step, an operation of thermally welding the jacket material positioned around each of the core materials is performed in a reduced pressure environment. 前記多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業に、押し当て面に複数の芯材の形状および配置パターンに対応した凹部を有し一度の前記外被材への押し当て及び加熱によりそれぞれの前記芯材の周囲に位置する前記外被材の熱溶着すべき部分を熱溶着できる熱溶着体を使用する請求項1から3のいずれか一項記載の真空断熱材の製造方法。In the manufacturing process of the multi-core vacuum heat insulating material, the pressing surface has concave portions corresponding to the shapes and arrangement patterns of the plurality of core materials for the work of thermally welding the jacket material positioned around each of the core materials. 4. A heat-welded body capable of heat-welding a portion to be heat-welded of the jacket material positioned around each of the core materials by pressing and heating the jacket material once. The manufacturing method of the vacuum heat insulating material as described in any one. 前記多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、1回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設ける請求項1から3のいずれか一項記載の真空断熱材の製造方法。In the manufacturing process of the multi-core vacuum heat insulating material, the core is formed by pressing a heat welded body made of an elastic body with a built-in heater so as to easily follow the shape of the heat-welded object. The manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 3 which provides the thermal welding part of a jacket material around the material. 前記多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、複数回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設ける請求項1から3のいずれか一項記載の真空断熱材の製造方法。In the multi-core vacuum heat insulating material manufacturing process, the core is formed by pressing a heat-welded body made of an elastic body with a built-in heater so as to easily follow the shape of the heat-welded object, against the jacket material a plurality of times. The manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 3 which provides the thermal welding part of a jacket material around the material. ガスバリア性で開口部を有する袋状の外被材の中に、複数の芯材を略同一平面上に互いに離間して配置し、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、
前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材を切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有する真空断熱材の製造方法。
A plurality of core members are arranged in a bag-shaped outer cover material having gas barrier properties and having an opening, spaced apart from each other on substantially the same plane, and the inside of the outer cover material is decompressed and the plurality of core members A multi-core vacuum heat insulating material manufacturing process for manufacturing a multi-core vacuum heat insulating material by thermally welding the jacket material positioned around each of the core materials so that each is located in an independent space;
The outer cover material is cut so that the heat-welded portion remains between the cut portion in the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing step and the core material adjacent to the cut portion. And a vacuum heat insulating material separating step of separating a desired vacuum heat insulating material from the multi-core vacuum heat insulating material.
前記多芯真空断熱材製造工程において、前記外被材の内部が減圧状態を維持したまま密閉されるように減圧環境下で前記複数の芯材を覆う外被材の開口部を熱溶着した後、常圧環境下でそれぞれの前記芯材の周囲に位置する前記外被材を熱溶着する請求項7記載の真空断熱材の製造方法。In the multi-core vacuum heat insulating material manufacturing process, after thermally welding the openings of the jacket material covering the plurality of core materials in a reduced pressure environment so that the inside of the jacket material is sealed while maintaining the reduced pressure state The manufacturing method of the vacuum heat insulating material of Claim 7 which heat-welds the said jacket material located in the circumference | surroundings of each said core material in a normal pressure environment. 前記多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業を、減圧環境下で行う請求項7記載の真空断熱材の製造方法。The manufacturing method of the vacuum heat insulating material of Claim 7 which performs the operation | work which heat-welds the said jacket material located in the circumference | surroundings of each said core material in a reduced pressure environment in the said multi-core vacuum heat insulating material manufacturing process. 前記多芯真空断熱材製造工程において、それぞれの前記芯材の周囲に位置する前記外被材を熱溶着する作業に、押し当て面に複数の芯材の形状および配置パターンに対応した凹部を有し一度の前記外被材への押し当て及び加熱によりそれぞれの前記芯材の周囲に位置する前記外被材の熱溶着すべき部分を熱溶着できる熱溶着体を使用する請求項7から9のいずれか一項記載の真空断熱材の製造方法。In the manufacturing process of the multi-core vacuum heat insulating material, the pressing surface has a recess corresponding to the shape and arrangement pattern of the plurality of core materials for the work of thermally welding the jacket material positioned around each of the core materials. 10. The heat welding body according to claim 7, wherein a heat-welded body capable of heat-welding a portion to be heat-welded of the jacket material positioned around each of the core materials by pressing and heating the jacket material once is used. The manufacturing method of the vacuum heat insulating material as described in any one. 前記多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、1回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設ける請求項7から9のいずれか一項記載の真空断熱材の製造方法。In the manufacturing process of the multi-core vacuum heat insulating material, the core is formed by pressing a heat welded body which is made of an elastic body and has a built-in heater so as to easily follow the shape of the heat-welded object. The manufacturing method of the vacuum heat insulating material as described in any one of Claim 7 to 9 which provides the heat welding part of a jacket material around the material. 前記多芯真空断熱材製造工程において、ヒーターを内蔵し被熱溶着物の形状に追従しやすいように弾性体で構成された熱溶着体を、複数回前記外被材に押し当てることにより前記芯材の周囲に外被材の熱溶着部を設ける請求項7から9のいずれか一項記載の真空断熱材の製造方法。In the multi-core vacuum heat insulating material manufacturing process, the core is formed by pressing a heat-welded body made of an elastic body so as to easily follow the shape of the heat-welded object with a built-in heater against the jacket material a plurality of times. The manufacturing method of the vacuum heat insulating material as described in any one of Claim 7 to 9 which provides the heat welding part of a jacket material around the material. 少なくとも一方の面に前記外被材の最内層の熱可塑樹脂材料に接着できる接着部を有する芯材を用いた請求項1から12のいずれか一項記載の真空断熱材の製造方法。The manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 12 which used the core material which has an adhesion part which can adhere | attach to the thermoplastic resin material of the innermost layer of the said jacket material on at least one surface. 略同一平面上に互いに離間して配置される複数の芯材と、熱可塑樹脂材料からなり前記複数の芯材の形状および配置パターンに対応した複数の孔を有するシート部材とを、前記シート部材の前記複数の孔のそれぞれに前記複数の芯材を一つずつ配設した状態で、ガスバリア性で最内層が前記シート部材と同じ熱可塑樹脂材料からなる外被材で覆い、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材と前記シート部材とを熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、
前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材と前記シート部材とを切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有する真空断熱材の製造方法。
A plurality of core members arranged on substantially the same plane and spaced apart from each other; and a sheet member made of a thermoplastic resin material and having a plurality of holes corresponding to the shape and arrangement pattern of the plurality of core members. In the state where one of the plurality of core members is disposed in each of the plurality of holes, the innermost layer is covered with a jacket material made of the same thermoplastic resin material as the sheet member, and the jacket material A multi-core vacuum heat insulation in which the outer cover material and the sheet member positioned around each of the core members are heat-welded so that the inside of the core member is decompressed and each of the plurality of core members is located in an independent space. A multi-core vacuum insulation material manufacturing process for manufacturing the material,
The jacket material and the sheet so that the heat-welded portion remains between the cut portion in the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing step and the core material adjacent to the cut portion. The vacuum heat insulating material manufacturing method which has a vacuum heat insulating material cutting | disconnection process which cut | disconnects a member and cut | disconnects a desired vacuum heat insulating material from the said multi-core vacuum heat insulating material.
ガスバリア性で開口部を有する袋状の外被材の中に、略同一平面上に互いに離間して配置される複数の芯材と、前記外被材の最内層と同じ熱可塑樹脂材料からなり前記複数の芯材の形状および配置パターンに対応した複数の孔を有するシート部材とを、前記シート部材の前記複数の孔のそれぞれに前記複数の芯材を一つずつ配設した状態で挿入し、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材と前記シート部材とを熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、
前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材と前記シート部材とを切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有する真空断熱材の製造方法。
In a bag-shaped outer jacket material having an opening with a gas barrier property, a plurality of core materials arranged substantially apart from each other on substantially the same plane, and the same thermoplastic resin material as the innermost layer of the outer jacket material A sheet member having a plurality of holes corresponding to the shape and arrangement pattern of the plurality of core members is inserted with each of the plurality of core members disposed in each of the plurality of holes of the sheet member. The sheet material is thermally welded to the jacket material positioned around each of the core materials so that the inside of the jacket material is decompressed and each of the plurality of core materials is located in an independent space. A multi-core vacuum heat insulating material manufacturing process for manufacturing the multi-core vacuum heat insulating material,
The jacket material and the sheet so that the heat-welded portion remains between the cut portion in the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing step and the core material adjacent to the cut portion. The vacuum heat insulating material manufacturing method which has a vacuum heat insulating material cutting | disconnection process which cut | disconnects a member and cut | disconnects a desired vacuum heat insulating material from the said multi-core vacuum heat insulating material.
略同一平面上に互いに離間して配置される複数の芯材と、熱可塑樹脂材料からなり前記複数の芯材の形状および配置パターンに対応した複数の凹部を上面に有するシート部材とを、前記シート部材の前記複数の凹部のそれぞれに前記複数の芯材を一つずつ配設した状態で、ガスバリア性で最内層が前記シート部材と同じ熱可塑樹脂材料からなる外被材で覆い、前記外被材の内部を減圧すると共に前記複数の芯材のそれぞれが独立した空間内に位置するようにそれぞれの前記芯材の周囲に位置する前記外被材と前記シート部材とを熱溶着した多芯真空断熱材を製造する多芯真空断熱材製造工程と、
前記多芯真空断熱材製造工程で製造された前記多芯真空断熱材における切断部分と前記切断部分に近接する前記芯材との間に前記熱溶着部分が残るように前記外被材と前記シート部材とを切断して、前記多芯真空断熱材から所望の真空断熱材を切り離す真空断熱材切り離し工程とを有する真空断熱材の製造方法。
A plurality of core members that are spaced apart from each other on substantially the same plane; and a sheet member that is formed of a thermoplastic resin material and has a plurality of recesses on the upper surface corresponding to the shape and arrangement pattern of the plurality of core members, In a state where the plurality of cores are disposed in each of the plurality of recesses of the sheet member, the innermost layer is covered with a jacket material made of the same thermoplastic resin material as that of the sheet member with a gas barrier property, A multi-core obtained by thermally welding the outer cover material and the sheet member positioned around each of the core members so that the inside of the target member is decompressed and each of the plurality of core members is located in an independent space A multi-core vacuum heat insulating material manufacturing process for manufacturing a vacuum heat insulating material;
The jacket material and the sheet so that the heat-welded portion remains between the cut portion in the multi-core vacuum heat insulating material manufactured in the multi-core vacuum heat insulating material manufacturing step and the core material adjacent to the cut portion. The vacuum heat insulating material manufacturing method which has a vacuum heat insulating material cutting | disconnection process which cut | disconnects a member and cut | disconnects a desired vacuum heat insulating material from the said multi-core vacuum heat insulating material.
前記シート部材はその表裏両面の表面層が前記外被材の最内層の熱可塑樹脂材料と同じ材料であり、前記表裏両面の表面層の間に前記熱可塑樹脂材料より融点が高い熱可塑樹脂材料の層を設けた多層樹脂フィルムである請求項14から16のいずれか一項記載の真空断熱材の製造方法。The sheet member has a surface layer on both front and back surfaces that is the same material as the innermost thermoplastic resin material of the jacket material, and has a higher melting point between the front and back surface layer layers than the thermoplastic resin material. The method for producing a vacuum heat insulating material according to any one of claims 14 to 16, which is a multilayer resin film provided with a layer of material. 前記芯材は、外周部では外周端部に向かうほど厚みが薄くなる形状である請求項1から17のいずれか一項記載の真空断熱材の製造方法。The said core material is a manufacturing method of the vacuum heat insulating material as described in any one of Claim 1 to 17 which is a shape where thickness becomes thin toward an outer peripheral edge part in an outer peripheral part. 請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記外被材の最内層が無延伸ポリプロピレンフィルムである真空断熱材。The vacuum heat insulating material manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claims 1-18, and the innermost layer of the said jacket material is an unstretched polypropylene film. 請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記外被材の最外層がフッ素系フィルムである真空断熱材。The vacuum heat insulating material manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claims 1-18, and the outermost layer of the said jacket material being a fluorine-type film. 請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記芯材に、乾式シリカとカーボンブラックが含まれている真空断熱材。A vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, wherein the core material includes dry silica and carbon black. 請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、前記芯材が、リサイクル可能な繊維材料または粉体材料からなる真空断熱材。A vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, wherein the core material is made of a recyclable fiber material or powder material. 請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、切り離された外被材の切断面を難燃性テープで覆った真空断熱材。A vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, wherein the cut surface of the cut outer cover material is covered with a flame retardant tape. 請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造され、切り離された外被材の切断面に難燃性のシーラーを塗布した真空断熱材。A vacuum heat insulating material manufactured by the method for manufacturing a vacuum heat insulating material according to any one of claims 1 to 18, wherein a flame retardant sealer is applied to a cut surface of a cut outer cover material. 断熱部に、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造された真空断熱材あるいは請求項19から24のいずれか一項記載の真空断熱材を設けたノート型パーソナルコンピューター。The notebook type which provided the vacuum heat insulating material manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claims 1-18, or the vacuum heat insulating material as described in any one of Claims 19-24 in the heat insulation part. personal computer. 断熱部に、請求項1から18のいずれか一項記載の真空断熱材の製造方法により製造された真空断熱材あるいは請求項19から24のいずれか一項記載の真空断熱材を設けた印刷装置。The printing apparatus which provided the vacuum heat insulating material manufactured by the manufacturing method of the vacuum heat insulating material as described in any one of Claims 1-18, or the vacuum heat insulating material as described in any one of Claims 19-24 in the heat insulation part. .
JP2003026751A 2003-02-04 2003-02-04 Manufacturing method of vacuum insulation Expired - Fee Related JP4419400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026751A JP4419400B2 (en) 2003-02-04 2003-02-04 Manufacturing method of vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026751A JP4419400B2 (en) 2003-02-04 2003-02-04 Manufacturing method of vacuum insulation

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003386644A Division JP3559036B1 (en) 2003-11-17 2003-11-17 Manufacturing method of vacuum insulation material
JP2007074211A Division JP2007182998A (en) 2007-03-22 2007-03-22 Manufacturing method of vacuum heat insulation material

Publications (2)

Publication Number Publication Date
JP2004239300A true JP2004239300A (en) 2004-08-26
JP4419400B2 JP4419400B2 (en) 2010-02-24

Family

ID=32954659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026751A Expired - Fee Related JP4419400B2 (en) 2003-02-04 2003-02-04 Manufacturing method of vacuum insulation

Country Status (1)

Country Link
JP (1) JP4419400B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077792A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Vacuum insulating material
JP2006118695A (en) * 2004-09-27 2006-05-11 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and heat insulation box using vacuum heat insulating material
JP2006161939A (en) * 2004-12-07 2006-06-22 Kurabo Ind Ltd Vacuum thermal insulating material
JP2006183810A (en) * 2004-12-28 2006-07-13 Kurabo Ind Ltd Method of manufacturing vacuum heat insulating material
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method
JP2007138976A (en) * 2005-11-15 2007-06-07 Nisshinbo Ind Inc Vacuum heat insulating material and its manufacturing method
JP2007155135A (en) * 2005-04-27 2007-06-21 Nisshinbo Ind Inc Vacuum insulation material and manufacturing method thereof
US7947347B2 (en) 2004-07-20 2011-05-24 Kurashiki Bosek Kabushiki Kaisha Vacuum heat insulator
US8753471B2 (en) 2004-12-07 2014-06-17 Panasonic Corporation Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material
EP3037261A1 (en) 2014-12-25 2016-06-29 Asahi Glass Company, Limited Insulating member and its attaching method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947347B2 (en) 2004-07-20 2011-05-24 Kurashiki Bosek Kabushiki Kaisha Vacuum heat insulator
JP2006077792A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Vacuum insulating material
JP2006118695A (en) * 2004-09-27 2006-05-11 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and heat insulation box using vacuum heat insulating material
JP2006161939A (en) * 2004-12-07 2006-06-22 Kurabo Ind Ltd Vacuum thermal insulating material
US8753471B2 (en) 2004-12-07 2014-06-17 Panasonic Corporation Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material
JP2006183810A (en) * 2004-12-28 2006-07-13 Kurabo Ind Ltd Method of manufacturing vacuum heat insulating material
JP2007155135A (en) * 2005-04-27 2007-06-21 Nisshinbo Ind Inc Vacuum insulation material and manufacturing method thereof
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method
JP4701882B2 (en) * 2005-07-08 2011-06-15 パナソニック株式会社 Vacuum insulation
JP2007138976A (en) * 2005-11-15 2007-06-07 Nisshinbo Ind Inc Vacuum heat insulating material and its manufacturing method
EP3037261A1 (en) 2014-12-25 2016-06-29 Asahi Glass Company, Limited Insulating member and its attaching method
US10603865B2 (en) 2014-12-25 2020-03-31 AGC Inc. Insulating member and its attaching method

Also Published As

Publication number Publication date
JP4419400B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP3559035B2 (en) Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material
KR100750456B1 (en) Vacuum thermal insulation material and device using the same
JP2004239300A (en) Vacuum heat insulating material, method for manufacturing the same, note type personal computer using the vacuum heat insulating material, and printing device
JP2006077792A (en) Vacuum insulating material
JP2006329419A (en) Manufacturing method of vacuum heat insulation material, and vacuum heat insulation material manufactured by the method
JP2008106532A (en) Vacuum heat insulation material
JP2007155135A (en) Vacuum insulation material and manufacturing method thereof
JP2004197954A (en) Vacuum heat insulating material
JPH0886394A (en) Vacuum heat insulation material and its manufacture
JP2006064034A (en) Vacuum heat insulating material, refrigerator, water heater and printer using vacuum heat insulating material
JP3559036B1 (en) Manufacturing method of vacuum insulation material
JP4556746B2 (en) Manufacturing method of vacuum insulation
JP2001295984A (en) Vacuum heat insulator and heat insulating box
JP3482404B2 (en) Vacuum heat insulating material and manufacturing method, and equipment using the vacuum heat insulating material
JP2000104889A (en) Manufacture of vacuum heat insulating material
JP2007182997A (en) Method of manufacturing vacuum heat insulation material
JP2007182998A (en) Manufacturing method of vacuum heat insulation material
CN220763764U (en) Insulating barrier for an electrical energy storage system, battery module comprising same, electrical power system comprising same, and device or vehicle comprising same
TW202346083A (en) Materials, systems, and methods for foil encapsulation of aerogels and aerogel composites
JP2002310554A (en) System and method for producing vacuum thermal insulation material, vacuum thermal insulation material, and thermal insulation box
JP2011208762A (en) Vacuum heat insulating material
JP2004044813A (en) Manufacturing method for vacuum insulating material
JP2011185413A (en) Method for manufacturing vacuum heat insulation material
JP2006242467A (en) Thermal insulation body and method for manufacturing the same
JP6134919B2 (en) Vacuum insulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4419400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees