JP2004238707A - Calcium treatment method of low-aluminum molten steel - Google Patents

Calcium treatment method of low-aluminum molten steel Download PDF

Info

Publication number
JP2004238707A
JP2004238707A JP2003031242A JP2003031242A JP2004238707A JP 2004238707 A JP2004238707 A JP 2004238707A JP 2003031242 A JP2003031242 A JP 2003031242A JP 2003031242 A JP2003031242 A JP 2003031242A JP 2004238707 A JP2004238707 A JP 2004238707A
Authority
JP
Japan
Prior art keywords
molten steel
concentration
yield
cao
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003031242A
Other languages
Japanese (ja)
Other versions
JP3807377B2 (en
Inventor
Mitsuhiro Numata
光裕 沼田
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003031242A priority Critical patent/JP3807377B2/en
Publication of JP2004238707A publication Critical patent/JP2004238707A/en
Application granted granted Critical
Publication of JP3807377B2 publication Critical patent/JP3807377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably controlling Ca yield when subjecting low-Al molten steel to Ca treatment. <P>SOLUTION: In the Ca treatment method for the low-Al molten steel, the molten steel comprising, by mass, ≤0.5% C, 0.1-1.0% Si, 0.1-1.3% Mn and <0.008% sol. Al and the balance being Fe and impurities (wherein impurities include ≤0.004% S) is subjected to Ca treatment. Here, Ca is added to the molten steel so that the mass concentration ratio R äCaO (mass%)/Al<SB>2</SB>O<SB>3</SB>(mass%)} of CaO to Al<SB>2</SB>O<SB>3</SB>in ladle slag and the amount A of Ca added satisfy the relation: A≥-0.11×R+0.24, provided that 0.75<R<1.5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、Ca歩留まりが低く、Ca処理を安定して行うことが困難な低Al溶鋼のCa処理方法に関する。
【0002】
【従来の技術】
溶鋼のCa処理は代表的な溶鋼処理方法の一つで、その目的は、水素誘起割れや溶接性を低下させるMnS介在物やAl介在物などの有害介在物の形態制御、連続鋳造時のノズル閉塞の防止、快削性の向上など、非常に多岐にわたっている。
【0003】
このように、Ca処理の目的は様々であるが、Ca処理において最も重要なことは、Ca歩留まりを安定させることにある。Caの沸点は1440℃で、一般的な溶鋼処理温度1580〜1620℃よりも低い。このため、CaはCa処理中に溶鋼から蒸発し易く、その濃度、すなわちCa歩留まりを管理することが難しい。Ca歩留まりの制御が困難であると、溶鋼中のCa濃度がばらついてしまい、目的とする特性を有する鋼を得ることができない。
【0004】
Ca歩留まりを安定させるために、これまで数多くの技術が提案されている。例えば、特許文献1には、取鍋に収容された溶鋼にCaを添加する際、スラグ中のCaO/SiO(含有量比)を2.5より大きくし、スラグ中のT.FeとMnOの合計含有量を2.0%未満とした後、Caを添加することにより、添加されたCaのスラグとの反応による消耗を防ぎ、Al系介在物の形態制御(低融点化)を再現性よく達成する溶鋼へのCa添加方法が開示されている。
【0005】
特許文献2では、ブルーム・ビレットの連続鋳造において、Al:0.010〜0.050%、S:0.005〜0.050%を含有する溶鋼へCaを添加して〔%Ca〕/〔%Al〕比を0.06〜0.20の範囲に調整し、鋼中介在物の組成を低融点の12CaO−7Al系酸化物の組成に近接させて凝集浮上分離を促進することにより、大型介在物の生成を防止する方法が、また、特許文献3では、Al(0.100%以下)、S(0.150%以下)を含有する溶鋼へCaを添加する際、Ca添加速度をC濃度に応じて制御することにより、CaSの生成を低位に抑制し、Alを低融点の12CaO・7Alに改質し、ノズル詰まりが発生せず、介在物欠陥の少ない小断面鋳片が得られるCa処理方法が提示されている。
【0006】
特許文献4には、S含有量を20ppm以下、Al含有量を0.001〜0.020%に制御した後、Caを70ppm以下添加することにより、CaSクラスター介在物の少ない清浄度の優れたラインパイプ用鋼材の製造方法が開示されている。
【0007】
さらに、特許文献5には、取鍋内溶鋼に、Alを投入して脱酸し、攪拌してスラグ中のFeO+MnOを5%以下とした後、Caを添加することにより、少ないCa添加量で確実に取鍋のノズル詰まりを防止できる方法が開示されている。
【0008】
このように、Al脱酸溶鋼を対象として、Ca処理に関する技術が多数提案されており、溶鋼へのCa歩留まりの向上、それを踏まえての介在物の形態制御などによる操業の改善や鋼の品質の向上が図られてきた。これは、Ca歩留まりの不安定がCaの蒸発し易さのみにあるのではなく、その最大の理由は、CaとO(酸素)の親和力が強いため、溶鋼の脱酸状態(溶鋼の酸素ポテンシャル)が溶鋼内でのCaの反応に強く影響することにあるからである。そのため、従来技術の大部分は、溶鋼の酸素ポテンシャルを安定させるためにAlを添加したAl脱酸鋼を対象としており、Alの含有量は0.01%よりも高いものである。
【0009】
一方、近年、溶接性の向上やコスト削減を目的として、鋼中のAlの濃度を低下させた鋼が望まれるようになった(このような鋼を得ることができる溶鋼を、以下、「低Al溶鋼」という)。これに伴い、低Al溶鋼をCa処理する必要が生じたが、従来のCa処理技術ではAl濃度が一定以上であることが必要であり、低Al溶鋼についてCa処理を安定して行うことは困難である。また、低Al溶鋼では酸素ポテンシャルが高くなるためCa歩留まりが低下することは知られていたが、定量的に把握されてはおらず、低下の原因も定かではなかったためそれに対する技術的解決策を見いだすことができなかった。
【0010】
【特許文献1】
特開昭63−7318号公報
【特許文献2】
特開平1−299742号公報
【特許文献3】
特開平3−183721号公報
【特許文献4】
特開昭57−9822号公報
【特許文献5】
特開昭64−75621号公報
【0011】
【発明が解決しようとする課題】
本発明は、前述した状況に鑑みなされたもので、その目的は、低Al溶鋼をCa処理するに際し、Ca歩留まりを安定して制御する方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成するために、本発明者らは、従来、定量的に把握されていなかった溶鋼中のAl濃度とCa歩留まりの関係を調査した。なお、以下において、溶鋼およびスラグの化学成分の濃度(含有量)の「%」は、「質量%」を意味する。
【0013】
先ず、マグネシア(MgO)坩堝内で、Si:0.1〜0.7%、Mn:0.5〜1.3%、S:0.0004〜0.0025%およびC:0.002%未満で、残部がFeである鋼15kgをAr雰囲気下で溶解し、溶鋼温度を1600℃とした後、この溶鋼に金属Alを添加し、溶鋼中Al濃度を0.0001〜0.08%の範囲に調整した。続いて、溶鋼に金属Caを添加し、溶鋼中のCa濃度を測定して、Ca歩留まりを求めた。なお、「Ca歩留まり」は、下記(2)式で定義した。
【0014】
【数1】

Figure 2004238707
【0015】
結果を図1に示す。前記成分範囲の鋼では、Al以外の成分がCa歩留まりに与える影響は顕著ではなかった。
【0016】
この図から明らかなように、Al濃度が0.008%以上では、Ca歩留まりはほぼ一定しており、Ca歩留まりに与えるAlの影響は大きくないが、Al濃度が0.008%未満ではCa歩留まりが低下するとともに、ばらつきが大きくなる。そこで、Al濃度が0.008%未満の溶鋼を対象として、以下の検討を行った。
【0017】
前記のように、Al濃度が低下するとCa歩留まりが低下するのは、次に述べる理由によるものと推察される。すなわち、Al濃度が低くなると、溶鋼の溶存酸素濃度が上昇して酸素活量が増加し、添加されたCaはこの酸素と下記(3)式に従い反応する。
Ca+O→CaO ・・・(3)
この反応の平衡状態におけるCaの活量を平衡Ca活量[Ca]とすると、[Ca]は、平衡定数K、酸素活量[O]を用いて、下記(4)式で表すことができる。
[Ca]=(1/K)・(CaO/[O]) ・・・(4)
この(4)式において、Al濃度の低下に伴い酸素活量[O]が増加すると、CaOの活量は一定とみなせるから、平衡Ca活量[Ca]が低下し、Caの蒸発速度が速くなるためCa歩留まりが低下することになる。
【0018】
したがって、低Al溶鋼でCa歩留まりを制御するには、酸素濃度(活量)とCa濃度(活量)の関係を把握することが重要である。しかし、低Al溶鋼で酸素濃度を制御するのは容易ではない。そこで、溶鋼にフラックスを添加してスラグを形成させ、「スラグ−メタル間反応」で酸素濃度を制御する方法について検討することとし、スラグ組成とCa歩留まりの関係を調査した。スラグ−メタル間反応で酸素濃度を推算することは熱力学的に可能であるが、このスラグ組成とCa歩留まりの関係を熱力学的推算により求めることは難しいからである。
【0019】
スラグ組成とCa歩留まりの関係の調査では、先ず、マグネシア坩堝内で、Si:0.1〜0.7%、Mn:0.5〜1.3%、S:0.0004〜0.0025%およびC:0.002%未満で、残部がFeである鋼15kgをAr雰囲気下で溶解し、溶鋼温度を1600℃に調整した。次いで、溶鋼のAl濃度を0.002〜0.007%の範囲に調整した後、この溶鋼にCaOとAlの質量比(CaO/Al)が0.75〜1.5で、SiO濃度が28%以下のフラックスを300g添加した。その後、Caを0.05〜0.3kg/tの範囲で添加した。
【0020】
Ca添加後、溶鋼サンプルとスラグサンプルをそれぞれ採取し、スラグ組成と溶鋼のCa濃度を定量し、前記(2)式により「Ca歩留まり」を求めた。
【0021】
この調査で得られた、スラグ中のCaO/Al質量比とCa歩留まりの関係を図2に示す。なお、スラグのSiO濃度が28%以下の範囲では、前記CaO/Al質量比とCa歩留まりの関係に及ぼすSiO濃度の影響は小さかった。
【0022】
図2に示した結果から、CaO/Al質量比の低下に伴いCa歩留まりが低下することが解る。CaO/Al質量比が低下すると、アルミナの活量が増加するため、酸素濃度が上昇(酸素活量が増加)し、その結果、前記(4)式で示したように、平衡Ca活量[Ca]が低下し、Ca歩留まりが低下する、と考えられ、先の推察と一致する。
【0023】
また、図2には、枠外にCa添加量をパラメータとして示したが、Ca添加量が0.17kg/t以上(図中の□印、△印および○印)であれば、Ca歩留まりのCaO/Al質量比に対する依存性は同一で、Ca歩留まりとCaO/Al質量比とが一定の比率(勾配)で変化していることが解る。すなわち、Ca添加量が0.17kg/t以上であれば、CaO/Al質量比に対して、一義的にCa歩留まりが求まる。
【0024】
しかし、Ca添加量が0.17kg/t未満では、Ca歩留まりのCaO/Al質量比に対する依存性がCa添加量によって変化し、例えば、Ca添加量が0.14kg/tでは、CaO/Al質量比>1.0の範囲ではCa添加量が0.3kg/t以上の場合と同一の依存性を示すが、CaO/Al質量比が1.0より小さくなるとCa歩留まりが急速に低下する。さらに、Ca添加量が0.1kg/tでは、CaO/Al質量比>1.3の範囲でのみ同一の依存性を示す。これは、スラグによって溶鋼の酸素濃度を低下させても、Ca添加量が少なすぎると、Ca脱酸が進行しないためと考えられる。すなわち、CaO/Al質量比が高ければ、溶鋼の酸素濃度(活量)が低いためCa添加量が0.1kg/tでもCa脱酸が進行するが、CaO/Al質量比が1.0より小さくなると、Ca添加量が0.14kg/tでも不足することになる。
【0025】
このことから、あるCaO/Al質量比で安定したCa歩留まりを得るには、ある最低限のCa添加量が存在するということができ、その量は図2から容易に求めることができる。例えば、CaOを大量に添加し、CaO/Al質量比=1.5でCa添加を行う場合、Ca添加量が0.1kg/t以上であれば安定したCa歩留まりが得られる。一方、スラグ量を低減するために、CaO/Al質量比=1.0で操業する場合は、Ca添加量は0.14kg/t以上必要であり、それ未満ではCa歩留まりは不安定になる。
【0026】
以上の結果をまとめると、Al濃度が0.008%未満の溶鋼では、下記▲1▼および▲2▼のとおりである。
▲1▼Ca歩留まりはCaO/Al質量比に依存し、CaO/Al質量比の低下に伴いCa歩留まりが低下する(つまり、不安定になる)。
▲2▼Ca添加量が、CaO/Al質量比によって決まるある一定値よりも低くなると、Ca歩留まりが急激に低下する(つまり、不安定になる)。
【0027】
そこで、前記のCaO/Al質量比によって決まるCa添加量の“ある一定値”をより正確に把握するために、前述のスラグ組成とCa歩留まりの関係の調査をさらに継続して実施した。
【0028】
この調査で得られた、スラグ中のCaO/Al質量比とCa添加量の関係を図3に示す。図3における○印は、Ca歩留まりとCaO/Al質量比とが、Ca添加量によらず、一定の比率(勾配)で変化した場合(前記図2に示した□印、△印および○印の場合)を、●印は、前記一定の比率(勾配)から外れてCa歩留まりが低下(不安定化)した場合を示す。同図中に示した境界線Bが、それぞれのCaO/Al質量比における安定したCa歩留まりが得られる最低のCa添加量を示し、この境界線Bより下のCa添加量が少ない領域ではCa歩留まりが不安定になる。この境界線Bは下記(5)式で表される。
【0029】
y=−0.11x+0.24 ・・・(5)
(5)式において、縦軸のCa添加量をA、「CaO/Al質量比」と、「CaOとAlの質量濃度比〔CaO(質量%)/Al(質量%)〕」とは同じであるから、横軸のCaO/Al質量比を〔CaO(質量%)/Al(質量%)〕に置き換え、Rとすると、前記(5)式は下記(6)式に書き換えることができる。
A=−0.11×R+0.24 ・・・(6)
なお、(6)式において、Rの範囲は、0.75<R<1.5である。Rが0.75以下の場合は、Al飽和なので、(6)式にR=0.75を代入して求められるCa添加量Aを、安定したCa歩留まりが得られる最低のCa添加量として適用すればよい。また、Rが1.5以上の場合は、CaO飽和なので、(6)式にR=1.5を代入して求められるCa添加量Aを、同様に適用すればよい。
【0030】
本発明は、以上述べた検討結果に基づきなされたもので、その要旨は、下記の低Al溶鋼のCa処理方法にある。
【0031】
『C:0.5%以下、Si:0.1〜1.0%、Mn:0.1〜1.3%およびsol.Al:0.008%未満を含有し、残部がFeおよび不純物からなり、不純物中のSが0.004%以下である溶鋼をCa処理するに際し、取鍋スラグ中のCaOとAlの質量濃度比〔CaO(質量%)/Al(質量%)〕RとCa添加量Aが下記(1)式
A≧−0.11×R+0.24 ・・・(1)
ただし、0.75<R<1.5
を満足するように、前記溶鋼にCaを添加する低Al溶鋼のCa処理方法。』
ところで、スラグのCaO/Al質量比とCa添加量とによっては、スラグから溶鋼にAlが供給(Al pick up)され、溶鋼中Al濃度が上昇する。Al濃度を厳格に管理する必要がない場合は、Ca添加量Aは、前記(1)式のみを満足する量であればよい。しかし、溶鋼中Al濃度を厳格に管理する場合は、Al濃度の上限を抑えることが望ましい。
【0032】
図4は、前述した一連の調査に関連して得られた結果で、Ca添加量と溶鋼中Al濃度の上昇量の関係を示す図である。なお、同図の枠外に示した「C/A」は、スラグのCaO/Al質量比を表す。このような調査結果から、溶鋼中Al濃度の上昇が認められない条件を求め、整理した結果が、前記図3に示した境界線A(A=−0.11×R+0.39)である。この境界線Aよりも上、すなわちCa添加量が多い場合は、溶鋼中Al濃度が上昇するので、Al濃度の上昇を抑制する必要がある場合は、下記(7)式を満たすようにCaを添加すればよい。
A<−0.11×R+0.39 ・・・(7)
【0033】
【発明の実施の形態】
以下、本発明の低Al溶鋼のCa処理方法について、詳細に説明する。
【0034】
はじめに、本発明のCa処理方法において、溶鋼の化学組成を前記のように定めた理由を説明する。
【0035】
C:0.5%以下
CはCaの活量を低下させるので、C濃度が高いと、Caと介在物、CaとO(酸素)、CaとSなどとの間の反応の速度が変化する。また、一方で、CはSの活量を高くするので、C濃度が著しく高い場合は、CaSの生成が容易になる。したがって、本発明の方法で処理の対象とする溶鋼のC濃度は、0.5%以下とする。
【0036】
Si:0.1〜1.0%
Siは脱酸力を有する元素である。そのため、Si濃度が0.1%未満になると、溶鋼のO(酸素)濃度が100ppmと高くなり、製品清浄度が悪化する。一方、Si濃度が1.0%を超えて高くなると、Sの活量を高め、Ca−S間の反応に影響する。したがって、溶鋼のSi濃度は、0.1〜1.0%とする。
【0037】
Mn:0.1〜1.3%
Mnは弱脱酸元素であるが、その濃度が0.1%未満になると、溶鋼の脱酸が著しく不足する。一方、Mn濃度が0.1%以上であると、脱酸性に大きな影響はないが、Mn濃度が高いとコスト高になる。したがって、上限を1.3%とし、溶鋼のMn濃度は、0.1〜1.3%とする。
【0038】
sol.Al:0.008%未満
先に述べたように、Al濃度が0.008%以上では、Ca歩留まりはほぼ一定しており、Ca歩留まりに与えるAlの影響は大きくはない(前記の図1参照)。したがって、溶鋼のAl濃度(sol.Alとして定量される)は、0.008%未満とする。
【0039】
本発明の方法で処理の対象とする溶鋼は、前記の成分以外、残部がFeおよび不純物からなる溶鋼である。不純物としては、Sの上限を抑えることが必要である。
【0040】
S:0.004%以下
SはCaと親和性が強く、CaS化合物等を生成させる。S濃度が高いと、生成するCaSにより鋼の清浄度が著しく悪化するので、溶鋼のS濃度は、0.004%以下とする。
【0041】
本発明のCa処理方法は、前記化学組成の低Al溶鋼に対して、前記の(1)式を満足するように、Caを添加する方法である。この(1)式と前記の(6)式とを比較すると明らかなように、(1)式が等号をとる場合、(1)式は前記図3の境界線Bを表しており、したがって、「(1)式を満足する」ということは、図3における境界線Bを含めてそれより上であること、すなわち、Ca添加量を境界線Bが示す値以上とすることを意味している。
【0042】
(1)式において、Rの範囲が定められているが、これは、(1)式が前記Rの範囲(0.75<R<1.5)で成り立つことを示すものである。先に述べたように、Rが0.75以下の場合、またはRが1.5以上の場合は、CaOとAlの質量濃度比〔CaO(質量%)/Al(質量%)〕(以下、単に「CaO/Al質量濃度比」と記す)によりCa添加量を変化させる必要はないので、(1)式において、R=0.75、またはR=1.5を代入して求められるCa添加量Aを、それぞれ、Rが0.75以下、またはRが1.5以上の範囲において、安定したCa歩留まりが得られる最低のCa添加量として適用すればよい。
【0043】
Caの添加は溶鋼が取鍋内に収容されている間に行うので、(1)式からCa添加量を求めるに際し、(1)式のRには、取鍋内のスラグについて求めたCaO/Al質量濃度比Rを適用する。
【0044】
このCa処理方法によれば、Ca歩留まりが低く、安定したCa処理の実施が困難な低Al溶鋼に対し、高いCa歩留まりで安定した処理を行うことができる。
【0045】
次に、本発明のCa処理方法を、転炉を用い、循環脱ガス(RH)法およびガス吹き込み精錬を行って低Al溶鋼を溶製する際に実施する場合を例にとって説明する。
【0046】
溶鋼を、転炉脱炭処理した後、取鍋に出鋼する。続いて、溶鋼を収容した取鍋をRH装置内に移動してRH処理を行い、溶鋼の成分および温度を調整する。
【0047】
RH処理の前または後にガス吹き込み精錬を実施してもよい。また、溶鋼の成分および温度の調整は、ガス吹き込み精錬で行ってもよいし、RH処理およびガス吹き込み精錬の両方で分担して実施してもよい。いずれにせよ、Ca添加を行う前までに実施して、溶鋼の成分を前記規定の範囲内に入るように制御する。
【0048】
スラグ組成の制御は、転炉からの出鋼時、RH処理中、またはガス吹き込み精錬時に、フラックスを添加することにより行う。
【0049】
CaO/Al質量濃度比の制御は、Al脱酸による生成アルミナ量、転炉から取鍋への流出スラグ量、および溶鋼の温度上昇処理によるアルミナ生成量を勘案し、それに応じてCaOまたはCaO含有物質の添加量を調整することにより制御する。スラグ組成の制御は、Ca添加前に完了していることが望ましい。Ca添加後にCaO/Al質量濃度比を大きく変化させると、再びCa蒸発速度が変化するからである。なお、スラグを均一組成とし、かつ、スラグ−メタル間反応を十分に促進させておくために、Ca添加前にガス吹き込み精錬を行うことが望ましい。
【0050】
スラグ中の低級酸化物(T.Fe+MnO)の濃度は10%以下であることが望ましい。スラグ中の低級酸化物濃度が10%を超えて高いと、Caと低級酸化物が反応してしまい、Ca歩留まりが悪化する。
【0051】
スラグ量は10kg/t以上であることが望ましい。10kg/tに満たないと、スラグ量が少なく、溶鋼表面の被覆が不十分となって、スラグ−メタル間反応が停滞する場合がある。
【0052】
溶鋼成分の調整、およびスラグの組成や量の制御が完了した後、溶鋼に前記の(1)式を満足するようにCaを添加する。溶鋼のAl濃度の上昇を回避したい場合には、前記の(7)も同時に満足させることが望ましい。
【0053】
前記添加するCaとしては、金属Caの他、CaSi、FeCaなどのCa合金を使用してもよい。また、Caの添加方法は、これらCaまたは前記Ca合金からなるCa系粉末をキャリアガスとともに吹き込む「Ca吹き込み」、Ca系ワイヤを溶鋼中に送り込む「ワイヤ添加」など、従来使用されている如何なる方法でもよい。また、Ca添加中に不活性ガス吹き込みを同時に行うと、スラグ−メタル間反応が促進されるので、Ca歩留まりがより安定する。
【0054】
このように、溶鋼の温度、成分調整、スラグの組成や量の調整およびCa添加を行って得られた低Al溶鋼は、連続鋳造他に供することができる。
【0055】
【実施例】
(実施例1)
C:0.045〜0.06%、Si:0.3〜0.5%、Mn:0.7%およびS:0.0025%を含有する溶鋼1.5tを、1.333×10Pa(100Torr)のAr雰囲気中で溶製し、Al濃度を0.001〜0.004%に調整した。続いて、雰囲気をAr1.013×10Pa(760Torr)、溶鋼温度を1600℃とし、5分間保持した。その後、溶鋼にCaSi(Ca純分:35%)を添加した。なお、CaSiの添加は、ホッパーから一括添加することにより行った。
【0056】
続いて、溶鋼およびスラグのサンプルを採取し、溶鋼組成およびスラグ組成を分析した。スラグ中のCaO/Al質量濃度比の制御は、CaO−AlフラックスにおけるCaOとAlの配合割合を変更ことにより行った。
【0057】
表1に、溶鋼中のAl濃度、スラグ組成(CaO/Al質量濃度比およびSiO濃度)ならびにCaの添加量と歩留まりを示す。表1において(表2においても同じ)、「スラグ中CaO/Al比」はCaO/Al質量濃度比を表す。また、「(1)式右辺から求められるCa添加量」とは、(1)式が等号をとる場合で、安定したCa歩留まりが得られる最低のCa添加量を示し、「(7)式右辺から求められるCa添加量」とは、溶鋼のAl濃度の上昇が認められない最高のCa添加量を示す。なお、Ca歩留まりは、前記の(2)式から計算により求めた。
【0058】
【表1】
Figure 2004238707
【0059】
表1に示した結果から、Ca添加量が(1)式を満足する試験No.1〜12(実施例)では、安定したCa歩留まりが得られていることが解る。また、そのうちの試験No.1〜10は(1)式および(7)式を同時に満足する場合であるが、この場合は、溶鋼のAl濃度の上昇も抑制された。
【0060】
一方、Ca添加量が(1)式から外れる試験No.13〜20(比較例)ではCa歩留まりは0.7〜1.3%と低く、しかも、ばらつきが大きかった。
【0061】
以上の結果から、(1)式を満足するようにCaを添加すれば、スラグ中のCaO/Al質量濃度比の値如何にかかわらず、安定したCa歩留まりを確保することが可能であり、また、同時に(7)式をも満たすものであれば、溶鋼のAl濃度の上昇も抑制することができる。
【0062】
(実施例2)
転炉で精錬した溶鋼250tを取鍋へ出鋼し、この取鍋をRH装置内へ移動した。RH処理を行い、溶鋼の成分を、C:0.04〜0.063%、Si:0.2〜0.4%、Mn:0.5〜0.8%およびS:0.0018〜0.0022%に、また、溶鋼温度を、1600〜1610℃に調整した後、取鍋をRH装置外へ移動し、CaSiをワイヤ添加した。CaSiのCa純分は30%である。また、CaSiの添加速度は、Ca純分に換算して0.042kg/(t・min)であった。スラグ中のCaO/Al質量濃度比の制御は、転炉出鋼時にCaO、Alフラックスを添加することにより行った。なお、スラグ量は13〜21kg/tであった。
【0063】
表2に、溶鋼中のAl濃度、スラグ組成(CaO/Al質量濃度比、SiO濃度および「T.Fe+MnO」濃度)ならびにCaの添加量と歩留まりを示す。なお、Ca歩留まりは、前記の(2)式から計算により求めた。
【0064】
【表2】
Figure 2004238707
【0065】
本実施例2では、溶鋼250tで、反応系が大きく、実施例1の場合よりも見かけの反応速度がやや低下するため、Ca歩留まりが表2に示すように高くなった。
【0066】
しかし、表2に示した結果から、Ca添加量が(1)式を満足する試験No.21〜27(実施例)では、(1)式から外れる試験No.28〜34(比較例)に比べて、安定して高いCa歩留まりが得られることが解る。試験No.21〜26は(1)式および(7)式を同時に満足する場合であるが、この場合は、溶鋼のAl濃度の上昇も抑制された。
【0067】
また、スラグ中低級酸化物(T.Fe+MnO)濃度が低い方が高いCa歩留まりが得られたが、Ca添加量が(1)式を満足する場合は、T.Fe+MnO濃度が高くても、高いCa歩留まりが得られた。
【0068】
【発明の効果】
本発明の低Al溶鋼のCa処理方法によれば、Ca歩留まりが低く、Ca処理を安定して行うことが困難な低Al溶鋼をCa処理するに際し、Ca歩留まりを安定して制御することができる。
【図面の簡単な説明】
【図1】溶鋼中Al濃度とCa歩留まりの関係を示す図である。
【図2】スラグ中のCaO/Al質量比とCa歩留まりの関係を示す図である。
【図3】スラグ中のCaO/Al質量比とCa添加量の関係を示す図である。
【図4】Ca添加量と溶鋼中Al濃度の上昇量の関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Ca treatment method for low Al molten steel, which has a low Ca yield and makes it difficult to perform Ca treatment stably.
[0002]
[Prior art]
The Ca treatment of molten steel is one of the typical methods of treating molten steel, and its purpose is to reduce hydrogen-induced cracking and MnS inclusions or Al that reduce weldability. 2 O 3 It is very diverse, such as controlling the form of harmful inclusions such as inclusions, preventing nozzle blockage during continuous casting, and improving free-cutting.
[0003]
Thus, although the purpose of the Ca treatment is various, the most important thing in the Ca treatment is to stabilize the Ca yield. The boiling point of Ca is 1440C, which is lower than the general molten steel processing temperature of 1580 to 1620C. For this reason, Ca easily evaporates from the molten steel during the Ca treatment, and it is difficult to control its concentration, that is, the Ca yield. If the Ca yield is difficult to control, the Ca concentration in the molten steel will vary, making it impossible to obtain steel having the desired properties.
[0004]
Many techniques have been proposed to stabilize the Ca yield. For example, in Patent Document 1, when adding Ca to molten steel stored in a ladle, CaO / SiO in slag is added. 2 (Content ratio) is set to be larger than 2.5, and T.C. After reducing the total content of Fe and MnO to less than 2.0%, Ca is added to prevent the added Ca from reacting with the slag to prevent Al from being consumed. 2 O 3 A method of adding Ca to molten steel that achieves reproducible morphological control (low melting point) of system inclusions is disclosed.
[0005]
In Patent Document 2, in continuous casting of a bloom billet, Ca is added to molten steel containing Al: 0.010 to 0.050% and S: 0.005 to 0.050% to obtain [% Ca] / [ % Al] ratio within the range of 0.06 to 0.20, and the composition of inclusions in the steel is changed to low melting point 12CaO-7Al. 2 O 3 Patent Document 3 discloses a method for preventing the formation of large inclusions by promoting coagulation flotation by bringing the composition close to the composition of the system oxide, and in Patent Document 3, Al (0.100% or less), S (0.150%). %) Is added to molten steel containing Ca, by controlling the rate of addition of Ca in accordance with the C concentration, thereby suppressing the generation of CaS to a low level and increasing the Al content. 2 O 3 To low melting point 12CaO · 7Al 2 O 3 A Ca treatment method has been proposed in which a small-section slab having a small cross-section and having few inclusion defects is obtained without causing nozzle clogging.
[0006]
Patent Document 4 discloses that, after controlling the S content to 20 ppm or less and the Al content to 0.001 to 0.020%, by adding 70 ppm or less of Ca, CaS cluster inclusions are reduced and the cleanliness is excellent. A method for producing a steel material for a line pipe is disclosed.
[0007]
Further, in Patent Document 5, Al is put into molten steel in a ladle, deoxidized, stirred to reduce FeO + MnO in the slag to 5% or less, and then Ca is added, so that a small amount of Ca is added. A method is disclosed that can reliably prevent nozzle clogging of a ladle.
[0008]
As described above, a large number of techniques relating to Ca treatment have been proposed for Al deoxidized molten steel. Improvement of the yield of Ca to molten steel, improvement of operations by controlling the form of inclusions based on the improvement, and quality of steel have been proposed. Has been improved. This is because the unstable Ca yield is not only due to the easiness of evaporation of Ca, but the biggest reason is that the strong affinity between Ca and O (oxygen) causes the deoxidation state of molten steel (the oxygen potential of molten steel). ) Strongly influences the reaction of Ca in the molten steel. Therefore, most of the prior art is directed to Al deoxidized steel to which Al is added to stabilize the oxygen potential of molten steel, and the content of Al is higher than 0.01%.
[0009]
On the other hand, in recent years, for the purpose of improving weldability and reducing costs, a steel in which the concentration of Al in the steel has been reduced has been desired. Al molten steel ”). Along with this, it became necessary to perform Ca treatment on the low Al molten steel, but the conventional Ca treatment technology requires that the Al concentration be equal to or higher than a certain value, and it is difficult to stably perform the Ca treatment on the low Al molten steel. It is. Further, it was known that the Ca yield decreased due to the high oxygen potential in low Al molten steel, but it was not quantitatively grasped and the cause of the decrease was not clear, so a technical solution for it was found. I couldn't do that.
[0010]
[Patent Document 1]
JP-A-63-7318
[Patent Document 2]
JP-A-1-299742
[Patent Document 3]
JP-A-3-183721
[Patent Document 4]
JP-A-57-9822
[Patent Document 5]
JP-A-64-75621
[0011]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for stably controlling a Ca yield when performing Ca treatment on low Al molten steel.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have investigated the relationship between the Al concentration in molten steel and the Ca yield, which has not been quantified conventionally. In the following, “%” of the concentration (content) of the chemical components of molten steel and slag means “% by mass”.
[0013]
First, in a magnesia (MgO) crucible, Si: 0.1 to 0.7%, Mn: 0.5 to 1.3%, S: 0.0004 to 0.0025%, and C: less than 0.002% Then, 15 kg of steel whose balance is Fe is melted in an Ar atmosphere, and the molten steel temperature is set to 1600 ° C., and then metal Al is added to the molten steel, and the Al concentration in the molten steel ranges from 0.0001 to 0.08%. Was adjusted to Subsequently, metallic Ca was added to the molten steel, and the Ca concentration in the molten steel was measured to determine the Ca yield. The “Ca yield” was defined by the following equation (2).
[0014]
(Equation 1)
Figure 2004238707
[0015]
The results are shown in FIG. In the steels in the above component ranges, components other than Al did not significantly affect the Ca yield.
[0016]
As is clear from this figure, when the Al concentration is 0.008% or more, the Ca yield is almost constant, and the effect of Al on the Ca yield is not significant. However, when the Al concentration is less than 0.008%, the Ca yield is low. And the variation increases. Therefore, the following study was conducted on molten steel having an Al concentration of less than 0.008%.
[0017]
As described above, the reason why the Ca yield decreases when the Al concentration decreases is presumed to be as follows. That is, when the Al concentration decreases, the dissolved oxygen concentration of the molten steel increases, the oxygen activity increases, and the added Ca reacts with this oxygen according to the following equation (3).
Ca + O → CaO (3)
The activity of Ca in the equilibrium state of this reaction is represented by the equilibrium Ca activity [Ca]. e Then, [Ca] e Can be expressed by the following equation (4) using the equilibrium constant K and the oxygen activity [O].
[Ca] e = (1 / K) · (CaO / [O]) (4)
In the equation (4), when the oxygen activity [O] increases with a decrease in the Al concentration, the activity of CaO can be considered to be constant, so the equilibrium Ca activity [Ca] e Is reduced, and the Ca evaporation rate is increased, so that the Ca yield is reduced.
[0018]
Therefore, in order to control the Ca yield with low Al molten steel, it is important to understand the relationship between the oxygen concentration (activity) and the Ca concentration (activity). However, it is not easy to control the oxygen concentration with low Al molten steel. Therefore, a method of controlling the oxygen concentration by "slag-metal reaction" by adding a flux to molten steel to form slag was examined, and the relationship between slag composition and Ca yield was investigated. This is because it is thermodynamically possible to estimate the oxygen concentration by the slag-metal reaction, but it is difficult to obtain the relationship between the slag composition and the Ca yield by thermodynamic estimation.
[0019]
In the investigation of the relationship between slag composition and Ca yield, first, in a magnesia crucible, Si: 0.1 to 0.7%, Mn: 0.5 to 1.3%, S: 0.0004 to 0.0025% And C: 15 kg of steel having less than 0.002% and the balance being Fe was melted in an Ar atmosphere, and the temperature of the molten steel was adjusted to 1600 ° C. Next, after adjusting the Al concentration of the molten steel to a range of 0.002 to 0.007%, CaO and Al were added to the molten steel. 2 O 3 Mass ratio (CaO / Al 2 O 3 ) Is 0.75 to 1.5 and SiO 2 300 g of a flux having a concentration of 28% or less was added. Thereafter, Ca was added in the range of 0.05 to 0.3 kg / t.
[0020]
After the addition of Ca, a molten steel sample and a slag sample were respectively collected, the slag composition and the Ca concentration of the molten steel were quantified, and the “Ca yield” was determined by the above equation (2).
[0021]
CaO / Al in slag obtained by this survey 2 O 3 FIG. 2 shows the relationship between the mass ratio and the Ca yield. The slag SiO 2 When the concentration is 28% or less, the CaO / Al 2 O 3 Effect of SiO on the relationship between mass ratio and Ca yield 2 The effect of concentration was small.
[0022]
From the results shown in FIG. 2 O 3 It can be seen that the Ca yield decreases as the mass ratio decreases. CaO / Al 2 O 3 When the mass ratio decreases, the activity of alumina increases, so that the oxygen concentration increases (the oxygen activity increases). As a result, as shown in the above equation (4), the equilibrium Ca activity [Ca] e Is considered to decrease, and the Ca yield decreases, which is consistent with the above assumption.
[0023]
Further, FIG. 2 shows the amount of added Ca as a parameter outside the frame, but if the amount of added Ca is 0.17 kg / t or more (indicated by □, Δ and ○ in FIG. 2), the CaO yield of CaO / Al 2 O 3 Dependence on the mass ratio is the same, Ca yield and CaO / Al 2 O 3 It can be seen that the mass ratio changes at a constant ratio (gradient). That is, if the Ca addition amount is 0.17 kg / t or more, CaO / Al 2 O 3 The Ca yield is uniquely determined with respect to the mass ratio.
[0024]
However, if the amount of Ca added is less than 0.17 kg / t, the CaO / Al 2 O 3 The dependency on the mass ratio changes depending on the amount of Ca added. For example, when the amount of Ca added is 0.14 kg / t, CaO / Al 2 O 3 When the mass ratio is in the range of> 1.0, the same dependence is exhibited as in the case where the amount of Ca added is 0.3 kg / t or more, but CaO / Al 2 O 3 When the mass ratio is less than 1.0, the Ca yield decreases rapidly. Furthermore, when the amount of Ca added is 0.1 kg / t, CaO / Al 2 O 3 The same dependence is shown only in the range of mass ratio> 1.3. This is presumably because even if the oxygen concentration of the molten steel is reduced by the slag, if the amount of Ca added is too small, Ca deoxidation does not proceed. That is, CaO / Al 2 O 3 If the mass ratio is high, the oxygen concentration (activity) of the molten steel is low, so even if the Ca addition amount is 0.1 kg / t, Ca deoxidation proceeds, but CaO / Al 2 O 3 If the mass ratio is less than 1.0, the Ca addition amount will be insufficient even at 0.14 kg / t.
[0025]
From this, a certain CaO / Al 2 O 3 In order to obtain a stable Ca yield by mass ratio, it can be said that a certain minimum amount of Ca is present, and the amount can be easily obtained from FIG. For example, a large amount of CaO is added and CaO / Al 2 O 3 When Ca is added at a mass ratio of 1.5, a stable Ca yield can be obtained if the Ca addition amount is 0.1 kg / t or more. On the other hand, in order to reduce the amount of slag, CaO / Al 2 O 3 When operating at a mass ratio of 1.0, the amount of Ca added must be 0.14 kg / t or more, and if it is less than that, the Ca yield becomes unstable.
[0026]
The above results are summarized as follows in (1) and (2) in molten steel having an Al concentration of less than 0.008%.
(1) Ca yield is CaO / Al 2 O 3 Depending on the mass ratio, CaO / Al 2 O 3 As the mass ratio decreases, the Ca yield decreases (that is, becomes unstable).
(2) Ca added amount is CaO / Al 2 O 3 If it becomes lower than a certain value determined by the mass ratio, the Ca yield sharply decreases (that is, becomes unstable).
[0027]
Therefore, the above CaO / Al 2 O 3 In order to more accurately grasp the “certain value” of the Ca addition amount determined by the mass ratio, the above-described investigation of the relationship between the slag composition and the Ca yield was further continued.
[0028]
CaO / Al in slag obtained by this survey 2 O 3 FIG. 3 shows the relationship between the mass ratio and the amount of Ca added. The circles in FIG. 3 indicate the Ca yield and CaO / Al 2 O 3 When the mass ratio changes at a constant ratio (gradient) irrespective of the amount of Ca added (in the case of □, Δ and ○ shown in FIG. 2), the mark ● indicates the constant ratio. (Gradient) and the case where the Ca yield is lowered (stabilized). The boundary line B shown in FIG. 2 O 3 This indicates the lowest Ca addition amount at which a stable Ca yield at a mass ratio can be obtained. In a region below the boundary line B where the Ca addition amount is small, the Ca yield becomes unstable. This boundary line B is expressed by the following equation (5).
[0029]
y = −0.11x + 0.24 (5)
In the formula (5), the Ca addition amount on the vertical axis is A, and “CaO / Al 2 O 3 Mass ratio "and" CaO and Al 2 O 3 Mass concentration ratio [CaO (mass%) / Al 2 O 3 (% By mass)]], the CaO / Al on the horizontal axis 2 O 3 The mass ratio is [CaO (mass%) / Al 2 O 3 (% By mass)] and R as the above, the above equation (5) can be rewritten as the following equation (6).
A = −0.11 × R + 0.24 (6)
In the equation (6), the range of R is 0.75 <R <1.5. When R is 0.75 or less, Al 2 O 3 Since it is saturated, the Ca addition amount A obtained by substituting R = 0.75 into the equation (6) may be applied as the minimum Ca addition amount at which a stable Ca yield can be obtained. When R is 1.5 or more, CaO is saturated. Therefore, the Ca addition amount A obtained by substituting R = 1.5 into the equation (6) may be similarly applied.
[0030]
The present invention has been made based on the above-described examination results, and the gist lies in the following Ca treatment method for low Al molten steel.
[0031]
"C: 0.5% or less, Si: 0.1 to 1.0%, Mn: 0.1 to 1.3%, and sol. Al: CaO and Al in ladle slag when performing Ca treatment on molten steel containing less than 0.008%, the balance being Fe and impurities, and S in the impurities being 0.004% or less. 2 O 3 Mass concentration ratio [CaO (mass%) / Al 2 O 3 (% By mass)] When R and the amount A of Ca added are the following formula (1)
A ≧ −0.11 × R + 0.24 (1)
However, 0.75 <R <1.5
A Ca treatment method for low Al molten steel, wherein Ca is added to the molten steel so as to satisfy the following. 』
By the way, the slag CaO / Al 2 O 3 Depending on the mass ratio and the amount of Ca added, Al is supplied from the slag to the molten steel (Al pick up), and the Al concentration in the molten steel increases. When it is not necessary to strictly control the Al concentration, the Ca addition amount A may be an amount that satisfies only the expression (1). However, when strictly controlling the Al concentration in the molten steel, it is desirable to suppress the upper limit of the Al concentration.
[0032]
FIG. 4 is a graph showing the relationship between the amount of Ca added and the amount of increase in the Al concentration in molten steel, as a result obtained in connection with the above-described series of investigations. Note that “C / A” shown outside the frame of FIG. 2 O 3 Represents the mass ratio. From the results of such investigations, conditions under which an increase in the Al concentration in the molten steel was not found were determined, and the result of arrangement was the boundary line A (A = −0.11 × R + 0.39) shown in FIG. Above this boundary line A, that is, when the amount of Ca added is large, the Al concentration in the molten steel increases. Therefore, when it is necessary to suppress the increase in the Al concentration, Ca is added so as to satisfy the following equation (7). What is necessary is just to add.
A <−0.11 × R + 0.39 (7)
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the Ca treatment method of the low Al molten steel of the present invention will be described in detail.
[0034]
First, the reason why the chemical composition of molten steel is determined as described above in the Ca treatment method of the present invention will be described.
[0035]
C: 0.5% or less
Since C reduces the activity of Ca, when the C concentration is high, the rate of the reaction between Ca and inclusions, Ca and O (oxygen), Ca and S, and the like changes. On the other hand, C increases the activity of S, and therefore, when the C concentration is extremely high, generation of CaS becomes easy. Therefore, the C concentration of the molten steel to be treated by the method of the present invention is set to 0.5% or less.
[0036]
Si: 0.1 to 1.0%
Si is an element having deoxidizing power. Therefore, when the Si concentration is less than 0.1%, the O (oxygen) concentration of the molten steel becomes as high as 100 ppm, and the product cleanliness deteriorates. On the other hand, when the Si concentration is higher than 1.0%, the activity of S is increased, which affects the reaction between Ca and S. Therefore, the Si concentration of the molten steel is set to 0.1 to 1.0%.
[0037]
Mn: 0.1 to 1.3%
Mn is a weakly deoxidizing element, but if its concentration is less than 0.1%, the deoxidation of molten steel becomes significantly insufficient. On the other hand, when the Mn concentration is 0.1% or more, there is no significant effect on deacidification, but when the Mn concentration is high, the cost increases. Therefore, the upper limit is set to 1.3%, and the Mn concentration of the molten steel is set to 0.1 to 1.3%.
[0038]
sol. Al: less than 0.008%
As described above, when the Al concentration is 0.008% or more, the Ca yield is almost constant, and the effect of Al on the Ca yield is not significant (see FIG. 1 described above). Therefore, the Al concentration of the molten steel (quantified as sol. Al) is set to less than 0.008%.
[0039]
The molten steel to be treated by the method of the present invention is a molten steel consisting of Fe and impurities with the balance other than the above components. It is necessary to suppress the upper limit of S as an impurity.
[0040]
S: 0.004% or less
S has a strong affinity for Ca and generates CaS compounds and the like. If the S concentration is high, the cleanliness of the steel is significantly deteriorated by the CaS generated, so the S concentration of the molten steel is set to 0.004% or less.
[0041]
The Ca treatment method of the present invention is a method in which Ca is added to a low Al molten steel having the above chemical composition so as to satisfy the above-mentioned formula (1). As is apparent from a comparison between the expression (1) and the expression (6), when the expression (1) takes an equal sign, the expression (1) represents the boundary line B in FIG. The expression "satisfies the expression (1)" means that the value is higher than that including the boundary line B in FIG. I have.
[0042]
In the equation (1), the range of R is determined, which indicates that the equation (1) is satisfied in the range of R (0.75 <R <1.5). As described above, when R is 0.75 or less, or when R is 1.5 or more, CaO and Al 2 O 3 Mass concentration ratio [CaO (mass%) / Al 2 O 3 (Mass%)] (hereinafter simply referred to as “CaO / Al 2 O 3 Mass concentration ratio), it is not necessary to change the amount of Ca to be added. , R is 0.75 or less, or R is 1.5 or more, it is only necessary to apply the minimum amount of Ca to obtain a stable Ca yield.
[0043]
Since the addition of Ca is performed while the molten steel is accommodated in the ladle, when calculating the Ca addition amount from the equation (1), R in equation (1) includes CaO / calculated for the slag in the ladle. Al 2 O 3 The mass concentration ratio R is applied.
[0044]
According to this Ca treatment method, stable treatment can be performed at a high Ca yield on low Al molten steel having a low Ca yield and difficult to perform stable Ca treatment.
[0045]
Next, the case of carrying out the Ca treatment method of the present invention at the time of smelting low Al molten steel by performing a circulation degassing (RH) method and gas blowing refining using a converter will be described as an example.
[0046]
After the converter is decarburized, the molten steel is output to a ladle. Subsequently, the ladle containing the molten steel is moved into the RH device to perform the RH treatment, and the components and the temperature of the molten steel are adjusted.
[0047]
Gas blowing refining may be performed before or after the RH treatment. The adjustment of the components and the temperature of the molten steel may be performed by gas blowing refining, or may be performed by sharing both of the RH treatment and the gas blowing refining. In any case, the control is performed before the addition of Ca to control the composition of the molten steel so as to fall within the above-mentioned specified range.
[0048]
The slag composition is controlled by adding a flux when tapping from the converter, during RH treatment, or during gas blowing refining.
[0049]
CaO / Al 2 O 3 The mass concentration ratio is controlled by taking into account the amount of alumina produced by Al deoxidation, the amount of slag flowing out of the converter to the ladle, and the amount of alumina produced by increasing the temperature of the molten steel, and adding CaO or CaO-containing substances accordingly. Control by adjusting the amount. It is desirable that the control of the slag composition is completed before the addition of Ca. CaO / Al after Ca addition 2 O 3 This is because if the mass concentration ratio is largely changed, the Ca evaporation rate changes again. In order to make the slag a uniform composition and sufficiently promote the reaction between the slag and the metal, it is desirable to perform gas blowing refining before adding Ca.
[0050]
It is desirable that the concentration of the lower oxide (T.Fe + MnO) in the slag is 10% or less. If the concentration of the lower oxide in the slag is higher than 10%, Ca and the lower oxide react, and the Ca yield deteriorates.
[0051]
It is desirable that the amount of slag is 10 kg / t or more. If it is less than 10 kg / t, the amount of slag is small, the coating on the molten steel surface becomes insufficient, and the reaction between slag and metal may be stagnated.
[0052]
After the adjustment of the molten steel component and the control of the composition and amount of the slag are completed, Ca is added to the molten steel so as to satisfy the above equation (1). When it is desired to avoid an increase in the Al concentration of the molten steel, it is desirable that the above (7) is also satisfied.
[0053]
As the Ca to be added, a Ca alloy such as CaSi and FeCa may be used in addition to metal Ca. The method of adding Ca may be any conventionally used method such as “Ca blowing” in which a Ca-based powder composed of the Ca or the Ca alloy is blown together with a carrier gas, and “wire addition” in which a Ca-based wire is fed into molten steel. May be. Further, when the inert gas is blown simultaneously during the addition of Ca, the reaction between the slag and the metal is promoted, so that the Ca yield is further stabilized.
[0054]
Thus, the low Al molten steel obtained by adjusting the temperature and composition of the molten steel, adjusting the composition and amount of the slag, and adding Ca can be used for continuous casting and the like.
[0055]
【Example】
(Example 1)
1.5 tons of molten steel containing 0.045 to 0.06% of C, 0.3 to 0.5% of Si, 0.7% of Mn and 0.0025% of S was 1.333 × 10 4 It was melted in an Ar atmosphere of Pa (100 Torr), and the Al concentration was adjusted to 0.001 to 0.004%. Subsequently, the atmosphere was changed to Ar 1.013 × 10 5 Pa (760 Torr), the molten steel temperature was set to 1600 ° C., and the temperature was maintained for 5 minutes. Thereafter, CaSi (Ca content: 35%) was added to the molten steel. The addition of CaSi was performed by batch addition from a hopper.
[0056]
Subsequently, samples of molten steel and slag were collected and analyzed for molten steel composition and slag composition. CaO / Al in slag 2 O 3 The mass concentration ratio is controlled by CaO-Al 2 O 3 CaO and Al in flux 2 O 3 Was carried out by changing the compounding ratio.
[0057]
Table 1 shows the Al concentration in the molten steel and the slag composition (CaO / Al 2 O 3 Mass concentration ratio and SiO 2 Concentration), the amount of Ca added, and the yield. In Table 1 (same in Table 2), “CaO / Al in slag 2 O 3 Ratio ”is CaO / Al 2 O 3 Represents the mass concentration ratio. In addition, “the amount of Ca added from the right side of equation (1)” indicates the minimum Ca addition amount at which a stable Ca yield can be obtained when equation (1) takes the equal sign, and the equation “(7) The “Ca addition amount determined from the right side” indicates the highest Ca addition amount at which no increase in the Al concentration of the molten steel is observed. Note that the Ca yield was calculated from the above equation (2).
[0058]
[Table 1]
Figure 2004238707
[0059]
From the results shown in Table 1, it was found that Test No. 3 in which the amount of Ca added satisfied the expression (1). In Examples 1 to 12 (Examples), it can be seen that a stable Ca yield was obtained. In addition, among the test Nos. 1 to 10 are cases where the expressions (1) and (7) are simultaneously satisfied. In this case, the increase in the Al concentration of the molten steel was also suppressed.
