JP2005094921A - Distributed power generation system and method for preventing its isolated operation - Google Patents

Distributed power generation system and method for preventing its isolated operation Download PDF

Info

Publication number
JP2005094921A
JP2005094921A JP2003324774A JP2003324774A JP2005094921A JP 2005094921 A JP2005094921 A JP 2005094921A JP 2003324774 A JP2003324774 A JP 2003324774A JP 2003324774 A JP2003324774 A JP 2003324774A JP 2005094921 A JP2005094921 A JP 2005094921A
Authority
JP
Japan
Prior art keywords
power
generation system
output
distributed
power failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003324774A
Other languages
Japanese (ja)
Inventor
Shin Iwata
伸 岩田
Takeshi Tomio
剛至 富尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003324774A priority Critical patent/JP2005094921A/en
Publication of JP2005094921A publication Critical patent/JP2005094921A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributed power generation system that is provided with an isolated operation preventing function with which isolated operation is prevented without fail even in high-density linked state and is free from reverse power flows to the system power supply side. <P>SOLUTION: The distributed power generation system that can be linked with a system power supply 30, comprises an underpower relay 5, a passive isolated operation preventing device 6, and an active isolated operation preventing device 7. The distributed power generation system is so constructed that a reverse power flow to the system power supply 30 side is not permitted. The generation output is controlled based on a target value of generated output. This target value is set with a predetermined allowance provided so that power becomes further insufficient relative to a set value of parallel off as a reference value for detecting underpower in the underpower relay. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、分散型発電システムに関し、より詳細には、系統電源との連系接続が可能で、系統電源停電時における単独運転を防止する単独運転防止機能を備えた分散型発電システムに関する。   The present invention relates to a distributed power generation system, and more particularly to a distributed power generation system that can be connected to a system power supply and has an isolated operation prevention function that prevents an isolated operation during a system power failure.

近年、CO排出量の削減や省エネルギを志向した分散型エネルギシステムの開発が活発であり実用化も進んでおり、一般家庭、集合住宅、オフィスなどにおいても電力消費地で発電を行う分散型発電システムの利用が今後急速に進展するものと考えられる。特に、熱電併給可能なガスエンジンコージェネレーションシステム等は、電力のみならず、ガスエンジンの発生する熱エネルギを同時に有効利用できるため、全体的なエネルギ効率の高さで注目を集めている。 In recent years, the development of distributed energy systems aimed at reducing CO 2 emissions and saving energy has been actively developed and put into practical use. The use of the power generation system is expected to progress rapidly in the future. In particular, gas engine cogeneration systems capable of cogeneration with heat and power are attracting attention because of their high overall energy efficiency because they can effectively use not only electric power but also heat energy generated by the gas engine.

ところで、分散型発電システムでは、単独で電力消費地における全ての電力需要を賄うのではなく、電力会社が供給する商用交流電源等の系統電源と系統連係して、電力需要に対する不足電力を系統電源から補給する形態の系統連系発電装置としての使用形態(系統連系型使用形態)が、特に住宅用等で主流となっている。かかる系統連系型使用形態の場合、系統電源との同期制御、系統保護協調、系統停電時の単独運転防止等の系統連系機能の確立が必要とされる。   By the way, the distributed power generation system does not cover all the power demand in the power consumption area alone, but links the system power supply such as commercial AC power supplied by the power company with the system power supply. The type of usage (system interconnection type usage mode) as a grid-connected power generation device that is replenished from the mainstream is mainly used for homes and the like. In the case of such grid connection type usage, it is necessary to establish grid connection functions such as synchronous control with the grid power supply, grid protection coordination, and prevention of isolated operation during grid power failure.

ここで、単独運転防止機能の方式としては、系統電圧を監視して、系統停電による単独運転時に現れる変化を検出する受動的方式と、系統連系発電装置側から出力に特定の変動を与えて単独運転時に現れる変化を検出する能動的方式の2方式がある。受動的方式としては、電圧位相跳躍検出式、3次高調波歪急増検出式、周波数変化率検出式等の方式があるが(例えば、下記特許文献1または2参照)、逆潮流バランス時には変化が現れずに検出できない場合がある。このため、受動的方式を補完して逆潮流バランス状態でも検出可能なように能動的方式を用いる必要が生じる。能動的方式としては、周波数シフト式、有効電力変動式、無効電力変動式等の方式がある(例えば、下記特許文献3〜7参照)。   Here, as a method of the isolated operation prevention function, the system voltage is monitored, a passive method that detects changes that appear during isolated operation due to a system power failure, and a specific fluctuation is given to the output from the grid-connected power generation device side. There are two active methods for detecting changes that occur during islanding. As passive methods, there are methods such as a voltage phase jump detection method, a third harmonic distortion rapid increase detection method, and a frequency change rate detection method (see, for example, Patent Document 1 or 2 below). It may not be detected without appearing. For this reason, it is necessary to use the active method so that the passive method can be complemented and detection is possible even in the reverse power flow balance state. Examples of the active system include a frequency shift system, an active power fluctuation system, a reactive power fluctuation system, and the like (for example, see Patent Documents 3 to 7 below).

一方、上記系統連系型使用形態の場合において、系統電源側への逆潮流を許容しない分散型発電システムでは、現在、電力系統連系技術要件ガイドラインの規定により、以下の3つの方法の何れかによって単独運転防止機能を担保する必要がある。即ち、1)逆電力継電器(RPR)と不足電力継電器(UPR)を備えるか、2)逆電力継電器(RPR)と単独運転防止機能(能動的方式と受動的方式の夫々が1つ以上)を備えるか、或いは、3)単独運転防止機能(能動的方式と受動的方式の夫々が1つ以上)を備える必要がある。
特許第3405786号明細書 特許第3022152号明細書 特開平11−41820号公報 特開平09−308112号公報 特開平09−252540号公報 特開平09−252541号公報 特開平08−149841号公報
On the other hand, in the case of the above grid-connected usage pattern, in the distributed power generation system that does not allow reverse power flow to the grid power supply side, one of the following three methods is currently provided according to the power grid interconnection technical requirement guidelines. Therefore, it is necessary to secure the function for preventing isolated operation. That is, 1) a reverse power relay (RPR) and an underpower relay (UPR) are provided, or 2) a reverse power relay (RPR) and an isolated operation prevention function (one or more of each of an active method and a passive method). Or 3) It is necessary to provide an isolated operation prevention function (one or more of the active method and the passive method).
Japanese Patent No. 3405786 Japanese Patent No. 3022152 JP 11-41820 A JP 09-308112 A JP 09-252540 A JP 09-252541 A Japanese Patent Application Laid-Open No. 08-149841

ところで、住宅用(家庭用)のコージェネレーションシステム等の場合は、新築時に予め設置されるケースが多いため、比較的狭い地域に系統連系発電装置が密集して設置される場合があり、所謂高密度連系状態となるケースが多く発生する。かかる高密度連系状態では、上記単独運転防止機能の能動的方式において、個々の系統連系発電装置からの同種の変動が重なって相互干渉して、正常に機能しない虞が指摘されている。   By the way, in the case of a residential (household) cogeneration system or the like, there are many cases where the system-connected power generators are densely installed in a relatively small area because there are many cases where they are installed in advance at the time of new construction. There are many cases of high-density interconnection. It has been pointed out that in such a high-density interconnected state, in the active system of the above-described isolated operation prevention function, the same type of fluctuations from the individual grid-connected power generation devices overlap each other and interfere with each other and do not function normally.

また、系統電源側への逆潮流を許容しない分散型発電システムでは、特に、高密度連系状態で逆潮流を防止するのが困難となる。つまり、上記3つの方法による単独運転防止対策の内、単独防止機能のみ、或いは、単独運転防止機能と逆電力継電器と組み合わせでは、逆電力継電器が個々の発電システムに対して僅かな逆潮流を許容するため、複数の発電システム間で逆潮流状態と不足電力状態が平衡してしまう可能性があり、正確に単独運転状態を検出できない虞がある。更に、逆電力継電器と不足電力継電器の組み合わせの場合は、太陽光発電システムが併設している場合に、系統電源の停電時にも太陽光発電システムから電力供給されるので、太陽光発電システムの単独運転検出に依存することになり、独立して機能する単独運転防止機能の確立が困難であるという問題がある。   Also, in a distributed power generation system that does not allow reverse power flow to the system power supply side, it is difficult to prevent reverse power flow, particularly in a high-density connection state. In other words, of the above three methods, the isolated operation prevention function alone, or the combined use of the isolated operation prevention function and the reverse power relay allows the reverse power relay to allow a slight reverse power flow for each power generation system. Therefore, there is a possibility that the reverse power flow state and the insufficient power state may be balanced between the plurality of power generation systems, and there is a possibility that the isolated operation state cannot be accurately detected. Furthermore, in the case of a combination of a reverse power relay and an underpower relay, when a photovoltaic power generation system is also installed, power is supplied from the photovoltaic power generation system even when the power supply of the system power is interrupted. There is a problem that it depends on driving detection, and it is difficult to establish an independent driving preventing function that functions independently.

本発明は、上述の問題点に鑑みてなされたものであり、その目的は、上記問題点を解消し、高密度連系状態においても確実に単独運転を防止できる単独運転防止機能を備えた、系統電源側への逆潮流を許容しない分散型発電システムを提供することにある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to solve the above problems and to have an isolated operation prevention function that can reliably prevent isolated operations even in a high-density connected state. An object of the present invention is to provide a distributed power generation system that does not allow reverse power flow to the system power supply side.

この目的を達成するための本発明に係る分散型発電システムの第一の特徴構成は、系統電源と系統連系可能な分散型発電システムであって、不足電力継電器と受動的単独運転防止装置と能動的単独運転防止装置を備え、前記系統電源側への逆潮流を許容しないように構成されている点にある。尚、ここでは、「逆潮流」は、不足電力継電器の作動に係る電圧、電流の検出点から系統電源側へ向う電力潮流を意味する。以下、本発明に係る記載において、「逆潮流」は同じ意味で使用する。   In order to achieve this object, the first characteristic configuration of the distributed power generation system according to the present invention is a distributed power generation system that can be interconnected with a system power source, comprising a shortage power relay, a passive islanding prevention device, The system is provided with an active isolated operation prevention device and configured not to allow reverse power flow to the system power supply side. Here, the “reverse power flow” means a power flow from the voltage / current detection point toward the system power supply side for the operation of the underpower relay. Hereinafter, in the description according to the present invention, “reverse power flow” is used in the same meaning.

同第二の特徴構成は、上記第一の特徴構成に加えて、直流電力を発生する発電機と、前記発電機が発生した直流電力を所定の電圧と周波数の交流電力に変換する電力変換装置と、前記電力変換装置の運転及び系統電源との連系接続を制御する出力制御手段と、負荷の消費電力から前記電力変換装置の出力電力を差し引いた差で表される不足電力が所定の解列設定値を下回ったことを検出して不足電力検出信号を出力する不足電力検出手段と、前記系統電源の停電時に系統電圧に現れる変化を検出して第1停電検出信号を出力する受動的単独運転検出手段と、前記電力変換装置の出力電力に対して付与した所定の特性変動に基づいて前記系統電源の停電時に現れる変化を検出して第2停電検出信号を出力する能動的単独運転検出手段とを備え、前記不足電力継電器は、前記不足電力検出手段が出力する前記不足電力検出信号に基づいて、前記出力制御手段が前記電力変換装置と前記系統電源との連系接続する継電器を開成するように構成され、前記受動的単独運転防止装置は、前記受動的単独運転検出手段が出力する前記第1停電検出信号に基づいて、前記出力制御手段が前記電力変換装置と前記系統電源とを連系接続する継電器の開成、或いは、前記電力変換装置の運転停止の少なくとも何れか一方を行うように構成され、前記能動的単独運転防止装置は、前記能動的単独運転検出手段が出力する前記第2停電検出信号に基づいて、前記出力制御手段が前記電力変換装置と前記系統電源とを連系接続する継電器の開成、或いは、前記電力変換装置の運転停止の少なくとも何れか一方を行うように構成されている点にある。   In addition to the first feature configuration, the second feature configuration includes a generator that generates DC power, and a power converter that converts the DC power generated by the generator into AC power having a predetermined voltage and frequency. Output control means for controlling the operation of the power converter and interconnection connection with the system power supply, and the insufficient power represented by the difference obtained by subtracting the output power of the power converter from the power consumption of the load is a predetermined solution. Underpower detection means for detecting an underpower detection signal by detecting that the set value is below a set value, and a passive single unit for detecting a change appearing in a system voltage at the time of power outage of the system power supply and outputting a first power outage detection signal An operation detecting means, and an active islanding detecting means for detecting a change appearing at the time of a power failure of the system power supply based on a predetermined characteristic fluctuation given to the output power of the power converter and outputting a second power failure detection signal. And The underpower relay is configured such that, based on the underpower detection signal output by the underpower detection means, the output control means opens a relay that interconnects the power converter and the system power supply. The passive islanding prevention device is a relay in which the output control means interconnects the power converter and the system power supply based on the first power failure detection signal output by the passive islanding detection means. Or at least one of the operation stop of the power converter, and the active islanding prevention device is configured to output the second power failure detection signal output by the active islanding detection means. Based on this, the output control means opens at least one of the relay that interconnects the power converter and the system power supply, or at least one of the operation stop of the power converter. In that it is configured to perform.

上記分散型発電システムの第一または第二の特徴構成によれば、不足電力継電器を備えているので、個々の分散型発電システムにおいて、不足電力状態において不足電力分が所定の解列設定値を下回ると、分散型発電システムの発電出力が停止するので、系統電源側への逆潮流は完全に防止されることになる。従って、高密度連系状態であっても、相互に干渉して平衡状態となる心配がないため、単独運転防止機能が正常に機能する。また、単独運転防止機能は、受動的方式と能動的方式の両方式を備えているため、各方式の欠点を補完して確実に系統電源の停電を検出でき、単独運転状態を検出でき単独運転状態を停止できる。   According to the first or second characteristic configuration of the distributed power generation system, since the shortage power relay is provided, in each of the distributed power generation systems, the shortage power amount has a predetermined disconnection set value in the shortage power state. If it falls below, the power generation output of the distributed power generation system stops, so that the reverse power flow to the system power supply side is completely prevented. Therefore, even in a high-density interconnected state, there is no fear of interfering with each other and becoming an equilibrium state, so that the isolated operation preventing function functions normally. In addition, since the isolated operation prevention function has both passive and active methods, it can compensate for the shortcomings of each method and reliably detect a power failure of the system power supply, and can detect the isolated operation state. The state can be stopped.

特に、第二の特徴構成の場合、電力変換装置に対して系統電源と連系接続する継電器の開成或いは運転停止を制御する出力制御手段と、受動的単独運転検出手段と、能動的単独運転検出手段とで、受動的及び能動的単独運転防止装置が構成され、同じ出力制御手段に不足電力検出手段に付加することで不足電力継電器が構成されるので、第一の特徴構成の効果を奏することができる。   In particular, in the case of the second feature configuration, output control means for controlling the opening or shutting down of the relay connected to the grid power supply for the power converter, passive islanding detection means, and active islanding detection The passive and active isolated operation prevention devices are constituted by the means, and the underpower relay is formed by adding the underpower detection means to the same output control means, so that the effect of the first characteristic configuration is achieved. Can do.

ところで、通常、系統連系技術要件ガイドラインでは、単相三線または三相三線の電気方式では不足電力継電器は、各相に設置していなければならないが、本発明においては連系する電気方式での合計電力において、検出すれば良いという特徴を持つ。   By the way, normally, in the grid interconnection technical requirement guideline, in the single-phase three-wire or three-phase three-wire electric system, the shortage power relay must be installed in each phase. It has a feature that it may be detected in the total power.

同第三の特徴構成は、上記第一または第二の特徴構成に加えて、前記不足電力継電器の不足電力検出のための基準値である解列設定値に対し、より不足電力状態となるように所定の余裕度を持たせて設定した発電電力目標値に基づいて発電出力が制御される点にある。   In the third feature configuration, in addition to the first or second feature configuration described above, a power shortage state is established with respect to a set value that is a reference value for detecting power shortage of the power shortage relay. The power generation output is controlled based on the generated power target value set with a predetermined margin.

同第四の特徴構成は、上記第三の特徴構成に加えて、ヒータ及び前記ヒータの作動を制御するヒータ制御部を備え、前記発電電力目標値の発電出力に対して余剰電力が発生する場合、前記ヒータ制御部が、前記余剰電力を前記ヒータで消費するように制御する点にある。   The fourth feature configuration includes a heater and a heater control unit that controls the operation of the heater in addition to the third feature configuration, and surplus power is generated with respect to the power generation output of the power generation target value. The heater control unit controls the surplus power to be consumed by the heater.

上記分散型発電システムの第三または第四の特徴構成によれば、不足電力継電器が不足電力状態の低下を検出して分散型発電システムの運転或いは系統連系を遮断しないように余裕を持って発電出力制御がなされるので、負荷の低下に応じて分散型発電システムからの電力供給が頻繁に停止するのを防止できる。つまり、逆電力継電器に代えて不足電力継電器を用いた場合に、負荷が発電出力と解列設定値の和を下回る状況が発生する度に、分散型発電システムからの電力供給が停止することになるのを防止できる。ここで、発電電力目標値は、負荷から解列設定値の電力を引いた電力より更に低めに設定されることになる。   According to the third or fourth characteristic configuration of the distributed power generation system, there is a margin so that the insufficient power relay detects a decrease in the insufficient power state and does not interrupt the operation of the distributed power system or the grid connection. Since the power generation output control is performed, it is possible to prevent the power supply from the distributed power generation system from frequently stopping in accordance with the load decrease. In other words, when a power shortage relay is used instead of the reverse power relay, the power supply from the distributed power generation system stops whenever the load falls below the sum of the power generation output and the disconnection set value. Can be prevented. Here, the generated power target value is set to be lower than the power obtained by subtracting the power of the disconnection set value from the load.

特に、第四の特徴構成によれば、第三の特徴構成の発電電力目標値で発電出力を制御している場合に、更に負荷が低下すると不足電力継電器が作動する可能性が高くなるため、負荷の低下分、つまり、余剰電力分をヒータの消費により熱エネルギに変換することで、無駄な電力消費を抑えつつ、分散型発電システムの運転停止状態を回避できる。   In particular, according to the fourth characteristic configuration, when the power generation output is controlled with the generated power target value of the third characteristic configuration, if the load is further reduced, the possibility that the insufficient power relay operates is increased. By converting the reduced load, that is, the surplus power into heat energy by the consumption of the heater, it is possible to avoid an operation stop state of the distributed power generation system while suppressing unnecessary power consumption.

同第五の特徴構成は、上記第一乃至第四の何れかの一つの特徴構成に加えて、熱電併給型発電機を備えている点にある。   The fifth characteristic configuration is that in addition to any one of the first to fourth characteristic configurations, a combined heat and power generator is provided.

上記分散型発電システムの第五の特徴構成によれば、分散型発電システムがコージェネレーションシステムとして機能するのみならず、上記第四の特徴構成と併用した場合に、熱電併給型発電機が発生する熱エネルギとヒータが発生する熱エネルギを集約してより効率的な熱エネルギの利用が可能となる。   According to the fifth characteristic configuration of the distributed power generation system, not only the distributed power generation system functions as a cogeneration system but also a combined heat and power generator is generated when used in combination with the fourth characteristic configuration. By integrating the heat energy and the heat energy generated by the heater, more efficient use of the heat energy becomes possible.

この目的を達成するための本発明に係る分散型発電システムの単独運転防止方法の特徴構成は、逆潮流なしで系統電源と系統連系する分散型発電システムに、不足電力継電器と受動的単独運転防止装置と能動的単独運転防止装置を備え、不足電力継電器により、前記系統電源の正常時における前記分散型発電システムから前記系統電源側への逆潮流の発生を排除した状態において、前記受動的単独運転防止装置と前記能動的単独運転防止装置により、前記系統電源の停電を検出して、前記分散型発電システムの単独運転状態を防止する点にある。   In order to achieve this object, the characteristic configuration of the method for preventing isolated operation of a distributed power generation system according to the present invention is that a distributed power generation system that is connected to a system power supply without reverse power flow is connected to a shortage power relay and passive islanding operation. In the state where the occurrence of reverse power flow from the distributed power generation system to the system power supply side when the system power supply is normal is eliminated by a shortage power relay. The operation preventive device and the active isolated operation preventive device detect a power failure of the system power supply to prevent an isolated operation state of the distributed power generation system.

上記分散型発電システムの単独運転防止方法の特徴構成によれば、不足電力継電器を備え、個々の分散型発電システムにおいて、不足電力状態において不足電力分が所定の解列設定値を下回ると、分散型発電システムの発電出力を停止することができるので、系統電源側への逆潮流は完全に防止されることになる。従って、高密度連系状態であっても、相互に干渉して平衡状態となる心配がないため、受動的及び能動的単独運転防止装置が正常に機能する。また、単独運転防止装置は、受動的方式と能動的方式の両方式を備えているため、各方式の欠点を補完して確実に系統電源の停電を検出でき、分散型発電システムの単独運転状態を防止できる。   According to the characteristic configuration of the method for preventing isolated operation of the distributed power generation system described above, a power shortage relay is provided, and in each distributed power generation system, if the power shortage is below a predetermined disconnection set value in a power shortage state, Since the power generation output of the power generation system can be stopped, the reverse power flow to the system power supply side is completely prevented. Therefore, even in a high-density interconnected state, there is no concern of mutual interference and equilibrium, so that the passive and active islanding prevention devices function normally. In addition, since the isolated operation prevention device has both a passive method and an active method, it can compensate for the disadvantages of each method and reliably detect a power failure of the system power supply. Can be prevented.

本発明に係る分散型発電システム(以下、適宜「本発明システム」という。)の実施の形態につき、図面に基づいて説明する。   An embodiment of a distributed power generation system according to the present invention (hereinafter referred to as “the present invention system” as appropriate) will be described with reference to the drawings.

〈第1実施形態〉
図1に示すように、本発明システム1は、直流電力を発生する発電機2と、発電機2が発生した直流電力を所定の電圧と周波数の交流電力に変換するインバータ3(電力変換装置の一例)と、インバータ3の運転及び後述する系統電源30との連系接続を制御する出力制御手段4と、不足電力検出手段5と、受動的単独運転検出手段6と、能動的単独運転検出手段7とを備えて構成される。また、本発明システム1は、インバータ3の出力が系統電源30と系統連系して負荷31に対して電力供給する構成となっている。
<First Embodiment>
As shown in FIG. 1, the system 1 of the present invention includes a generator 2 that generates DC power, and an inverter 3 that converts the DC power generated by the generator 2 into AC power having a predetermined voltage and frequency. An example), an output control means 4 for controlling the operation of the inverter 3 and the interconnection connection with the system power supply 30 to be described later, an insufficient power detection means 5, a passive islanding detection means 6, and an active islanding detection means. 7. Further, the system 1 of the present invention has a configuration in which the output of the inverter 3 is connected to the system power supply 30 to supply power to the load 31.

発電機2は、直流電力を発生する発電機であれば特定の発電機に限定されるものではなく、例えば、直接直流電圧を出力する燃料電池や太陽電池の他、水力、風力、内燃機関、マイクロガスタービン等によって発生する回転エネルギにより、かご型誘導機、直流励磁同期機、永久磁石同期機等から出力される交流電力をAC/DC変換して直流電力を発生するものも含まれる。また、燃料電池、内燃機関、マイクロガスタービンの場合は、発電機2は、電力の他に熱も発生するコージェネレーションシステムの一部として機能する。   The generator 2 is not limited to a specific generator as long as it is a generator that generates DC power. For example, in addition to a fuel cell and a solar cell that directly output a DC voltage, a hydropower, wind power, an internal combustion engine, Also included is one that generates DC power by AC / DC conversion of AC power output from a squirrel-cage induction machine, a DC excitation synchronous machine, a permanent magnet synchronous machine, or the like by rotational energy generated by a micro gas turbine or the like. In the case of a fuel cell, an internal combustion engine, or a micro gas turbine, the generator 2 functions as a part of a cogeneration system that generates heat in addition to electric power.

インバータ3は、直流電力を所定の電圧と周波数の交流電力に変換するDC/AC変換部8と、DC/AC変換部8の交流出力と系統電源30の交流電力とを連系接続する連系継電器9と、DC/AC変換部8の出力する交流電流(瞬時値)をDC/AC変換部8と連系継電器9の間で検出する電流検出器10と、系統電源30の交流電圧(瞬時値)を連系継電器9の系統電源30側で検出する電圧検出器11とを備えて構成される。更に、DC/AC変換部8は、IGBT(3端子バイポーラMOS複合半導体素子)で構成されるゲート素子からなるブリッジ回路12と、ブリッジ回路12の各ゲート素子のオンオフを駆動するゲート駆動部13と、ゲート駆動部13を正弦波PWM方式で制御するとともに、ブリッジ回路12の位相シフト量を制御する制御部14を備えて構成される。ブリッジ回路12は1つの100V単相交流と逆位相の100V単相交流を出力し、その中間電圧を中線として、単相3線式正弦波出力の100V/200Vを出力し、系統電源30の同じ100V/200Vの単相3線式正弦波出力に対して同期制御されている。   The inverter 3 is a DC / AC converter 8 that converts DC power into AC power having a predetermined voltage and frequency, and an interconnection that interconnects the AC output of the DC / AC converter 8 and the AC power of the system power supply 30. The relay 9, the current detector 10 that detects the AC current (instantaneous value) output from the DC / AC conversion unit 8 between the DC / AC conversion unit 8 and the interconnection relay 9, and the AC voltage (instantaneous) of the system power supply 30. A voltage detector 11 that detects the value) on the system power supply 30 side of the interconnection relay 9. Further, the DC / AC conversion unit 8 includes a bridge circuit 12 composed of gate elements composed of IGBTs (3-terminal bipolar MOS composite semiconductor elements), and a gate drive unit 13 that drives on / off of each gate element of the bridge circuit 12. The gate drive unit 13 is controlled by the sine wave PWM method and is configured to include a control unit 14 that controls the phase shift amount of the bridge circuit 12. The bridge circuit 12 outputs a 100V single-phase alternating current that is opposite to a single 100V single-phase alternating current, and outputs a 100V / 200V single-phase three-wire sine wave output with the intermediate voltage as a middle line. The same 100V / 200V single-phase three-wire sine wave output is synchronously controlled.

不足電力検出手段5は、出力制御手段4とインバータ3の連系継電器9とともに不足電力継電器(UPR)を構成するものであり、系統電源30から負荷31へ供給される系統電流(瞬時値)を検出する系統電流検出器32の検出電流と電圧検出器11の検出電圧(何れもアナログ値)を夫々入力して、負荷31で消費される電力に対するインバータ3から供給される発電電力の不足分(不足電力)を求める不足電力測定部19と、不足電力測定部19が測定した不足電力と解列設定値(整定値ともいう)とを比較して、不足電力が解列設定値より下回る場合に不足電力検出信号Sfを出力制御手段4に出力する不足電力判定部20を備えて構成される。   The underpower detection means 5 constitutes an underpower relay (UPR) together with the output control means 4 and the interconnection relay 9 of the inverter 3, and the system current (instantaneous value) supplied from the system power supply 30 to the load 31 is obtained. Input the detection current of the grid current detector 32 and the detection voltage of the voltage detector 11 (both analog values) to be detected, and the shortage of the generated power supplied from the inverter 3 with respect to the power consumed by the load 31 ( When the power shortage is less than the disconnection set value by comparing the power shortage measurement unit 19 for determining the power shortage) with the power shortage measured by the power shortage measurement unit 19 and the set-off set value (also referred to as a settling value). A power shortage determination unit 20 that outputs the power shortage detection signal Sf to the output control means 4 is provided.

受動的単独運転検出手段6は、本実施形態では、出力制御手段4とともに電圧位相跳躍検出式の受動的単独運転防止装置を構成するものであり、電流検出器10と電圧検出器11の検出電流と検出電圧(何れもアナログ値)を夫々入力して、インバータ3の出力電力の位相変化を検出する位相変化検出部21と、位相変化検出部21が検出した位相変化による周波数変化率が所定の設定値を超えた場合に、系統電源30の停電と判定し、第1停電検出信号Sjを出力する第1停電判定部22を備えて構成される。   In the present embodiment, the passive islanding detection means 6 constitutes a voltage phase jump detection type passive islanding prevention device together with the output control means 4, and the detected currents of the current detector 10 and the voltage detector 11. And a detection voltage (both analog values) are respectively input, a phase change detection unit 21 that detects a phase change of the output power of the inverter 3, and a frequency change rate due to the phase change detected by the phase change detection unit 21 is predetermined. When the set value is exceeded, it is determined to be a power failure of the system power supply 30, and the first power failure determination unit 22 that outputs the first power failure detection signal Sj is provided.

能動的単独運転検出手段7は、本実施形態では、出力制御手段4とともに位相シフト式の能動的単独運転防止装置を構成するものであり、位相差設定部23、位相差検出部24、第2停電判定部25、及び、これら各部で使用される設定値、検出値、演算或いは判定アルゴリズムを記憶する記憶部26を備えて構成される。位相差設定部23は、後述する判定アルゴリズムに従って、インバータ3の制御部14に対し、系統電源30の系統電圧の位相とインバータ3の交流出力(より具体的には、ブリッジ回路12の交流出力)の出力電流の位相との間の位相差θ(以下、適宜、「位相シフト量θ」という。)の設定値θsを設定し、その設定値θsを判定アルゴリズムで規定されるタイミングで制御部14に出力する。この位相シフト量θに基づいてインバータ3の交流出力に位相シフトを強制的に付与して能動的方式による単独運転検出を行う。位相差検出部24は、電流検出器10と電圧検出器11の検出電流と検出電圧を夫々入力して、入力された検出電流と検出電圧の各ゼロクロスポイントの差から位相シフト量θの検出値θnを判定アルゴリズムで規定されるタイミングで検出する。第2停電判定部25は、設定値θsと収集された検出値θnに基づいて判定アルゴリズムに従って系統電源30の停電を判定し、停電判定時に第2停電検出信号Snを出力する。   In the present embodiment, the active islanding detection means 7 constitutes a phase shift type active islanding prevention device together with the output control means 4, and includes a phase difference setting unit 23, a phase difference detection unit 24, and a second. The power failure determination unit 25 and a storage unit 26 that stores setting values, detection values, calculations, or determination algorithms used in these units are provided. The phase difference setting unit 23 outputs the system voltage phase of the system power supply 30 and the AC output of the inverter 3 (more specifically, the AC output of the bridge circuit 12) to the control unit 14 of the inverter 3 in accordance with a determination algorithm described later. A set value θs of a phase difference θ (hereinafter referred to as “phase shift amount θ” as appropriate) with respect to the phase of the output current is set, and the set value θs is set at the timing specified by the determination algorithm. Output to. Based on this phase shift amount θ, a phase shift is forcibly applied to the AC output of the inverter 3 to perform isolated operation detection by an active method. The phase difference detection unit 24 inputs the detection current and the detection voltage of the current detector 10 and the voltage detector 11 respectively, and detects the detected value of the phase shift amount θ from the difference between each zero cross point of the input detection current and the detection voltage. θn is detected at a timing defined by the determination algorithm. The second power failure determination unit 25 determines a power failure of the system power supply 30 according to the determination algorithm based on the set value θs and the collected detection value θn, and outputs a second power failure detection signal Sn at the time of power failure determination.

能動的単独運転検出手段7の位相差設定部23、位相差検出部24、及び、第2停電判定部25は、後述する演算処理や判定処理をソフトウェア的に実行することで実現され、全体は、例えばマイクロコンピュータ等のストアードプログラム方式のコンピュータシステムを応用して構成される。また、受動的単独運転検出手段6の位相変化検出部21及び第1停電判定部22、不足電力検出手段5の不足電力検出信号Sf等も、同様にマイクロコンピュータ等により実現される。尚、電流検出器10と電圧検出器11の検出電流と検出電圧(何れもアナログ値)は、当該マイクロコンピュータのアナログポートに入力され、内蔵されたA/D変換機によりディジタル信号化され、位相変化検出部21及び位相差検出部24に入力される。尚、マイクロコンピュータにアナログポートがなければ、電流検出器10と電圧検出器11側でA/D変換処理すればよい。   The phase difference setting unit 23, the phase difference detection unit 24, and the second power failure determination unit 25 of the active isolated operation detecting means 7 are realized by executing arithmetic processing and determination processing described later in software, and the whole For example, it is configured by applying a stored program type computer system such as a microcomputer. Similarly, the phase change detection unit 21 and the first power failure determination unit 22 of the passive islanding detection unit 6, the underpower detection signal Sf of the underpower detection unit 5, and the like are similarly realized by a microcomputer or the like. The detection current and detection voltage (both analog values) of the current detector 10 and the voltage detector 11 are input to the analog port of the microcomputer, converted into a digital signal by the built-in A / D converter, and the phase It is input to the change detection unit 21 and the phase difference detection unit 24. If the microcomputer does not have an analog port, A / D conversion processing may be performed on the current detector 10 and voltage detector 11 side.

出力制御手段4は、DC/AC変換部8の運転停止を制御するゲートブロック15と連系継電器9の開閉を制御する解列制御部16を備えて構成される。ゲートブロック15は、不足電力検出信号Sfと第1停電検出信号Sjと第2停電検出信号Snの何れか1つの信号を受け取ると、DC/AC変換部8のゲート駆動部13に対して運転停止信号S1を出力し、DC/AC変換部8の運転を停止させる。解列制御部16は、不足電力検出信号Sfと第2停電検出信号Snの何れか1つの信号を受け取ると、連系継電器9に対して解列信号S2を出力して連系継電器9を開成させ、DC/AC変換部8の交流出力と系統電源30の交流電力とを連系接続を遮断する。   The output control means 4 includes a gate block 15 that controls operation stop of the DC / AC conversion unit 8 and a disconnection control unit 16 that controls opening and closing of the interconnection relay 9. When the gate block 15 receives any one of the power shortage detection signal Sf, the first power failure detection signal Sj, and the second power failure detection signal Sn, the gate block 15 stops operation with respect to the gate drive unit 13 of the DC / AC conversion unit 8. The signal S1 is output, and the operation of the DC / AC converter 8 is stopped. When the disconnection control unit 16 receives any one of the insufficient power detection signal Sf and the second power failure detection signal Sn, the disconnection control unit 16 outputs the disconnection signal S2 to the interconnection relay 9 to open the interconnection relay 9. The interconnection connection between the AC output of the DC / AC conversion unit 8 and the AC power of the system power supply 30 is cut off.

以下、不足電力検出手段5、受動的単独運転検出手段6、及び、能動的単独運転検出手段7の各部の動作、即ち、本発明に係る分散型発電システムの単独運転防止方法の処理について説明する。   Hereinafter, the operation of each part of the insufficient power detection unit 5, the passive islanding detection unit 6, and the active islanding detection unit 7, that is, the processing of the islanding operation prevention method of the distributed power generation system according to the present invention will be described. .

先ず、不足電力検出手段5は、不足電力測定部19が、系統電流を検出する系統電流検出器32の検出電流と電圧検出器11の検出電圧を入力として受け付け、系統電源30から負荷31へ供給される系統電力を算出する。この系統電力は、負荷31に対するインバータ3から供給される発電電力の不足分として補われている電力であるので、本発明システム1における不足電力となる。不足電力判定部20は、リアルタイムで逐次、不足電力測定部19が算出した不足電力と解列設定値との大小比較を行い、不足電力が解列設定値を下回るとこれを検出して不足電力検出信号Sfを出力制御手段4に出力する。解列設定値は、インバータ3の定格出力の5%程度に設定する。例えば、1kWのシステムの場合、解列設定値を50Wに設定する。尚、解列設定値は、適宜使用環境等に応じて変更可能である。   First, the underpower detection means 5 receives the detection current of the system current detector 32 and the detection voltage of the voltage detector 11 as inputs by the underpower measurement unit 19 that detects the system current, and supplies the input to the load 31 from the system power supply 30. The grid power to be calculated is calculated. This system power is power that is supplemented as a shortage of the generated power supplied from the inverter 3 to the load 31, and thus becomes insufficient power in the system 1 of the present invention. The power shortage determining unit 20 sequentially compares the power shortage calculated by the power shortage measuring unit 19 with the set-off set value sequentially in real time, and detects the shortage power below the set-off set value to detect the shortage power. The detection signal Sf is output to the output control means 4. The disconnection set value is set to about 5% of the rated output of the inverter 3. For example, in the case of a 1 kW system, the separation setting value is set to 50 W. Note that the set release value can be changed according to the use environment or the like as appropriate.

出力制御手段4は、不足電力検出信号Sfを受け取ると、ゲートブロック15が、DC/AC変換部8のゲート駆動部13に対して運転停止信号S1を出力する。この結果、ゲート駆動部13がDC/AC変換部8のブリッジ回路12のゲート駆動を停止するので、ブリッジ回路12の運転が停止し、DC/AC変換部8からの交流出力が停止する。更に、解列制御部16が、連系継電器9に対して解列信号S2を出力して連系継電器9を開成させ、DC/AC変換部8の交流出力と系統電源30の交流電力とを連系接続を遮断されるので、二重に単独運転の防止が図られる。   When the output control means 4 receives the insufficient power detection signal Sf, the gate block 15 outputs an operation stop signal S1 to the gate drive unit 13 of the DC / AC conversion unit 8. As a result, the gate drive unit 13 stops the gate drive of the bridge circuit 12 of the DC / AC conversion unit 8, so that the operation of the bridge circuit 12 is stopped and the AC output from the DC / AC conversion unit 8 is stopped. Further, the disconnection control unit 16 outputs the disconnection signal S2 to the interconnection relay 9 to open the interconnection relay 9, and the AC output of the DC / AC conversion unit 8 and the AC power of the system power supply 30 are generated. Since the interconnection connection is cut off, double operation can be prevented.

次に、受動的単独運転検出手段6について説明する。位相変化検出部21が、電流検出器10と電圧検出器11の検出電流(DC/AC変換部8の出力電流)と検出電圧(系統電圧)を受け付け、入力された検出電流と検出電圧の各ゼロクロスポイントの差から各周期の電流−電圧間の位相差を検出する。この位相差は、DC/AC変換部8の出力が原則として力率=1で制御されているので、系統電源が停電でない系統正常時には、系統電圧と出力電流は負荷31のインピーダンスに拘わらず同相となる。ところが、系統電源30が停電した場合、停電の瞬間に負荷31のインピーダンスに応じて、電流位相が急激に変化(跳躍)するため、この跳躍を検出して系統停電を検出できる。第1停電判定部22は、検出された位相差を周波数変化に換算する。例えば、系統電源の交流周波数が60Hzの場合に、検出位相差により瞬間的に周波数が60+α(Hz)に変化したように検出される。ここで、αは遅れ負荷に対しては正値、進み負荷に対しては負値となる。次に、第1停電判定部22は、周波数変化率としてΔf=|α|/60×100(%)を算出し、Δfが所定の設定値を超えている場合に、系統電源30の停電と判定し、第1停電検出信号Sjを出力する。ここで、所定の設定値として、0.2〜1.0%の範囲のものを使用する。原理的に、系統停電から1周期(0.0167秒)後に検出可能である。   Next, the passive islanding detection means 6 will be described. The phase change detection unit 21 receives the detection current (output current of the DC / AC conversion unit 8) and the detection voltage (system voltage) of the current detector 10 and the voltage detector 11, and each of the input detection current and detection voltage is received. The phase difference between the current and voltage in each cycle is detected from the difference between the zero cross points. Since the output of the DC / AC converter 8 is controlled with a power factor = 1 in principle, the phase difference is the same in phase regardless of the impedance of the load 31 when the system power supply is normal and the system power is normal. It becomes. However, when the system power supply 30 fails, the current phase changes (jumps) abruptly according to the impedance of the load 31 at the moment of the power outage, so that the system power outage can be detected by detecting this jump. The first power failure determination unit 22 converts the detected phase difference into a frequency change. For example, when the AC frequency of the system power supply is 60 Hz, the frequency is detected as if it has instantaneously changed to 60 + α (Hz) due to the detection phase difference. Here, α has a positive value for a delayed load and a negative value for a leading load. Next, the first power failure determination unit 22 calculates Δf = | α | / 60 × 100 (%) as the frequency change rate, and when Δf exceeds a predetermined set value, Determine and output the first power failure detection signal Sj. Here, the predetermined set value is in the range of 0.2 to 1.0%. In principle, it can be detected after one cycle (0.0167 seconds) from the system power failure.

出力制御手段4は、第1停電検出信号Sjを受け取ると、ゲートブロック15が、DC/AC変換部8のゲート駆動部13に対して運転停止信号S1を出力する。この結果、ゲート駆動部13がDC/AC変換部8のブリッジ回路12のゲート駆動を停止するので、ブリッジ回路12の運転が停止し、DC/AC変換部8からの交流出力が停止する。系統停電発生から0.5秒以内でのDC/AC変換部8の作動停止が可能となっている。   When the output control unit 4 receives the first power failure detection signal Sj, the gate block 15 outputs an operation stop signal S1 to the gate drive unit 13 of the DC / AC conversion unit 8. As a result, the gate drive unit 13 stops the gate drive of the bridge circuit 12 of the DC / AC conversion unit 8, so that the operation of the bridge circuit 12 is stopped and the AC output from the DC / AC conversion unit 8 is stopped. The operation of the DC / AC converter 8 can be stopped within 0.5 seconds after the occurrence of a system power failure.

次に、能動的単独運転検出手段7の動作ついて、図2に示すフローチャートを参照して説明する。受動的単独運転検出手段6では、負荷インピーダンスが純抵抗の場合には位相変化が検出されないので、系統停電は原理的に検出不可能であるので、能動的単独運転検出手段7は、これを補完する手段である。本実施形態では、能動的単独運転検出手段7は、位相シフト式の能動的単独運転検出を行う。これは、インバータ3の交流出力電流に、位相差設定部23によって周期的に位相変動を付与し、位相差検出部24がこの位相変動を検出し、第2停電判定部25が検出値の系統正常時と系統停電時との差異を検出することにより系統停電を検出する。具体的には、図2のフローチャートに示す処理手順及び判定アルゴリズムに従って実行される。   Next, the operation of the active islanding detection means 7 will be described with reference to the flowchart shown in FIG. Since the passive islanding detection means 6 cannot detect a phase change when the load impedance is a pure resistance, a system power failure cannot be detected in principle. Therefore, the active islanding detection means 7 complements this. It is means to do. In the present embodiment, the active islanding detection means 7 performs phase shift type active islanding detection. This is because the phase difference is set periodically by the phase difference setting unit 23 to the AC output current of the inverter 3, the phase difference detection unit 24 detects this phase variation, and the second power failure determination unit 25 detects the detected value system. A system power failure is detected by detecting the difference between normal and system power failure. Specifically, it is executed according to the processing procedure and determination algorithm shown in the flowchart of FIG.

図2に示すように、第1の停電判定処理(#10〜#15)、第2の停電判定処理(#20〜#25)、第3の停電判定処理(#30〜#35)、後処理(#36、#37)の4ブロックで構成され、第1の停電判定処理(#10〜#15)が系統電源30の停電が検出されるまで、循環的に継続され、第1の停電判定処理(#10〜#15)で停電検出されると(#15)、第2の停電判定処理(#20〜#25)に移行し、第2の停電判定処理(#20〜#25)で停電検出されると(#25)、第3の停電判定処理(#30〜#35)に移行し、第2の停電判定処理(#20〜#25)で停電検出されなければ(#25)、第1の停電判定処理(#10〜#15)に戻り、第3の停電判定処理(#30〜#35)で停電検出されると(#35)、後処理(#36、#37)に移行するというフローになっている。   As shown in FIG. 2, the first power failure determination process (# 10 to # 15), the second power failure determination process (# 20 to # 25), the third power failure determination process (# 30 to # 35), and the later It consists of four blocks of processing (# 36, # 37), and the first power failure determination processing (# 10 to # 15) is continued cyclically until the power failure of the system power supply 30 is detected. When a power failure is detected in the determination process (# 10 to # 15) (# 15), the process proceeds to the second power failure determination process (# 20 to # 25) and the second power failure determination process (# 20 to # 25). If a power failure is detected (# 25), the process proceeds to a third power failure determination process (# 30 to # 35), and if a power failure is not detected in the second power failure determination process (# 20 to # 25) (# 25). ), Returning to the first power failure determination processing (# 10 to # 15), and when a power failure is detected in the third power failure determination processing (# 30 to # 35) ( 35), which is the flow to shift to the post-processing (# 36, # 37).

先ず、前処理として、第1乃至第3の停電判定処理で用いられる閾値Δθtの登録は予め行われている。ここでは、閾値Δθtとして1°〜1.4°の範囲の任意の値が登録され、記憶部7に記憶される。尚、本実施形態では、第1乃至第3の停電判定処理を通して、位相差の第1設定値は0°、位相差の第2設定値は例えば3°で固定であり、閾値Δθtも同じ値を使用する。   First, as a pre-process, registration of the threshold value Δθt used in the first to third power failure determination processes is performed in advance. Here, an arbitrary value in the range of 1 ° to 1.4 ° is registered as the threshold Δθt and stored in the storage unit 7. In the present embodiment, through the first to third power failure determination processes, the first set value of the phase difference is fixed at 0 °, the second set value of the phase difference is fixed at 3 °, for example, and the threshold Δθt is also the same value. Is used.

第1の停電判定処理では、所定周期(本実施形態では8周期)の第1期間中、毎周期(毎サイクル)連続してインバータ3の制御部14に対し、系統電源30の系統電圧の位相とインバータ3の交流出力(より具体的には、ブリッジ回路12の交流出力)の出力電流の位相との間の位相差θ(以下、適宜、「位相シフト量θ」という。)の設定値θsを出力すべく、位相差設定部23が設定値θsを第1設定値の0°と設定し(#10)、その設定値θsが8周期の第1期間中(n=0〜7)、同調して制御部14に出力される(#11)。   In the first power failure determination process, the phase of the system voltage of the system power supply 30 is continuously applied to the control unit 14 of the inverter 3 every period (every cycle) during a first period of a predetermined period (eight periods in the present embodiment). And a set value θs of a phase difference θ (hereinafter, appropriately referred to as “phase shift amount θ”) between the output current of the inverter 3 and the AC output of the inverter 3 (more specifically, the AC output of the bridge circuit 12). The phase difference setting unit 23 sets the set value θs to 0 ° of the first set value (# 10), and the set value θs is in the first period of 8 cycles (n = 0 to 7). Synchronously, it is output to the control unit 14 (# 11).

次に、図2には示されていないが、制御部14が設定値θs(=0°)に基づいて位相シフト量θが0°となるようにゲート駆動部13を制御する。そして、位相差検出部24には、その位相制御を反映した電流検出器10と電圧検出器11の検出電流と検出電圧が入力される。位相差検出部24は、入力された検出電流と検出電圧の各ゼロクロスポイントの差から各周期n(n=0〜7)における位相シフト量θの検出値θnを検出し、一旦記憶部7に格納する(#11)。第1期間中の経過は、変数nのカウントアップと変数nが8か否かの判定によって別途監視される。ステップ#11において8つの検出値θn(n=0〜7)が取得されて、第1期間が終了する。次に、第2期間に移行する前に、位相差設定部23が設定値θsを第2設定値の3°に設定する(#12)。   Next, although not shown in FIG. 2, the control unit 14 controls the gate drive unit 13 so that the phase shift amount θ becomes 0 ° based on the set value θs (= 0 °). Then, the detection current and the detection voltage of the current detector 10 and the voltage detector 11 reflecting the phase control are input to the phase difference detection unit 24. The phase difference detection unit 24 detects the detection value θn of the phase shift amount θ in each cycle n (n = 0 to 7) from the difference between each zero cross point of the input detection current and detection voltage, and temporarily stores it in the storage unit 7. Store (# 11). The progress during the first period is separately monitored by counting up the variable n and determining whether the variable n is 8. In step # 11, eight detection values θn (n = 0 to 7) are acquired, and the first period ends. Next, before shifting to the second period, the phase difference setting unit 23 sets the set value θs to 3 ° which is the second set value (# 12).

そして、第1期間と同じ8周期の第2期間に移行して、その設定値θs(=3°)が8周期の第2期間中(n=8〜15)、同調して制御部14に出力される(#13)。次に、図2には示されていないが、制御部14が設定値θs(=3°)に基づいて位相シフト量θが3°となるようにゲート駆動部13を制御する。そして、位相差検出部24には、その位相制御を反映した電流検出器10と電圧検出器11の検出電流と検出電圧が入力される。位相差検出部24は、入力された検出電流と検出電圧の各ゼロクロスポイントの差から各周期n(n=8〜15)における位相シフト量θの検出値θnを検出し、一旦記憶部7に格納する(#13)。第2期間中の経過は、変数nのカウントアップと変数nが16か否かの判定によって別途監視される。ステップ#13において、8つの検出値θn(n=8〜15)が取得されて、第2期間が終了する。   Then, the process proceeds to the second period of the same eight periods as the first period, and the set value θs (= 3 °) is synchronized with the control unit 14 during the second period of eight periods (n = 8 to 15). Is output (# 13). Next, although not shown in FIG. 2, the control unit 14 controls the gate driving unit 13 so that the phase shift amount θ is 3 ° based on the set value θs (= 3 °). Then, the detection current and the detection voltage of the current detector 10 and the voltage detector 11 reflecting the phase control are input to the phase difference detection unit 24. The phase difference detection unit 24 detects the detection value θn of the phase shift amount θ in each cycle n (n = 8 to 15) from the difference between the zero cross points of the input detection current and detection voltage, and temporarily stores them in the storage unit 7. Store (# 13). The progress during the second period is separately monitored by counting up the variable n and determining whether the variable n is 16. In step # 13, eight detection values θn (n = 8 to 15) are acquired, and the second period ends.

第2停電判定部25が、位相シフト量θの第1期間と第2期間の検出値の差の平均値Δθaveを、以下の数1の算出式により算出する(#14)。検出値θn(n=0〜15)は、記憶部7に格納されたものを用いる。   The second power failure determination unit 25 calculates the average value Δθ ave of the difference between the detected values of the first period and the second period of the phase shift amount θ by the following equation 1 (# 14). The detection value θn (n = 0 to 15) is stored in the storage unit 7.

Figure 2005094921
Figure 2005094921

第2期間の位相シフト量θの検出値をそのまま使用せずに、ステップ#14のようにΔθaveを算出して位相差の検出値とすることで、検出した位相変動が、系統電源の停電によるのか、インバータ3の位相制御誤差によるものかの判別を容易にしている。つまり、インバータ3の位相制御誤差が、第1期間と第2期間で共通に発生すると仮定すれば、インバータ3の位相制御誤差は、数1の差分処理で相殺され、Δθaveは当該位相制御誤差がない場合の位相差と等しくなるため、Δθaveを評価することで、系統電源の停電を正確に判定できる。更に、負荷インピーダンスに依存せずに、系統電源の停電時には、Δθaveが0または0近傍に近づくので、安定した停電判定が可能となる。また、合計16周期分の検出値を用いることで、瞬時的な擾乱による電圧変動や電流変動による位相検出誤差を吸収でき、当該擾乱による誤検出の可能性を軽減できる。   Instead of using the detected value of the phase shift amount θ in the second period as it is, Δθave is calculated as in step # 14 to obtain the detected value of the phase difference, so that the detected phase fluctuation is caused by a power failure of the system power supply. It is easy to determine whether it is due to the phase control error of the inverter 3. That is, if it is assumed that the phase control error of the inverter 3 occurs in common in the first period and the second period, the phase control error of the inverter 3 is canceled by the difference process of Equation 1, and Δθave Since it becomes equal to the phase difference in the case of no power supply, it is possible to accurately determine the power failure of the system power supply by evaluating Δθave. Furthermore, since Δθave approaches 0 or close to 0 at the time of a power failure of the system power supply without depending on the load impedance, stable power failure determination is possible. In addition, by using detection values for a total of 16 cycles, phase detection errors due to voltage fluctuations and current fluctuations due to instantaneous disturbances can be absorbed, and the possibility of erroneous detection due to the disturbances can be reduced.

次に、第2停電判定部25が、位相差の検出値Δθaveと第2設定値S(=3°)との差分の絶対値、つまり、系統電源の停電時に現れる位相差の変動分と閾値Δθtとの大小判定を、下記の数2に示す要領で実行して、第1の停電判定処理における第1停電判定を行う(#15)。尚、第1設定値が0°であるので、第2設定値は、即ち第1設定値と前記第2設定値の差に等しい。   Next, the second power failure determination unit 25 determines the absolute value of the difference between the detected value Δθave of the phase difference and the second set value S (= 3 °), that is, the fluctuation amount of the phase difference that appears at the time of a power failure of the system power supply and the threshold value. The magnitude determination with Δθt is executed in the manner shown in the following equation 2, and the first power failure determination in the first power failure determination processing is performed (# 15). Since the first set value is 0 °, the second set value is equal to the difference between the first set value and the second set value.

Figure 2005094921
Figure 2005094921

数2に示す不等式が真(YES)であれば、つまり、系統電源の停電時に現れる位相差の変動分が閾値以上の場合は、系統電源の停電との仮判定を行い、第2の停電判定処理(#20〜#25)に移行する。   If the inequality shown in Equation 2 is true (YES), that is, if the fluctuation of the phase difference that appears at the time of power failure of the system power supply is greater than or equal to the threshold value, a provisional determination is made that the power supply of the system power supply is lost. The process proceeds to processing (# 20 to # 25).

上記第1停電判定(#15)において、数2に示す不等式が成立しない場合(NO)は、ステップ#10に戻り、第1の停電判定処理(#10〜#15)が、系統電源の停電が判定されるまで繰り返し実行される。   In the first power failure determination (# 15), if the inequality shown in Equation 2 is not satisfied (NO), the process returns to step # 10, and the first power failure determination processing (# 10 to # 15) It is repeatedly executed until it is determined.

第2の停電判定処理(#20〜#25)に移行すると、基本的に、第1の停電判定処理(#10〜#15)と同じ処理が実行される。   When the process proceeds to the second power failure determination process (# 20 to # 25), basically, the same process as the first power failure determination process (# 10 to # 15) is executed.

第2の停電判定処理における第2停電判定(#25)において、数2に示す不等式が真(YES)であれば、つまり、系統電源の停電時に現れる位相差の変動分が閾値以上の場合は、系統電源の停電との仮判定を行い、第3の停電判定処理(#30〜#35)に移行する。また、第2停電判定(#25)において、数2に示す不等式が成立しない場合(NO)は、第1の停電判定処理の先頭(#10)に戻り、第1の停電判定処理(#10〜#15)が、再度、系統電源の停電が判定されるまで繰り返し実行される。   In the second power outage determination process (# 25) in the second power outage determination process, if the inequality shown in Equation 2 is true (YES), that is, if the fluctuation of the phase difference that appears at the time of power outage of the system power supply is greater than or equal to the threshold value Then, a temporary determination with a power failure of the system power supply is performed, and the process proceeds to a third power failure determination process (# 30 to # 35). Further, in the second power failure determination (# 25), when the inequality shown in Equation 2 is not satisfied (NO), the process returns to the head (# 10) of the first power failure determination processing, and the first power failure determination processing (# 10). To # 15) are repeated until the power failure of the system power supply is determined again.

第3の停電判定処理(#30〜#35)に移行すると、基本的には、第1の停電判定処理(#10〜#15)及び第2の停電判定処理(#20〜#25)と同じ処理が実行される。   When shifting to the third power failure determination process (# 30 to # 35), basically, the first power failure determination process (# 10 to # 15) and the second power failure determination process (# 20 to # 25) The same process is executed.

第3の停電判定処理における第2停電判定(#35)において、数2に示す不等式が真(YES)であれば、つまり、系統電源の停電時に現れる位相差の変動分が閾値以上の場合は、系統電源停電との最終判定を行い、後処理(#36、#37)に移行する。また、第3停電判定(#35)において、数2に示す不等式が成立しない場合(NO)は、第2の停電判定処理の先頭(#20)に戻り、第2の停電判定処理(#20〜#25)が、再度、系統電源の停電が判定されるまで繰り返し実行される。   In the second power outage determination process (# 35) in the third power outage determination process, if the inequality shown in Equation 2 is true (YES), that is, if the variation of the phase difference that appears at the time of the power outage of the system power supply is greater than or equal to the threshold value Then, a final determination is made that the system power supply is interrupted, and the process proceeds to post processing (# 36, # 37). Further, in the third power failure determination (# 35), when the inequality shown in Equation 2 is not satisfied (NO), the process returns to the head (# 20) of the second power failure determination processing, and the second power failure determination processing (# 20). To # 25) are repeated until the power failure of the system power supply is determined again.

後処理に移行すると、先ず、内部状態を単独運転検出状態に設定し、第2停電判定部25が、第2停電検出信号Snを出力制御手段4に出力する(#36)。出力制御手段4は、第2停電検出信号Snを受け取ると、出力電流即時停止処理をインバータ3に対して実行する(#37)。具体的には、ゲートブロック15が、DC/AC変換部8のゲート駆動部13に対して運転停止信号S1を出力する。この結果、ゲート駆動部13がDC/AC変換部8のブリッジ回路12のゲート駆動を停止するので、ブリッジ回路12の運転が停止し、DC/AC変換部8からの交流出力が停止する。更に、解列制御部16が、連系継電器9に対して解列信号S2を出力して連系継電器9を開成させ、DC/AC変換部8の交流出力と系統電源30の交流電力とを連系接続を遮断されるので、二重に単独運転の防止が図られる。   When the process proceeds to post-processing, first, the internal state is set to the isolated operation detection state, and the second power failure determination unit 25 outputs the second power failure detection signal Sn to the output control means 4 (# 36). When the output control means 4 receives the second power failure detection signal Sn, the output control means 4 performs an output current immediate stop process on the inverter 3 (# 37). Specifically, the gate block 15 outputs an operation stop signal S <b> 1 to the gate drive unit 13 of the DC / AC conversion unit 8. As a result, the gate drive unit 13 stops the gate drive of the bridge circuit 12 of the DC / AC conversion unit 8, so that the operation of the bridge circuit 12 is stopped and the AC output from the DC / AC conversion unit 8 is stopped. Further, the disconnection control unit 16 outputs the disconnection signal S2 to the interconnection relay 9 to open the interconnection relay 9, and the AC output of the DC / AC conversion unit 8 and the AC power of the system power supply 30 are generated. Since the interconnection connection is cut off, double operation can be prevented.

次に、能動的単独運転検出手段7が単独運転状態を検出するまでに要する時間について検討する。図2を用いて詳細に説明したように、本発明システム1による能動的方式の単独運転検出処理は、第1の停電判定処理(#10〜#15)、第2の停電判定処理(#20〜#25)、第3の停電判定処理(#30〜#35)が主たる時間消費要素となり、各停電判定処理は等しく夫々8周期の第1期間と第2期間で構成されている。ここで、系統電源の周波数が60Hzの場合は1周期が約0.01667秒(1/60秒)であるが、位相差設定部23による設定値θsの出力、設定値θsに基づくブリッジ回路12の制御、位相差検出部24による位相差の検出は、全て1周期内で完了するので、停電発生から停電検出までの所要時間は、その間の周期数で算定できる。   Next, the time required for the active islanding detection means 7 to detect the islanding state is examined. As described in detail with reference to FIG. 2, the active type isolated operation detection process by the system 1 of the present invention includes the first power failure determination process (# 10 to # 15) and the second power failure determination process (# 20). To # 25), the third power failure determination process (# 30 to # 35) is a main time consuming element, and each power failure determination process is equally composed of a first period and a second period of 8 cycles. Here, when the frequency of the system power supply is 60 Hz, one cycle is about 0.01667 seconds (1/60 seconds), but the output of the set value θs by the phase difference setting unit 23 and the bridge circuit 12 based on the set value θs. Since the phase difference detection by the phase difference detection unit 24 is completed within one cycle, the time required from the occurrence of a power failure to the detection of the power failure can be calculated by the number of cycles in between.

第1停電判定(#15)で停電が仮判定されるまで、第1の停電判定処理(第1期間と第2期間)が繰り返し実行され、第1停電判定(#15)で停電が仮判定されると、第2の停電判定処理と第3の停電判定処理が順次実行されるという経過を辿る。この場合、停電は発生しているので、第2及び第3停電判定(#25、#35)では停電の判定が当然になされることになる。第1の停電判定処理(第1期間と第2期間)のどのタイミングで停電が発生するかによって、第3停電判定(#35)で停電の最終判定がなされるまでに要する周期数が変化する。この場合、負荷インピーダンスと第1設定値にも依存する。負荷インピーダンスが抵抗性で、第1設定値が0°の場合は、第1の停電判定処理の第1期間中に停電が発生しても、第1期間中の位相の検出値に変動がないので、その後の第1停電判定(#15)で停電が検出される。第1の停電判定処理の第2期間中に停電が発生した場合、8周期の一部の検出値にのみ停電の兆候が現れるので、閾値との関係で第2期間中の後半に停電が発生した場合は、その後の第1停電判定(#15)で停電が検出されない場合があり、その場合は、第1の停電判定処理(第1期間と第2期間)が再度繰り返されることになり、第1の停電判定処理で停電発生から停電検出までに大体8〜24周期を要し(8周期より短くなる可能性もある。)、全ての停電判定処理を通して40〜56周期を要し、周波数が60Hzの場合、0.667秒から0.933秒の範囲内で停電検出ができる。この結果、電力系統連系技術要件ガイドラインにおいて能動的方式の単独運転防止に要求される作動時間が0.5秒以上1秒以内という制約を満足することができる。   The first power failure determination process (first period and second period) is repeatedly executed until the power failure is temporarily determined in the first power failure determination (# 15), and the power failure is temporarily determined in the first power failure determination (# 15). Then, the process of sequentially executing the second power failure determination process and the third power failure determination process is followed. In this case, since a power failure has occurred, the determination of the power failure is naturally made in the second and third power failure determinations (# 25, # 35). The number of cycles required until the final determination of the power failure is made in the third power failure determination (# 35) depends on the timing of the power failure occurring in the first power failure determination processing (the first period and the second period). . In this case, it also depends on the load impedance and the first set value. When the load impedance is resistive and the first set value is 0 °, even if a power failure occurs during the first period of the first power failure determination process, the phase detection value during the first period does not vary. Therefore, a power failure is detected in the subsequent first power failure determination (# 15). If a power outage occurs during the second period of the first power outage determination process, the power outage appears only in some of the detected values in the 8 cycles, so a power outage occurs in the second half of the second period in relation to the threshold value. In such a case, the power failure may not be detected in the subsequent first power failure determination (# 15). In that case, the first power failure determination process (the first period and the second period) will be repeated again. In the first power failure determination process, approximately 8 to 24 cycles are required from the occurrence of a power failure to the detection of the power failure (it may be shorter than 8 cycles), and 40 to 56 cycles are required throughout all the power failure determination processes. Is 60 Hz, a power failure can be detected within a range of 0.667 seconds to 0.933 seconds. As a result, it is possible to satisfy the constraint that the operation time required for preventing the independent operation of the active system in the power system interconnection technical requirement guideline is 0.5 seconds or more and within 1 second.

〈第2実施形態〉
次に、第2実施形態に係る本発明システム40について説明する。図3に示すように、本発明システム40は、基本的な構成として、第1実施形態と同様に、直流電力を発生する発電機2と、発電機2が発生した直流電力を所定の電圧と周波数の交流電力に変換するインバータ3と、インバータ3の運転及び系統電源30との連系接続を制御する出力制御手段4と、不足電力検出手段5と、受動的単独運転検出手段6と、能動的単独運転検出手段7とを備えて構成される。第1実施形態と共通する部分については、重複する説明を省略する。
Second Embodiment
Next, the system 40 of the present invention according to the second embodiment will be described. As shown in FIG. 3, the system 40 of the present invention has, as a basic configuration, the generator 2 that generates DC power and the DC power generated by the generator 2 as a predetermined voltage, as in the first embodiment. Inverter 3 for converting to AC power of frequency, output control means 4 for controlling operation of inverter 3 and interconnection connection with system power supply 30, insufficient power detection means 5, passive islanding detection means 6, active Single operation detection means 7. A duplicate description of the parts common to the first embodiment is omitted.

第1実施形態との第1の相違点は、発電機2が、燃料電池やマイクロガスタービン等のような電力の他に熱も発生するコージェネレーション(熱電併給)型発電機であり、発電機2の排熱を回収する熱交換器41と、熱交換器41で回収された排熱を給湯や暖房に利用するための排熱利用給湯暖房ユニット42を備えている点である。ここで、熱交換器41及び排熱利用給湯暖房ユニット42は一般的なコージェネレーションシステムで用いられている公知のものを使用するものとし、詳細な説明は割愛する。   The first difference from the first embodiment is that the generator 2 is a cogeneration type generator that generates heat in addition to electric power such as a fuel cell or a micro gas turbine. 2 is provided with a heat exchanger 41 that recovers the exhaust heat of No. 2 and an exhaust heat utilization hot water supply / heating unit 42 for using the exhaust heat recovered by the heat exchanger 41 for hot water supply or heating. Here, the heat exchanger 41 and the exhaust heat utilization hot water supply / heating unit 42 are well-known units used in a general cogeneration system, and detailed description thereof is omitted.

第2の相違点は、不足電力検出手段5で用いる解列設定値に対し、より不足電力状態となるように所定の余裕度を持たせた発電電力目標値を設定する発電電力目標値設定手段18を備え、DC/AC変換部8の制御部14が、交流出力がその発電電力目標値を下回らないように出力制御する点である。第3の相違点は、負荷31の一部として、排熱利用給湯暖房ユニット42に対して熱供給可能な電気ヒータ43を備え、出力制御手段4が、電気ヒータ43の作動を制御するヒータ制御部17を備えている点である。   The second difference is that the generated power target value setting means for setting the generated power target value having a predetermined margin so as to be in a more insufficient power state with respect to the set-off set value used in the insufficient power detection means 5. 18, and the control unit 14 of the DC / AC conversion unit 8 controls the output so that the AC output does not fall below the generated power target value. The third difference is that, as part of the load 31, an electric heater 43 capable of supplying heat to the exhaust heat utilization hot water supply / heating unit 42 is provided, and the output control means 4 controls the heater of the electric heater 43. It is a point provided with a portion 17.

第1実施形態において、不足電力検出手段5で常に発電出力(定格値)の5%以上の不足電力状態で運転しているため、逆潮流状態になっていないにも拘わらず、発電出力と負荷が定格出力の5%(解列設定値)以下の平衡状態に近づくと、系統電源30が正常であっても単独運転防止機能が作動してDC/AC変換部8の運転が停止し、出力電流が遮断される結果となる。従って、負荷変動が激しい場合等の状況下においては、本発明システム1の緊急停止状態が頻繁に発生する場合があり得る。発電システムの発停が繰り返されると発電効率上好ましくないので、逆潮流なしの発電システムにおいてはこれを未然に防止するのが好ましい。第2実施形態では、上記第2の相違点により、DC/AC変換部8の制御部14が、交流出力が発電電力目標値設定手段18の設定した発電電力目標値以上を維持するように出力制御することで、DC/AC変換部8が運転停止に陥るのを回避する。尚、発電電力目標値は、例えば、不足電力が定格出力の5%以上となるように、予め負荷変動の最大値を想定して設定される。この結果、第2実施形態では、本発明システム40は安定した稼動が可能となる。   In the first embodiment, since the insufficient power detection means 5 is always operated in an insufficient power state of 5% or more of the generated power output (rated value), the generated power output and the load are not in the reverse power flow state. Is close to the equilibrium state of 5% of rated output (disconnection set value) or less, even if the system power supply 30 is normal, the isolated operation prevention function is activated and the operation of the DC / AC converter 8 is stopped, and the output As a result, the current is cut off. Therefore, under circumstances such as when the load fluctuation is severe, the emergency stop state of the system 1 of the present invention may frequently occur. Since it is not preferable in terms of power generation efficiency when the generation system is repeatedly started and stopped, it is preferable to prevent this in a power generation system without a reverse power flow. In the second embodiment, due to the second difference, the control unit 14 of the DC / AC conversion unit 8 outputs so that the AC output is maintained at or above the generated power target value set by the generated power target value setting means 18. By controlling, it is avoided that the DC / AC conversion part 8 falls into an operation stop. The generated power target value is set in advance assuming the maximum value of the load fluctuation so that the insufficient power becomes 5% or more of the rated output, for example. As a result, in the second embodiment, the inventive system 40 can operate stably.

ところで、発電機2は出力を例えば定格出力に固定して一定出力で定常運転させるのが運転効率上好ましい。従って、発電機2が一定の発電出力で運転している場合に、負荷変動が発生すると不足電力は負荷変動に追従して変動することになる。負荷変動が予め想定困難な場合は、負荷の低下によって、不足電力が減少し、解列設定値以下の平衡状態に陥り、DC/AC変換部8が運転停止に陥る可能性がある。また、発電電力目標値の設定において、解列設定値に対して過度の余裕度を設けると、不足電力状態が常時高めに設定されるので、系統電力の使用比率が高くなり、分散型発電システム導入のメリットが低下する。従って、当該余裕度を出来るだけ小さくして発電電力目標値を設定するのが好ましいが、上記のように負荷変動に対するリスクが高くなる。   By the way, it is preferable in terms of operation efficiency that the generator 2 is operated at a constant output with the output fixed at, for example, a rated output. Therefore, when the generator 2 is operating at a constant power output, if a load change occurs, the insufficient power will change following the load change. When it is difficult to predict the load fluctuation in advance, there is a possibility that the shortage of power is reduced due to a decrease in the load, and an equilibrium state that is equal to or lower than the set value of the disconnection occurs, causing the DC / AC conversion unit 8 to stop operating. Also, in setting the generated power target value, if an excessive margin is provided with respect to the set-off set value, the insufficient power state is always set higher, so that the system power usage ratio increases, and the distributed power generation system The merit of introduction decreases. Therefore, it is preferable to set the generated power target value with the margin as small as possible, but the risk of load fluctuation increases as described above.

第2実施形態では、出力制御手段4内のヒータ制御部17が、不足電力検出手段5の不足電力測定部19が算出した不足電力と、発電電力目標値設定手段18が発電電力目標値を設定に用いた余裕度を加味した不足電力設定値とを入力として受け付け、両者の大小比較を行い、不足電力が不足電力設定値を下回る場合に、その下回った分の余剰電力を電気ヒータ43で消費するように電気ヒータをオンオフ制御する。また、電気ヒータ43が出力可変である場合は、余剰電力に応じて出力を変化させる。かかるヒータ制御によって、不足電力状態は解列設定値に対して常に一定の余裕度を有するため、本発明システム40は安定した稼動が可能となり、更に、余剰電力を単に消費するだけでなく、排熱利用給湯暖房ユニット42において熱エネルギとして利用できるため、総合的なエネルギ効率の向上が図れる。   In the second embodiment, the heater control unit 17 in the output control unit 4 sets the insufficient power calculated by the insufficient power measurement unit 19 of the insufficient power detection unit 5 and the generated power target value setting unit 18 sets the generated power target value. When the shortage power falls below the shortage power set value, the excess power consumed by the electric heater 43 is consumed. The electric heater is controlled to turn on and off. Further, when the output of the electric heater 43 is variable, the output is changed according to the surplus power. Due to such heater control, the shortage power state always has a certain margin with respect to the disconnection set value, so that the system 40 of the present invention can operate stably, and not only consumes the surplus power but also discharges it. Since it can utilize as heat energy in the heat utilization hot water supply / heating unit 42, the overall energy efficiency can be improved.

以下に、別の実施形態につき説明する。   Hereinafter, another embodiment will be described.

〈1〉上記各実施形態では、受動的単独運転検出手段6は、電圧位相跳躍検出式の受動的単独運転検出機能を備え、能動的単独運転検出手段7は、位相シフト式の能動的単独運転検出機能を備える構成を採用したが、単独運転検出方式は受動的方式及び能動的方式の何れにおいても、上記実施形態の方式に限定されるものではなく、他の方式のものに代えてもよいし、他の方式のものを併用しても構わない。   <1> In each of the above embodiments, the passive islanding detection means 6 has a voltage phase jump detection type passive islanding detection function, and the active islanding detection means 7 is a phase shift type active islanding operation. Although a configuration having a detection function is adopted, the isolated operation detection method is not limited to the method of the above embodiment in any of the passive method and the active method, and may be replaced with another method. However, other types may be used in combination.

〈2〉不足電力検出手段5が使用する解列設定値は、上記実施形態で例示した値に限定されるものではない。   <2> The disconnection set value used by the insufficient power detection means 5 is not limited to the values exemplified in the above embodiment.

また、能動的単独運転検出手段7の処理フローにおいて、処理手順や使用する設定値や閾値は、上記実施形態で例示した手順及び値に限定されるものではない。例えば、第1〜第3の各停電判定処理において、第1設定値を0°、第2設定値Sを3°に固定したが、夫々0°、3°以外であっても構わない。更に、第1〜第3の各停電判定処理を1回に纏めて、第1期間中、第2期間中の周期数を調整しても構わない。   Further, in the processing flow of the active islanding detection means 7, the processing procedure and the set values and threshold values to be used are not limited to the procedures and values exemplified in the above embodiment. For example, in the first to third power failure determination processes, the first set value is fixed to 0 ° and the second set value S is fixed to 3 °, but may be other than 0 ° and 3 °, respectively. Furthermore, the first to third power failure determination processes may be combined into one time to adjust the number of cycles during the first period and the second period.

〈3〉上記第2実施形態において、発電機2が、燃料電池やマイクロガスタービン等のような電力の他に熱も発生するコージェネレーション型発電機であり、発電機2の排熱を回収する熱交換器41と、熱交換器41で回収された排熱を給湯や暖房に利用するための排熱利用給湯暖房ユニット42を備えている構成としたが、発電機2は必ずしもコージェネレーション型でなくても構わない。この場合、電気ヒータ43の出力する熱エネルギは、排熱利用給湯暖房ユニット42以外で利用するようにすればよい。   <3> In the second embodiment, the generator 2 is a cogeneration generator that generates heat in addition to electric power, such as a fuel cell or a micro gas turbine, and recovers exhaust heat of the generator 2. Although it was set as the structure provided with the heat exchanger 41 and the waste heat utilization hot water supply heating unit 42 for utilizing the waste heat collect | recovered with the heat exchanger 41 for hot water supply or heating, the generator 2 is not necessarily a cogeneration type. It doesn't matter. In this case, the heat energy output by the electric heater 43 may be used by other than the exhaust heat utilization hot water supply / heating unit 42.

〈4〉上記第2実施形態において、発電電力目標値設定手段18を備え、DC/AC変換部8の制御部14が、交流出力が発電電力目標値設定手段18の設定した発電電力目標値を下回らないように出力制御する構成(第2の相違点)を採用したが、当該構成だけを第1実施形態の本発明システムに追加しても構わない。   <4> In the second embodiment, the power generation target value setting unit 18 is provided, and the control unit 14 of the DC / AC conversion unit 8 uses the generated power target value set by the power generation power target value setting unit 18 as the AC output. Although the configuration (second difference) for controlling output so as not to fall below is adopted, only the configuration may be added to the system of the present invention of the first embodiment.

〈5〉上記実施形態では、インバータ3は、周波数60Hzの単相3線式正弦波出力の100V/200Vを出力する場合を想定したが、インバータ3の交流出力の電気方式、出力電圧、周波数は、上記実施形態の電気方式、出力電圧、周波数に限定されるものではない。   <5> In the above embodiment, it is assumed that the inverter 3 outputs 100 V / 200 V of a single-phase three-wire sine wave output with a frequency of 60 Hz, but the electrical system, output voltage, and frequency of the AC output of the inverter 3 are The electrical system, output voltage, and frequency of the above embodiment are not limited.

本発明に係る分散型発電システムの一実施形態を示す回路ブロック図1 is a circuit block diagram showing an embodiment of a distributed power generation system according to the present invention. 本発明に係る分散型発電システムの能動的単独運転検出処理の一例を示すフローチャートThe flowchart which shows an example of the active islanding detection process of the distributed power generation system which concerns on this invention 本発明に係る分散型発電システムの他の実施形態を示す回路ブロック図The circuit block diagram which shows other embodiment of the distributed power generation system which concerns on this invention

符号の説明Explanation of symbols

1、40:本発明に係る分散型発電システム
2: 発電機
3: インバータ(電力変換装置)
4: 出力制御手段
5: 不足電力検出手段
6: 受動的単独運転検出手段
7: 能動的単独運転検出手段
8: DC/AC変換部
9: 連系継電器
10: 電流検出器
11: 電圧検出器
12: ブリッジ回路
13: ゲート駆動部
14: 制御部
15: ゲートブロック
16: 解列制御部
17: ヒータ制御部
18: 発電電力目標値設定手段
19: 不足電力測定部
20: 不足電力判定部
21: 位相変化検出部
22: 第1停電判定部
23: 位相差設定部
24: 位相差検出部
25: 第2停電判定部
26: 記憶部
30: 系統電源
31: 負荷
32: 系統電流検出器
41: 熱交換器
42: 排熱利用給湯暖房ユニット
43: 電気ヒータ
Sf: 不足電力検出信号
Sj: 第1停電検出信号
Sn: 第2停電検出信号
S1: 運転停止信号
S2: 解列信号
1, 40: Distributed generation system according to the present invention 2: Generator 3: Inverter (power converter)
4: Output control means 5: Underpower detection means 6: Passive islanding detection means 7: Active islanding detection means 8: DC / AC conversion unit 9: Interconnection relay 10: Current detector 11: Voltage detector 12 : Bridge circuit 13: Gate drive unit 14: Control unit 15: Gate block 16: Disconnection control unit 17: Heater control unit 18: Generated power target value setting means 19: Underpower measurement unit 20: Underpower determination unit 21: Phase Change detection unit 22: first power failure determination unit 23: phase difference setting unit 24: phase difference detection unit 25: second power failure determination unit 26: storage unit 30: system power supply 31: load 32: system current detector 41: heat exchange Unit 42: Waste heat utilization hot water supply / heating unit 43: Electric heater Sf: Underpower detection signal Sj: First power failure detection signal Sn: Second power failure detection signal S1: Operation stop signal S : Disconnection signal

Claims (6)

系統電源と系統連系可能な分散型発電システムであって、
不足電力継電器と受動的単独運転防止装置と能動的単独運転防止装置を備え、前記系統電源側への逆潮流を許容しないように構成されていることを特徴とする分散型発電システム。
A distributed power generation system that can be connected to a grid power source,
A distributed power generation system comprising a power shortage relay, a passive islanding prevention device, and an active islanding prevention device, and configured not to allow reverse power flow to the system power supply side.
直流電力を発生する発電機と、
前記発電機が発生した直流電力を所定の電圧と周波数の交流電力に変換する電力変換装置と、
前記電力変換装置の運転及び系統電源との連系接続を制御する出力制御手段と、
負荷の消費電力から前記電力変換装置の出力電力を差し引いた差で表される不足電力が所定の解列設定値を下回ったことを検出して不足電力検出信号を出力する不足電力検出手段と、
前記系統電源の停電時に系統電圧に現れる変化を検出して第1停電検出信号を出力する受動的単独運転検出手段と、
前記電力変換装置の出力電力に対して付与した所定の特性変動に基づいて前記系統電源の停電時に現れる変化を検出して第2停電検出信号を出力する能動的単独運転検出手段と、を備え、
前記不足電力継電器は、前記不足電力検出手段が出力する前記不足電力検出信号に基づいて、前記出力制御手段が前記電力変換装置と前記系統電源との連系接続する継電器を開成するように構成され、
前記受動的単独運転防止装置は、前記受動的単独運転検出手段が出力する前記第1停電検出信号に基づいて、前記出力制御手段が前記電力変換装置と前記系統電源とを連系接続する継電器の開成、或いは、前記電力変換装置の運転停止の少なくとも何れか一方を行うように構成され、
前記能動的単独運転防止装置は、前記能動的単独運転検出手段が出力する前記第2停電検出信号に基づいて、前記出力制御手段が前記電力変換装置と前記系統電源とを連系接続する継電器の開成、或いは、前記電力変換装置の運転停止の少なくとも何れか一方を行うように構成されていることを特徴とする請求項1に記載の分散型発電システム。
A generator for generating DC power;
A power converter that converts the DC power generated by the generator into AC power having a predetermined voltage and frequency;
Output control means for controlling the operation of the power converter and the interconnection connection with the system power supply;
Underpower detection means for detecting that the power shortage represented by the difference obtained by subtracting the output power of the power conversion device from the power consumption of the load falls below a predetermined disconnection set value and outputting a power shortage detection signal;
A passive islanding detection means for detecting a change appearing in a system voltage at the time of a power failure of the system power supply and outputting a first power failure detection signal;
An active islanding detection means for detecting a change appearing at the time of a power failure of the system power supply based on a predetermined characteristic variation applied to the output power of the power converter, and outputting a second power failure detection signal;
The underpower relay is configured such that, based on the underpower detection signal output by the underpower detection means, the output control means opens a relay that interconnects the power converter and the system power supply. ,
The passive islanding prevention device is a relay that connects the power converter and the grid power source to the output control unit based on the first power failure detection signal output by the passive islanding detection unit. It is configured to perform at least one of opening or stopping the operation of the power converter,
The active islanding prevention device includes a relay that connects the power converter and the grid power source to the power control unit based on the second power failure detection signal output from the active islanding detection unit. The distributed power generation system according to claim 1, wherein the distributed power generation system is configured to perform at least one of opening and operation stop of the power conversion device.
前記不足電力継電器の不足電力検出のための基準値である解列設定値に対し、より不足電力状態となるように所定の余裕度を持たせて設定した発電電力目標値に基づいて発電出力が制御されることを特徴とする請求項1または2に記載の分散型発電システム。   The generated power output is based on the generated power target value set with a predetermined margin so as to be in a more insufficient power state with respect to the set-off set value which is a reference value for detecting the insufficient power of the insufficient power relay. The distributed power generation system according to claim 1, wherein the power generation system is controlled. ヒータ及び前記ヒータの作動を制御するヒータ制御部を備え、
前記発電電力目標値の発電出力に対して余剰電力が発生する場合、前記ヒータ制御部が、前記余剰電力を前記ヒータで消費するように制御することを特徴とする請求項3に記載の分散型発電システム。
A heater and a heater control unit for controlling the operation of the heater;
4. The distributed type according to claim 3, wherein when the surplus power is generated with respect to the power generation output of the generated power target value, the heater control unit controls the surplus power to be consumed by the heater. Power generation system.
熱電併給型発電機を備えていることを特徴とする請求項1〜4の何れか1項に記載の分散型発電システム。   The distributed power generation system according to any one of claims 1 to 4, further comprising a cogeneration type generator. 逆潮流なしで系統電源と系統連系する分散型発電システムの単独運転防止方法であって、
前記分散型発電システムに、不足電力継電器と受動的単独運転防止装置と能動的単独運転防止装置を備え、
不足電力継電器により、前記系統電源の正常時における前記分散型発電システムから前記系統電源側への逆潮流の発生を排除した状態において、
前記受動的単独運転防止装置と前記能動的単独運転防止装置により、前記系統電源の停電を検出して、前記分散型発電システムの単独運転状態を防止することを特徴とする分散型発電システムの単独運転防止方法。
A method for preventing isolated operation of a distributed power generation system that is connected to a system power supply without reverse power flow,
The distributed power generation system comprises a shortage relay, a passive islanding prevention device and an active islanding prevention device,
In a state where the occurrence of reverse power flow from the distributed power generation system to the system power supply side at the time of normal operation of the system power supply by an insufficient power relay,
A distributed power generation system isolated by detecting a power failure of the system power supply by the passive islanding prevention device and the active islanding prevention device to prevent an isolated operation state of the distributed generation system Driving prevention method.
JP2003324774A 2003-09-17 2003-09-17 Distributed power generation system and method for preventing its isolated operation Pending JP2005094921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324774A JP2005094921A (en) 2003-09-17 2003-09-17 Distributed power generation system and method for preventing its isolated operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324774A JP2005094921A (en) 2003-09-17 2003-09-17 Distributed power generation system and method for preventing its isolated operation

Publications (1)

Publication Number Publication Date
JP2005094921A true JP2005094921A (en) 2005-04-07

Family

ID=34455441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324774A Pending JP2005094921A (en) 2003-09-17 2003-09-17 Distributed power generation system and method for preventing its isolated operation

Country Status (1)

Country Link
JP (1) JP2005094921A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300720A (en) * 2006-04-28 2007-11-15 Chugoku Electric Power Co Inc:The Protective relay device for detecting single operation and method of detecting single system state
JP2012005205A (en) * 2010-06-15 2012-01-05 Aisin Seiki Co Ltd Power generating system
JP2012143147A (en) * 2004-12-07 2012-07-26 Denso Corp Power source control device, and power management method thereof
CN102714417A (en) * 2010-03-11 2012-10-03 株式会社东芝 Solar power generation system and power supply system
KR101243896B1 (en) * 2011-09-05 2013-03-20 카코뉴에너지 주식회사 New and renewable energy generation system and its anti islanding protecting method
KR101269659B1 (en) * 2011-09-05 2013-05-30 카코뉴에너지 주식회사 New and renewable energy generation system and its anti islanding protecting method
JP2014239625A (en) * 2013-06-10 2014-12-18 住友電気工業株式会社 System interconnection power control apparatus and system interconnection power control method
US9391537B2 (en) 2011-01-20 2016-07-12 Kabushiki Kaisha Toshiba Photovoltaic system and power supply system
US9450451B2 (en) 2010-03-12 2016-09-20 Kabushiki Kaisha Toshiba Photovoltaic generation system and power feeding system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143147A (en) * 2004-12-07 2012-07-26 Denso Corp Power source control device, and power management method thereof
JP2007300720A (en) * 2006-04-28 2007-11-15 Chugoku Electric Power Co Inc:The Protective relay device for detecting single operation and method of detecting single system state
CN102714417A (en) * 2010-03-11 2012-10-03 株式会社东芝 Solar power generation system and power supply system
US9184626B2 (en) 2010-03-11 2015-11-10 Kabushiki Kaisha Toshiba Photovoltaic system and power supply system
US9450451B2 (en) 2010-03-12 2016-09-20 Kabushiki Kaisha Toshiba Photovoltaic generation system and power feeding system
JP2012005205A (en) * 2010-06-15 2012-01-05 Aisin Seiki Co Ltd Power generating system
US9391537B2 (en) 2011-01-20 2016-07-12 Kabushiki Kaisha Toshiba Photovoltaic system and power supply system
KR101243896B1 (en) * 2011-09-05 2013-03-20 카코뉴에너지 주식회사 New and renewable energy generation system and its anti islanding protecting method
KR101269659B1 (en) * 2011-09-05 2013-05-30 카코뉴에너지 주식회사 New and renewable energy generation system and its anti islanding protecting method
US8681515B2 (en) 2011-09-05 2014-03-25 Kaco New Energy Inc. Energy generation system and anti islanding protecting method thereof
JP2014239625A (en) * 2013-06-10 2014-12-18 住友電気工業株式会社 System interconnection power control apparatus and system interconnection power control method

Similar Documents

Publication Publication Date Title
JP4155674B2 (en) Frequency control device for power system including secondary battery
CN103370534B (en) The manufacture method of matrix conversion device used for wind power generation, wind generating unit, wind field and windmill
US20020036911A1 (en) Uniterruptible power system
WO2007066707A1 (en) Converter for recovering electric power
JP2007300784A (en) Distributed power supply
JP2004194485A (en) Energy system
CN103392291B (en) Power conversion device
JP2004208426A (en) Distributed home power supply apparatus by dc interconnection, and its control method
CN103597694A (en) Operation control device for photovoltaic power generation system
JP2008104334A (en) Fuel cell type distributed power generating apparatus
JP2005094921A (en) Distributed power generation system and method for preventing its isolated operation
JP2012026836A (en) Frequency detection method for distributed power source and system interconnection protection apparatus
US20120099352A1 (en) Power generation system
JP4258452B2 (en) Power conditioner control device, power conditioner control method, and cogeneration system
JP4606383B2 (en) Distributed generator
JP3827676B2 (en) Power storage system
JP4545069B2 (en) Cogeneration system and control device
CA2762610A1 (en) Method of detecting an unintentional island condition of a distributed resource of a utility grid, and protective apparatus and controller including the same
TWI565194B (en) Fault detecting device and fault detecting method of grid-connected power generation system
JP2003092831A (en) Power supply system and its operation method
JP2003070166A (en) Linkage system
JP3257293B2 (en) Method for detecting islanding operation of distributed power supply operating in parallel with power system
JP7040029B2 (en) Power control device, control method of power control device
JP2005137070A (en) System linkage inverter and power source system
JP5939568B2 (en) System for proper use of generated power by natural energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219