JP2004295688A - Photovoltaic power generation device - Google Patents

Photovoltaic power generation device Download PDF

Info

Publication number
JP2004295688A
JP2004295688A JP2003089266A JP2003089266A JP2004295688A JP 2004295688 A JP2004295688 A JP 2004295688A JP 2003089266 A JP2003089266 A JP 2003089266A JP 2003089266 A JP2003089266 A JP 2003089266A JP 2004295688 A JP2004295688 A JP 2004295688A
Authority
JP
Japan
Prior art keywords
solar cell
power
point
voltage
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089266A
Other languages
Japanese (ja)
Inventor
Akio Hasegawa
聡夫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003089266A priority Critical patent/JP2004295688A/en
Publication of JP2004295688A publication Critical patent/JP2004295688A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimum point tracking type photovoltaic power generation device capable of effectively taking solar cell power without impairing a power generating opportunity by an erroneous determination in a conventional MPPT method. <P>SOLUTION: This photovoltaic power generation device comprises a solar cell 2; a system-linked inverter 1 for converting its power to AC; and a boost control circuit 6 that is a control means for tracking the maximum output point of the solar cell 2 while periodically changing the working voltage of the solar cell output to be inputted to the inverter. The boost control circuit 6 determines the increasing/decreasing quantity of working voltage change in the next period according to the difference between the working voltage of the initial or previous solar cell output and the working voltage in this period. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば太陽光発電システムにおいて、商用電力系統へ連系させる電力変換手段(例えば、系統連系インバータ)を備える太陽光発電装置に関する。
【0002】
【従来の技術】
従来の太陽光発電システムについて、図7に基づき説明する。太陽光発電装置10は、太陽光を光電変換する太陽電池2と、直流電力を交流電力に変換する系統連系インバータ1が、商用電力系統9や交流負荷8に接続されて成る。
【0003】
ここで、系統連系インバータ1は、太陽電池2からの入力電流・入力電圧を検知する電流検出部3と、電圧検出部4と、太陽電池2から入力された電圧を昇圧し異なる電圧に変換する昇圧部5と、昇圧部5にて変換された直流電力を交流電力に変換するインバータ部7とから構成される。昇圧部5はリアクトルや半導体スイッチ素子、ダイオードや平滑コンデンサ、半導体スイッチ素子を制御する昇圧制御回路14でチョッパ回路を構成しており、これにより電圧変換が行われる。なお、半導体スイッチ素子は変換電圧に応じてパルスのデューティーをコントロールするPWM方式により制御するのが望ましい。また、変換出力された直流電圧はインバータ回路4が効率よく作動する電圧値であることが望ましい。インバータ回路4は複数の半導体スイッチ素子から成るブリッジ回路やリアクトルとコンデンサから成るフィルタ回路から成り、昇圧部5より出力される直流電力を正弦波の商用交流波形に変換する。
【0004】
太陽電池2により発電された電力は、接続箱等を介して系統連系インバータ1に入力される。系統連系インバータ1は交流分電盤を介して商用電力系統9あるいは系統用負荷8に接続されており、太陽電池2で発電された直流電力を前記系統連系インバータ1で交流電力に変換した後、モーターや照明などの交流機器である負荷8に供給されるが、太陽電池電源2の発電電力量が負荷電力量を上回る場合は、余った電力を商用電力系統9に逆潮流させて売電を行う。
【0005】
ところで、太陽電池は日射量及び太陽電池モジュールの温度により最大電力を発生させる動作点が異なる為、太陽電池の発電電力を有効に活用するには刻々太陽電池の変化していく最適動作電圧点に追従していくことが不可欠である。このような太陽電池特性より最大電力を取り出す手法としては、主に太陽電池の最大電力を発生させる最適点に太陽電池の動作点を追従させるMPPT制御方法である山登り法などが用いられている。具体的には、現状の動作点で得られる電力と移動させた動作点で得られる電力の増減により動作点への方向判断を行い、この2点間の各動作点での電力増減判定操作を繰り返し行うことにより、最適点へと追従させる方法である。
【0006】
すなわち図6に示す動作フローのように、△Vほど動作点を移動させた時に電力が増加しているならば、△V移動させた方向と同じ方向に次回も動作点を移動させるというものである。また、△Vほど動作点を移動させた時に逆に電力が小さくなる場合には、最適点は今回動作させた逆方向にあると考え、次回は動作点を逆方向に移動させ、この2点間の各動作点での電力増減判定操作を繰り返し行うことにより最適点へと追従させていくことができる。このように、前回動作点での電力と今回の動作点での電力比較を行い、即座に次回の動作点電圧を決定していた。
【0007】
また、日射量変化による電力増減が大きい場合にのみ、動作点電圧を固定し一定制御モードでMPPT動作を停止させることが提案されている(例えば、特許文献1を参照)。
【0008】
【特許文献1】
特開平8−179840号公報
【0009】
【発明が解決しようとする課題】
しかしながら、日射量が刻々変化する状況においては、現状の動作点と△Vを増減させた動作点での2点間電力比較では、回路の応答性、測定誤差等の要因により正しい方向判定が得られない場合がある。
【0010】
また、電力比較を行う際に両者の電力差が小さい場合には、無理に方向判断せず現状の動作点を維持する方が好ましい。この状況は、現状の動作点が最適点近傍に位置する場合か、日射が不安定で電力計算自体が日射量の変化の影響を受ける場合が考えられる。
【0011】
また、両者の電力差が極端に大きい場合は、日射量が急変していることが容易に考えることができこの場合は日射が安定するまでは動作点を移動させない方が誤判断もなく良好な結果を得られる。
【0012】
さらに、特許文献1に開示された技術では、最適点を的確に追尾しているときに電力増減が小さい場合も、現在の動作点電圧を維持させねば、より効率良く安定した太陽電池電力を引き出すことはできない。
【0013】
そこで本発明は、初期または前回の動作電圧と今回の動作電圧との差異に基づいて次回動作電圧の方向判定をしつつ、一定周期内での複数ポイントでの方向判断を総合的に判断し最終方向判定を下し最大出力点を追従させるようにした太陽光発電装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決するために、本発明の太陽光発電装置は、太陽電池と、該太陽電池からの電力を交流に変換する電力変換手段と、該電力変換手段に入力させる太陽電池出力の動作電圧を周期的に変化させながら前記太陽電池の最大出力点を追尾する制御手段とを備えて成るとともに、該制御手段は、初期または前回の太陽電池出力の動作電圧と今回周期の動作電圧との差に応じて、次回周期の動作電圧変化の増減量を決定するようにしたことを特徴とする。
【0015】
具体的には、系統連系インバータ内部に電力計算を行う為の太陽電池出力電圧及び太陽電池出力電流を計測する太陽電池出力電圧・電流計測部と、一定周期で太陽電池電圧を変化させるタイマー制御部と、動作点を変化せた各点での方向判断を行う動作点方向判定部と、一定周期内の各点での方向判断を元に総合的に最終方向判定を動作点方向最終判定部とを備える。
【0016】
これにより、常に安定した方向判断を行い、未然に従来のMPPT方式での誤判断による発電電力機会を損なうこと無く有効に太陽電池電力を取り出すことができる最適点追従方式の太陽光発電装置を提供することができる。
【0017】
【発明の実施の形態】
以下に、本発明に係る太陽光発電装置の実施形態について、模式的に図示した図面に基づき詳細に説明する。
【0018】
図1に示すように、主な回路構成は既に述べた図7と同様であり、太陽電池2にて発電された電力は接続箱等を介して電力変換手段である系統連系インバータ1に入力される。系統連系インバータ1では入力された直流電力を交流電力に直交変換し、交流分電盤を介して商用電力系統9に逆潮流あるいは系統負荷8へ電力供給や逆潮流を行なっている。
【0019】
ここで、太陽電池2としては、多結晶、単結晶、またはアモルファスのシリコン等の太陽電池などが好適に使用され、複数枚の太陽電池セルを接続して成るモジュールを、さらに直並列に並べてアレイとし、特に図示しないが接続箱等で太陽電池モジュールの出力配線を合成するようにしている。そして、合成された太陽電池2の出力は系統連系インバータ1に入力され、この系統連系インバータ1内で、電流検出手段3、及び電圧検出手段4により、太陽電池出力電流、電圧等が測定され、これらの情報に基づいて太陽電池出力を計算する。
【0020】
また、系統連系インバータ1では所定の太陽電池出力電圧で動作するように昇圧制御回路6により、制御目標値として電圧指令値Vrefを定めて太陽電池動作点を決定する。昇圧制御回路6には、一定周期で太陽電池電圧を変化させるタイマー制御部11と、動作点を変化させた各点での方向判断を行う動作点方向判定部12、一定周期内の各点での方向判断を元に総合的に最終方向判定を動作点方向最終判定部13が設けられており、昇圧部5の制御をコントロールする。
【0021】
このように、本発明の太陽光発電装置は、太陽電池2と、これからの電力を交流に変換する系統連系インバータ1と、これに入力させる太陽電池出力の動作電圧を周期的に変化させながら、太陽電池2の最大出力点を追尾する制御手段である昇圧制御回路6とを備え、この昇圧制御回路6は、初期または前回の太陽電池出力の動作電圧と今回周期の動作電圧との差に応じて、次回周期の動作電圧変化の増減量を決定するようにしている。
【0022】
次に、太陽電池動作電圧を決定する方法について説明する。図2において、図中の各番号は太陽電池出力の最適点追従制御における太陽電池出力電圧指令値(制御電圧)Vrefを示すものであり、状態1から状態4までは次回動作点を決定する為の一周期内での太陽電池出力電圧指令値パターンを表している。例えば状態1の時間や一周期の長さは、タイマー制御部11により定められる。まず一つの周期内における複数の状態、すなわち状態1、状態2、状態3、状態4の各点で最適点への方向判定を行う。この方向判定は動作点方向判定部12で行なわれる。
【0023】
次に、状態4においては、状態1から状態4までの各点での方向判定結果を総合的に判断し最適点への方向を決定し、これにより、次回MPPT周期である状態5から8の動作基準電圧(Vbase)を決定する。この動作基準電圧を算出するのが動作点方向最終判定部13であり、この判定のための情報は電流検出部3と電圧検出部4から電流値、電圧値、電力値を、動作点方向判定部12から電力の変化の方向を得ている。
【0024】
以下、上述の制御について状態1での判定方法を図4のフローチャートにしたがって説明する。まず、前回動作点(状態0)での電力(P0)と現在動作点(状態1)での電力(P1)との電力差(絶対値、Pdif)を算出し、電力差が一定値(Pmax)以上の場合は、日射急変による電力増減と考えることができ、このとき日射急変が落ち着くまでは現状の動作点を維持することが望ましく、方向判定として+1の重みづけを行う。
【0025】
なお、この重みづけに関する最終方向判定は後述する。また、この数値は説明上の例として記述したものであり、特別な意味はない。また、前記電力差が一定値以下の場合は、現在の動作点は最適点近傍に位置していると判断するとともに、最適点近傍では電力差が生じにくく、回路の応答性や測定誤差を受けやすい状態にあることから現状の動作点を維持することが望ましい。電力差がPminからPmaxの間にある時は、前回動作点(状態0)での電力と今回動作点(状態1)との大小比較を行う。状態0から状態1へは、動作基準電圧(Vbase)より△refVほど電圧指令値Vrefを上げているから、電力が状態0に対し状態1の方が大きければ、最適動作電圧点は動作基準電圧を上げる方向にあると判断できる。この時の方向判定としては+2の重みづけを行う。逆に電力が状態0に対し状態1の方が小さければ、最適点は動作点電圧を下げる方向にあると判断できる。この時の方向判定としては+0の重みづけを行う。
【0026】
以上が状態1における動作点での方向判定方法である。次に、状態2から状態4での各点での方向判定の基本的な考え方は同じであるが各状態での相違点を説明する。
【0027】
状態2では状態1と電力差による判定は状態1と全く同様であるが、状態1から状態2へは電圧指令値Vrefを下げている。最適点電圧が+方向、つまり状態1での動作点方向にあるならば電力は減る方向にあると考え、電力が状態1に対し状態2の方が小さければ、最適点は動作点電圧を上げる方向にあると判断できる。この時の方向判定としては+2の重みづけを行う。逆に電力が状態1に対し状態2の方より大きければ最適点は動作点電圧を下げる方向にあると判断できる。この時の方向判定としては+0の重みづけを行う。状態3の場合は状態2での方向判定と同様に考える。状態2から状態3へと電圧指令値Vrefを下げる場合なので、方向判定の考え方及び重み付けも同様に行う。状態4の場合は状態1での方向判定と同様に考える。状態3から状態4へと電圧指令値Vrefを上げる場合なので方向判定の考え方、重み付けも同様に行う。
【0028】
このように、状態1から状態4までの各点での方向判断に基いて、重み付けを累積した結果の大小に応じて3つのグループに分類し、最終的な最適動作点への方向判定を行う。このアルゴリズムを図5に示す。
【0029】
例えば、重み付けの累積結果が6、7、8の場合には、最適点が現在の動作点より+方向にあると考え、次の一定周期、すなわち状態1から状態4の動作基準電圧(Vbase)を△gV増加させる。このとき、状態5、6、7,8が動作基準電圧を△gV増加させた場合、図2に示すような電圧指令値パターンとなる。一方、重み付けの累積結果が3、4、5の場合は、電力差が状態1から状態4での各点で大き過ぎる(Pdif≧Pmax)、あるいは小さ過ぎる(Pdif≦Pmin)判定を行ったかであり、各点での方向判定は不一致となる。つまり、ある点では+方向、ある点では−方向に最適点があると判断したかである。この場合は、日射急変及び一過性の応答遅れによる誤判断が考えられ、方向判定を見送り現状の動作点を維持するようにする。
【0030】
また、重み付けの累積結果が0、1、2の場合は、最適点が現在の動作点より−方向にあると考え、次の一定周期、すなわち状態5から状態8の動作基準電圧(Vbase)を△gV減少させた、図3に示すような電圧指令値パターンとなる。
【0031】
なお、本実施形態では各動作点での判定要因により0、+1、+2の重み付けを行う例により説明したが、これに限定されるものではなく、各要因における重みと最終方向判定を行う際の閾値は本発明を特定させるものではない。
【0032】
【発明の効果】
以上詳述したように、本発明の太陽光発電装置では、太陽電池と、この太陽電池からの電力を交流に変換する電力変換手段と、この電力変換手段に入力させる太陽電池出力の動作電圧を周期的に変化させながら太陽電池の最大出力点を追尾する制御手段とを備えて成るとともに、この制御手段は、初期または前回の太陽電池出力の動作電圧と今回周期の動作電圧との差に応じて、次回周期の動作電圧変化の増減量を決定するようにした。これにより、太陽光発電における単発的な外乱による影響を緩和し、常に安定した方向判断を行い、従来のMPPT方式では誤判断をする場合のあった発電状況においても、発電電力機会を損なうこと無く有効に太陽電池電力を取り出すことができる。
【0033】
また、日射急変中でも常に同じアルゴリズムで、現状の動作電圧をできるだけ維持することが可能であり、これにより、日射状態が安定するまで実質的に定電圧制御動作を行い、誤判断を極力防止した優れた太陽光発電装置を提供できる。
【図面の簡単な説明】
【図1】本発明に係る太陽光発電装置の実施形態を模式的に説明する回路構成図である。
【図2】一定周期内における電圧指令値変更パターン(今回の方向判定により動作基準電圧を増加させる場合)を示す図である。
【図3】一定周期内における電圧指令値変更パターン(今回の方向判定により動作基準電圧を減少させる場合)を示す図である。
【図4】動作点変更パターンの状態1での方向判定処理フローチャートである。
【図5】動作点変更パターンの一周期終了時点での各状態での方向判定に基づいて総合判定を行い動作点の方向判断を決定するフローチャートである。
【図6】従来の太陽光発電装置における動作点での方向判定処理フローチャートである。
【図7】従来の太陽光発電装置を模式的に説明する回路構成図である。
【符号の説明】
1:系統連系インバータ(電力変換手段)
2:太陽電池
3:電流検出部
4:電圧検出部
5:昇圧部
6:昇圧制御回路(制御手段)
7:インバータ部
8:系統負荷
9:商用電力系統
10:太陽光発電装置
11:タイマー制御部
12:動作点方向判定部
13:動作点方向最終判定部
14:昇圧制御回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photovoltaic power generation system provided with power conversion means (for example, a grid connection inverter) for connecting to a commercial power system in a photovoltaic power generation system, for example.
[0002]
[Prior art]
A conventional solar power generation system will be described with reference to FIG. The photovoltaic power generator 10 includes a solar cell 2 for photoelectrically converting sunlight and a grid-connected inverter 1 for converting DC power to AC power, which are connected to a commercial power system 9 and an AC load 8.
[0003]
Here, the grid-connected inverter 1 boosts the voltage input from the solar cell 2 and converts it to a different voltage, with the current detecting unit 3 detecting the input current and the input voltage from the solar cell 2. And an inverter 7 for converting the DC power converted by the booster 5 into AC power. The step-up unit 5 forms a chopper circuit with a step-up control circuit 14 that controls a reactor, a semiconductor switch element, a diode, a smoothing capacitor, and a semiconductor switch element, thereby performing voltage conversion. It is desirable that the semiconductor switch element be controlled by a PWM method in which the duty of a pulse is controlled according to the converted voltage. It is desirable that the converted and output DC voltage has a voltage value at which the inverter circuit 4 operates efficiently. The inverter circuit 4 includes a bridge circuit including a plurality of semiconductor switch elements and a filter circuit including a reactor and a capacitor, and converts DC power output from the booster 5 into a sine-wave commercial AC waveform.
[0004]
The power generated by the solar cell 2 is input to the grid interconnection inverter 1 via a connection box or the like. The grid-connected inverter 1 is connected to a commercial power system 9 or a system load 8 via an AC distribution board, and converts the DC power generated by the solar cells 2 into AC power by the grid-connected inverter 1. Later, the power is supplied to a load 8 which is an AC device such as a motor or a light. If the amount of power generated by the solar cell power supply 2 exceeds the amount of load power, the surplus power is supplied to the commercial power system 9 by reverse flow and sold. Perform electricity.
[0005]
By the way, since solar cells have different operating points at which the maximum power is generated depending on the amount of solar radiation and the temperature of the solar cell module, in order to make effective use of the power generated by the solar cells, the optimal operating voltage point at which the solar cells change every moment is required. It is essential to follow. As a method of extracting the maximum power from such solar cell characteristics, a hill-climbing method, which is an MPPT control method for following an operating point of the solar cell to an optimum point at which the maximum power of the solar cell is generated, is mainly used. Specifically, the direction to the operating point is determined based on the increase / decrease of the power obtained at the current operating point and the power obtained at the moved operating point, and the power increase / decrease determination operation at each operating point between these two points is performed. This is a method of following the optimum point by repeatedly performing.
[0006]
That is, as shown in the operation flow shown in FIG. 6, if the power increases when the operating point is moved by ΔV, the operating point is moved again in the same direction as the direction in which the ΔV is moved. is there. On the other hand, if the power becomes smaller by moving the operating point by ΔV, the optimum point is considered to be in the opposite direction of the current operation, and the operating point is moved in the opposite direction next time. By repeatedly performing the power increase / decrease determination operation at each operating point during the period, it is possible to follow the optimal point. In this way, the power at the previous operating point was compared with the power at the current operating point, and the next operating point voltage was immediately determined.
[0007]
Further, it has been proposed to fix the operating point voltage and stop the MPPT operation in the constant control mode only when the power increase or decrease due to the change in the amount of solar radiation is large (for example, see Patent Document 1).
[0008]
[Patent Document 1]
JP-A-8-179840 [0009]
[Problems to be solved by the invention]
However, in a situation where the amount of solar radiation changes every moment, a correct direction determination can be obtained due to factors such as circuit responsiveness and measurement error by comparing the current operating point and the two-point power at the operating point where ΔV is increased or decreased. May not be possible.
[0010]
When the power difference between the two is small when performing the power comparison, it is preferable to maintain the current operating point without forcibly determining the direction. This situation may be the case where the current operating point is located near the optimum point, or the case where the solar radiation is unstable and the power calculation itself is affected by the change in the amount of solar radiation.
[0011]
In addition, when the power difference between the two is extremely large, it is easy to think that the amount of solar radiation has changed suddenly. The result is obtained.
[0012]
Further, according to the technology disclosed in Patent Document 1, even when the power increase or decrease is small when the optimum point is accurately tracked, if the current operating point voltage is not maintained, more stable and stable solar cell power can be obtained. It is not possible.
[0013]
Therefore, the present invention determines the direction of the next operating voltage based on the difference between the initial or previous operating voltage and the current operating voltage, and comprehensively determines the direction determination at a plurality of points within a certain period, and finally determines It is an object of the present invention to provide a photovoltaic power generator that makes a direction determination and follows a maximum output point.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, a solar power generation device according to the present invention includes a solar cell, power conversion means for converting power from the solar cell into AC, and an operating voltage of a solar cell output to be input to the power conversion means. Control means for tracking the maximum output point of the solar cell while periodically changing the operating voltage of the solar cell, and the control means includes a difference between the operating voltage of the initial or previous solar cell output and the operating voltage of the current cycle. , The amount of increase or decrease in the operating voltage change in the next cycle is determined.
[0015]
Specifically, a solar cell output voltage / current measurement unit that measures the solar cell output voltage and the solar cell output current for performing power calculation inside the grid-connected inverter, and a timer control that changes the solar cell voltage at regular intervals Unit, an operating point direction determining unit that determines the direction at each point where the operating point is changed, and an operating point direction final determining unit that comprehensively determines the final direction based on the direction determination at each point within a certain period. And
[0016]
As a result, an optimal point-following type photovoltaic power generator that can always take a stable direction judgment and effectively extract solar cell power without impairing the power generation opportunity due to erroneous judgment in the conventional MPPT method is provided. can do.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a solar power generation device according to the present invention will be described in detail with reference to the drawings schematically shown.
[0018]
As shown in FIG. 1, the main circuit configuration is the same as that of FIG. 7 described above, and the electric power generated by the solar cell 2 is input to a system interconnection inverter 1 as a power conversion means via a junction box or the like. Is done. The system interconnection inverter 1 orthogonally converts the input DC power into AC power, and performs reverse power flow to the commercial power system 9 or power supply or reverse power flow to the system load 8 via the AC distribution board.
[0019]
Here, as the solar cell 2, a solar cell made of polycrystalline, single crystal, or amorphous silicon is preferably used, and a module formed by connecting a plurality of solar cells is further arranged in series and in parallel. Although not shown, the output wiring of the solar cell module is combined with a connection box or the like. Then, the combined output of the solar cells 2 is input to the grid-connected inverter 1, in which the current detection means 3 and the voltage detection means 4 measure the output current and voltage of the solar cell. Then, the solar cell output is calculated based on the information.
[0020]
Further, in the system interconnection inverter 1, the voltage command value Vref is determined as a control target value by the step-up control circuit 6 to determine the solar cell operating point so as to operate at a predetermined solar cell output voltage. The step-up control circuit 6 includes a timer control unit 11 that changes the solar cell voltage at a fixed cycle, an operation point direction determination unit 12 that determines a direction at each point where the operating point is changed, An operation point direction final determination unit 13 is provided for comprehensively determining the final direction based on the determination of the direction.
[0021]
As described above, the photovoltaic power generation device of the present invention is configured to periodically change the operating voltage of the solar cell 2, the grid-connected inverter 1 that converts the electric power to be converted into alternating current, and the solar cell output that is input to the solar cell 2. And a boost control circuit 6 which is a control means for tracking the maximum output point of the solar cell 2. The boost control circuit 6 calculates the difference between the initial or previous operating voltage of the solar cell output and the operating voltage of the current cycle. Accordingly, the amount of increase or decrease of the operating voltage change in the next cycle is determined.
[0022]
Next, a method for determining the solar cell operating voltage will be described. In FIG. 2, each number in the figure indicates a solar cell output voltage command value (control voltage) Vref in the optimal point tracking control of the solar cell output, and states 1 to 4 are for determining the next operating point. 3 shows a solar cell output voltage command value pattern within one cycle. For example, the time of state 1 and the length of one cycle are determined by the timer control unit 11. First, the direction to the optimum point is determined for each of a plurality of states within one cycle, that is, state 1, state 2, state 3, and state 4. This direction determination is performed by the operating point direction determination unit 12.
[0023]
Next, in state 4, the direction determination result at each point from state 1 to state 4 is comprehensively determined to determine the direction to the optimum point, whereby the next MPPT cycle of states 5 to 8 is determined. An operation reference voltage (Vbase) is determined. The operation reference voltage is calculated by the operation point direction final determination unit 13. The information for this determination is based on the current value, the voltage value, and the power value from the current detection unit 3 and the voltage detection unit 4. The direction of the power change is obtained from the unit 12.
[0024]
Hereinafter, the above control will be described with reference to the flowchart of FIG. First, the power difference (absolute value, Pdif) between the power (P0) at the previous operating point (state 0) and the power (P1) at the current operating point (state 1) is calculated, and the power difference is set to a constant value (Pmax). In the above case, it can be considered that the power increases or decreases due to the rapid change in solar radiation. At this time, it is desirable to maintain the current operating point until the rapid change in solar radiation subsides, and weight +1 as the direction determination.
[0025]
The final direction determination regarding the weighting will be described later. This numerical value is described as an example for explanation, and has no special meaning. When the power difference is equal to or less than a certain value, it is determined that the current operating point is located near the optimum point, and the power difference is hardly generated near the optimum point, and the response of the circuit and the measurement error are affected. It is desirable to maintain the current operating point because it is in an easy state. When the power difference is between Pmin and Pmax, a comparison is made between the power at the previous operating point (state 0) and the current operating point (state 1). From state 0 to state 1, the voltage command value Vref is increased by △ refV from the operation reference voltage (Vbase). Therefore, if the power is larger in state 1 than in state 0, the optimum operation voltage point is the operation reference voltage. Can be determined to be in the direction of raising At this time, the direction is weighted by +2. Conversely, if the power is smaller in state 1 than in state 0, it can be determined that the optimum point is in the direction of lowering the operating point voltage. At this time, the direction is weighted by +0.
[0026]
The above is the direction determination method at the operating point in the state 1. Next, the basic concept of the direction determination at each point in the state 2 to the state 4 is the same, but the difference in each state will be described.
[0027]
In the state 2, the determination based on the power difference from the state 1 is exactly the same as the state 1, but the voltage command value Vref is reduced from the state 1 to the state 2. If the optimum point voltage is in the positive direction, that is, in the direction of the operating point in state 1, it is considered that the power is in the decreasing direction. If the power is smaller in state 2 than in state 1, the optimum point is to raise the operating point voltage. It can be determined that it is in the direction. At this time, the direction is weighted by +2. Conversely, if the power is greater than State 1 than State 2, it can be determined that the optimum point is in the direction of lowering the operating point voltage. At this time, the direction is weighted by +0. In the case of state 3, it is considered in the same manner as the direction determination in state 2. Since the voltage command value Vref is reduced from the state 2 to the state 3, the direction determination and weighting are performed in the same manner. In the case of state 4, it is considered in the same manner as the direction determination in state 1. Since the voltage command value Vref is increased from the state 3 to the state 4, the direction determination and weighting are performed in the same manner.
[0028]
In this way, based on the direction determination at each point from state 1 to state 4, the weights are classified into three groups according to the magnitude of the accumulated result, and the direction determination to the final optimum operating point is performed. . This algorithm is shown in FIG.
[0029]
For example, when the cumulative result of weighting is 6, 7, and 8, the optimal point is considered to be in the + direction from the current operating point, and the operation reference voltage (Vbase) in the next constant cycle, that is, state 1 to state 4 is considered. Is increased by ΔgV. At this time, when states 5, 6, 7, and 8 increase the operation reference voltage by △ gV, a voltage command value pattern as shown in FIG. 2 is obtained. On the other hand, when the cumulative result of weighting is 3, 4, or 5, it is determined whether the power difference is too large (Pdif Pmax) or too small (Pdif Pmin) at each point in state 1 to state 4. Yes, the direction determination at each point does not match. That is, it is determined that there is an optimum point in the + direction at a certain point and in the-direction at a certain point. In this case, an erroneous determination due to a sudden change in solar radiation or a transient response delay is considered, and the direction determination is forgotten and the current operating point is maintained.
[0030]
When the cumulative result of the weighting is 0, 1, or 2, the optimal point is considered to be in the minus direction from the current operating point, and the operation reference voltage (Vbase) in the next constant cycle, that is, the state 5 to the state 8 is changed. A voltage command value pattern as shown in FIG. 3, which is reduced by ΔgV, is obtained.
[0031]
In the present embodiment, an example has been described in which weighting of 0, +1 and +2 is performed according to the determination factor at each operating point. However, the present invention is not limited to this. The threshold does not specify the invention.
[0032]
【The invention's effect】
As described in detail above, in the solar power generation device of the present invention, the solar cell, the power conversion unit that converts the power from the solar cell into AC, and the operating voltage of the solar cell output input to the power conversion unit Control means for tracking the maximum output point of the solar cell while periodically changing, and this control means responds to the difference between the initial or previous operating voltage of the solar cell output and the operating voltage of the current cycle. Thus, the amount of increase or decrease in the operating voltage change in the next cycle is determined. This mitigates the effects of one-time disturbances in photovoltaic power generation, always performs stable direction determination, and does not impair the power generation opportunity even in a power generation situation where the conventional MPPT method may make a false determination. The solar cell power can be effectively taken out.
[0033]
In addition, it is possible to maintain the current operating voltage as much as possible with the same algorithm even during sudden changes in solar radiation, thereby effectively performing a constant voltage control operation until the solar radiation state is stabilized, and preventing erroneous decisions as much as possible. Solar power generation device can be provided.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram schematically illustrating an embodiment of a solar power generation device according to the present invention.
FIG. 2 is a diagram showing a voltage command value change pattern within a certain period (when the operation reference voltage is increased by the current direction determination).
FIG. 3 is a diagram showing a voltage command value change pattern within a certain period (when the operation reference voltage is reduced by the current direction determination).
FIG. 4 is a flowchart of a direction determination process in state 1 of an operating point change pattern.
FIG. 5 is a flowchart illustrating a process of performing a comprehensive determination based on the direction determination in each state at the end of one cycle of the operating point change pattern and determining the direction determination of the operating point.
FIG. 6 is a flowchart of a direction determination process at an operating point in a conventional solar power generation device.
FIG. 7 is a circuit diagram schematically illustrating a conventional solar power generation device.
[Explanation of symbols]
1: Grid-connected inverter (power conversion means)
2: solar cell 3: current detector 4: voltage detector 5: booster 6: booster control circuit (control means)
7: Inverter unit 8: System load 9: Commercial power system 10: Solar power generation device 11: Timer control unit 12: Operating point direction determining unit 13: Operating point direction final determining unit 14: Boost control circuit

Claims (1)

太陽電池と、該太陽電池からの電力を交流に変換する電力変換手段と、該電力変換手段に入力させる太陽電池出力の動作電圧を周期的に変化させながら前記太陽電池の最大出力点を追尾する制御手段とを備えて成るとともに、該制御手段は、初期または前回の太陽電池出力の動作電圧と今回周期の動作電圧との差に応じて、次回周期の動作電圧変化の増減量を決定するようにしたことを特徴とする太陽光発電装置。A solar cell, power conversion means for converting power from the solar cell into alternating current, and tracking a maximum output point of the solar cell while periodically changing an operating voltage of a solar cell output to be input to the power conversion means. Control means, wherein the control means determines the increase or decrease of the operating voltage change in the next cycle in accordance with the difference between the initial or previous operating voltage of the solar cell output and the operating voltage in the current cycle. A photovoltaic power generator characterized in that:
JP2003089266A 2003-03-27 2003-03-27 Photovoltaic power generation device Pending JP2004295688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089266A JP2004295688A (en) 2003-03-27 2003-03-27 Photovoltaic power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089266A JP2004295688A (en) 2003-03-27 2003-03-27 Photovoltaic power generation device

Publications (1)

Publication Number Publication Date
JP2004295688A true JP2004295688A (en) 2004-10-21

Family

ID=33403184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089266A Pending JP2004295688A (en) 2003-03-27 2003-03-27 Photovoltaic power generation device

Country Status (1)

Country Link
JP (1) JP2004295688A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
JP2010250605A (en) * 2009-04-16 2010-11-04 Honda Motor Co Ltd Maximum output power tracking control apparatus for solar battery
CN101667321B (en) * 2009-08-24 2011-08-17 江苏爱康太阳能科技股份有限公司 Solar generation monitoring and alarming system
KR101175888B1 (en) 2009-10-26 2012-08-21 동아전기부품 주식회사 Solar power generating system for vehicles and method for maximum power point tracing control
CN102801363A (en) * 2011-05-24 2012-11-28 中山大学 Photovoltaic system MPPT (maximum power point tracking) control method based on adaptive prediction
CN103455080A (en) * 2012-12-27 2013-12-18 深圳信息职业技术学院 Method and device for photovoltaic cell power tracking
WO2014002476A1 (en) 2012-06-25 2014-01-03 京セラ株式会社 Power generation control apparatus, solar power system, and power generation control method
KR101435507B1 (en) * 2013-12-19 2014-09-03 (주)세화에너지산업 System and method for controlling solar cell module with three phase
CN105138065A (en) * 2015-07-29 2015-12-09 三峡大学 Photovoltaic power generation system MPPT algorithm based on voltage pre-estimating method
US9755431B2 (en) 2011-03-25 2017-09-05 Kyocera Corporation Power management system and power management method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
JP2010250605A (en) * 2009-04-16 2010-11-04 Honda Motor Co Ltd Maximum output power tracking control apparatus for solar battery
CN101667321B (en) * 2009-08-24 2011-08-17 江苏爱康太阳能科技股份有限公司 Solar generation monitoring and alarming system
KR101175888B1 (en) 2009-10-26 2012-08-21 동아전기부품 주식회사 Solar power generating system for vehicles and method for maximum power point tracing control
US9755431B2 (en) 2011-03-25 2017-09-05 Kyocera Corporation Power management system and power management method
DE112012001446B4 (en) 2011-03-25 2022-08-25 Kyocera Corporation Energy management system and energy management procedures
CN102801363A (en) * 2011-05-24 2012-11-28 中山大学 Photovoltaic system MPPT (maximum power point tracking) control method based on adaptive prediction
WO2014002476A1 (en) 2012-06-25 2014-01-03 京セラ株式会社 Power generation control apparatus, solar power system, and power generation control method
US9608561B2 (en) 2012-06-25 2017-03-28 Kyocera Corporation Power generation control apparatus, solar power generation system, and power generation control method
CN103455080A (en) * 2012-12-27 2013-12-18 深圳信息职业技术学院 Method and device for photovoltaic cell power tracking
KR101435507B1 (en) * 2013-12-19 2014-09-03 (주)세화에너지산업 System and method for controlling solar cell module with three phase
CN105138065A (en) * 2015-07-29 2015-12-09 三峡大学 Photovoltaic power generation system MPPT algorithm based on voltage pre-estimating method
CN105138065B (en) * 2015-07-29 2017-03-08 三峡大学 A kind of maximum power point of photovoltaic power generation system method for tracing based on voltage preestimating method

Similar Documents

Publication Publication Date Title
US9477247B2 (en) Device and method for global maximum power point tracking
Koutroulis et al. A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions
US8810068B2 (en) System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
US8816667B2 (en) Maximum power point tracking method
US7420354B2 (en) Method and apparatus for controlling power drawn from an energy converter
EP2824533B1 (en) Photovoltaic system
US20100288327A1 (en) System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking
JP5083425B2 (en) Control device for solar power conversion unit, control method therefor, and solar power generation device
JP2005276942A (en) Solar cell power generator and system, and control method therefor
KR101132323B1 (en) Photovoltaic power generation system perform the maximum power point tracking about the unit group
JP5582338B2 (en) Power adjustment device, power adjustment method, solar power generation system, and management device
US20140293669A1 (en) Method and apparatus for improved burst mode during power conversion
JP5620304B2 (en) Photovoltaic power generation system and power conversion device constituting the system
JP2015502621A (en) Solar power generation system that performs maximum power point tracking for each unit group
JP5903341B2 (en) Power generation control device, solar power generation system, and power generation control method
JP2004295688A (en) Photovoltaic power generation device
JP2005269843A (en) Parallel operation device
JP2011101454A (en) Device and method for controlling distributed power supply facility
EP3097621A1 (en) Method and apparatus for extracting electrical energy from photovoltaic module
JP3548870B2 (en) Maximum power point tracking device
JP6546501B2 (en) Power storage device
JP2005070890A (en) Maximum power point following control method for inverter for solar-powered power generation
Kumar et al. A new fuzzy based INC-MPPT algorithm for constant power generation in PV systems
Chen et al. DC bus regulation strategy for grid-connected PV power generation system
JP2018143038A (en) Photovoltaic power generation system and power generation control program