[0060]
On the other hand, Test No. 1 in which the amount of Ca added deviated from the expression (1). In 13 to 20 (Comparative Example), the Ca yield was as low as 0.7 to 1.3%, and the variation was large.
[0061]
From the above results, if Ca is added so as to satisfy the expression (1), CaO / Al in the slag is obtained. 2 O 3 Irrespective of the value of the mass concentration ratio, a stable Ca yield can be ensured, and at the same time, if the expression (7) is satisfied, an increase in the Al concentration of the molten steel can be suppressed. .
[0062]
(Example 2)
250 t of molten steel refined in the converter was tapped into a ladle, and the ladle was moved into an RH device. The RH treatment is performed, and the components of the molten steel are as follows: C: 0.04 to 0.063%, Si: 0.2 to 0.4%, Mn: 0.5 to 0.8%, and S: 0.0018 to 0. After adjusting the molten steel temperature to 1600 to 1610 ° C., the ladle was moved out of the RH apparatus, and CaSi was added to the wire. The Ca pure content of CaSi is 30%. The addition rate of CaSi was 0.042 kg / (t · min) in terms of pure Ca. CaO / Al in slag 2 O 3 The control of the mass concentration ratio is controlled by CaO, Al 2 O 3 This was done by adding flux. The slag amount was 13 to 21 kg / t.
[0063]
Table 2 shows the Al concentration in the molten steel and the slag composition (CaO / Al 2 O 3 Mass concentration ratio, SiO 2 Concentration and “T.Fe + MnO” concentration), the amount of Ca added and the yield. Note that the Ca yield was calculated from the above equation (2).
[0064]
[Table 2]
Figure 2004238707
[0065]
In Example 2, the reaction system was large with 250 t of molten steel, and the apparent reaction rate was slightly lower than that in Example 1, so that the Ca yield was increased as shown in Table 2.
[0066]
However, from the results shown in Table 2, it can be seen from Test No. that the amount of Ca added satisfies the expression (1). In Test Examples 21 to 27 (Examples), test Nos. It can be seen that a higher Ca yield can be stably obtained as compared with 28 to 34 (Comparative Example). Test No. 21 to 26 are the cases where the expressions (1) and (7) are simultaneously satisfied. In this case, the increase in the Al concentration of the molten steel was also suppressed.
[0067]
In addition, a higher Ca yield was obtained when the lower oxide (T.Fe + MnO) concentration in the slag was lower, but when the Ca addition amount satisfied the formula (1), the T.C. Even with a high Fe + MnO concentration, a high Ca yield was obtained.
[0068]
【The invention's effect】
According to the Ca treatment method for low Al molten steel of the present invention, when Ca treatment is performed on low Al molten steel having a low Ca yield and it is difficult to perform Ca treatment stably, the Ca yield can be controlled stably. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between Al concentration in molten steel and Ca yield.
FIG. 2 CaO / Al in slag 2 O 3 It is a figure which shows the relationship between a mass ratio and Ca yield.
FIG. 3 CaO / Al in slag 2 O 3 It is a figure which shows the relationship between a mass ratio and Ca addition amount.
FIG. 4 is a graph showing the relationship between the amount of Ca added and the amount of increase in the Al concentration in molten steel.

Claims (1)

質量%で、C:0.5%以下、Si:0.1〜1.0%、Mn:0.1〜1.3%およびsol.Al:0.008%未満を含有し、残部がFeおよび不純物からなり、不純物中のSが0.004%以下である溶鋼をCa処理するに際し、取鍋スラグ中のCaOとAlの質量濃度比〔CaO(質量%)/Al(質量%)〕RとCa添加量Aが下記(1)式を満足するように、前記溶鋼にCaを添加することを特徴とする低Al溶鋼のCa処理方法。
A≧−0.11×R+0.24 ・・・(1)
ただし、0.75<R<1.5
C: 0.5% or less, Si: 0.1 to 1.0%, Mn: 0.1 to 1.3%, and sol. Al: Less than 0.008%, the balance consists of Fe and impurities, and when Ca in molten steel containing 0.004% or less of S in impurities, CaO and Al 2 O 3 in ladle slag are removed. A mass concentration ratio [CaO (mass%) / Al 2 O 3 (mass%)] wherein Ca is added to the molten steel so that R and Ca addition amount A satisfy the following formula (1). Ca treatment method for Al molten steel.
A ≧ −0.11 × R + 0.24 (1)
However, 0.75 <R <1.5
JP2003031242A 2003-02-07 2003-02-07 Ca treatment method for low Al molten steel Expired - Fee Related JP3807377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031242A JP3807377B2 (en) 2003-02-07 2003-02-07 Ca treatment method for low Al molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031242A JP3807377B2 (en) 2003-02-07 2003-02-07 Ca treatment method for low Al molten steel

Publications (2)

Publication Number Publication Date
JP2004238707A true JP2004238707A (en) 2004-08-26
JP3807377B2 JP3807377B2 (en) 2006-08-09

Family

ID=32957898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031242A Expired - Fee Related JP3807377B2 (en) 2003-02-07 2003-02-07 Ca treatment method for low Al molten steel

Country Status (1)

Country Link
JP (1) JP3807377B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020833A4 (en) * 2013-07-10 2017-03-22 JFE Steel Corporation Method for producing steel material
CN116411216A (en) * 2023-03-21 2023-07-11 武汉科技大学 Method for removing residual element antimony in medium-low carbon molten steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020833A4 (en) * 2013-07-10 2017-03-22 JFE Steel Corporation Method for producing steel material
KR101797839B1 (en) * 2013-07-10 2017-11-15 제이에프이 스틸 가부시키가이샤 Method for producing steel material
US10072320B2 (en) 2013-07-10 2018-09-11 Jfe Steel Corporation Method of producing steel material
CN116411216A (en) * 2023-03-21 2023-07-11 武汉科技大学 Method for removing residual element antimony in medium-low carbon molten steel

Also Published As

Publication number Publication date
JP3807377B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP5221379B2 (en) Method for producing ferritic stainless steel with fine solidification structure and ferritic stainless steel produced thereby
US8277537B2 (en) Method of manufacturing ultra low carbon ferritic stainless steel
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
JP7060113B2 (en) Method of adding Ca to molten steel
JP2999671B2 (en) Melting method of Ca-added steel
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP6410311B2 (en) Stainless steel refining method
JP3915386B2 (en) Manufacturing method of clean steel
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JPH10237533A (en) Production of hic resistant steel
JP2004238707A (en) Calcium treatment method of low-aluminum molten steel
JP3250459B2 (en) HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same
JP2008111181A (en) Method for smelting aluminum killed steel
JP2007113038A (en) Method for producing low carbon sulfur free-cutting steel
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JP2012158789A (en) Method for desulfurizing molten metal using vacuum degassing apparatus
JP3036373B2 (en) Manufacturing method of oxide dispersion steel
JP7188089B2 (en) Method for refining Cr-containing steel
JPH09227989A (en) Calcium-treated steel and treatment of molten steel with calcium
JP2000256730A (en) Method for adding nitrogen into molten steel
JP2009019221A (en) STEEL CONTAINING LITTLE Al AND HAVING HIGH CLEANLINESS, AND MANUFACTURING METHOD THEREFOR
JP2011080102A (en) Continuous casting steel and method of manufacturing the same
JP2007186729A (en) TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
JP2976849B2 (en) Method for producing HIC-resistant steel
JPH05331523A (en) Method for refining molten steel for bearing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3807377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees