JP2004236383A - Method for estimating pole position of permanent magnet type synchronous motor and controller for same - Google Patents

Method for estimating pole position of permanent magnet type synchronous motor and controller for same Download PDF

Info

Publication number
JP2004236383A
JP2004236383A JP2003019107A JP2003019107A JP2004236383A JP 2004236383 A JP2004236383 A JP 2004236383A JP 2003019107 A JP2003019107 A JP 2003019107A JP 2003019107 A JP2003019107 A JP 2003019107A JP 2004236383 A JP2004236383 A JP 2004236383A
Authority
JP
Japan
Prior art keywords
phase
induced voltage
phase current
voltage
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003019107A
Other languages
Japanese (ja)
Other versions
JP4273775B2 (en
Inventor
Sukeatsu Inazumi
祐敦 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003019107A priority Critical patent/JP4273775B2/en
Publication of JP2004236383A publication Critical patent/JP2004236383A/en
Application granted granted Critical
Publication of JP4273775B2 publication Critical patent/JP4273775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the estimating accuracy of a pole position by compensating the change of an induced voltage constant due to a temperature in the controller of a permanent magnet type synchronous motor. <P>SOLUTION: An induced voltage regulator 11 inputs a γ phase induced voltage estimated value eγ<SB>est</SB>and a δ phase induced voltage estimated value eδ<SB>est</SB>calculated by a γ-δ phase current/induced voltage estimating unit 8, finds the induced voltage constant Ke, and regulates the induced voltage constant Ke so that the quotient of the γ phase induced voltage estimated value eγ<SB>est</SB>and the δ phase induced voltage estimated value eδ<SB>est</SB>becomes "0". Even if the induced voltage constant Ke is changed in association with the temperature change of a permanent magnet, the temperature change of the induced voltage constant Ke is compensated by the induced voltage regulator 11, and the estimating accuracy of the pole position is improved. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、永久磁石を回転子とした永久磁石型同期電動機を制御するための永久磁石型同期電動機の制御装置に関し、特に永久磁石型同期電動機の磁極位置を推定する磁極位置推定方法に関する。
【0002】
【従来の技術】
永久磁石を回転子とするブラシレスDCモータを同期電動機として運転する場合、回転子の絶対位置を得て、正確な運転を行う必要がある。回転子の絶対位置を得るためには、エンコーダやレゾルバ等の回転子位置検出器を用いることが一般的であるが、配線や構造の複雑さ、価格や使用環境等について問題があるため、回転位置検出器を用いないで回転子の磁極位置を求める方法が提案されている。
【0003】
従来の永久磁石型同期発電機の磁極位置検出方法としては、モータに供給される電流、電圧を入力とし、誘起電圧をモータが回転していない時の電流応答に対する外乱として推定する外乱オブザーバを用いた磁極位置検出方法の提案がなされている(例えば、特許文献1参照。)。
【0004】
しかし、この従来の永久磁石型同期発電機の磁極位置検出方法は、モータの電機モデルを規範とした推定機構であるため、推定精度はモデルに使用する電機定数の測定精度に影響を受ける。推定機構に必要な電機定数の1つである誘起電圧定数は、温度により変化する特性があるので、環境の変化やモータの温度上昇により推定精度が劣化するという問題があった。
【0005】
温度による変化特性を補償して永久磁石型同期電動機の制御精度の向上を図った磁極位置推定方法としては、永久磁石の温度に対する減磁特性を磁束テーブルに予め記憶しておき、温度センサにより測定した温度に対応する磁束をこの磁束テーブルから読み出すことにより減磁特性を補償したトルク電流指令を得るようにした方法が開示されている(例えば、特許文献2参照。)。しかし、この従来の磁極位置推定方法では、永久磁石の温度を測定するための温度センサを設ける必要があり、配線や構造の複雑さを招くことにもなる。また、この従来の磁極位置推定方法によっては、誘起電圧定数の温度による変化を補償することはできないため、さらなる推定精度の向上が求められている。
【0006】
【特許文献1】
特開平9−191698号公報
【特許文献2】
特開平9−51700号公報
【0007】
【発明が解決しようとする課題】
上述した従来の永久磁石型同期電動機の制御装置では、永久磁石の温度変化により誘起電圧定数が変化してしまうため、磁極位置の推定精度が劣化してしまうという問題点があった。
【0008】
本発明の目的は、誘起電圧定数の温度による変化を補償することにより磁極位置の推定精度を向上させることができる永久磁石型同期電動機の磁極位置推定方法および制御装置を提供することである。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の永久磁石型同期電動機の制御装置は、外部から入力された角速度指令およびγ相電流指令に基づいて、永久磁石型同期電動機の制御を行うための、永久磁石型同期電動機の制御装置であって、
外部から入力された角速度指令、導出された角速度推定値に基づいてδ相電流指令を算出する速度コントローラと、
前記速度コントローラにより算出されたδ相電流指令と、算出されたδ相電流推定値とに基づいてδ相電圧指令を算出するδ相電流コントローラと、
外部から入力されたγ相電流指令と、算出されたγ相電流推定値とに基づいてγ相電圧指令を算出するγ相電流コントローラと、
前記δ相電流コントローラにより算出されたδ相電圧指令および前記γ相電流コントローラにより算出されたγ相電圧指令と、算出された磁極位置とに基づいて、電圧値絶対値とγ軸からの電圧出力方向の位相である電圧指令位相とを算出して出力するベクトル制御回路と、
前記ベクトル制御回路により算出された電圧値絶対値および電圧指令位相に基づいて制御対象である同期電動機に駆動電流を出力しているインバータ回路と、
前記同期電動機の少なくとも2相のステータ電流をγ−δ軸座標系に変換することにより、γ相電流およびδ相電流を算出する相変換器と、
前記相変換器により算出されたγ相電流、δ相電流と、導出された磁極位置と、前記δ相電流コントローラおよび前記γ相電流コントローラによりそれぞれ算出されたδ相電圧指令、γ相電圧指令に基づいてγ相電流推定値、γ相電流推定値、γ相誘起電圧推定値、およびδ相誘起電圧推定値を出力するγ−δ相電流・誘起電圧推定器と、
前記γ−δ相電流・誘起電圧推定器によって算出されたγ相誘起電圧推定値およびδ相誘起電圧推定値を用いて誘起電圧定数を導出し、前記γ相誘起電圧推定値と前記δ相誘起電圧推定値の商が0となるように前記誘起電圧定数を調整する誘起電圧調整器と、
前記誘起電圧調整器により導出された誘起電圧定数、γ相誘起電圧推定値、およびδ相誘起電圧推定値に基づいて角速度推定値を導出している角速度導出器と、
前記角速度導出器により導出された角速度推定値に基づいて磁極位置を導出して、前記ベクトル制御回路、前記インバータ回路、前記相変換器、前記γ−δ軸電流・誘起電圧推定器に出力する磁極位置導出器とを備えている。
【0010】
本発明によれば、誘起電圧調整器は、γ−δ相電流・誘起電圧推定器で推定されたδ相誘起電圧推定値、δ相誘起電圧推定値の商に基づいて、誘起電圧定数の温度変化を補償するようにしているので、永久磁石の温度変化に伴い誘起電圧定数が変化した場合でも、この誘起電圧定数の温度変化を補償することにより磁極位置の推定精度を向上させることができる。
【0011】
【発明の実施の形態】
先ず、本実施形態の永久磁石型同期電動機の磁極位置推定方法の概要について説明する。
【0012】
上記の特許文献1に記載されている同期電動機のセンサレスベクトル制御方法では、先ず、回転子の磁軸上に設定したγ−δ軸座標系に変換されたステータ電流iγ、iδと、前回推定された電流値iγest、iδestとの差および、γ−δ軸座標系に変換された電圧指令Vγ、Vδを入力とし、γ−δ軸座標系における電流iγest、iδestと誘起電圧eγest、eδestおよび、回転子の角速度推定値ωrestを算出していた。
【0013】
これに対して本実施形態の永久磁石型同期電動機の磁極位置推定方法は、上記の同期電動機のセンサレスベクトル制御方法では、γ相誘電推定値eγest、δ相誘起電圧推定値eδestを用いて、誘起電圧定数Keの温度変化を補償することにより推定される磁極位置の精度を向上させるものである。そこで、γ相誘電推定値eγest、δ相誘起電圧推定値eδestを用いて誘起電圧定数Keの温度変化を補償する方法について下記に説明する。
【0014】
時間k・Ts秒時(但し、k=0、1、2、3、・・・、Tsはサンプリングタイム)に同期電動機に供給される少なくとも2相分のステータ電流を検出し、このステータ電流を回転子上に設定したγ−δ座標系に変換することにより、γ相電流iγ(k)、δ相電流iδ(k)を導出する。そして、γ相電流iγ(k)、δ相電流iδ(k)と、前回導出したγ相電流推定値iγest(k)、δ相電流推定値iδest(k)と、γ相電圧指令Vγ(k)、δ相電圧指令Vδ(k)を用い、同期電動機のγ−δ軸座標系における状態方程式を離散値系に展開することにより下記の式(1)が得られる。
【0015】
【数1】

Figure 2004236383
但し、ここで、Rs:ステータ側抵抗、Lq:q軸インダクタンス、Ld:d軸インダクタンス、ωr:回転子角速度である。
【0016】
この式(1)によって、時間(k+1)Ts秒時の電流推定値iγest(k+1)、iδest(k+1)、γ相誘起電圧推定値eγest(k+1)、およびδ相誘起電圧推定値eδest(k+1)が求まる。
【0017】
なお、「」は指令値であることを示し、「est」は推定値であることを示す。
【0018】
また、γ相誘起電圧推定値eγest(k+1)、およびδ相誘起電圧推定値eδest(k+1)は、下記の式(2)、(3)のように表すことができる。
【0019】
eγest(k+1)=−sinθe(ωrest(k+1)・Ke)・・・ (2)
eδest(k+1)= cosθe(ωrest(k+1)・Ke)・・・ (3)
ここで、Keは、誘起電圧定数、θeは、γ−δ軸とd−q軸とのずれ角、であるから、θeが小さいと考え、ωrest(k+1)の符号を、
sign(ωrest(k+1))=−sign(eδest(k+1))・・・ (4)
とし、式(2)、(3)の2乗和と式(4)の結果より、下記の式(5)でωrest(k+1)を求める。
【0020】
【数2】
Figure 2004236383
ここで、誘起電圧定数Keに正確な値Ke_tが設定されているとすると、磁極位置とγ軸が一致し、上記の式(2)、(3)は、下記の式(6)、(7)となる。
【0021】
eγest(k+1)=0 ・・・ (6)
eδest(k+1)=ωrest(k+1)・Ke_t ・・・ (7)
しかし、正しい誘起電圧定数Ke_tと設定値に誤差ΔKeがある場合、上記の式(5)は、
【0022】
【数3】
Figure 2004236383
となり、誤差ΔKe分だけωrest(k+1)に誤差が生じる。回転子の位置θest(k+1)はωrest(k+1)の積分により求めているので、ωrest(k+1)の誤差だけ回転子の位置θest(k+1)にも誤差が生じる。そして、回転子の位置θest(k+1)に誤差が存在すると、磁極位置とγ軸がずれθeが生じる。つまり、誘起電圧定数誤差Δθが発生するとγ−δ軸とd−q軸のずれθeが生じ、γ相誘起電圧推定値eγest(k+1)とδ相誘起電圧推定値eδest(k+1)は、それぞれ上記の式(2)、(3)となる。よって、γ相誘起電圧推定値eγestとδ相誘起電圧推定値eδestの商はこの式(2)、(3)より下記の式(9)のように表される。
【0023】
eγest/eδest=sinθe/cosθe=tanθe ・・・ (9)
そして、この式(9)より下記の式(10)が求められる。
【0024】
θe=atan−1(eγest/eδest) ・・・ (10)
tan−1(アークタンジェント:逆正接関数)の計算をソフト化して処理するとソフト負荷率が高くなるので、θeが零に近い値であると仮定して上記の式(10)を下記の式(11)により近似する。
【0025】
θe=eγest/eδest ・・・ (11)
故に、誘起電圧定数Keに誤差がある場合、磁極位置とγ軸の間にずれθeが生じ、そのずれθeの量はγ相誘起電圧推定値eγestとδ相誘起電圧推定値eδestの商に相当する事がわかる。
【0026】
よって、下記の式(12)でeγest(k+1)/eδest(k+1)=0となるように誘起電圧定数Keを調整すれば、Ke=Ke_tとなる。
【0027】
【数4】
Figure 2004236383
但し、Kpは比例ゲイン、Tは積分定数である。
【0028】
次に、本発明の実施の形態について図面を参照して詳細に説明する。図1は本発明の一実施形態の永久磁石型同期電動機の制御装置の構成を示すブロック図である。
【0029】
本実施形態の永久磁石型同期電動機の制御装置は、図1に示されるように、速度コントローラ1と、δ相電流コントローラ2と、γ相電流コントローラ3と、ベクトル制御回路4と、インバータ回路5と、相変換器7と、γ−δ相電流・誘起電圧推定器8と、角速度導出器9と、磁極位置導出器10と、誘起電圧調整器11とから構成され、外部から入力された角速度指令ωrおよびγ相電流指令iγに基づいて、永久磁石型のモータである同期電動機6の制御を行っている。
【0030】
速度コントローラ1は、外部から入力された角速度指令ωr、および角速度導出器9により導出された角速度推定値ωrestに基づいてδ相電流指令iδを算出して出力する。
【0031】
δ相電流コントローラ2は、速度コントローラ1により算出されたδ相電流指令iδと、δ−γ相電流・誘起電圧推定器8により算出されたδ相電流推定値iδestとに基づいてδ相電圧指令Vδを算出して出力する。
【0032】
γ相電流コントローラ3は、外部から入力されたγ相電流指令iγと、δ−γ相電流・誘起電圧推定器8により算出されたγ相電流推定値iγestとに基づいてγ相電圧指令Vγを算出して出力する。
【0033】
ベクトル制御回路4は、δ相電流コントローラ2により算出されたδ相電圧指令Vδおよびγ相電流コントローラ3により算出されたγ相電圧指令Vγと、磁極位置導出器10により算出された磁極位置θestに基づいて、電圧値絶対値(Vδ+Vγ1/2とγ軸からの電圧出力方向の位相である電圧指令位相tan−1(Vδ/Vγ)を算出してインバータ回路5に出力している。
【0034】
インバータ回路5は、ベクトル制御回路4により算出された電圧値絶対値(Vδ+Vγ1/2および電圧指令位相tan−1(Vδ/Vγ)に基づいて同期電動機6に駆動電流を出力している。
【0035】
相変換器7は、同期電動機6のステータ電流iu、ivをγ−δ軸座標系に変換することにより、γ相電流iγおよびδ相電流iδを算出して出力している。
【0036】
γ−δ相電流・誘起電圧推定器8は、相変換器7により算出されたγ相電流iγ、δ相電流iδと、磁極位置θestと、δ相電流コントローラ2およびγ相電流コントローラ3によりそれぞれ算出されたδ相電圧指令Vδ、γ相電圧指令Vγを入力し、上記の式(1)の演算を実施し、γ相電流推定値iγest、γ相電流推定値iδestと、γ相誘起電圧推定値eγest、δ相誘起電圧推定値eδestを出力する。
【0037】
誘起電圧調整器11はγ−δ相電流・誘起電圧推定器8によって算出されたγ相誘起電圧推定値eγestおよびδ相誘起電圧推定値eδest入力し、上述した式(12)を実行することにより誘起電圧定数Keを導出し、γ相誘起電圧推定値eγestとδ相誘起電圧推定値eδestの商が0となるように誘起電圧定数Keを調整する。
【0038】
角速度導出器9は、誘起電圧調整器11により導出された誘起電圧定数Keと、γ相誘起電圧推定値eγest、δ相誘起電圧推定値eδestを入力し、上述した式(4)、(5)を実行することにより、角速度推定値ωrestを導出している。
【0039】
磁極位置導出器10は、角速度導出器9により導出された角速度推定値ωrestに基づいて磁極位置θestを導出して、ベクトル制御回路4、インバータ回路5、相変換器7、γ−δ軸電流・誘起電圧推定器8に出力している。
【0040】
次に、本実施形態の永久磁石型同期電動機の制御装置の動作について図2のフローチャートを参照して詳細に説明する。
【0041】
先ず、速度コントローラ1は、角速度指令ωrと角速度推定値ωrestを入力して、δ相電流指令iδを出力する。δ相電流コントローラ2は、δ相電流指令iδとδ相電流推定値iδestとを入力し、δ相電圧指令Vδを出力する。
【0042】
一方、γ相電流指令iγとγ相電流推定値iγestが、γ相電流コントローラ3に入力され、γ相電流コントローラ3はγ相電圧指令Vγを出力する。電圧指令Vδ、Vγと、誘起電圧調整器11から出力されるγ−δ軸位置がベクトル制御回路4に入力され、電圧値絶対値(Vδ+Vγ1/2とγ軸からの電圧出力方向の位相tan−1(Vδ/Vγ)がインバータ回路5に入力され点弧が実施される。
【0043】
一方、γ−δ相電流・誘起電圧推定器8は、同期電動機6のステータ電流iuとivを、相変換器7を介して得られるγ相電流iγ、δ相電流iδと、γ−δ軸の位置と、電圧指令Vδ、Vγを入力し、上記の式(1)の演算を実施し、γ−δ相電流推定値iγest、iδestと、γ−δ相誘起電圧eγest、eδestを出力する。eγestが誘起電圧調整器11に入力され、式(12)を実行することにより、誘起電圧定数Keが導出される。この誘起電圧定数Keと、γ−δ相誘起電圧eγest、eδestが角速度導出器9に入力され、上述した式(4)、(5)を実行することにより、角速度推定値ωrestが導出される。この角速度推定値ωrestが磁極位置導出器10に入力され、磁極位置θestを出力する。
【0044】
次に、制御動作を図2のフローチャートを参照して説明する。
【0045】
相変換器7は、k・Ts秒の時点で同期電動機6に供給されている少なくとも2相分の電流、例えばiu(k)、iv(k)を検出し(ステップ101)、前回ループで補正されたγ−δ軸座標系に変換し、γ相電流iγ(k)、δ相電流iδ(k)を導出する(ステップ102)。次に、γ−δ相電流・誘起電圧推定器8では、γ相電流iγ(k)、δ相電流iδ(k)およびγ−δ座標系に変換された電圧指令Vγ(k)、Vδ(k)を入力し(ステップ103)、上述した式(1)により(k+1)・Ts秒後の推定値iγest(k+1)、iδest(k+1)、eγest(k+1)、eδest(k+1)を導出する(ステップ104)。
【0046】
次に、誘起電圧調整器11では、導出されたδ相誘起電圧推定値eδest(k+1)が入力され、上述した式(9)を用いて誘起電圧定数Keの導出が行われる(ステップ105)。そして、角速度導出器9では、上述した式(4)を用いて、γ相誘起電圧推定値eγest(k+1)の符号より、角速度推定値ωrest(k+1)の符号判断を行う(ステップ106)。そして、角速度導出器9では、上述した式(5)に基づいて、この符号と、γ相誘起電圧推定値eγest(k+1)とδ相誘起電圧推定値eδest(k+1)の2乗和を誘起電圧定数Keで除算してωrest(k+1)を導出する(ステップ107)。最後に、磁極位置導出器10では、導出されたωrest(k+1)を積分してθest(k+1)を導出する(ステップ108)。
【0047】
本実施形態の永久磁石型同期電動機の制御装置によれば、γ−δ相電流・誘起電圧推定器8で推定されたγ相誘起電圧推定値eγestとδ相誘起電圧推定値eδestの商に基づいて、誘起電圧定数Keの温度変化を補償する手法をソフトウェアで構成することにより、高速で正確にパラメータを同定することができ、高性能な電動機制御が実現できる。
【0048】
【発明の効果】
以上説明したように、本発明では、誘起電圧調整器は、γ相誘起電圧推定値とδ相誘起電圧推定値の商が0となるように誘起電圧定数を調整するようにしているので、永久磁石の温度変化に伴い誘起電圧定数が変化した場合でも、この誘起電圧定数の温度変化を補償することにより磁極位置の推定精度を向上させることができるという効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の磁極位置、速度推定方法が適用された同期電動機の制御システムの構成を示すブロック図である。
【図2】図1の制御システムのデジタル制御動作を示すフローチャートである。
【符号の説明】
1 速度コントローラ
2 δ相電流コントローラ
3 γ相電流コントローラ
4 ベクトル制御回路
5 インバータ回路
6 同期電動機
7 相変換器
8 γ−δ相電流・誘起電圧推定器
9 角速度導出器
10 磁極位置導出器
11 誘起電圧調整器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a permanent magnet type synchronous motor control device for controlling a permanent magnet type synchronous motor using a permanent magnet as a rotor, and more particularly to a magnetic pole position estimating method for estimating a magnetic pole position of a permanent magnet type synchronous motor.
[0002]
[Prior art]
When a brushless DC motor using a permanent magnet as a rotor is operated as a synchronous motor, it is necessary to obtain the absolute position of the rotor and perform accurate operation. In order to obtain the absolute position of the rotor, it is common to use a rotor position detector such as an encoder or a resolver.However, there are problems with the wiring and structure, the price, the usage environment, etc. There has been proposed a method of determining a magnetic pole position of a rotor without using a position detector.
[0003]
As a conventional method of detecting the magnetic pole position of a permanent magnet type synchronous generator, a disturbance observer is used in which a current and a voltage supplied to a motor are input and an induced voltage is estimated as a disturbance to a current response when the motor is not rotating. There has been proposed a magnetic pole position detecting method (for example, see Patent Document 1).
[0004]
However, since the conventional method of detecting the magnetic pole position of the permanent magnet type synchronous generator is an estimating mechanism based on an electric machine model of the motor, the estimation accuracy is affected by the measurement accuracy of the electric constant used in the model. Since the induced voltage constant, which is one of the electrical constants required for the estimating mechanism, has a characteristic that changes with temperature, there has been a problem that the estimation accuracy is deteriorated due to a change in environment or an increase in motor temperature.
[0005]
A magnetic pole position estimating method that compensates for the change characteristics due to temperature and improves the control accuracy of the permanent magnet type synchronous motor is as follows. The demagnetization characteristics with respect to the temperature of the permanent magnet are stored in advance in a magnetic flux table and measured by a temperature sensor. A method is disclosed in which a magnetic flux corresponding to the set temperature is read from the magnetic flux table to obtain a torque current command in which demagnetization characteristics are compensated (for example, see Patent Document 2). However, in this conventional magnetic pole position estimation method, it is necessary to provide a temperature sensor for measuring the temperature of the permanent magnet, which leads to complexity of wiring and structure. Further, the conventional magnetic pole position estimating method cannot compensate for a change in the induced voltage constant due to temperature, and therefore, a further improvement in estimation accuracy is required.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-191698 [Patent Document 2]
JP-A-9-51700
[Problems to be solved by the invention]
The above-described conventional permanent magnet type synchronous motor control device has a problem that the estimation accuracy of the magnetic pole position is deteriorated because the induced voltage constant changes due to the temperature change of the permanent magnet.
[0008]
An object of the present invention is to provide a magnetic pole position estimating method and a control device of a permanent magnet type synchronous motor that can improve the accuracy of magnetic pole position estimation by compensating for a change in induced voltage constant due to temperature.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a permanent magnet synchronous motor control device according to the present invention includes a permanent magnet synchronous motor for controlling a permanent magnet synchronous motor based on an externally input angular velocity command and a γ-phase current command. A control device for a magnet type synchronous motor,
An angular velocity command input from the outside, a speed controller that calculates a δ-phase current command based on the derived angular velocity estimated value,
Δ-phase current command calculated by the speed controller, a δ-phase current controller that calculates a δ-phase voltage command based on the calculated δ-phase current estimated value,
A γ-phase current command input from the outside, and a γ-phase current controller that calculates a γ-phase voltage command based on the calculated γ-phase current estimated value,
Based on the δ-phase voltage command calculated by the δ-phase current controller and the γ-phase voltage command calculated by the γ-phase current controller, and the calculated magnetic pole position, the absolute value of the voltage value and the voltage output from the γ axis are calculated. A vector control circuit that calculates and outputs a voltage command phase that is a phase in the direction,
An inverter circuit that outputs a drive current to the synchronous motor to be controlled based on the voltage value absolute value and the voltage command phase calculated by the vector control circuit,
A phase converter that calculates a γ-phase current and a δ-phase current by converting at least two-phase stator current of the synchronous motor into a γ-δ axis coordinate system;
The γ-phase current and δ-phase current calculated by the phase converter, the derived magnetic pole position, and the δ-phase voltage command and the γ-phase voltage command calculated by the δ-phase current controller and the γ-phase current controller, respectively. A γ-δ phase current / induced voltage estimator that outputs a γ-phase current estimated value, a γ-phase current estimated value, a γ-phase induced voltage estimated value, and a δ-phase induced voltage estimated value,
The induced voltage constant is derived using the estimated γ-phase induced voltage and the estimated δ-phase induced voltage calculated by the γ-δ phase current / induced voltage estimator, and the estimated γ-phase induced voltage and the δ-phase induced voltage are derived. An induced voltage regulator that adjusts the induced voltage constant such that the quotient of the voltage estimation value is 0,
An induced voltage constant derived by the induced voltage regulator, a γ-phase induced voltage estimate, and an angular velocity deriving unit that derives an angular velocity estimate based on the δ-phase induced voltage estimate,
A magnetic pole to derive a magnetic pole position based on the angular velocity estimated value derived by the angular velocity deriving device, and to output the vector control circuit, the inverter circuit, the phase converter, and the γ-δ axis current / induced voltage estimating device. A position deriving device.
[0010]
According to the present invention, the induced voltage regulator determines the temperature of the induced voltage constant based on the quotient of the estimated δ phase induced voltage and the estimated δ phase induced voltage estimated by the γ-δ phase current / induced voltage estimator. Since the change is compensated, even when the induced voltage constant changes due to the temperature change of the permanent magnet, the accuracy of estimating the magnetic pole position can be improved by compensating for the temperature change of the induced voltage constant.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the outline of the method for estimating the magnetic pole position of the permanent magnet type synchronous motor of the present embodiment will be described.
[0012]
In the sensorless vector control method for a synchronous motor described in Patent Document 1 described above, first, the stator currents iγ and iδ converted to a γ-δ axis coordinate system set on the magnetic axis of the rotor are estimated previously. The difference between the current values iγ est and iδ est and the voltage commands Vγ * and Vδ * converted into the γ-δ axis coordinate system are input, and the currents iγ est and iδ est and the induced voltage in the γ-δ axis coordinate system are input. eγ est , eδ est and the estimated angular velocity ωr est of the rotor were calculated.
[0013]
On the other hand, in the method of estimating the magnetic pole position of the permanent magnet type synchronous motor according to the present embodiment, the sensorless vector control method of the synchronous motor described above uses the γ-phase dielectric estimated value eγ est and the δ-phase induced voltage estimated value eδ est. In addition, the accuracy of the estimated magnetic pole position is improved by compensating for the temperature change of the induced voltage constant Ke. Therefore, a method for compensating the temperature change of the induced voltage constant Ke using the estimated γ-phase dielectric value eγ est and the estimated δ-phase induced voltage eδ est will be described below.
[0014]
At time k · Ts seconds (where k = 0, 1, 2, 3,..., Ts is a sampling time), a stator current for at least two phases supplied to the synchronous motor is detected. By converting into a γ-δ coordinate system set on the rotor, γ-phase current iγ (k) and δ-phase current iδ (k) are derived. Then, the γ-phase current iγ (k), the δ-phase current iδ (k), the previously derived γ-phase current estimated value iγ est (k), the δ-phase current estimated value iδ est (k), and the γ-phase voltage command Vγ The following equation (1) is obtained by expanding the state equation in the γ-δ axis coordinate system of the synchronous motor into a discrete value system using * (k) and δ-phase voltage command Vδ * (k).
[0015]
(Equation 1)
Figure 2004236383
Here, Rs: stator-side resistance, Lq: q-axis inductance, Ld: d-axis inductance, and ωr: rotor angular velocity.
[0016]
According to the equation (1), the current estimated values iγ est (k + 1), iδ est (k + 1), the γ-phase induced voltage estimated value eγ est (k + 1), and the δ-phase induced voltage estimated value eδ at time (k + 1) Ts seconds est (k + 1) is obtained.
[0017]
Note that “ * ” indicates a command value, and “ est ” indicates an estimated value.
[0018]
Further, the estimated γ-phase induced voltage eγ est (k + 1) and the estimated δ-phase induced voltage eδ est (k + 1) can be represented by the following equations (2) and (3).
[0019]
est (k + 1) = − sin θe (ωr est (k + 1) · Ke) (2)
est (k + 1) = cos θe (ωr est (k + 1) · K e) (3)
Here, Ke is the induced voltage constant, and θe is the deviation angle between the γ-δ axis and the dq axis. Therefore, θe is considered to be small, and the sign of ωr est (k + 1) is
sign (ωr est (k + 1)) = − sign (eδ est (k + 1)) (4)
From the sum of the squares of Equations (2) and (3) and the result of Equation (4), ωr est (k + 1) is obtained by the following Equation (5).
[0020]
(Equation 2)
Figure 2004236383
Here, assuming that an accurate value Ke_t is set for the induced voltage constant Ke, the magnetic pole position matches the γ axis, and the above equations (2) and (3) are replaced by the following equations (6) and (7). ).
[0021]
est (k + 1) = 0 (6)
est (k + 1) = ωr est (k + 1) · Ke_t (7)
However, if there is an error ΔK e between the correct induced voltage constant Ke_t and the set value, the above equation (5) becomes
[0022]
[Equation 3]
Figure 2004236383
Next, an error occurs in the error ΔKe amount corresponding ωr est (k + 1). Since the position of the rotor θ est (k + 1) is determined by integration of ωr est (k + 1), an error occurs in ωr est (k + 1) by an error of the rotor position θ est (k + 1). Then, if there is an error in the position θ est (k + 1) of the rotor, a deviation θe occurs between the magnetic pole position and the γ axis. That is, when the induced voltage constant error Δθ occurs, a shift θe between the γ-δ axis and the dq axis occurs, and the estimated γ-phase induced voltage eγ est (k + 1) and the estimated δ-phase induced voltage eδ est (k + 1) The above equations (2) and (3) are obtained, respectively. Accordingly, the quotient of the estimated value of the γ-phase induced voltage eγ est and the estimated value of the δ-phase induced voltage eδ est is represented by the following expression (9) from the expressions (2) and (3).
[0023]
est / eδ est = sin θe / cos θe = tan θe (9)
Then, the following equation (10) is obtained from the equation (9).
[0024]
θe = atan −1 (eγ est / eδ est ) (10)
If the calculation of tan -1 (arc tangent: arc tangent function) is softened and processed, the soft load factor becomes high. Therefore, assuming that θe is a value close to zero, the above equation (10) is replaced with the following equation ( 11).
[0025]
θe = eγ est / eδ est (11)
Therefore, when there is an error in the induced voltage constant Ke, a shift θe occurs between the magnetic pole position and the γ-axis, and the amount of the shift θe is the quotient of the estimated γ-phase induced voltage eγ est and the estimated δ-phase induced voltage eδ est . It is understood that it corresponds to.
[0026]
Therefore, if the induced voltage constant Ke is adjusted so that eγ est (k + 1) / eδ est (k + 1) = 0 in the following equation (12), Ke = Ke_t.
[0027]
(Equation 4)
Figure 2004236383
Here, Kp is a proportional gain, and T is an integration constant.
[0028]
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a control device for a permanent magnet type synchronous motor according to one embodiment of the present invention.
[0029]
As shown in FIG. 1, the control device for a permanent magnet type synchronous motor of the present embodiment includes a speed controller 1, a δ-phase current controller 2, a γ-phase current controller 3, a vector control circuit 4, an inverter circuit 5, , A phase converter 7, a γ-δ phase current / induced voltage estimator 8, an angular velocity deriving device 9, a magnetic pole position deriving device 10, and an induced voltage adjusting device 11. The synchronous motor 6 which is a permanent magnet type motor is controlled based on the command ωr * and the γ-phase current command iγ * .
[0030]
The speed controller 1 calculates and outputs a δ-phase current command iδ * based on the angular speed command ωr * input from the outside and the estimated angular speed ωr est derived by the angular speed deriving device 9.
[0031]
The δ-phase current controller 2 determines the δ-phase current based on the δ-phase current command iδ * calculated by the speed controller 1 and the estimated δ-phase current iδ est calculated by the δ-γ phase current / induced voltage estimator 8. The voltage command Vδ * is calculated and output.
[0032]
The γ-phase current controller 3 outputs a γ-phase voltage command based on the γ-phase current command iγ * input from the outside and the γ-phase current estimated value iγ est calculated by the δ-γ phase current / induced voltage estimator 8. Vγ * is calculated and output.
[0033]
The vector control circuit 4 includes a δ-phase voltage command Vδ * calculated by the δ-phase current controller 2, a γ-phase voltage command Vγ * calculated by the γ-phase current controller 3, and a magnetic pole position calculated by the magnetic pole position deriving unit 10. Based on θ est , a voltage command phase tan −1 (Vδ / Vγ), which is a voltage value absolute value (Vδ 2 + Vγ 2 ) 1/2 and a phase in a voltage output direction from the γ-axis, is calculated. Output.
[0034]
Inverter circuit 5 outputs a drive current to synchronous motor 6 based on voltage value absolute value (Vδ 2 + Vγ 2 ) 1/2 calculated by vector control circuit 4 and voltage command phase tan −1 (Vδ / Vγ). ing.
[0035]
The phase converter 7 calculates and outputs the γ-phase current iγ and the δ-phase current iδ by converting the stator currents iu and iv of the synchronous motor 6 into a γ-δ axis coordinate system.
[0036]
The γ-δ phase current / induced voltage estimator 8 calculates the γ-phase current iγ, δ-phase current iδ calculated by the phase converter 7, the magnetic pole position θ est , the δ-phase current controller 2 and the γ-phase current controller 3. The calculated δ-phase voltage command Vδ * and γ-phase voltage command Vγ * are input, and the calculation of the above equation (1) is performed, and the γ-phase current estimated value iγ est , the γ-phase current estimated value iδ est , The estimated γ-phase induced voltage eγ est and the estimated δ-phase induced voltage eδ est are output.
[0037]
The induced voltage adjuster 11 inputs the estimated value of the γ-phase induced voltage eγ est and the estimated value of the δ-phase induced voltage eδ est calculated by the γ-δ phase current / induced voltage estimator 8 and executes the above-described equation (12). Thus, the induced voltage constant Ke is derived, and the induced voltage constant Ke is adjusted so that the quotient of the estimated γ-phase induced voltage eγ est and the estimated δ-phase induced voltage eδ est becomes zero.
[0038]
The angular velocity deriving unit 9 inputs the induced voltage constant Ke derived by the induced voltage adjuster 11, the estimated value of the γ-phase induced voltage eγ est , and the estimated value of the δ-phase induced voltage eδ est, and obtains the above-described equations (4) and (4). By performing 5), the estimated angular velocity ωr est is derived.
[0039]
The magnetic pole position deriving unit 10 derives the magnetic pole position θ est based on the estimated angular velocity ωr est derived by the angular velocity deriving unit 9, and the vector control circuit 4, the inverter circuit 5, the phase converter 7, and the γ-δ axis It outputs to the current / induced voltage estimator 8.
[0040]
Next, the operation of the control device for the permanent magnet type synchronous motor of the present embodiment will be described in detail with reference to the flowchart of FIG.
[0041]
First, the speed controller 1 receives the angular velocity command ωr * and the estimated angular velocity ωr est and outputs a δ-phase current command iδ * . The δ-phase current controller 2 receives the δ-phase current command iδ * and the estimated δ-phase current value iδ est and outputs a δ-phase voltage command Vδ * .
[0042]
On the other hand, the γ-phase current command iγ * and the estimated γ-phase current value iγ est are input to the γ-phase current controller 3, and the γ-phase current controller 3 outputs the γ-phase voltage command Vγ * . The voltage commands Vδ * and Vγ * and the γ-δ axis position output from the induced voltage regulator 11 are input to the vector control circuit 4, and the absolute value of the voltage value (Vδ 2 + Vγ 2 ) 1/2 and the value from the γ axis The phase tan −1 (Vδ / Vγ) in the voltage output direction is input to the inverter circuit 5 and firing is performed.
[0043]
On the other hand, the γ-δ phase current / induced voltage estimator 8 converts the stator currents iu and iv of the synchronous motor 6 into γ-phase currents iγ and δ-phase currents iδ obtained through the phase converter 7 and γ-δ axes. , And the voltage commands Vδ * and Vγ * are input, and the calculation of the above equation (1) is performed, and the γ-δ phase current estimated values iγ est , iδ est and the γ-δ phase induced voltage eγ est , e est is output. eγ est is input to the induced voltage adjuster 11, and the induced voltage constant Ke is derived by executing equation (12). The induced voltage constant Ke and the γ-δ phase induced voltages eγ est and eδ est are input to the angular velocity deriving unit 9 and the above-described equations (4) and (5) are executed to derive the angular velocity estimated value ωr est. Is done. The estimated angular velocity ωr est is input to the magnetic pole position deriving device 10 to output the magnetic pole position θ est .
[0044]
Next, the control operation will be described with reference to the flowchart of FIG.
[0045]
The phase converter 7 detects at least two phases of current, for example, iu (k) and iv (k), supplied to the synchronous motor 6 at the time of k · Ts seconds (step 101), and corrects the current in the previous loop. Γ-δ axis coordinate system, and γ-phase current iγ (k) and δ-phase current iδ (k) are derived (step 102). Next, in the γ-δ phase current / induced voltage estimator 8, the γ-phase current iγ (k), the δ-phase current iδ (k), and the voltage commands Vγ * (k), Vδ converted into the γ-δ coordinate system. * (k) inputted (steps 103), by the above-mentioned formula (1) (k + 1) · Ts seconds estimates iγ est (k + 1), iδ est (k + 1), eγ est (k + 1), eδ est ( k + 1) is derived (step 104).
[0046]
Next, the induced voltage regulator 11 receives the derived δ-phase induced voltage estimated value eδ est (k + 1), and derives the induced voltage constant Ke using the above-described equation (9) (step 105). . Then, the angular velocity deriving unit 9 determines the sign of the estimated angular velocity ωr est (k + 1) from the sign of the estimated γ-phase induced voltage eγ est (k + 1) using the above equation (4) (step 106). . Then, the angular velocity deriving unit 9 calculates the sign and the sum of squares of the estimated γ-phase induced voltage eγ est (k + 1) and the estimated δ-phase induced voltage eδ est (k + 1) based on the above equation (5). Divide by the induced voltage constant Ke to derive ωr est (k + 1) (step 107). Finally, to derive the in pole position deriving unit 10, derived ωr est (k + 1) the integrated and θ est (k + 1) (step 108).
[0047]
According to the control device for the permanent magnet type synchronous motor of the present embodiment, the quotient of the estimated γ-phase induced voltage eγ est and the estimated δ-phase induced voltage eδ est estimated by the γ-δ phase current / induced voltage estimator 8. By using software to compose a method for compensating the temperature change of the induced voltage constant Ke based on the above, parameters can be identified accurately at high speed, and high-performance motor control can be realized.
[0048]
【The invention's effect】
As described above, in the present invention, the induced voltage adjuster adjusts the induced voltage constant so that the quotient of the estimated value of the γ-phase induced voltage and the estimated value of the δ-phase induced voltage becomes zero. Even when the induced voltage constant changes with the magnet temperature change, it is possible to obtain an effect that the accuracy of estimating the magnetic pole position can be improved by compensating for the temperature change of the induced voltage constant.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a control system for a synchronous motor to which a magnetic pole position / speed estimation method according to an embodiment of the present invention is applied.
FIG. 2 is a flowchart showing a digital control operation of the control system of FIG. 1;
[Explanation of symbols]
Reference Signs List 1 speed controller 2 δ-phase current controller 3 γ-phase current controller 4 vector control circuit 5 inverter circuit 6 synchronous motor 7 phase converter 8 γ-δ phase current / induced voltage estimator 9 angular velocity deriver 10 magnetic pole position deriver 11 induced voltage Moderator

Claims (2)

外部から入力された角速度指令およびγ相電流指令に基づいて、永久磁石型同期電動機の制御を行うための、永久磁石型同期電動機の制御装置であって、
外部から入力された角速度指令、導出された角速度推定値に基づいてδ相電流指令を算出する速度コントローラと、
前記速度コントローラにより算出されたδ相電流指令と、算出されたδ相電流推定値とに基づいてδ相電圧指令を算出するδ相電流コントローラと、
外部から入力されたγ相電流指令と、算出されたγ相電流推定値とに基づいてγ相電圧指令を算出するγ相電流コントローラと、
前記δ相電流コントローラにより算出されたδ相電圧指令および前記γ相電流コントローラにより算出されたγ相電圧指令と、算出された磁極位置とに基づいて、電圧値絶対値とγ軸からの電圧出力方向の位相である電圧指令位相とを算出して出力するベクトル制御回路と、
前記ベクトル制御回路により算出された電圧値絶対値および電圧指令位相に基づいて制御対象である同期電動機に駆動電流を出力しているインバータ回路と、前記同期電動機の少なくとも2相のステータ電流をγ−δ軸座標系に変換することにより、γ相電流およびδ相電流を算出する相変換器と、
前記相変換器により算出されたγ相電流、δ相電流と、導出された磁極位置と、前記δ相電流コントローラおよび前記γ相電流コントローラによりそれぞれ算出されたδ相電圧指令、γ相電圧指令に基づいてγ相電流推定値、γ相電流推定値、γ相誘起電圧推定値、およびδ相誘起電圧推定値を出力するγ−δ相電流・誘起電圧推定器と、
前記γ−δ相電流・誘起電圧推定器によって算出されたγ相誘起電圧推定値およびδ相誘起電圧推定値を用いて誘起電圧定数を導出し、前記γ相誘起電圧推定値と前記δ相誘起電圧推定値の商が0となるように前記誘起電圧定数を調整する誘起電圧調整器と、
前記誘起電圧調整器により導出された誘起電圧定数、γ相誘起電圧推定値、およびδ相誘起電圧推定値に基づいて角速度推定値を導出している角速度導出器と、
前記角速度導出器により導出された角速度推定値に基づいて磁極位置を導出して、前記ベクトル制御回路、前記インバータ回路、前記相変換器、前記γ−δ軸電流・誘起電圧推定器に出力する磁極位置導出器と、を備えている永久磁石型同期電動機の制御装置。
A control device for a permanent magnet type synchronous motor for controlling a permanent magnet type synchronous motor based on an angular velocity command and a γ-phase current command input from outside,
An angular velocity command input from the outside, a speed controller that calculates a δ-phase current command based on the derived angular velocity estimated value,
Δ-phase current command calculated by the speed controller, a δ-phase current controller that calculates a δ-phase voltage command based on the calculated δ-phase current estimated value,
A γ-phase current command input from the outside, and a γ-phase current controller that calculates a γ-phase voltage command based on the calculated γ-phase current estimated value,
Based on the δ-phase voltage command calculated by the δ-phase current controller and the γ-phase voltage command calculated by the γ-phase current controller, and the calculated magnetic pole position, the absolute value of the voltage value and the voltage output from the γ axis are calculated. A vector control circuit that calculates and outputs a voltage command phase that is a phase in the direction,
An inverter circuit that outputs a drive current to a synchronous motor to be controlled based on the voltage value absolute value and the voltage command phase calculated by the vector control circuit; a phase converter that calculates a γ-phase current and a δ-phase current by converting to a δ-axis coordinate system;
The γ-phase current and δ-phase current calculated by the phase converter, the derived magnetic pole position, and the δ-phase voltage command and the γ-phase voltage command calculated by the δ-phase current controller and the γ-phase current controller, respectively. A γ-δ phase current / induced voltage estimator that outputs a γ-phase current estimated value, a γ-phase current estimated value, a γ-phase induced voltage estimated value, and a δ-phase induced voltage estimated value,
The induced voltage constant is derived using the estimated γ-phase induced voltage and the estimated δ-phase induced voltage calculated by the γ-δ phase current / induced voltage estimator, and the estimated γ-phase induced voltage and the δ-phase induced voltage are derived. An induced voltage regulator that adjusts the induced voltage constant such that the quotient of the voltage estimation value is 0,
An induced voltage constant derived by the induced voltage regulator, a γ-phase induced voltage estimate, and an angular velocity deriving unit that derives an angular velocity estimate based on the δ-phase induced voltage estimate,
A magnetic pole to derive a magnetic pole position based on the angular velocity estimated value derived by the angular velocity deriving device, and to output the vector control circuit, the inverter circuit, the phase converter, and the γ-δ axis current / induced voltage estimating device. A control device for a permanent magnet type synchronous motor, comprising: a position deriving device.
外部から入力された角速度指令およびγ相電流指令に基づいて、永久磁石型同期電動機の制御を行う制御装置において磁極位置を推定する、永久磁石型同期電動機の磁極位置推定方法であって、
外部から入力された角速度指令、導出された角速度推定値に基づいてδ相電流指令を算出するステップと、
算出された前記δ相電流指令と、算出されたδ相電流推定値とに基づいてδ相電圧指令を算出するステップと、
外部から入力されたγ相電流指令と、算出されたγ相電流推定値とに基づいてγ相電圧指令を算出するステップと、
算出された前記δ相電圧指令および算出された前記γ相電圧指令と、算出された磁極位置とに基づいて、電圧値絶対値とγ軸からの電圧出力方向の位相である電圧指令位相とを算出して出力するステップと、
算出された前記電圧値絶対値および前記電圧指令位相に基づいて制御対象である同期電動機に駆動電流を出力するステップと、
前記同期電動機の少なくとも2相のステータ電流をγ−δ軸座標系に変換することにより、γ相電流およびδ相電流を算出するステップと、
算出された前記γ相電流、前記δ相電流と、導出された磁極位置と、算出された前記δ相電圧指令、前記γ相電圧指令に基づいてγ相電流推定値、γ相電流推定値、γ相誘起電圧推定値、およびδ相誘起電圧推定値を出力するステップと、
算出された前記γ相誘起電圧推定値および前記δ相誘起電圧推定値を用いて誘起電圧定数を導出し、前記γ相誘起電圧推定値と前記δ相誘起電圧推定値の商が0となるように前記誘起電圧定数を調整するステップと、
導出された前記誘起電圧定数、前記γ相誘起電圧推定値、および前記δ相誘起電圧推定値に基づいて角速度推定値を導出するステップと、
導出された前記角速度推定値に基づいて磁極位置を導出するステップを備えている永久磁石型同期電動機の磁極位置推定方法。
A magnetic pole position estimation method for a permanent magnet type synchronous motor, which estimates a magnetic pole position in a control device that controls a permanent magnet type synchronous motor based on an angular velocity command and a γ-phase current command input from outside,
Angular velocity command input from the outside, a step of calculating a δ-phase current command based on the derived angular velocity estimated value,
Calculating the δ phase current command based on the calculated δ phase current command and the calculated δ phase current estimated value;
Calculating a γ-phase voltage command based on the γ-phase current command input from the outside and the calculated γ-phase current estimated value;
Based on the calculated δ-phase voltage command and the calculated γ-phase voltage command, and the calculated magnetic pole position, a voltage value absolute value and a voltage command phase that is a phase in a voltage output direction from the γ axis are calculated. Calculating and outputting;
Outputting a drive current to a synchronous motor to be controlled based on the calculated voltage value absolute value and the voltage command phase;
Calculating a γ-phase current and a δ-phase current by converting at least two-phase stator current of the synchronous motor into a γ-δ axis coordinate system;
The calculated γ-phase current, the δ-phase current, the derived magnetic pole position, the calculated δ-phase voltage command, the γ-phase current estimated value based on the γ-phase voltage command, the γ-phase current estimated value, outputting a γ-phase induced voltage estimated value and a δ-phase induced voltage estimated value;
An induced voltage constant is derived using the calculated estimated value of the γ-phase induced voltage and the estimated value of the δ-phase induced voltage, such that the quotient of the estimated value of the γ-phase induced voltage and the estimated value of the δ-phase induced voltage is 0. Adjusting the induced voltage constant to;
Deriving an angular velocity estimated value based on the derived induced voltage constant, the γ-phase induced voltage estimated value, and the δ-phase induced voltage estimated value,
A magnetic pole position estimating method for a permanent magnet type synchronous motor, comprising a step of deriving a magnetic pole position based on the derived angular velocity estimation value.
JP2003019107A 2003-01-28 2003-01-28 Magnetic pole position estimation method and control device for permanent magnet type synchronous motor Expired - Fee Related JP4273775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019107A JP4273775B2 (en) 2003-01-28 2003-01-28 Magnetic pole position estimation method and control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019107A JP4273775B2 (en) 2003-01-28 2003-01-28 Magnetic pole position estimation method and control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2004236383A true JP2004236383A (en) 2004-08-19
JP4273775B2 JP4273775B2 (en) 2009-06-03

Family

ID=32949070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019107A Expired - Fee Related JP4273775B2 (en) 2003-01-28 2003-01-28 Magnetic pole position estimation method and control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP4273775B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141092A (en) * 2004-11-10 2006-06-01 Mitsubishi Motors Corp Motor controller
JP2006280141A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Constant detector and control unit of motor for hybrid vehicle
JP2007078196A (en) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2007244192A (en) * 2006-02-08 2007-09-20 Jtekt Corp Motor controller
JP2008118740A (en) * 2006-11-01 2008-05-22 Yaskawa Electric Corp Permanent magnet field synchronous electric motor controller
JP2012245822A (en) * 2011-05-25 2012-12-13 Jtekt Corp Electric power steering device
CN117294199A (en) * 2023-11-27 2023-12-26 四川奥库科技有限公司 On-line identification method for counter electromotive force constant of motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141092A (en) * 2004-11-10 2006-06-01 Mitsubishi Motors Corp Motor controller
JP2006280141A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Constant detector and control unit of motor for hybrid vehicle
JP4574412B2 (en) * 2005-03-30 2010-11-04 本田技研工業株式会社 Hybrid vehicle motor constant detection device and hybrid vehicle motor control device
JP2007078196A (en) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP4631627B2 (en) * 2005-09-12 2011-02-16 パナソニック株式会社 Refrigeration cycle equipment
JP2007244192A (en) * 2006-02-08 2007-09-20 Jtekt Corp Motor controller
JP2008118740A (en) * 2006-11-01 2008-05-22 Yaskawa Electric Corp Permanent magnet field synchronous electric motor controller
JP2012245822A (en) * 2011-05-25 2012-12-13 Jtekt Corp Electric power steering device
CN117294199A (en) * 2023-11-27 2023-12-26 四川奥库科技有限公司 On-line identification method for counter electromotive force constant of motor
CN117294199B (en) * 2023-11-27 2024-02-13 四川奥库科技有限公司 On-line identification method for counter electromotive force constant of motor

Also Published As

Publication number Publication date
JP4273775B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
KR100455630B1 (en) Sensorless control method and apparatus of permanent magnet synchronous motor
JP3411878B2 (en) Method for estimating rotor position of synchronous motor, control method without position sensor, and control device
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
JP5104239B2 (en) Control device for permanent magnet type synchronous motor
JP3253004B2 (en) Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position
JP5164025B2 (en) Induction motor control device and control method thereof
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
JP3797508B2 (en) Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof
JP3707659B2 (en) Constant identification method for synchronous motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
KR20210000152A (en) Control Apparatus for Sensorless Motor of Inverter Type and Method Thereof
JP5768255B2 (en) Control device for permanent magnet synchronous motor
JP6102516B2 (en) Control method and control device for permanent magnet type synchronous motor
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP4449419B2 (en) Control device for synchronous motor
JP2003250293A (en) Method and apparatus for controlling motor
JP4061446B2 (en) Resistance value identification method and control device for synchronous motor
JP2009278692A (en) Controller of permanent magnet synchronous motor
JP4434402B2 (en) Control device and control method for synchronous motor
JP4411742B2 (en) Motor control device
JP5387899B2 (en) Control device for permanent magnet type synchronous motor
JP2002010697A (en) Control unit for motor
JP4096663B2 (en) Estimation value correction method and control system of induction motor magnetic flux estimator
JP2001178174A (en) Speed control method for synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150313

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees