JP2004237333A - Solid wire for gas shielded arc welding, and welding method using the same - Google Patents

Solid wire for gas shielded arc welding, and welding method using the same Download PDF

Info

Publication number
JP2004237333A
JP2004237333A JP2003030232A JP2003030232A JP2004237333A JP 2004237333 A JP2004237333 A JP 2004237333A JP 2003030232 A JP2003030232 A JP 2003030232A JP 2003030232 A JP2003030232 A JP 2003030232A JP 2004237333 A JP2004237333 A JP 2004237333A
Authority
JP
Japan
Prior art keywords
welding
wire
test
weld metal
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003030232A
Other languages
Japanese (ja)
Other versions
JP3917084B2 (en
Inventor
Kimihiro Tsuji
公博 辻
Isao Hatano
勲 波多野
Junya Ueda
純也 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2003030232A priority Critical patent/JP3917084B2/en
Publication of JP2004237333A publication Critical patent/JP2004237333A/en
Application granted granted Critical
Publication of JP3917084B2 publication Critical patent/JP3917084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid wire for gas shielded arc welding which targets at 590 MPa class high tensile strength steel and provides the strength and toughness of weld metal even used for multi-layer build up welding under the welding procedure conditions of a quantity of weld heat input of 30 to 40 kJ/cm and an interpass temperature of 250 to 350°C, and to provide a welding method using the same. <P>SOLUTION: The solid wire for gas shielded arc welding comprises, by mass, 0.05 to 0.15% C, 0.7 to 1.1% Si, 2.0 to 2.6% Mn, 0.15 to 0.55% Mo, 0.15 to 0.30% Ti, 0.02 to 0.50% Ni, 0.005 to 0.012% B, ≤0.020% Al, 0.002 to 0.015% O, ≤0.010% N and 0.005 to 0.05% of one or more kinds of metals selected from V and Nb, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主として590MPa級高張力鋼に使用するガスシールドアーク溶接用ソリッドワイヤおよびその溶接方法に係り、特に大入熱および高パス間温度の溶接施工条件で多層盛溶接を行っても、溶接金属の機械的性質に優れたガスシールドアーク溶接用ワイヤおよびその溶接方法に関する。
【0002】
【従来の技術】
ガスシールドアーク溶接は、従来から高能率で母材への溶け込みが良好であり、また機械的性質に優れた溶接継手が得られることから、建築、鉄骨、橋梁等の大型構造物に広く使用されている。近年、更なる溶接効率の向上から、溶接入熱を大きくするとともに次の溶接パスまでの溶接部を過度に冷却することなく溶接を行う、いわゆる大入熱・高パス間温度での溶接施工方法が求められている。しかし、JIS Z3312 YGW11の溶接ワイヤでは溶接入熱量15〜30kJ/cm、パス間温度最大250℃での溶接施工が一般的であり、前記大入熱・高パス間温度での溶接施工方法では溶接金属の強度が低下したり、靱性が劣化する。
【0003】
大入熱・高パス間の溶接施工方法に対応するため、溶接入熱量40kJ/cm、パス間温度350℃の溶接施工条件下においても、例えば、特開平10−230387号公報(特許文献1)、特開平11−90678号公報(特許文献2)および特開平11−104886号公報(特許文献3)にあるように、ワイヤ中にTi、Bを添加することにより490MPa級高張力鋼板に対し、良好な溶接金属の機械的性質が得られる大入熱、高パス間温度溶接用ワイヤおよび溶接方法が提案されている。しかしながら、上記の溶接用ワイヤおよび溶接方法は、いずれも490MPa級高張力鋼を対象としたものであり、近年の更なる大型化、高強度化に伴う、590MPa級高張力鋼を大入熱かつ高パス間温度の施工条件下で多層盛溶接を行った場合、所定の溶接金属の機械的性質が確保できないという問題がある。
【0004】
【引用文献】
(1)特許文献1(特開平10−230387号公報)
(2)特許文献2(特開平11−90678号公報)
(3)特許文献3(特開平11−104886号公報)
(4)特許文献4(特開平11−239892号公報)
(5)特許文献5(特開2001−287068号公報)
(6)特許文献6(特開2002−79395号公報)
(7)特許文献7(特開2002−103082号公報)
【0005】
【発明が解決しようとする課題】
本発明は、溶接入熱量30〜40kJ/cm、パス間温度250〜350℃の溶接施工条件で多層盛溶接する場合においても、溶接金属の強度および靱性が確保できる590MPa級高張力鋼を対象としたガスシールドアーク溶接用ソリッドワイヤおよびその溶接方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の要旨は、ガスシールドアーク溶接用ソリッドワイヤにおいて、質量%で、C:0.05〜0.15%、Si:0.7〜1.1%、Mn:2.0〜2.6%、Mo:0.15〜0.55%、Ti:0.15〜0.30%、Ni:0.02〜0.50%、B:0.005〜0.012%、Al:0.020%以下、O:0.002〜0.015%、N:0.010%以下、さらにVおよびNbの1種類以上を0.005〜0.05%含有し、残部がFe及び不可避不純物からなり、かつ下記(1)式で示すTmpが0.7〜1.2、(2)式で示すKejが0.2以上であることを特徴とする。
また、590Mpa級高張力鋼を溶接入熱量30〜40kJ/cm、パス間温度250〜350℃の溶接施工条件で、前記ガスシールドアーク溶接用ワイヤを用いて多層溶接することを特徴とするガスシールドアーク溶接方法にある。

Figure 2004237333
【0007】
【発明の実態の形態】
従来、490MPa級高張力鋼板溶接用ガスシールドアーク溶接用ソリッドワイヤは、JIS Z3312 YGW18の規格化にともない、溶接入熱量40kJ/cm、パス間温度350℃の溶接が可能となったが、590MPa級高張力鋼は大入熱・高パス間温度での溶接施工が不可能であった。そこで、590MPa級高張力鋼に対し、溶接入熱量30〜40kJ/cm、パス間温度250〜350℃で多層盛溶接する場合においても、590MPa以上の強度およびー5℃でのシャルピー吸収エネルギーが100J以上を達成するためにはワイヤ成分について本質的な工夫が必要となる。
【0008】
本発明者らは、上記従来の問題点を解決するため、590MPa級高張力鋼に対し、溶接効率の高い、溶接入熱量30〜40kJ/cm、パス間温度250〜350℃の多層盛溶接においても優れた溶接金属性能が得られる溶接技術を探求した。一般に、溶接入熱量40kJ/cmで溶接を行えば、溶着量の増加による溶接工数の低減が図れ、パス間温度350℃での溶接施工が可能となれば、次のパスまでの溶接待ち時間が低減し、溶接効率の向上に大きな効果がある。この点に着目し、溶接金属の強度、靭性等の機械的性質に優れた多層盛溶接用のガスシールドアーク溶接用ソリッドワイヤ成分および溶接施工方法について種々検討した。その結果、ワイヤの成分を適切にすることによって、590MPa級高張力鋼板を、溶接入熱量30〜40kJ/cm、パス間温度250〜350℃の溶接施工が可能となるガスシールドアーク溶接用ソリッドワイヤおよびそれを用いた溶接方法を見出した。
【0009】
以下に、本発明のガスシールドアーク溶接用ソリッドワイヤの成分組成を限定した理由について説明する。
Cは、溶接金属の引張強度を高める元素である。大入熱・高パス間温度での溶接施工において、溶接金属に必要な強度(590MPa以上)を得るためには、少なくとも0.05質量%(以下、%という。)以上含有させる必要がある。しかし、0.15%を超えると、靭性が低下し、溶接部に割れが発生する場合がある。したがって、C含有量は、0.05〜0.15%とする。
【0010】
Siは、脱酸剤であり、酸素量を低下させ靱性向上に必要な元素である。特に、大入熱・高パス間温度での溶接施工においては、Siの消耗量が激しいため、含有量を高める必要がある。0.7%未満では、強度および靭性を低下させ、脱酸不足となりブローホールが発生する場合がある。しかし、1.1%を超えると靭性が低下する。したがって、Si含有量は、0.7〜1.1%とする。
【0011】
Mnは、溶接金属の引張強度を高める元素であり、また、脱酸剤で靱性を高める元素である。大入熱・高パス間温度での溶接施工においては、溶接金属に必要な強度(590MPa以上)を得るため、また、脱酸剤としての消耗量が激しいため、含有量を高める必要がある。2.0%未満では焼き入れ性が低下し、靭性が低下するとともに、脱酸不足となりブローホールが発生する場合がある。しかし、2.6%を超えると溶接金属が硬化して靱性が低下する。したがって、Mn含有量は、2.0〜2.6%とする。
【0012】
Moは、オーステナイトの粗大化を抑制し、オーステナイト粒径を微細化するとともに焼き入れ性が向上する元素であり、溶接金属の引張強度および靭性を高める。0.15%未満では、結晶粒の粗大化により靭性が低下し、また、強度不足となる。しかし、0.55%を超えると溶接金属が硬化して靱性が低下する。したがって、Mo含有量は、0.15〜0.55%とする。
Ti、は脱酸剤として作用するとともに、溶接金属中にTi酸化物を生成し、これが、フェライト生成核となり、粒内に微細なフェライト組織であるアシュキュラーフェライト組織を形成して靱性を向上させる。0.15%未満ではこの効果が得られない。また、0.30%を超えると溶接金属は脆化して靱性が劣化する。したがって、Ti含有量は、0.15〜0.30%とする。
【0013】
Niは、オーステナイトの安定化元素であり、溶接金属中のフェライトマトリックスの靭性を向上させる元素である。0.02%未満では効果がなく、0.50%を超えるとオーステナイト粒が粗大化し靱性が低下する。したがって、Ni含有量は、0.02〜0.50%とする。
Bは、オーステナイトから生成する粒界フェライトの発生を抑え、靱性を向上させる元素である。0.005%未満では効果がなく、0.012%を超えると溶接金属に高温割れが発生し易くなる。したがって、B含有量は、0.005〜0.012%とする。
【0014】
Alは、脱酸剤として溶鋼に添加する元素である。しかし、0.020%を超えると溶接金属の靱性が低下する。したがって、Al含有量は、0.020%以下とする。
Oは、アークを安定させるとともに溶滴の表面張力を低下させる元素でビード形状を良好する。0.002%未満ではアークが不安定でビード形状も不良となる。0.015%を超えるとア−ク不安定を引き起こす。したがって、O含有量は、0.002〜0.015%とする。
【0015】
Nは、TiおよびBを窒化物として固定化し、微細粒フェライトの発生を低下させ、溶接金属の靭性を劣化させる元素であり、できるだけ低くすることが望ましい。したがって、N含有量は、0.010%以下とする。
VおよびNbは、大入熱・高パス間温度での溶接施工において、溶接金属に必要な強度(590MPa以上)を得るために必要な元素であり、また、微細な炭窒化物を形成し、溶接金属のオーステナイトから生成する粒界フェライトの発生を抑え、靱性を向上させる元素である。この効果を得るために、1種以上の合計で少なくとも0.005%以上含有させる必要がある。しかし、1種以上の合計で0.05%を超えると、脆化による靭性の低下や溶接部に高温割れが発生する場合がある。したがって、VおよびNb含有量は、1種以上の合計で、0.005〜0.05%とする。
【0016】
Tmpは、下記(1)式で得られる大入熱・高パス間温度での溶接施工で溶接金属に必要な強度(590MPa以上)を得るための強度確保の値である。種々の成分組成を有するワイヤを用いて、590MPa級高張力鋼を溶接入熱量40kJ/cm、パス間温度350℃の溶接で得られた溶接金属の引張試験を行い、ワイヤの成分元素と引張強さとの関係を調査した。その結果、図1に示すように、Tmpが0.7未満では強度が不足する。一方、1.2を超えると過剰な強度となり割れが発生する場合がある。したがって、Tmpは0.7〜1.2とする。
【0017】
Kejは、下記(2)式で得られる大入熱・高パス間温度での溶接施工で溶接金属が高靭性(−5℃でのシャルピー吸収エネルギー100J以上)を得るための靭性確保の値である。種々の成分組成を有するワイヤを用いて、590MPa級高張力鋼を溶接入熱量40kJ/cm、パス間温度350℃の溶接で得られた溶接金属の衝撃試験を行い、ワイヤの成分元素とシャルピー吸収エネルギーとの関係を調査した。その結果、図2に示すように、Kejが0.2未満では靭性が低下した。したがって、Kejは0.2以上とする。
Figure 2004237333
【0018】
溶接入熱量は、大きくなれば1パス毎の溶着量が増加し、溶接工数の低減が図れ、溶接効率が向上する。しかし、40kJ/cmを超える溶接入熱量で溶接を行えば、溶接金属の冷却速度が遅くなって、溶接金属の組織が粗大化し、強度および靭性が低下する。また、溶接金属部で融合不良、スラグ巻き込み、高温割れが発生し易くなる。一方、溶接入熱量が30kJ/cm未満であると、溶接能率の向上が得られず、また、溶接金属の強度が高くなり、低温割れ感受性も高くなる。したがって、溶接入熱量は30〜40kJ/cmとする。
【0019】
パス間温度は、高くなれば次のパスまでの溶接待ち時間が低減し、溶接効率が向上する。しかし、350℃を超えるパス間温度で溶接を行えば、溶接金属の冷却速度が遅くなり、溶接金属の組織が粗大化し、強度および靭性が低下する。一方、パス間温度が250℃未満であると、溶接能率の向上が得られず、また、溶接金属の強度が高くなり、低温割れ感受性も高くなる。したがって、パス間温度は250〜350℃とする。
【0020】
以下、実施例により本発明をさらに詳細に説明する。
【実施例】
(実施例1)
まず、表1に示す各種成分の1.4mm径の試作ワイヤを使用し、表2に示す成分の鋼板(鋼種:SA440、厚さ:40mm)を、図3の開先形状(試験板幅:400mm、溶接長:400mm)にして、表3に示す溶接施工条件の条件No.1で多層盛溶接した。溶接金属の機械的性質は引張試験片(JIS Z2201 A1号)およびシャルピー衝撃試験片(JIS Z2242 4号)を板表面から10mmを中心に採取して作成した。
なお、パス間温度を維持するために試験体下部から加熱しながら温度をコントロールして溶接した。引張強さは590MPa以上、シャルピー衝撃値は試験温度−5℃で5本の値の最低値で100J以上を良好とした。それらの結果を表4にまとめて示す。
【0021】
【表1】
Figure 2004237333
【0022】
【表2】
Figure 2004237333
【0023】
【表3】
Figure 2004237333
【0024】
【表4】
Figure 2004237333
【0025】
表4において、試験No.1〜9は本発明例、試験No.10〜31は比較例である。本発明例である試験No.1〜9のワイヤ記号A1〜A9はワイヤ化学成分、Tmp、Kejの値が適正であるので、溶接金属の強度および衝撃値が良好で、溶接欠陥がなく高能率に溶接でき極めて満足な結果であった。
比較例中試験No.10は、ワイヤA10のC値が低いので、引張強さが低くなった。試験No.11は、ワイヤA11のCが高く、試験No.15は、ワイヤA15のMnが高く、試験No.17は、ワイヤA17のMoが高く、試験No.24は、ワイヤA24のV+Nbが高いので、いずれも強度が過剰となり衝撃値が低くなった。
【0026】
試験No.12は、ワイヤA12のSiが低く、試験No.14は、ワイヤA14のMnが低く、試験No.16は、ワイヤA16のMoが低く、試験No.23は、ワイヤA23のV+Nbが低く、試験No.30は、ワイヤA30のTmpおよびKejが低いので、いずれも引張強さ及び衝撃値が低くなった。試験No.13は、ワイヤA13のSiが高く、試験No.18は、ワイヤA18のTiが低く、試験No.19は、ワイヤA19のTiが高く、試験No.20は、ワイヤA20のNiが低く、試験No.21は、ワイヤA21のNiが高く、試験No.22は、ワイヤA22のAlが高く、試験No.25は、ワイヤA25のBが低く、試験No.29は、ワイヤA29のNが高いので、いずれも衝撃値が低くなった。試験No.26は、ワイヤA26のBが高く、試験No.31は、ワイヤA31のTmpが高いので、強度が過剰となるとともにクレータ部に高温割れが発生した。試験No.27は、ワイヤA27のOが低く、試験No.28はワイヤA28のOが高いので、ア−クが不安定になった。
【0027】
(実施例2)
実施例1と同じ開先形状の鋼板にワイヤA5,A6,A7,A9で、表3に示す溶接施工条件の条件2〜6で多層盛り溶接した。溶接金属の機械的性質の調査は実施例1と同様に実施した。その結果を表5に示す。表5中試験No.32は、溶接施工条件No.2のパス間温度が低いので、次層までのパス間温度待ち時間が長く溶接能率が悪かった。試験No.33は、溶接施工条件No.3のパス間温度が高いので、強度および靱性が低下した。試験No.34は、溶接施工条件No.4の溶接入熱量が高いので、強度および靱性が低下した。さらに、1層目に高温割れが生じた。試験No.35は、溶接施工条件No.5の溶接入熱量およびパス間温度が適正であるので、溶接金属の強度および衝撃値が良好で、溶接欠陥がなく高能率に溶接でき極めて満足な結果であった。試験No.36は、溶接施工条件No.6の溶接入熱量が低いので、溶接時間が長くなり溶接能率が悪かった。
【0028】
【表5】
Figure 2004237333
【0029】
【発明の効果】
以上詳述したように、本発明のガスシールドアーク溶接用ソリッドワイヤおよびその溶接方法によれば、590MPa級高張力鋼を溶接入熱量30〜40kJ/cm、パス間温度250〜350℃で多層盛溶接する場合においても、強度および靱性が優れた溶接金属が得られ、溶接作業効率の向上を図ることができる。
【図面の簡単な説明】
【図1】Tmpと引張強さの関係を示す図である。
【図2】Kejとシャルピ−衝撃値の関係を示す図である。
【図3】本発明の実施例に用いた試験板の開先形状を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas shielded arc welding solid wire mainly used for a 590 MPa class high-strength steel and a method for welding the same. Particularly, even when performing multi-pass welding under welding conditions of large heat input and high interpass temperature, welding is performed. The present invention relates to a gas shielded arc welding wire excellent in metal mechanical properties and a welding method thereof.
[0002]
[Prior art]
Gas shielded arc welding has been widely used for large structures such as buildings, steel frames, bridges, etc., because it has a high efficiency and good penetration into the base material, and also provides welded joints with excellent mechanical properties. ing. In recent years, from the further improvement of welding efficiency, the welding construction method that increases welding heat input and performs welding without excessive cooling of the welded part until the next welding pass, so-called large heat input and high interpass temperature Is required. However, in the welding wire of JIS Z3312 YGW11, welding heat input is generally 15 to 30 kJ / cm, and the maximum temperature between passes is 250 ° C. Welding is generally performed. Metal strength decreases and toughness deteriorates.
[0003]
In order to cope with the welding method between large heat input and high pass, even under welding conditions of a welding heat input of 40 kJ / cm and a pass-to-pass temperature of 350 ° C., for example, Japanese Patent Application Laid-Open No. 10-23087 (Patent Document 1) As disclosed in JP-A-11-90678 (Patent Document 2) and JP-A-11-104886 (Patent Document 3), by adding Ti and B to a wire, a 490 MPa class high-strength steel sheet can be obtained. A large heat input, high interpass temperature welding wire and a welding method that provide good weld metal mechanical properties have been proposed. However, the welding wire and the welding method described above are intended for 490 MPa class high-strength steels. When multi-pass welding is performed under a high pass temperature, there is a problem that mechanical properties of a predetermined weld metal cannot be secured.
[0004]
[References]
(1) Patent Document 1 (Japanese Patent Application Laid-Open No. H10-23087)
(2) Patent Document 2 (JP-A-11-90678)
(3) Patent Document 3 (JP-A-11-104886)
(4) Patent Document 4 (JP-A-11-239892)
(5) Patent Document 5 (JP-A-2001-287068)
(6) Patent Document 6 (JP-A-2002-79395)
(7) Patent Document 7 (Japanese Patent Application Laid-Open No. 2002-103082)
[0005]
[Problems to be solved by the invention]
The present invention is directed to a 590 MPa class high-strength steel capable of ensuring the strength and toughness of a weld metal even when performing multi-pass welding under welding conditions of a welding heat input of 30 to 40 kJ / cm and an interpass temperature of 250 to 350 ° C. It is an object to provide a solid wire for gas shielded arc welding and a welding method thereof.
[0006]
[Means for Solving the Problems]
The gist of the present invention is that in a solid wire for gas shielded arc welding, C: 0.05 to 0.15%, Si: 0.7 to 1.1%, and Mn: 2.0 to 2.6% by mass. %, Mo: 0.15 to 0.55%, Ti: 0.15 to 0.30%, Ni: 0.02 to 0.50%, B: 0.005 to 0.012%, Al: 0. 020% or less, O: 0.002 to 0.015%, N: 0.010% or less, further contains 0.005 to 0.05% of one or more of V and Nb, and the balance is Fe and unavoidable impurities. And Tmp represented by the following equation (1) is 0.7 to 1.2, and Kej represented by the following equation (2) is 0.2 or more.
Further, a gas shield characterized in that multi-layer welding of a 590 Mpa class high-tensile steel is performed using the gas shield arc welding wire under welding conditions of a heat input of 30 to 40 kJ / cm and an interpass temperature of 250 to 350 ° C. In the arc welding method.
Figure 2004237333
[0007]
Embodiment of the present invention
Conventionally, a solid wire for gas shielded arc welding for welding a 490 MPa class high-tensile steel sheet has become capable of welding at a welding heat input of 40 kJ / cm and a pass-to-pass temperature of 350 ° C. with the standardization of JIS Z3312 YGW18. High strength steel could not be welded at high heat input and high interpass temperature. Therefore, even when multi-pass welding is performed on a 590 MPa class high-strength steel at a welding heat input of 30 to 40 kJ / cm and an interpass temperature of 250 to 350 ° C., the strength of 590 MPa or more and the Charpy absorbed energy at −5 ° C. In order to achieve 100 J or more, it is necessary to devise essential measures for the wire components.
[0008]
In order to solve the above-mentioned conventional problems, the present inventors have applied multi-pass welding to a 590 MPa class high tensile steel with a high welding efficiency, a heat input of 30 to 40 kJ / cm, and a temperature between passes of 250 to 350 ° C. Also sought welding technology that would provide excellent weld metal performance. Generally, if welding is performed at a welding heat input of 40 kJ / cm, welding man-hours can be reduced due to an increase in the amount of welding, and if welding at a temperature between passes of 350 ° C. becomes possible, the welding waiting time until the next pass will be shortened. This has a significant effect on reducing welding efficiency. Focusing on this point, various investigations were made on the solid wire components for gas shielded arc welding for multi-pass welding, which are excellent in mechanical properties such as the strength and toughness of the weld metal, and the welding method. As a result, a solid wire for gas shielded arc welding that enables a 590 MPa class high-tensile steel sheet to be welded at a welding heat input of 30 to 40 kJ / cm and a pass-to-pass temperature of 250 to 350 ° C. by appropriately setting the components of the wire. And a welding method using the same.
[0009]
Hereinafter, the reason for limiting the component composition of the solid wire for gas shielded arc welding of the present invention will be described.
C is an element that increases the tensile strength of the weld metal. In order to obtain the required strength (590 MPa or more) for the weld metal during welding at a large heat input and high inter-pass temperature, it is necessary to contain at least 0.05% by mass (hereinafter referred to as%) or more. However, if it exceeds 0.15%, the toughness is reduced, and cracks may occur in the weld. Therefore, the C content is set to 0.05 to 0.15%.
[0010]
Si is a deoxidizing agent, and is an element necessary for reducing the amount of oxygen and improving the toughness. In particular, in welding at a large heat input and a high inter-pass temperature, the amount of Si consumed is so great that it is necessary to increase the content. If it is less than 0.7%, the strength and toughness are reduced, and the deoxidation becomes insufficient, which may cause blowholes. However, if it exceeds 1.1%, the toughness decreases. Therefore, the Si content is set to 0.7 to 1.1%.
[0011]
Mn is an element that increases the tensile strength of the weld metal, and is an element that increases the toughness with a deoxidizing agent. In welding at a high heat input and a high inter-pass temperature, it is necessary to increase the content in order to obtain the strength (590 MPa or more) necessary for the weld metal and to consume a large amount of deoxidizing agent. If it is less than 2.0%, the hardenability will be reduced, the toughness will be reduced, and the deoxidation will be insufficient, which may cause blow holes. However, if it exceeds 2.6%, the weld metal is hardened and the toughness is reduced. Therefore, the Mn content is set to 2.0 to 2.6%.
[0012]
Mo is an element that suppresses austenite coarsening, refines austenite grain size, and improves hardenability, and increases the tensile strength and toughness of a weld metal. If it is less than 0.15%, toughness is reduced due to coarsening of crystal grains, and strength is insufficient. However, if it exceeds 0.55%, the weld metal is hardened and the toughness is reduced. Therefore, the Mo content is set to 0.15 to 0.55%.
Ti, while acting as a deoxidizing agent, generates Ti oxide in the weld metal, which becomes a ferrite generation nucleus and forms an ashular ferrite structure which is a fine ferrite structure in the grains to improve toughness. . If less than 0.15%, this effect cannot be obtained. On the other hand, if it exceeds 0.30%, the weld metal becomes brittle and the toughness is deteriorated. Therefore, the Ti content is set to 0.15 to 0.30%.
[0013]
Ni is an element for stabilizing austenite and is an element for improving the toughness of a ferrite matrix in a weld metal. If it is less than 0.02%, there is no effect, and if it exceeds 0.50%, austenite grains are coarsened and toughness is reduced. Therefore, the Ni content is set to 0.02 to 0.50%.
B is an element that suppresses generation of grain boundary ferrite generated from austenite and improves toughness. If it is less than 0.005%, there is no effect, and if it exceeds 0.012%, hot cracks are easily generated in the weld metal. Therefore, the B content is set to 0.005 to 0.012%.
[0014]
Al is an element added to molten steel as a deoxidizing agent. However, if it exceeds 0.020%, the toughness of the weld metal decreases. Therefore, the Al content is set to 0.020% or less.
O is an element that stabilizes the arc and lowers the surface tension of the droplet and improves the bead shape. If it is less than 0.002%, the arc becomes unstable and the bead shape becomes poor. If it exceeds 0.015%, arc instability is caused. Therefore, the O content is set to 0.002 to 0.015%.
[0015]
N is an element that fixes Ti and B as nitrides, reduces the generation of fine-grained ferrite, and degrades the toughness of the weld metal, and is desirably as low as possible. Therefore, the N content is set to 0.010% or less.
V and Nb are elements necessary for obtaining the strength (590 MPa or more) required for the weld metal during welding at high heat input and high interpass temperature, and form fine carbonitrides. It is an element that suppresses generation of grain boundary ferrite generated from austenite of weld metal and improves toughness. In order to obtain this effect, it is necessary to contain at least 0.005% or more in total of one or more kinds. However, if the total of one or more kinds exceeds 0.05%, the toughness may be reduced due to embrittlement and a hot crack may occur in the welded portion. Therefore, the V and Nb contents are set to 0.005 to 0.05% in total of one or more kinds.
[0016]
Tmp is a value for securing the strength required to obtain the strength (590 MPa or more) required for the weld metal in welding at a large heat input and a high interpass temperature obtained by the following equation (1). Using wires having various component compositions, a tensile test was performed on a weld metal obtained by welding a 590 MPa class high strength steel at a welding heat input of 40 kJ / cm and an interpass temperature of 350 ° C. We investigated the relationship with As a result, as shown in FIG. 1, if Tmp is less than 0.7, the strength is insufficient. On the other hand, if it exceeds 1.2, the strength becomes excessive and cracks may occur. Therefore, Tmp is set to 0.7 to 1.2.
[0017]
Kej is a value for securing toughness for a weld metal to obtain high toughness (Charpy absorbed energy at -5 ° C of 100 J or more) in welding at a large heat input and a high interpass temperature obtained by the following equation (2). is there. Using wires having various component compositions, an impact test was performed on a weld metal obtained by welding a 590 MPa class high-tensile steel at a welding heat input of 40 kJ / cm and a pass-to-pass temperature of 350 ° C. to determine the constituent elements of the wire and the Charpy absorption The relationship with energy was investigated. As a result, as shown in FIG. 2, when Kej was less than 0.2, toughness was reduced. Therefore, Kej is set to 0.2 or more.
Figure 2004237333
[0018]
As the welding heat input increases, the amount of welding for each pass increases, thereby reducing welding man-hours and improving welding efficiency. However, if welding is performed with a welding heat input exceeding 40 kJ / cm, the cooling rate of the weld metal is reduced, the structure of the weld metal is coarsened, and the strength and toughness are reduced. In addition, poor fusion, entrapment of slag, and high-temperature cracking tend to occur in the weld metal. On the other hand, if the welding heat input is less than 30 kJ / cm, no improvement in welding efficiency can be obtained, the strength of the weld metal increases, and the susceptibility to low-temperature cracking increases. Therefore, the welding heat input is set to 30 to 40 kJ / cm.
[0019]
If the temperature between passes increases, the welding waiting time until the next pass decreases, and the welding efficiency improves. However, if welding is performed at an inter-pass temperature exceeding 350 ° C., the cooling rate of the weld metal becomes slow, the structure of the weld metal becomes coarse, and the strength and toughness decrease. On the other hand, if the temperature between passes is less than 250 ° C., improvement in welding efficiency cannot be obtained, and the strength of the weld metal increases, and the susceptibility to low-temperature cracking also increases. Therefore, the temperature between passes is set to 250 to 350 ° C.
[0020]
Hereinafter, the present invention will be described in more detail with reference to examples.
【Example】
(Example 1)
First, a steel plate (steel type: SA440, thickness: 40 mm) having the components shown in Table 2 was prepared using a prototype wire having a diameter of 1.4 mm of each component shown in Table 1 and the groove shape (test plate width: 400 mm, welding length: 400 mm). 1 was multi-layer welded. The mechanical properties of the weld metal were prepared by sampling a tensile test piece (JIS Z2201 A1) and a Charpy impact test piece (JIS Z22424) at a center of 10 mm from the plate surface.
In addition, in order to maintain the temperature between passes, welding was performed while controlling the temperature while heating from the lower part of the test piece. The tensile strength was 590 MPa or more, and the Charpy impact value was 100 J or more as the lowest value among the five values at the test temperature of -5 ° C. The results are summarized in Table 4.
[0021]
[Table 1]
Figure 2004237333
[0022]
[Table 2]
Figure 2004237333
[0023]
[Table 3]
Figure 2004237333
[0024]
[Table 4]
Figure 2004237333
[0025]
In Table 4, Test No. 1 to 9 are examples of the present invention, and test Nos. 10 to 31 are comparative examples. Test No. which is an example of the present invention. Since the wire symbols A1 to A9 of 1 to 9 have appropriate wire chemical components, Tmp, and Kej values, the strength and impact value of the weld metal are good, welding can be performed efficiently without welding defects, and extremely satisfactory results can be obtained. there were.
Test No. in the comparative example. In No. 10, since the C value of the wire A10 was low, the tensile strength was low. Test No. In Test No. 11, the C of the wire A11 was high and the test No. In Test No. 15, the Mn of the wire A15 was high, and In the test No. 17, the Mo of the wire A17 was high, and In No. 24, since V + Nb of the wire A24 was high, the strength was excessive and the impact value was low.
[0026]
Test No. In Test No. 12, the wire A12 had low Si, and Test No. In Test No. 14, the Mn of the wire A14 was low, In the test No. 16, the Mo of the wire A16 was low, and In Test No. 23, V + Nb of wire A23 was low, and In No. 30, since the Tmp and Kej of the wire A30 were low, the tensile strength and the impact value were all low. Test No. In Test No. 13, the wire A13 had high Si, In Test No. 18, the wire A18 had a low Ti, and In Test No. 19, the Ti of wire A19 was high, and In test No. 20, the Ni of wire A20 was low, and In Test No. 21, the Ni of the wire A21 was high, and In Test No. 22, the Al of the wire A22 was high, and In test No. 25, B of wire A25 was low, and In No. 29, since the N of the wire A29 was high, the impact value was low in each case. Test No. In test No. 26, B of wire A26 was high, and In No. 31, since the Tmp of the wire A31 was high, the strength became excessive and hot cracks occurred in the crater portion. Test No. In Test No. 27, the O of wire A27 was low, and In No. 28, since the O of the wire A28 was high, the arc became unstable.
[0027]
(Example 2)
Multi-layer welding was performed on steel plates having the same groove shape as in Example 1 using wires A5, A6, A7, and A9 under welding conditions 2 to 6 shown in Table 3. Investigation of the mechanical properties of the weld metal was performed in the same manner as in Example 1. Table 5 shows the results. In Table 5, Test No. 32 is a welding execution condition No. 32. Since the temperature between passes of No. 2 was low, the waiting time between passes to the next layer was long, and the welding efficiency was poor. Test No. No. 33 is the welding condition No. 33. As the inter-pass temperature of No. 3 was high, the strength and toughness decreased. Test No. No. 34 is a welding execution condition No. Since the welding heat input of No. 4 was high, the strength and toughness were reduced. Furthermore, hot cracking occurred in the first layer. Test No. No. 35 is the welding condition No. 35. Since the welding heat input and the pass-to-pass temperature of No. 5 were appropriate, the strength and impact value of the weld metal were good, and welding could be performed with high efficiency without welding defects, which was a very satisfactory result. Test No. No. 36 is a welding execution condition No. 6, the welding heat input was low, so that the welding time was long and the welding efficiency was poor.
[0028]
[Table 5]
Figure 2004237333
[0029]
【The invention's effect】
As described in detail above, according to the solid wire for gas shielded arc welding of the present invention and the method for welding the same, multi-layer welding is performed on a 590 MPa class high-tensile steel at a welding heat input of 30 to 40 kJ / cm, an interpass temperature of 250 to 350 ° C. Even in the case of welding, a weld metal having excellent strength and toughness can be obtained, and the welding operation efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between Tmp and tensile strength.
FIG. 2 is a diagram showing a relationship between Kej and a Charpy impact value.
FIG. 3 is a view showing a groove shape of a test plate used in an example of the present invention.

Claims (2)

ガスシールドアーク溶接用ソリッドワイヤにおいて、質量%で、C:0.05〜0.15%、Si:0.7〜1.1%、Mn:2.0〜2.6%、Mo:0.15〜0.55%、Ti:0.15〜0.30%、Ni:0.02〜0.50%、B:0.005〜0.012%、Al:0.020%以下、O:0.002〜0.015%、N:0.010%以下、さらにVおよびNbの1種類以上を0.005〜0.05%含有し、残部がFeおよび不可避不純物からなり、かつ下記(1)式で示すTmpが0.7〜1.2、(2)式で示すKejが0.2以上であることを特徴とするガスシールドアーク溶接用ソリッドワイヤ。
Figure 2004237333
In the solid wire for gas shielded arc welding, C: 0.05 to 0.15%, Si: 0.7 to 1.1%, Mn: 2.0 to 2.6%, Mo: 0. 15 to 0.55%, Ti: 0.15 to 0.30%, Ni: 0.02 to 0.50%, B: 0.005 to 0.012%, Al: 0.020% or less, O: 0.002 to 0.015%, N: 0.010% or less, further contains 0.005 to 0.05% of one or more of V and Nb, and the balance consists of Fe and unavoidable impurities. A solid wire for gas shielded arc welding, wherein Tmp represented by the formula (1) is 0.7 to 1.2, and Kej represented by the formula (2) is 0.2 or more.
Figure 2004237333
590MPa級高張力鋼を溶接入熱量30〜40kJ/cm、パス間温度250〜350℃の溶接施工条件で、請求項1記載のワイヤを用いて多層溶接することを特徴とするガスシールドアーク溶接方法。A gas shielded arc welding method, comprising: performing multi-layer welding of a 590 MPa class high-tensile steel using the wire according to claim 1 under welding conditions of a heat input of 30 to 40 kJ / cm and an interpass temperature of 250 to 350 ° C. .
JP2003030232A 2003-02-07 2003-02-07 Solid wire for gas shielded arc welding and welding method thereof Expired - Fee Related JP3917084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030232A JP3917084B2 (en) 2003-02-07 2003-02-07 Solid wire for gas shielded arc welding and welding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030232A JP3917084B2 (en) 2003-02-07 2003-02-07 Solid wire for gas shielded arc welding and welding method thereof

Publications (2)

Publication Number Publication Date
JP2004237333A true JP2004237333A (en) 2004-08-26
JP3917084B2 JP3917084B2 (en) 2007-05-23

Family

ID=32957174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030232A Expired - Fee Related JP3917084B2 (en) 2003-02-07 2003-02-07 Solid wire for gas shielded arc welding and welding method thereof

Country Status (1)

Country Link
JP (1) JP3917084B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066898A (en) * 2011-09-21 2013-04-18 Jfe Steel Corp Welding method for cold forming square steel pipe, welded joint for the same, and steel pipe pole having welded joint
JP2013081996A (en) * 2011-10-12 2013-05-09 Nippon Steel & Sumitomo Metal Corp Welding method of steel pipe pile
CN106180986A (en) * 2016-07-08 2016-12-07 湘潭大学 A kind of electric arc increases material and manufactures the Active Control Method of forming quality

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596397A (en) * 1991-10-07 1993-04-20 Kawasaki Steel Corp Steel wire for high electric current mig welding
JPH1190678A (en) * 1997-09-25 1999-04-06 Nippon Steel Weld Prod & Eng Co Ltd Solid wire for carbon dioxide gas shielded arc welding
JP2001287086A (en) * 2000-04-07 2001-10-16 Sumikin Welding Ind Ltd Solid wire for gas shield arc welding
JP2002346789A (en) * 2001-05-22 2002-12-04 Nippon Steel Weld Prod & Eng Co Ltd Solid wire for carbon-dioxide shielded arc welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596397A (en) * 1991-10-07 1993-04-20 Kawasaki Steel Corp Steel wire for high electric current mig welding
JPH1190678A (en) * 1997-09-25 1999-04-06 Nippon Steel Weld Prod & Eng Co Ltd Solid wire for carbon dioxide gas shielded arc welding
JP2001287086A (en) * 2000-04-07 2001-10-16 Sumikin Welding Ind Ltd Solid wire for gas shield arc welding
JP2002346789A (en) * 2001-05-22 2002-12-04 Nippon Steel Weld Prod & Eng Co Ltd Solid wire for carbon-dioxide shielded arc welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066898A (en) * 2011-09-21 2013-04-18 Jfe Steel Corp Welding method for cold forming square steel pipe, welded joint for the same, and steel pipe pole having welded joint
JP2013081996A (en) * 2011-10-12 2013-05-09 Nippon Steel & Sumitomo Metal Corp Welding method of steel pipe pile
CN106180986A (en) * 2016-07-08 2016-12-07 湘潭大学 A kind of electric arc increases material and manufactures the Active Control Method of forming quality
CN106180986B (en) * 2016-07-08 2018-06-26 湘潭大学 A kind of Active Control Method of electric arc increasing material manufacturing forming quality

Also Published As

Publication number Publication date
JP3917084B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
EP3037205B1 (en) Wire for gas shield arc welding
JP2001001148A (en) GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JP2009045671A (en) Wire for high-heat input electroslag welding
JP2003340592A (en) Wire for large heat input electroslag welding
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP3917084B2 (en) Solid wire for gas shielded arc welding and welding method thereof
JPH08257789A (en) Submerged arc welding
JP2711130B2 (en) Gas shielded arc welding wire
JP3551140B2 (en) Gas shielded arc welding wire
JP2007126724A (en) High tensile strength steel plate having excellent low temperature toughness in weld heat-affected zone
JPH09324238A (en) Steel sheet for structural purpose excellent in toughness in heat-affected zone
JP2001293596A (en) Flux-filled wire for welding ferritic stainless steel
JP4427350B2 (en) Weld metal with excellent strength uniformity
JP5235008B2 (en) Solid wire for welding
JP2005200716A (en) Steel material superior in toughness of weld heat-affected zone
JP2004337871A (en) Low hydrogen coated electrode for low-alloy heat-resistant steel
JP4464859B2 (en) Large heat input welded joint using low yield ratio steel sheet and welding method
JP3481547B2 (en) Solid wire for gas shielded arc welding
JP2002332541A (en) Thick steel plate having good laser cuttability
JPH0596397A (en) Steel wire for high electric current mig welding
JP3163838B2 (en) Bond flux for submerged arc welding
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JP2006009070A (en) Weld joint superior in resistance to cold cracking, and steel material for welding consumables
JP3847687B2 (en) Gas shielded arc welding wire and welding method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees