JP2004236418A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2004236418A
JP2004236418A JP2003021238A JP2003021238A JP2004236418A JP 2004236418 A JP2004236418 A JP 2004236418A JP 2003021238 A JP2003021238 A JP 2003021238A JP 2003021238 A JP2003021238 A JP 2003021238A JP 2004236418 A JP2004236418 A JP 2004236418A
Authority
JP
Japan
Prior art keywords
power
output
current
power converter
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003021238A
Other languages
Japanese (ja)
Inventor
Kazuaki Azuma
和明 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003021238A priority Critical patent/JP2004236418A/en
Publication of JP2004236418A publication Critical patent/JP2004236418A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter capable of positively detecting individual operation by making effective use of generated power of a DC power supply. <P>SOLUTION: This power converter includes a current measuring means for measuring a current flowing-in from a commercial power system and/or a current flowing into the commercial power system, and performs output control so that a current value of the current measuring means may not be almost zero. Moreover, the power converter performs output control so that output fluctuations may occur periodically only when the current value of the current measuring means approaches almost zero, and so that the output fluctuations may become larger as the current value of the current measuring means approaches zero, thus positively detecting the individual operation and making effective use of the generated power by a solar battery. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、太陽電池等の直流電源から得られる直流電力を交流電力に変換する電力変換装置に関し、特に単独運転検出技術に関するものである。
【0002】
【従来の技術】
近年、太陽電池の出力をインバータにて交流に変換し、商用電力系統と連系する系統連系システムが実用化されている。この系統連系システムにおいては、図6に示すように、太陽電池電源2で発電した直流電力は、電力変換装置21にて例えば交流の200Vに変換され、電力変換装置21と商用電力系統12とは連系接続されている。
【0003】
従来の電力変換装置21は、図7に示す通り太陽電池電源2で発電された電力を太陽電池電源2の電圧と異なる電圧に変換する直流電圧変換回路23と、直流電圧変換回路23にて変換された直流電力を交流電力に変換するインバータ回路24とから構成されており、太陽電池電源2で発電された最大電力を交流出力に変換し、負荷13と商用電力系統12に接続して連系運転を行っている(最大出力追従制御)。
【0004】
ここで、電力変換装置21はリレー等の開閉器16を有し、停電等で商用電力系統12に異常がある場合には、安全かつ速やかに復旧作業が行えるように即座に電力変換を停止し開閉器16を遮断し、商用電力系統12と解列させる手段がとられている(単独運転検出機能)。
【0005】
このような単独運転を検出するための手段としては、受動的方式と能動的方式があり、検出精度を高めるためにこれらを組み合わせることが求められている。一般的に受動的方式には、系統の電圧位相の急変を検出する電圧位相跳躍検出方式、系統の3次高調波の急増を検出する3次高調波電圧歪検出方式、系統の周波数の急変を検出する周波数変化率検出方式等があり、能動的方式には、出力に周波数バイアスを与える周波数シフト方式、出力の有効電力を変動させる有効電力変動方式、出力の無効電力を変動させる無効電力変動方式等がある。
【0006】
また、インバータの出力電流をランダムに変動させ、単独運転を検出させる方法が提案されている(例えば、特許文献1を参照)。
【0007】
【特許文献1】
特開平11−136865号公報(第9頁、第1図)
【0008】
【発明が解決しようとする課題】
しかしながら、従来の方式では電力変換装置の出力電力と負荷の消費電力がバランスした状態であると、商用電力系統が停電などになった場合においても、電力変換装置の出力部の位相や周波数などの変動が小さく、検出変化量が少ないので、単独運転状態であることを検知できずに単独運転を継続してしまうといった問題がある。
【0009】
また、インバータの出力電流をランダムに変動させ、単独運転を検出させるような方式においては、常に出力に変動要素をあたえるため、電力変換装置の出力電力は本来太陽電池が発電できる最大の発電電力よりも少なくなり、発電電力を有効に利用することができないという問題も生じる。
【0010】
本発明は上述した従来の問題点に鑑みてなされたものであり、直流電源の発電電力を有効に利用し、確実に単独運転の検出を行う電力変換装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明は、太陽電池から得られる直流電力を交流電力に変換し、商用電力系統及び負荷系統に接続されて連系運転を行う電力変換装置であって、該電力変換装置は該商用電力系統から流入する電流、及び/または該商用電力系統へ流出する電流を計測する電流計測手段を有し、該電流計測手段の電流値が略零にならないように出力制御を行うことを特徴とする。
【0012】
また本発明においては、前記電流計測手段の電流値が略零に近づいた場合にのみ周期的に出力を変動させるように出力制御を行うことを特徴とする。
【0013】
また本発明においては、前記電流計測手段の電流値が零に近づくほど出力変動が大きくなるように出力制御を行うことを特徴とする。これらにより確実に単独運転の検出を行うことができるとともに太陽電池で発電した電力を有効に利用できる電力変換装置を提供することが可能とできる。
【0014】
【発明の実施の形態】
以下、太陽電池モジュールを複数屋根上に配設する太陽光発電装置の場合を例にとり、本発明に係る実施形態を模式的に図示した図面に基づいて詳細に説明する。
【0015】
図1に示すように、電力変換装置1は、太陽電池電源2の電圧を昇圧、異なる電圧に変換する直流電圧変換回路3と、前記直流電圧変換回路3にて変換された直流電力を交流電力に変換するインバータ回路4とから構成される。
【0016】
直流電圧変換回路3はリアクトル5、半導体スイッチ素子6、ダイオード7、平滑コンデンサ8、及び半導体スイッチ素子6を制御する出力制御手段9でチョッパ回路を構成しており、これにより電圧変換が行われる。
【0017】
インバータ回路4は複数の半導体スイッチ素子から成るブリッジ回路10と、リアクトルとコンデンサから成るフィルタ回路11とから成り、直流電圧変換回路3より出力される直流電力を正弦波の商用交流波形に変換する。前記インバータ回路4から出力された交流電力は商用電力系統12及び負荷13に接続されており、負荷13への電力供給及び/または商用電力系統12への売電が行われる。また、前記電力変換装置1は商用電力系統12から供給、もしくは需給する交流出力電流を測定する電流計測手段である交流出力検出器14を備え、単独運転状態を検出し商用電源系統12と解列を行うための単独運転検出制御部15へ情報を提供される。
【0018】
次に本発明の電力変換装置の動作について説明する。太陽電池電源2から得られる直流電力は電力変換装置1に入力される。直流電圧変換回路3においては、出力制御手段9により半導体スイッチ素子6が高速にオン、オフ制御され、半導体スイッチ6のオン時はリアクトル5にエネルギーが蓄積され、半導体スイッチ6のオフ時には前記エネルギーがダイオード7を通り平滑コンデンサ8部に出力されることにより、太陽電池電源2から入力された直流電圧とは異なる直流電圧に昇圧変換することが可能となる。なお、半導体スイッチ素子6は変換電圧に応じてパルスのデューティーをコントロールするPWM方式により制御するのが望ましい。また、変換出力された直流電圧はインバータ回路4が効率よく作動する電圧値であることが望ましい。
【0019】
インバータ回路4に入力された直流電力は、ブリッジ回路10の高速スイッチング動作によるPWM(パルス幅変調)制御が行われ、LPF(ローパスフィルタ)であるフィルタ回路11を通すことにより、正弦波の交流出力が得られる。出力された交流電力はモーターや照明などの交流機器である負荷1に供給されるが、太陽電池電源2の発電電力量が負荷電力量を上回る場合は、余った電力を商用電力系統12に逆潮流させて売電を行う。
【0020】
また、商用電力系統12と、負荷13および電力変換装置1間の送電線には、正弦波の交流出力電流を検出する電流計測手段である交流出力検出器14が取り付けられており、商用電力系統12からの受電電流もしくは逆潮流による売電電流が測定できるようにして、電力変換装置1の単独運転検出制御部15へ情報(データ)を提供する。単独運転検出制御部15では電力変換装置1の単独運転状態を検出するための手段として能動的方式及び受動的方式各々1つ以上の制御(例えば電圧位相跳躍検出方式と周波数シフト方式)が行われているが、発電状態や負荷の状況によらず一定の感度を持った検出を行うものである。
【0021】
図2に示すように、太陽電池の発電電力は日照状況や気温によって常に変動しており、発電電力を最大限に得るにはその時々の太陽電池の最大出力点へ動作点を変動させるように電力変換装置を制御している。例えば日射変動によって太陽電池の出力電力が上昇した場合には動作点をP2からP1へ移動させ、減少した場合にはP2からP3へ移動させているが、前述したように発電量と負荷の消費電力がバランスしてしまうと、商用電力系統が停電などになった場合においても、電力変換装置の出力部の位相や周波数などの変動が小さく、検出変化量が少ないので、系統の変化の検出が困難となるものである。
【0022】
そこで本発明においては、前述の交流出力検出器で検出した商用電力系統を流れる電流値が略零に近づいている場合には電力変換装置の出力電力変動を停止、または減少させ検出した電流値が略零にならないように動作させるものである。
【0023】
具体的には図3に示すように、商用電力系統の電流Iが零に近づくとき(斜線部の期間)には、前記電流Iが検出レベル以下にならないように太陽電池の最大出力点の追従を停止して、太陽電池の出力電力Pの出力がそれ以上に上昇しないよう一定電力で発電を行う制御とし、商用電力系統からの電力供給を維持させる。この制御は、マイクロコンピュータ及び半導体スイッチ素子6を駆動させるための駆動用素子等で構成された出力制御手段9によりなされる。このような制御により、電力変換装置の出力電力と負荷の消費電力とがバランス状態となることがなく、停電等の商用電力系統に異常があった場合には位相や周波数等の検出変化量が大きいために確実に単独運転状態の検出を行うことが可能となり、安全で信頼性の高い電力変換装置を提供することが可能となる。
【0024】
次に、本発明の第2の実施形態について説明する。電力変換装置の構成は前述の図1と同様であるが、動作においては以下のとおりである。電力変換装置1の単独運転検出制御部15において単独運転状態の検出を行うとともに、交流出力検出器14で検出した電流値が略零に近づいた場合にのみ周期的に出力を変動させるように出力制御を行う。
【0025】
すなわち、図4に示すように、出力制御手段9の制御により、商用電力系統の電流が零に近づいた場合に最大出力点の追従を停止し、周期的に出力を増減させて、負荷の消費電力と出力電力がバランスしないように動作するので、検出レベルの設定値をより零に近づけても位相や周波数等の検出変化量を維持することが可能になる。
【0026】
このような制御により、停電等の商用電源系統の異常の場合には周期的に出力が変動することとなり、たとえ負荷の消費電力と電力変換装置の出力電力がバランス状態に近くても出力変動による電圧や周波数等の変化率の検出が容易となり、単独運転状態を確実に検出することが可能となる。
【0027】
また交流出力検出器で検出した電流が略零に近づいた場合のみ周期的に出力を変動させているため、負荷の消費電力と電力変換装置の出力電力がバランス状態にない場合には出力変動を行わず、出力変動に伴う損失を無くすことで太陽電池で発電される電力を有効に利用することが可能となり、安全で効率のよい電力変換装置を提供することができる。
【0028】
また本発明においては、前述した単独運転検出制御部15において単独運転状態の検出を行うとともに、交流出力検出器14で検出した電流値が略零に近づいた場合にのみ周期的に出力を変動させるように出力制御を行うとともに、検出電流値が零に近づくほど出力変動の比率が大きくなるように制御を行うようにすることも可能である。
【0029】
つまり、図5に示すように、出力制御手段9の制御により、商用電力系統の電流が零からある範囲にある場合には出力変動は小さく、零に近づく程出力の増減比を大きくさせて、負荷の消費電力と出力電力がバランスしないように動作を行う。
【0030】
このような制御により、交流出力検出器で検出した電流が零に近づいた場合のみ周期的に出力を変動させているため、負荷の消費電力と電力変換装置の出力電力がバランス状態にない場合には出力変動を行わず、またバランス状態に近づくまで段階的に変動量が増加するため太陽電池で発電した電力を有効に利用することが可能となる。
【0031】
なお、本実施例においては太陽電池の発電電力を負荷の消費電力以下の場合における制御方法について説明したものであり、太陽電池の発電電力が消費電力を上回る場合には商用電力系統の電流が略零にならない範囲において逆潮流(売電)を行なうように制御するのが好ましい。
【0032】
【発明の効果】
上記説明のように本発明の電力変換装置の制御方法によれば、直流電力を交流電力に変換し、商用電力系統及び負荷系統に接続されて連系運転を行うとともに、前記商用電力系統から流入する電流及び/または該商用電力系統へ流出する電流を計測する電流計測手段と、該電流計測手段の電流値が略零にならないように出力制御を行う制御手段とを備えているので、電力変換装置の出力電力と負荷の消費電力とがバランス状態となることがなく、停電等で商用電力系統に異常があった場合に確実に単独運転状態の検出を行うことができる。
【0033】
また、電流計測手段の電流値が略零に近づいた場合に周期的に出力を変動させるように出力制御を行うこととしたので、停電等で商用電源系統の異常の場合には、周期的に出力が変動することとなり、単独運転状態を確実に検出することが可能となり、また太陽電池で発電される電力を有効に利用することができる。
【0034】
また、電流計測手段の電流値が零に近づくほど出力変動が大きくなるように出力制御を行うこととしたので、停電等の商用電源系統の異常の場合には周期的に出力が変動することとなり、単独運転状態を確実に検出することが可能となり、また太陽電池で発電した電力をより有効に利用することが可能とできる。
【図面の簡単な説明】
【図1】本発明の電力変換装置の実施の形態を示す一例の概略構成図である。
【図2】本発明の電力変換装置の動作点の変動を示す概略説明図である。
【図3】本発明の電力変換装置の制御動作における出力電力と商用電力系統からの受給電流との相関を示す概略説明図である。
【図4】本発明の他の実施形態の電力変換装置の制御動作における出力電力と商用電力系統からの受給電流との相関を示す概略説明図である。
【図5】本発明の他の実施形態の電力変換装置の制御動作における出力電力と商用電力系統からの受給電流との相関を示す概略説明図である。
【図6】従来の系統連系システムの形態を示す概略構成図である。
【図7】従来の電力変換装置の形態を示す一例の概略構成図である。
【符号の説明】
1:電力変換装置
2:太陽電池電源
3:直流電圧変換回路
4:インバータ回路
5:リアクトル
6:半導体スイッチ素子
7:ダイオード
8:平滑コンデンサ
9:出力制御手段(制御手段)
10:ブリッジ回路
11:フィルタ回路
12:商用電力系統
13:負荷
14:交流出力検出器(電流計測手段)
15:単独運転検出制御部
16:開閉器
21:電力変換装置
23:直流電圧変換回路
24:インバータ回路
P1、P2、P3:動作点
P:太陽電池出力電力
I:商用電力系統電流
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power converter that converts DC power obtained from a DC power supply such as a solar cell into AC power, and more particularly to an islanding detection technology.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a system interconnection system that converts an output of a solar cell into an AC using an inverter and interconnects with a commercial power system has been put to practical use. In this system interconnection system, as shown in FIG. 6, DC power generated by the solar cell power supply 2 is converted to, for example, 200 V AC by a power converter 21, and the power converter 21 and the commercial power system 12 Are interconnected.
[0003]
As shown in FIG. 7, a conventional power converter 21 converts a power generated by the solar cell power supply 2 into a voltage different from the voltage of the solar cell power supply 2 and a DC voltage conversion circuit 23. And an inverter circuit 24 that converts the converted DC power into AC power. The inverter circuit 24 converts the maximum power generated by the solar cell power supply 2 into an AC output, and connects the load 13 to the commercial power system 12 to interconnect the power supply. Running (maximum output tracking control).
[0004]
Here, the power converter 21 has a switch 16 such as a relay, and when there is an abnormality in the commercial power system 12 due to a power failure or the like, the power conversion is immediately stopped so that the recovery operation can be performed safely and promptly. Means for shutting off the switch 16 and disconnecting from the commercial power system 12 is employed (single operation detection function).
[0005]
As means for detecting such an isolated operation, there are a passive method and an active method, and it is required to combine them in order to increase the detection accuracy. Generally, passive systems include a voltage phase jump detection system that detects a sudden change in the voltage phase of the system, a third harmonic voltage distortion detection system that detects a sudden increase in the third harmonic of the system, and a sudden change in the frequency of the system. There is a frequency change rate detection method to detect, etc.The active methods include a frequency shift method that applies a frequency bias to the output, an active power fluctuation method that fluctuates the active power of the output, and a reactive power fluctuation method that fluctuates the reactive power of the output. Etc.
[0006]
In addition, a method has been proposed in which the output current of the inverter is changed at random to detect islanding operation (for example, see Patent Document 1).
[0007]
[Patent Document 1]
JP-A-11-136865 (page 9, FIG. 1)
[0008]
[Problems to be solved by the invention]
However, in the conventional method, when the output power of the power conversion device and the power consumption of the load are in a balanced state, even when the commercial power system loses power or the like, the phase and frequency of the output portion of the power conversion device, etc. Since the fluctuation is small and the detected change amount is small, there is a problem that the independent operation cannot be detected and the isolated operation is continued.
[0009]
Also, in a method in which the output current of the inverter is randomly varied to detect islanding operation, the output power of the power converter is always larger than the maximum power generated by the solar cell because the output always has a variable factor. And the generated power cannot be used effectively.
[0010]
The present invention has been made in view of the above-described conventional problems, and has as its object to provide a power conversion device that effectively utilizes generated power of a DC power supply and reliably detects islanding operation. is there.
[0011]
[Means for Solving the Problems]
The present invention is a power converter that converts DC power obtained from a solar cell into AC power and is connected to a commercial power system and a load system to perform an interconnected operation. It has a current measuring means for measuring a current flowing in and / or a current flowing out to the commercial power system, and performs output control so that a current value of the current measuring means does not become substantially zero.
[0012]
Further, the present invention is characterized in that output control is performed so that the output is periodically changed only when the current value of the current measuring means approaches substantially zero.
[0013]
Further, the present invention is characterized in that output control is performed such that the output fluctuation increases as the current value of the current measuring means approaches zero. Thus, it is possible to reliably detect the islanding operation and to provide a power converter that can effectively use the power generated by the solar cell.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings schematically illustrating a solar power generation device in which a plurality of solar cell modules are arranged on a roof.
[0015]
As shown in FIG. 1, a power conversion device 1 includes a DC voltage conversion circuit 3 that boosts the voltage of a solar cell power supply 2 and converts the voltage to a different voltage, and converts the DC power converted by the DC voltage conversion circuit 3 into an AC power And an inverter circuit 4 for converting the data into
[0016]
The DC voltage conversion circuit 3 comprises a reactor 5, a semiconductor switch element 6, a diode 7, a smoothing capacitor 8, and an output control means 9 for controlling the semiconductor switch element 6, thereby performing a voltage conversion.
[0017]
The inverter circuit 4 includes a bridge circuit 10 including a plurality of semiconductor switch elements, and a filter circuit 11 including a reactor and a capacitor, and converts the DC power output from the DC voltage conversion circuit 3 into a sine wave commercial AC waveform. The AC power output from the inverter circuit 4 is connected to the commercial power system 12 and the load 13, and power is supplied to the load 13 and / or power is sold to the commercial power system 12. Further, the power conversion device 1 includes an AC output detector 14 which is a current measuring means for measuring an AC output current supplied or supplied from or supplied to the commercial power system 12, detects an independent operation state, and disconnects from the commercial power system 12. The information is provided to the islanding operation detection control unit 15 for performing the operation.
[0018]
Next, the operation of the power converter of the present invention will be described. DC power obtained from the solar cell power supply 2 is input to the power converter 1. In the DC voltage conversion circuit 3, the semiconductor switch element 6 is turned on and off at high speed by the output control means 9, energy is stored in the reactor 5 when the semiconductor switch 6 is on, and the energy is stored when the semiconductor switch 6 is off. By being output to the smoothing capacitor 8 through the diode 7, it is possible to perform a step-up conversion to a DC voltage different from the DC voltage input from the solar cell power supply 2. It is desirable that the semiconductor switch element 6 is controlled by a PWM method for controlling the duty of a pulse according to the converted voltage. It is desirable that the converted and output DC voltage has a voltage value at which the inverter circuit 4 operates efficiently.
[0019]
The DC power input to the inverter circuit 4 is subjected to PWM (pulse width modulation) control by the high-speed switching operation of the bridge circuit 10 and passes through a filter circuit 11 which is an LPF (low-pass filter), thereby providing a sine wave AC output. Is obtained. The output AC power is supplied to a load 1, which is an AC device such as a motor or a light. However, if the amount of power generated by the solar cell power supply 2 exceeds the load power, the surplus power is returned to the commercial power system 12. Sell electricity with the tide.
[0020]
Further, an AC output detector 14 as current measuring means for detecting a sine-wave AC output current is attached to the commercial power system 12 and a transmission line between the load 13 and the power converter 1. Information (data) is provided to the isolated operation detection control unit 15 of the power converter 1 so that the power receiving current from the power converter 12 or the power selling current due to the reverse power flow can be measured. In the islanding operation detection control unit 15, as means for detecting the islanding state of the power converter 1, at least one active system and one or more passive systems (for example, a voltage phase jump detection system and a frequency shift system) are performed. However, the detection is performed with a certain sensitivity regardless of the power generation state or the load state.
[0021]
As shown in FIG. 2, the power generated by the solar cell constantly fluctuates depending on the sunshine condition and the temperature. In order to obtain the maximum power generated, the operating point should be changed to the maximum output point of the solar cell at that time. Controlling the power converter. For example, the operating point is moved from P2 to P1 when the output power of the solar cell increases due to solar radiation fluctuation, and is moved from P2 to P3 when the output power decreases. If the power is balanced, even when the commercial power system loses power, fluctuations in the phase and frequency of the output section of the power conversion device are small, and the amount of detected change is small. It will be difficult.
[0022]
Therefore, in the present invention, when the current value flowing through the commercial power system detected by the AC output detector is approaching substantially zero, the output power fluctuation of the power converter is stopped or reduced and the detected current value is reduced. The operation is performed so as not to become substantially zero.
[0023]
Specifically, as shown in FIG. 3, when the current I of the commercial power system approaches zero (the period of the shaded area), the maximum output point of the solar cell is tracked so that the current I does not fall below the detection level. Is stopped, and control is performed to generate electric power at a constant power so that the output of the output power P of the solar cell does not increase any more, and the power supply from the commercial power system is maintained. This control is performed by the output control means 9 including a microcomputer and a driving element for driving the semiconductor switching element 6. By such control, the output power of the power conversion device and the power consumption of the load do not become in a balanced state, and if there is an abnormality in the commercial power system such as a power failure, the detected change amount such as the phase and frequency is reduced. Because of the large size, it is possible to reliably detect the isolated operation state, and it is possible to provide a safe and highly reliable power converter.
[0024]
Next, a second embodiment of the present invention will be described. The configuration of the power converter is the same as that of FIG. 1 described above, but the operation is as follows. The isolated operation detection control unit 15 of the power conversion device 1 detects the isolated operation state, and outputs an output such that the output periodically fluctuates only when the current value detected by the AC output detector 14 approaches substantially zero. Perform control.
[0025]
That is, as shown in FIG. 4, under the control of the output control means 9, when the current of the commercial power system approaches zero, the following of the maximum output point is stopped, and the output is periodically increased or decreased to reduce the load consumption. Since the operation is performed so that the power and the output power are not balanced, even if the set value of the detection level is made closer to zero, it is possible to maintain the detection change amount such as the phase and the frequency.
[0026]
With such control, the output fluctuates periodically in the event of an abnormality in the commercial power supply system such as a power outage, and even if the power consumption of the load and the output power of the power converter are close to a balanced state, the output fluctuates. It is easy to detect the rate of change of the voltage, frequency, and the like, and it is possible to reliably detect the isolated operation state.
[0027]
In addition, since the output is changed periodically only when the current detected by the AC output detector approaches substantially zero, the output fluctuation may be reduced if the power consumption of the load and the output power of the power converter are not in a balanced state. By eliminating the loss due to the output fluctuation, the power generated by the solar cell can be effectively used, and a safe and efficient power converter can be provided.
[0028]
Further, in the present invention, the above-described islanding operation detection controller 15 detects the islanding operation state, and periodically changes the output only when the current value detected by the AC output detector 14 approaches substantially zero. In addition to performing output control as described above, it is also possible to perform control so that the ratio of output fluctuation increases as the detected current value approaches zero.
[0029]
That is, as shown in FIG. 5, under the control of the output control means 9, when the current of the commercial power system is within a certain range from zero, the output fluctuation is small, and as the current approaches the zero, the output increase / decrease ratio is increased. The operation is performed so that the power consumption of the load and the output power are not balanced.
[0030]
With such control, the output is periodically changed only when the current detected by the AC output detector approaches zero, so that when the power consumption of the load and the output power of the power converter are not in a balanced state. Does not fluctuate the output, and the amount of fluctuation increases stepwise until it approaches the balance state, so that the power generated by the solar cell can be effectively used.
[0031]
Note that, in the present embodiment, the control method in the case where the power generated by the solar cell is equal to or less than the power consumption of the load has been described, and when the power generated by the solar cell exceeds the power consumption, the current of the commercial power system is substantially reduced. It is preferable to perform control such that reverse power flow (power selling) is performed in a range where the power flow does not become zero.
[0032]
【The invention's effect】
As described above, according to the control method of the power conversion device of the present invention, DC power is converted into AC power, connected to the commercial power system and the load system to perform the interconnection operation, and flows from the commercial power system. Current measuring means for measuring the amount of current flowing into and / or out of the commercial power system, and control means for controlling the output so that the current value of the current measuring means does not become substantially zero. The output power of the device and the power consumption of the load do not become in a balanced state, and it is possible to reliably detect the isolated operation state when there is an abnormality in the commercial power system due to a power failure or the like.
[0033]
In addition, when the current value of the current measuring unit is close to substantially zero, the output is controlled so as to periodically change the output. Since the output fluctuates, the isolated operation state can be reliably detected, and the power generated by the solar cell can be effectively used.
[0034]
In addition, since the output control is performed so that the output fluctuation increases as the current value of the current measuring means approaches zero, the output periodically fluctuates in the event of an abnormality in the commercial power supply system such as a power failure. In addition, the isolated operation state can be reliably detected, and the power generated by the solar cell can be more effectively used.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an example showing an embodiment of a power conversion device of the present invention.
FIG. 2 is a schematic explanatory diagram showing a change in an operating point of the power conversion device of the present invention.
FIG. 3 is a schematic explanatory diagram showing a correlation between output power and current received from a commercial power system in a control operation of the power conversion device of the present invention.
FIG. 4 is a schematic explanatory diagram showing a correlation between output power and a current received from a commercial power system in a control operation of a power converter according to another embodiment of the present invention.
FIG. 5 is a schematic explanatory diagram showing a correlation between output power and a current received from a commercial power system in a control operation of a power converter according to another embodiment of the present invention.
FIG. 6 is a schematic configuration diagram showing a form of a conventional grid interconnection system.
FIG. 7 is a schematic configuration diagram of an example showing a form of a conventional power converter.
[Explanation of symbols]
1: power conversion device 2: solar cell power supply 3: DC voltage conversion circuit 4: inverter circuit 5: reactor 6: semiconductor switch element 7: diode 8: smoothing capacitor 9: output control means (control means)
10: Bridge circuit 11: Filter circuit 12: Commercial power system 13: Load 14: AC output detector (current measuring means)
15: islanding operation detection control section 16: switch 21: power converter 23: DC voltage converter 24: inverter circuits P1, P2, P3: operating point P: solar cell output power I: commercial power system current

Claims (3)

直流電力を交流電力に変換し、商用電力系統及び負荷系統に接続されて連系運転を行うとともに、前記商用電力系統から流入する電流及び/または該商用電力系統へ流出する電流を計測する電流計測手段と、該電流計測手段の電流値が略零にならないように出力制御を行う制御手段とを備えていることを特徴とする電力変換装置。Current measurement for converting DC power to AC power, performing connection operation by being connected to a commercial power system and a load system, and measuring a current flowing from the commercial power system and / or a current flowing to the commercial power system. And a control means for controlling the output so that the current value of the current measuring means does not become substantially zero. 前記制御手段は、前記電流計測手段の電流値が略零に近づいた場合に周期的に出力を変動させる出力制御を行うことを特徴とする請求項1に記載の電力変換装置。2. The power converter according to claim 1, wherein the control unit performs output control for periodically changing an output when the current value of the current measuring unit approaches substantially zero. 3. 前記制御手段は、前記電流計測手段の電流値が略零に近づくほど出力の変動が大きくなるように出力制御を行うことを特徴とする請求項2に記載の電力変換装置。The power converter according to claim 2, wherein the control unit performs output control so that a change in output increases as the current value of the current measurement unit approaches substantially zero.
JP2003021238A 2003-01-30 2003-01-30 Power converter Pending JP2004236418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021238A JP2004236418A (en) 2003-01-30 2003-01-30 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021238A JP2004236418A (en) 2003-01-30 2003-01-30 Power converter

Publications (1)

Publication Number Publication Date
JP2004236418A true JP2004236418A (en) 2004-08-19

Family

ID=32950627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021238A Pending JP2004236418A (en) 2003-01-30 2003-01-30 Power converter

Country Status (1)

Country Link
JP (1) JP2004236418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007124518A1 (en) * 2006-04-27 2007-11-08 Fronius International Gmbh Bridging of a stepdown controller in a converter of a solar unit
JP2011523342A (en) * 2008-06-10 2011-08-04 ロールス‐ロイス、パブリック、リミテッド、カンパニー Generator network and local electrical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007124518A1 (en) * 2006-04-27 2007-11-08 Fronius International Gmbh Bridging of a stepdown controller in a converter of a solar unit
JP2011523342A (en) * 2008-06-10 2011-08-04 ロールス‐ロイス、パブリック、リミテッド、カンパニー Generator network and local electrical system

Similar Documents

Publication Publication Date Title
US8817510B2 (en) Apparatus and method for controlling a power inverter
US7986122B2 (en) Method and apparatus for power conversion with maximum power point tracking and burst mode capability
CN102868310B (en) There is the power conversion circuit that AC exports
JP4468372B2 (en) Photovoltaic power generation system and its boosting unit
EP2907234B1 (en) Controlling power conversion systems
JP2000020150A (en) Solar power generation inverter device
TW201338390A (en) Stacked voltage source inverter with separate DC sources
JP2011507465A (en) Safety mechanism, wake-up method and shutdown method in distributed power installation
CN102780221A (en) System and method for controlling online type photovoltaic power generation microgrid without storage device
KR101830666B1 (en) Power conversion apparatus
CN103392291B (en) Power conversion device
US20120253536A1 (en) Ac diversion mode controller
JP2012161215A (en) Converter control device and system interconnection inverter system using the same
JP2005269843A (en) Parallel operation device
CN108899926B (en) Photovoltaic off-grid and grid-connected energy storage inverter
JP2004080980A (en) System-linking system inverter device
JP4712148B2 (en) Power converter
JP2004295688A (en) Photovoltaic power generation device
KR101999183B1 (en) Method for controlling inverter in solar pump system
JP2004236418A (en) Power converter
Meiqin et al. Controller for 1kW-5kW wind-solar hybrid generation systems
JP2005094921A (en) Distributed power generation system and method for preventing its isolated operation
JP6928330B2 (en) Power control device and its power control method
JP6914789B2 (en) Grid interconnection system, power generation controller used for it, and its operation method
JP6625469B2 (en) Power control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703