JP2001178174A - Speed control method for synchronous motor - Google Patents

Speed control method for synchronous motor

Info

Publication number
JP2001178174A
JP2001178174A JP35931999A JP35931999A JP2001178174A JP 2001178174 A JP2001178174 A JP 2001178174A JP 35931999 A JP35931999 A JP 35931999A JP 35931999 A JP35931999 A JP 35931999A JP 2001178174 A JP2001178174 A JP 2001178174A
Authority
JP
Japan
Prior art keywords
axis
est
current
synchronous motor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35931999A
Other languages
Japanese (ja)
Other versions
JP3956080B2 (en
Inventor
Sukeatsu Inazumi
祐敦 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP35931999A priority Critical patent/JP3956080B2/en
Priority to PCT/JP2000/003363 priority patent/WO2000074228A1/en
Priority to US09/979,798 priority patent/US7076340B1/en
Publication of JP2001178174A publication Critical patent/JP2001178174A/en
Application granted granted Critical
Publication of JP3956080B2 publication Critical patent/JP3956080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfactorily perform a vector control operation by solving the problem that when a synchronous motor is in a low-speed region, the induced voltage in the synchronous motor is dropped, that the estimated accuracy of a magnetic axis is degraded, and that when the vector control is performed in a low-speed region, the magnetic axis is lost making vector control operation impossible. SOLUTION: Sensorless vector control is performed, by using the rotational speed and the rotor position of the synchronous motor 6. While it is assumed that a d-axia as a true magnetic axis exists in a phase which is deviated from a γ-axis by a load angle θe, a positive current is made to flow to the γ-axis. Thereby, a torque which is proportional to iγ sin θe and which advances in the direction of the γ-axis is generated in the magnetic axis. Thereby, errors in a d-q axis as a true magnetic axis and a γ-δ axis as a control axis are eliminated. Even when a load is applied, the γ-δ axis as the control axis is made to coincide with the d-axis as the magnetic axis of the synchronous motor, and the vector control can be performed satisfactorily.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、同期電動機の速度
制御方法に関し、詳しくは、永久磁石形同期電動機のセ
ンサレス速度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous motor speed control method, and more particularly to a sensorless speed control method for a permanent magnet synchronous motor.

【0002】[0002]

【従来の技術】従来、同期電動機のセンサレスベクトル
制御は、回転子の磁極上に設定したγ−δ軸座標系に変
換されたステータ電流と、前回推定された電流推定値と
の差とγ−δ軸座標系に変換された電圧指令を入力と
し、γ−δ軸座標系における電流と誘起電圧および回転
子の速度を推定する。また、この方法により推定され
た、γ軸誘起電圧推定値と回転子の角速度推定値より、
回転子の永久磁石上に設定したd−q座標と前記γ−δ
座標とのずれ角を推定し、回転子位置を修正する。以上
の方法で推定した角速度、磁軸位置情報を用いてベクト
ル制御を行う。
2. Description of the Related Art Conventionally, sensorless vector control of a synchronous motor has been performed by calculating a difference between a stator current converted into a γ-δ axis coordinate system set on a magnetic pole of a rotor and a current estimated value previously estimated and γ−δ. The voltage command converted into the δ-axis coordinate system is input, and the current, induced voltage, and rotor speed in the γ-δ axis coordinate system are estimated. Further, from the estimated value of the γ-axis induced voltage and the estimated value of the angular velocity of the rotor estimated by this method,
Dq coordinates set on the permanent magnet of the rotor and the γ-δ
Estimate the angle of deviation from the coordinates and correct the rotor position. Vector control is performed using the angular velocity and magnetic axis position information estimated by the above method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の技術では、同期電動機が低速度で回転するのに従っ
て、同期電動機誘起電圧が低下するため磁軸の推定精度
が劣化することにより、低速域でベクトル制御を実施す
ると、磁軸を見失い制御不能に陥るという問題があっ
た。 また、低速域で同期電動機に大きな負荷がかかっ
た時には、負荷角が開き過ぎて制御軸と同期電動機磁軸
の角度差が大きくなり制御軸と磁軸とを一致させて制御
しなければならないベクトル制御へ、スムースに移行で
きなくなり制御不能に陥るという問題があった。そこ
で、本発明は、低速域でも高精度に磁軸を指定できる良
好な同期電動機の速度推定方法を提供することを目的と
している。更に、本発明は、低速域で同期電動機に大き
な負荷が掛かる場合でも制御軸と磁軸を一致させ良好に
ベクトル制御に移行できる同期電動機の速度制御方法を
提供することを目的としている。
However, according to the above-mentioned conventional technique, as the synchronous motor rotates at a low speed, the synchronous motor induced voltage decreases, and the estimation accuracy of the magnetic axis deteriorates. When the vector control is performed, there is a problem that the magnetic axis is lost and control becomes impossible. Also, when a large load is applied to the synchronous motor in the low-speed range, the load angle becomes too large, and the angle difference between the control axis and the synchronous motor magnetic axis increases, and the control axis and the magnetic axis must be controlled to match. There was a problem that control could not be smoothly shifted to control and control was lost. Therefore, an object of the present invention is to provide a good synchronous motor speed estimation method capable of specifying a magnetic axis with high accuracy even in a low speed range. Still another object of the present invention is to provide a synchronous motor speed control method capable of making the control axis coincide with the magnetic axis and shifting to vector control satisfactorily even when a large load is applied to the synchronous motor in a low speed range.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、永久磁石を回転子とし回転子の磁極上に
設定したd−q軸に、回転子上に想定したγ−δ軸が一
致するように制御する同期電動機のセンサレス制御方法
において、時間k・TS 時(但し、k=0,1,2,
3,・・・,TS はサンプリングタイム)に同期電動機
に供給される少なくとも2相分のステータ電流を検出し
同ステータ電流をγ−δ座標系に変換することにより、
γ軸電流iγ(k)及びδ軸電流iδ(k)を導出し
て、これらのγ軸電流iγ(k)及びδ軸電流iδ
(k)と前回の制御ループで推定されたγ軸電流iγ
est(k)及びδ軸電流iδ est(k)との差iγ
(k)−iγ est(k)及びiδ(k)−iδ
est(k)を補正量、γ−δ軸座標系に変換された電圧
指令値Vγ*(k)とVδ*(k)を入力とし、同期電動
機の回転子が回転することにより発生するγ軸の誘起電
圧εγ(k)とδ軸の誘起電圧εδ(k)を、回転子が
回転していない時の電流応答に対する外乱として状態推
定器を構成し、時間(k+1)・TS 秒のγ−δ軸座標
系における電流iγ est(k+1)及びiδ est(k+
1)並びに誘起電圧εγ est(k+1)、及びεδ est
(k+1)を推定しこの推定された誘起電圧εδ
est(k+1)の符号より、回転子の速度の符号を判別
し、前記誘起電圧εγ est(k+1)とεδ est(k+
1)の2乗和と前記判別された符号より回転子の角速度
ωr m(k+1)の推定値ωr m e st(k+1)を推定
し、δ軸方向電流指令を同期電動機速度指令ωr r e f
と速度推定値ωr m est(k+1)との偏差をゲイン倍
するフィードバック制御より導出し同期電動機回転トル
クを発生させ、かつγ軸方向の電流指令を正とし、磁軸
d軸をγ軸に拘束するためのトルクを発生させることを
特徴としている。また、同期電動機のセンサレス制御方
法において、同期電動機の磁軸をd軸、d軸から90°
進んだ軸をq軸とし、同期電動機回転速度ωr m で回転
する座標d−q軸と同期電動機の指定磁軸をγ、γから
90°進んだ軸をδとし同期電動機回転指令速度ωr m
* で回転するγ−δ軸を設定し、γ軸方向の電流指令i
γ * 、δ軸方向の電流指令iδ* を正とし、磁軸d軸を
γ軸より進んだ角度に拘束するためのトルクを発生さ
せ、かつδ軸方向電流指令には同期電動機速度指令ω
r m * と同期電動機誘起電圧外乱としたδ軸電流方程式
より作成した外乱オブザーバより導出した速度推定値ω
r m est との偏差をゲイン倍するフィードバック制御よ
り導出し、δ軸電流指令に同期電動機誘起電圧外乱とし
たγ軸電流方程式より作成した外乱オブザーバから導出
した外乱推定値を比例積分制御器を介して導出した偏差
角補正電流指令iδθ* を追加し、指令速度ωr m *
回転するγ軸を真の磁軸d軸と一致させることを特徴と
している。
Means for Solving the Problems To achieve the above object,
Therefore, the present invention uses a permanent magnet as a rotor and places it on a magnetic pole of the rotor.
The γ-δ axis assumed on the rotor coincides with the set dq axis.
Sensorless Control Method for Synchronous Motor Controlled to Match
At time k · TS Time (where k = 0, 1, 2,
3, ..., TS Is the sampling time) synchronous motor
At least two phases of stator current supplied to the
By converting the stator current to a γ-δ coordinate system,
Deriving γ-axis current iγ (k) and δ-axis current iδ (k)
Γ-axis current iγ (k) and δ-axis current iδ
(K) and the γ-axis current iγ estimated in the previous control loop
est(K) and δ-axis current iδestDifference iγ from (k)
(K) -iγest(K) and iδ (k) -iδ
est(K) is the correction amount, and the voltage converted to the γ-δ axis coordinate system
Command value Vγ*(K) and Vδ*(K) as input, synchronous electric
Induced Electricity of γ Axis Generated by Rotating Machine Rotor
Pressure εγ (k) and δ-axis induced voltage εδ (k)
State inference as a disturbance to current response when not rotating
A time constant (k + 1) · TS Γ-δ axis coordinates of seconds
Current iγ in the systemest(K + 1) and iδest(K +
1) and induced voltage εγest(K + 1) and εδest
(K + 1), and the estimated induced voltage εδ
estDetermine the sign of the rotor speed from the sign of (k + 1)
And the induced voltage εγest(K + 1) and εδest(K +
From the sum of squares of 1) and the code determined above, the angular velocity of the rotor
ωrmThe estimated value ω of (k + 1)rme stEstimate (k + 1)
And the δ-axis direction current command is changed to the synchronous motor speed command ωrref 
And speed estimate ωrm estDeviation from (k + 1) multiplied by gain
Synchronous motor rotating torque derived from feedback control
And the current command in the γ-axis direction is positive,
To generate torque to restrain the d axis to the γ axis
Features. In addition, sensorless control of synchronous motors
Method, the magnetic axis of the synchronous motor is d-axis, 90 ° from the d-axis.
The advanced axis is the q axis, and the synchronous motor rotation speed ωrm Rotate with
The coordinate dq axis and the designated magnetic axis of the synchronous motor from γ and γ
Set the axis advanced by 90 ° to δ and set the synchronous motor rotation command speed ωrm 
* Set the γ-δ axis to rotate at
γ * , Current command iδ in the δ-axis direction* And the magnetic axis d axis
Generates torque to restrain at an angle advanced from the γ-axis.
And the synchronous motor speed command ω
rm * -Axis current equation as a function of synchronous motor induced voltage disturbance
Speed estimation value ω derived from disturbance observer created
rm estFeedback control that multiplies the deviation from
Δ-axis current command as synchronous motor induced voltage disturbance
Derived from disturbance observer created from the γ-axis current equation
Derived from the estimated disturbance value via the proportional integral controller
Angle correction current command iδθ* Command speed ωrm * so
The feature is to make the rotating γ axis coincide with the true magnetic axis d axis.
are doing.

【0005】このような同期電動機の速度制御方法によ
れば、任意の指定軸γ軸に正方向の直流電流iγ が流
れた時、真磁軸d軸がγ軸より負荷角θe だけ遅れた位
相に存在するとすれば、無負荷で負荷角θe が小さい場
合は、磁軸d軸にはiγsinθe に比例したγ軸方向
へ向かうトルクが発生する。このため真の磁軸d軸は常
に指定軸γ軸に向かうようなトルクを受けてγ軸とd軸
は一致するので、低速域においてγ軸電流指令iγ*
流すことによって、低速域でも磁軸の指定が可能とな
り、良好なベクトル制御を行うことができる。但し、磁
軸d軸を拘束する際、通常は制動巻線を持たない同期機
はダンピングファクターがほぼ0のため、d軸はγ軸周
りで単振動を起こすので、速度推定値フィードバックに
より導出した電流指令値をδ軸電流とすることで、d軸
の過渡振動を抑制し、一方、γ軸電流方程式より導出し
た外乱推定値εγ est は、同期電動機誘起電圧をεと
するとεsinθe を推定する。従って、負荷角が小さ
い場合はεγ est は負荷角に比例した値となるので、
iγ* による磁軸d軸の拘束が可能であるが、負荷角が
大きくなると特に低速域の場合に拘束できなくなるの
で、外乱推定値εγ est を比例積分した補正電流指令
iδ θ* をδ軸電流指令に加算してδ軸にも補正電流
として拘束電流を流すことによって、εγ estが0すな
わちγ軸とd軸が一致するまで補正電流が流れることに
なるので、結果として負荷角の開き過ぎが抑制され、γ
軸とd軸を一致させることができる。
According to such a speed control method for a synchronous motor, when a positive direct current iγ flows through an arbitrary designated axis γ axis, the true magnetic axis d axis lags the γ axis by the load angle θ e . if present in the phase, when the load angle theta e in no load is small, the magnetic axis d-axis torque is generated toward the γ-axis direction that is proportional to iγsinθ e. Therefore, since the true magnetic axis d-axis is always γ axis and the d-axis under torque as towards the designated axis γ axis coincides, by passing a γ-axis current command i? * In the low speed range, magnetic even at low speed The axis can be specified, and excellent vector control can be performed. However, when constraining the magnetic axis d-axis, the d-axis causes a simple oscillation around the γ-axis because the damping factor of a synchronous machine having no braking winding is almost 0. By setting the current command value to the δ-axis current, transient vibration of the d-axis is suppressed. On the other hand, the disturbance estimation value εγ est derived from the γ-axis current equation estimates ε sin θ e when the synchronous motor induced voltage is ε. . Therefore, when the load angle is small, εγ est is a value proportional to the load angle.
Although the magnetic axis d-axis can be constrained by iγ * , it cannot be constrained particularly at low speeds when the load angle is large. Therefore, the correction current command iδ obtained by proportionally integrating the disturbance estimation value εγ est. By adding θ * to the δ-axis current command and flowing a constraint current as a correction current also to the δ-axis, the correction current flows until εγ est is 0, that is, the γ-axis and the d-axis match. Excessive opening of the load angle is suppressed, and γ
The axis and the d-axis can be matched.

【0006】[0006]

【発明の実施の形態】以下、本発明の第1の実施の形態
について図を参照して説明する。図1は本発明の第1の
実施の形態に係る同期電動機の速度制御方法が適用され
る制御システムのブロック図である。図1に示す第1の
実施の形態は基本的には、例えば、特開平9−1916
98に記載されている永久磁石形同期電動機の速度推定
方法及びその回転子ずれ角推定方法並びに回転子位置修
正方法により推定した同期電動機の回転速度、回転子位
置を用いてセンサレスベクトル制御系を構成するもので
あるが、しかし、この推定方式では、誘起電圧情報より
同期電動機の速度や回転子位置を推定するため、推定低
速域では誘起電圧情報が少なく、制御軸γ―δ軸と同期
電動機磁軸d−q軸との間の誤差補正ができなくなり、
良好なベクトル制御が出来なくなる。そこで低速域の制
御は、γ軸に正の電流を流すと、真磁軸d軸がγ軸より
負荷角だけずれた位相に存在するとすると、磁軸にに比
例したγ軸方向へ向かうトルクが発生する。このため真
の磁軸d−q軸と制御軸γ―δ軸の誤差がなくなり、良
好なベクトル制御が可能となる方法により改善し、高速
域の制御は上述の開示例に拠って行うことによって、高
速・低速域に亙って良好なベクトル制御を保証できるよ
うに、特開平9−191698号記載の制御方式を改善
するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a control system to which a speed control method for a synchronous motor according to a first embodiment of the present invention is applied. The first embodiment shown in FIG. 1 is basically, for example, disclosed in Japanese Patent Application Laid-Open No. 9-1916.
98, a sensorless vector control system is constructed using the rotational speed and the rotor position of the synchronous motor estimated by the method of estimating the speed of the permanent magnet type synchronous motor, the method of estimating the rotor shift angle, and the method of correcting the rotor position. However, in this estimation method, since the speed and the rotor position of the synchronous motor are estimated from the induced voltage information, the induced voltage information is small in the estimated low-speed range, and the control axis γ-δ axis and the synchronous motor magnetic field are not used. Error correction between the d and q axes cannot be performed,
Good vector control cannot be performed. Therefore, when a positive current is applied to the γ-axis, if the true magnetic axis d-axis is in a phase shifted from the γ-axis by the load angle, the torque in the γ-axis direction proportional to the magnetic axis is controlled. appear. For this reason, the error between the true magnetic axis dq axis and the control axis γ-δ axis is eliminated, the method is improved by a method that enables good vector control, and the control in the high-speed range is performed based on the above disclosed example. The control system described in Japanese Patent Application Laid-Open No. 9-191698 is improved so that good vector control can be ensured over a high speed / low speed range.

【0007】図1において、角速度指令ωr m * と角速
度推定値ωr m est(以降、推定値はestによって表
わす)が、速度コントローラ1に入力され、速度コント
ローラ1はδ相電流指令iδ* を出力する。δ相電流コ
ントローラ2はiδ* と電流補正器からのδ相電流推定
値iδ est 2 とを入力し、δ相電流指令Vδ* を出力
する。一方、正のγ相電流指令iγ* とγ相電流推定値
iγ est 2 が、γ相電流コントローラ3に入力され、
γ相電流コントローラ3はγ相電圧指令Vγ*を出力す
る。電圧指令Vδ* とVγ* とγ−δ軸位置補正器11
から出力されるγ−δ軸位置がベクトル制御回路4に入
力され、電圧値絶対値(Vδ2 +Vγ21/2 とγ軸か
らの電圧出力方向の位相tan- 1(Vδ/Vγ)がイ
ンバータ回路5に入力され点弧が実施される。一方、γ
−δ軸電流・誘起電圧推定器8は、同期電動機6のステ
ータ電流iUとiV を相変換器7を介して得られるγ相
電流iγ、δ相電流iδと、γ−δ軸の位置と、電圧指
令Vδ* 、Vγ* を入力し、γ−δ相電流推定値iγ
est 、iδ est と、γ−δ相誘起電圧εγ est とε
δ est を出力する。εγ est とεδ est が角速度導
出器9に入力され、角速度推定値ωr m est が導出され
る。このωr m est とεγ est が、ずれ角θe est
出器10に入力され、γ−δ軸とd−q軸とのずれ角θ
e est が導出される。これがγ−δ軸位置補正器11に
入力されγ−δ軸の位置補正が実行され、電流補正器1
2による補正が行われる。電動機定数同定器13は本実
施の形態で新たに追加された構成で、Rs、Lq、Ld
等の同期電動機定数を同定してインダクタンスの変化に
よるd軸の検出、あるいは外乱推定値として誘起電圧推
定値εδ est を入力してd−q軸とγ−δ軸のずれ角
を公知のεcosθe est 、より推定し、低速時の拘束
用に見合った正の電流をγ軸に流すiγ* を出力する。
In FIG. 1, an angular velocity command ω rm * and an estimated angular velocity ω rm est (hereinafter, the estimated value is represented by est) are input to a speed controller 1, and the speed controller 1 outputs a δ-phase current command iδ * . I do. The δ-phase current controller 2 receives iδ * and the estimated δ-phase current iδ est 2 from the current corrector, and outputs a δ-phase current command Vδ * . On the other hand, the positive γ-phase current command iγ * and the estimated γ-phase current value iγ est 2 are input to the γ-phase current controller 3,
The γ-phase current controller 3 outputs a γ-phase voltage command Vγ * . Voltage commands Vδ * , Vγ *, and γ-δ axis position corrector 11
Is input to the vector control circuit 4, and the absolute value of the voltage value (Vδ 2 + Vγ 2 ) 1/2 and the phase tan −1 (Vδ / Vγ) in the voltage output direction from the γ axis are output. The signal is input to the inverter circuit 5 and firing is performed. On the other hand, γ
The δ-axis current / induced voltage estimator 8 calculates the γ-phase current iγ and the δ-phase current iδ obtained from the stator currents i U and i V of the synchronous motor 6 via the phase converter 7 and the position of the γ-δ axis. And the voltage commands Vδ * and Vγ * , and the γ−δ phase current estimated value iγ
est, and iδ est, γ-δ phase induced voltage Ipushironganma est and ε
Output δ est . εγ est and εδ est are input to the angular velocity deriving unit 9 to derive an estimated angular velocity ω rm est . The ω rm est and the εγ est are input to the deviation angle θ e est deriving unit 10, and the deviation angle θ between the γ-δ axis and the dq axis is obtained.
e est is derived. This is input to the γ-δ axis position corrector 11 to execute the γ-δ axis position correction, and the current corrector 1
2 is performed. The motor constant identifier 13 is a configuration newly added in the present embodiment, and includes Rs, Lq, Ld
Identify the synchronous motor constants, etc. and detect the d-axis due to the change in inductance, or input the induced voltage estimation value εδ est as the disturbance estimation value and calculate the deviation angle between the dq axis and the γ-δ axis by the known εcos θ e est , iγ *, which is a positive current that is estimated from and is supplied to the γ axis with a positive current appropriate for restraining at low speed, is output.

【0008】つぎに動作について説明する。先ず、制御
動作は高速域の場合は、k・TS 秒の時点で同期機に供
給される少なくとも2相分の電流、例えばiU(k)、
V(k)を検出し、相変換器7により前回ループで補
正されたγ−δ軸座標系に変換し、iγ(k)、iδ
(k)を導出する。次に、γ−δ軸電流、誘起電圧推定
器8内に構成された状態推定器を用いて、γ−δ座標系
に変換された電圧指令Vγ*(k)、Vδ*(k)を入力
し、公知の方法で(k+1)・TS 秒時の推定値iγ
est(k+1)、iδ est(k+1)、εγ est(k+
1)、εδ est(k+1)を導出する。角速度導出器9
において、推定εδ est(k+1)の符号より、角速度
の符号判断を行い、この符号とεγ est(k+1)とε
δ est(k+1)の2乗和よりωr m est(k+1)を
導出する。ずれ角θe 導出器10によりεγ est(k+
1)とωr m est(k+1)よりθe est(k+1)を求
め、γ−δ軸位置補正器11によりγ軸の位置を補正す
る。次にγ軸がkρθe est(k+1)だけ軸変換され
たとしてγ相、δ相電流補正器12によって、(k+
1)ループ時に初期値iγ est(k+1)、iδ
est(k+1)、εγ est(k+1)、εδ est(k+
1)を修正する。また、低速域の場合は、電動機定数同
定器13よりγ軸に正の電流を流すためのiγ* をγ軸
電流コントローラ3へ出力して、磁極d軸にiγsin
θe に比例したγ軸方向へ向かうトルクを発生させ、磁
軸d−qと制御軸γ−δの誤差を無くし、良好なベクト
ル制御を可能にする。
Next, the operation will be described. First, in the case of a high-speed control operation, at least two phases of current supplied to the synchronous machine at k · T S seconds, for example, i U (k),
i V (k) is detected and converted by the phase converter 7 into the γ-δ axis coordinate system corrected in the previous loop to obtain i γ (k), i δ
(K) is derived. Next, the voltage commands Vγ * (k) and Vδ * (k) converted into the γ-δ coordinate system are input using the state estimator configured in the γ-δ axis current and induced voltage estimator 8. Then, an estimated value iγ at (k + 1) · T S seconds is obtained by a known method.
est (k + 1), iδ est (k + 1), εγ est (k +
1) derive εδ est (k + 1). Angular velocity deriving device 9
, The sign of the angular velocity is determined from the sign of the estimated εδ est (k + 1), and this sign, εγ est (k + 1) and ε
ω rm est (k + 1) is derived from the sum of squares of δ est (k + 1). The deviation angle θ e derivation unit 10 εγ est (k +
1) and ω rm est (k + 1) are used to determine θ e est (k + 1), and the γ-δ axis position corrector 11 corrects the γ-axis position. Next, assuming that the γ-axis has been converted by kρθ e est (k + 1), the γ-phase and δ-phase current correctors 12
1) Initial value iγ est (k + 1), iδ during loop
est (k + 1), εγ est (k + 1), εδ est (k +
Modify 1). Further, in the low speed range, the motor constant identifier 13 outputs iγ * for flowing a positive current to the γ-axis to the γ-axis current controller 3 and outputs iγsin to the magnetic pole d-axis.
A torque is generated in the γ-axis direction in proportion to θ e to eliminate an error between the magnetic axis dq and the control axis γ-δ, thereby enabling excellent vector control.

【0009】次に、本発明の第2の実施の形態について
図を参照して説明する。図2は本発明の第2の実施の形
態に係る同期電動機の速度制御方法が適用される制御シ
ステムのブロック図である。図3は図2に示す制御シス
テムの動作のフローチャートである。図2に示す第2の
実施の形態は、前実施の形態より更に負荷が増大して負
荷角θe が開き過ぎた場合に、δ軸にも正電流を流して
d軸の過渡振動の抑制と、負荷角の抑制を行い磁軸を拘
束することにより磁軸d−qと制御軸γ−δ軸の誤差を
無くし、負荷増大時(特に低速域)における制御の改善
を図るものである。図2において、角速度指令ωr m *
と角速度推定値ωr m est が速度コントローラ1に入力
され、速度コントローラ1は、δ相電流指令iδ* を出
力する。又、誘起電圧推定値εγ est がδ軸電流指令
補正器14(比例積分制御器)に入力され、公知のεs
inθe est から、ずれ角θe を推定し見合ったδ軸補
正電流指令iδθ* を出力する。δ相電流コントローラ
2はiδ* とiδθ* と電流補正器からのδ相電流推定
値iδ est 2 とを入力し、δ相電圧指令Vδ* を出力
する。これによってd軸の過渡振動を抑制し、δ軸にも
正の電流iδθ* を流すことによって負荷角が開き過ぎ
ないように磁軸を引込み拘束する。一方、図1と同様γ
相電流指令iγ* とγ相電流推定値iγest 2 が、γ軸
電流コントローラ3に入力され、γ軸電流コントローラ
3はγ相電圧指令Vγ* を出力する。電圧指令Vδ*
と、Vγ* とγ−δ軸位置補正器11から出力されるγ
−δ軸位置が、ベクトル制御回路4に入力され、電圧値
絶対値(Vδ2 +Vγ 21 / 2 、とγ軸からの電圧出
力方向の位相tan- 1(Vδ/Vγ)がインバータ回
路5に入力され点弧が実施される。一方、γ−δ軸電流
・誘起電圧推定器8は、同期電動機6のステータ電流i
UとiV を相変換器7を介して得られるγ相電流iγ、
δ相電流iδ と、γ−δ軸の位置と、電圧指令Vδ
* 、Vγ* を入力し、公知の(1)式の演算を実施し、
γ−δ相電流推定値iγ est 、iδ est と、γ−δ相
誘起電圧εγ est 、εδ est を出力する。ε
γ est 、εδ est が角速度導出器9に入力され、
(2)、(3)式を実行することによって、角速度推定
値ωr m est が導出される。また、速度指令値ωr m *
がγ−δ軸位置補正器11に入力され、(4)式で、γ
−δ軸の位置補正が実行される。
Next, a second embodiment of the present invention will be described.
This will be described with reference to the drawings. FIG. 2 shows a second embodiment of the present invention.
Control system to which the synchronous motor speed control method according to the
It is a block diagram of a stem. FIG. 3 shows the control system shown in FIG.
It is a flowchart of operation | movement of a system. The second shown in FIG.
In this embodiment, the load is further increased compared to the previous embodiment, and the load is reduced.
When the load angle θe is too wide, a positive current is applied to the δ axis
Suppress the transient vibration of the d-axis and the load angle, and
Bundling reduces the error between the magnetic axis dq and the control axis γ-δ axis.
Eliminates and improves control when load increases (especially at low speeds)
It is intended. In FIG. 2, the angular velocity command ωrm *
And the estimated angular velocity ωrm est Input to speed controller 1
And the speed controller 1 outputs the δ-phase current command iδ* Out
Power. Also, the induced voltage estimated value εγestIs the δ-axis current command
Is input to the corrector 14 (proportional-integral controller), and
inθe est From the deviation angle θeΔ axis complement
Positive current command iδθ* Is output. δ phase current controller
2 is iδ* And iδθ* -Phase current estimation from the current and the current compensator
Value iδest 2 And the δ phase voltage command Vδ* Output
I do. This suppresses the transient vibration of the d-axis,
Positive current iδθ* Load angle is too wide
Pull and restrain the magnetic axis so that it does not come out. On the other hand, as in FIG.
Phase current command iγ* And the estimated value of the γ-phase current iγest 2 Is the γ axis
Γ-axis current controller which is input to the current controller 3
3 is a γ-phase voltage command Vγ* Is output. Voltage command Vδ* 
And Vγ* And γ output from the γ-δ axis position corrector 11
The −δ-axis position is input to the vector control circuit 4 and the voltage value
Absolute value (VδTwo + Vγ Two )1/2, And voltage output from the γ axis
Phase tan in force direction-1(Vδ / Vγ) is the number of inverters
It is input to the road 5 and the ignition is performed. On the other hand, γ-δ axis current
The induced voltage estimator 8 calculates the stator current i of the synchronous motor 6
UAnd iV Is the γ-phase current iγ obtained via the phase converter 7,
δ-phase current iδ, γ-δ axis position, and voltage command Vδ
* , Vγ* Is input, and the calculation of the well-known expression (1) is performed.
γ-δ phase current estimated value iγest , Iδest And the γ-δ phase
Induced voltage εγest , Εδest Is output. ε
γest, ΕδestIs input to the angular velocity deriving device 9,
By executing equations (2) and (3), angular velocity estimation
Value ωrm est Is derived. Also, the speed command value ωrm *
Is input to the γ-δ axis position corrector 11, and in the equation (4), γ
The position correction of the -δ axis is executed.

【0010】[0010]

【数1】 (Equation 1)

【0011】次に、基本的な制動動作を図3のフローチ
ャートにより説明する。K・TS 秒の時点で同期機に供
給される少なくとも2相分の電流、例えば、i
U(k)、iV(K)を検出し(ステップS1)、前回ルー
プで補正されたγ−δ軸座標系に変換し、iγ(K)、
iδ(K)を導出する(ステップS2)。γ−δ座標系に
変換された電圧指令Vγ(K)、Vδ(K)を入力し
(ステップS3)、(1)式によって、(K+1)・TS
秒時の推定値iγ est(K+1)、iδ est(K+
1)、εγ est(K+1)、εδ est(K+1)を導
出する(ステップS4)。推定されたεδ est(K+
1)の符号より、角速度の符号判断を行い(ステップS
5)、この符号と、(2)、(3)式によって、εγ
est(K+1)とεδ est(K+1)の二乗和より、ω
r m est(K+1)を導出する(ステップS6)。
(4)式によって、γ軸の位置を補正する(ステップS
7)。このように、低速域の制御で負荷が大きく負荷角
θe が開き過ぎる場合は、iγ* によるd軸の引き込み
だけではなく、δ軸へのiδθ* による引込みにより負
荷角θe の開き過ぎを抑制してd−q軸とγ−δ軸の誤
差を無くして、上述のフローチャートによる制御を行う
ことで良好なベクトル制御が可能になる。また、特開平
10−174499号公報には、低速域から高速域に掛
けての制御切替えが滑らかに切替わるように、γ−δ軸
の回転速度ωR γを決定する際に、回転速度指令ω
R R E F の絶対値が大きくなるに従って小さくなるよう
に設定された分配ゲインK1と、大きくなるに従って大
きくなるように設定される分配ゲインK2を用意し、高
速域ではK2の比率がK1より十分大きく設計され、低
速域ではK1の比率がK2より大きく設計されて、低速
から高速まで同一アルゴリズムでトルク変動の少ない制
御を行う方式が提案されている。しかし、この場合も無
負荷であることを前提とした制御方式であって、負荷が
大きくなりd軸とγ軸の角度差が大きい場合は適用不可
能であって、この場合も負荷角が大きい時は、先ず、本
実施の形態によりiγ* 、iδ θ* という正電流を流
してd軸を引込み拘束して、上記の制御を実施すれば低
速高速域に亙り良好なベクトル制御が期待できる。
Next, the basic braking operation will be described with reference to the flowchart of FIG.
This will be explained by a chart. KTS At the second
Supplied current for at least two phases, for example, i
U(K), iV(K) is detected (step S1), and the
Into the γ-δ axis coordinate system corrected by the step, iγ (K),
iδ (K) is derived (step S2). γ-δ coordinate system
Input the converted voltage commands Vγ (K) and Vδ (K)
(Step S3) According to the equation (1), (K + 1) · TS 
Second estimated value iγest(K + 1), iδest(K +
1), εγest(K + 1), εδestLeads to (K + 1)
Issue (Step S4). Estimated εδest(K +
The sign of the angular velocity is determined from the sign of 1) (step S).
5), this sign, and the equations (2) and (3), εγ
est(K + 1) and εδ estFrom the sum of squares of (K + 1), ω
rm est(K + 1) is derived (step S6).
The position of the γ-axis is corrected by the equation (4) (Step S)
7). In this way, the load is large and the load
θe Is too open, iγ*Of d-axis by
Not only iδθ to the δ axis* Negative by retraction by
By suppressing the opening of the load angle θe from being too large, the error between the dq axis and the γ-δ axis
Eliminate the difference and perform the control according to the above flowchart
This enables good vector control. In addition,
In Japanese Patent Application Laid-Open No. 10-174499, the range from a low speed range to a high speed range is described.
Γ-δ axis so that the control change
Rotation speed ωRWhen determining γ, the rotational speed command ω
RREF So that it decreases as the absolute value of
The distribution gain K1 is set to
Prepare a distribution gain K2 that is set to
In the speed range, the ratio of K2 is designed to be sufficiently larger than K1,
In the speed range, the ratio of K1 is designed to be larger than K2,
The same algorithm from low to high speed with little torque fluctuation
A control method has been proposed. But in this case too
This control method is based on the assumption that the load is
Not applicable when the angle difference between d axis and γ axis is large
If the load angle is large in this case as well,
According to the embodiment, iγ*, Iδ θ*A positive current
If the d-axis is retracted and constrained to perform the above control,
Good vector control can be expected over the high-speed range.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
センサレス・ベクトル制御方式において、γ軸に正の電
流を流し磁軸d軸を拘束するためのトルクを発生させる
ことにより、低速でも良好に同期電動機の速度制御が実
現できる。また、低速域での制御で磁軸を引込む位相を
負荷角に応じてγ軸より進み側の位相にすることによ
り、負荷角が大きくなっても制御軸γ軸と同期電動機磁
軸d軸を一致させ、良好にベクトル制御に移行可能であ
る。
As described above, according to the present invention,
In the sensorless vector control method, a positive current is applied to the γ-axis to generate torque for restraining the magnetic axis d-axis, so that the speed control of the synchronous motor can be favorably performed even at a low speed. In addition, by controlling the phase in which the magnetic axis is pulled in the control in the low-speed range to the phase leading from the γ axis in accordance with the load angle, the control axis γ axis and the synchronous motor magnetic axis d axis can be controlled even when the load angle increases. By making them match, it is possible to favorably shift to vector control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る同期電動機の
速度制御方法が適用される制御システムのブロック図で
ある。
FIG. 1 is a block diagram of a control system to which a speed control method for a synchronous motor according to a first embodiment of the present invention is applied.

【図2】本発明の第2の実施の形態に係る同期電動機の
速度制御方法が適用される制御システムのブロック図で
ある。
FIG. 2 is a block diagram of a control system to which a speed control method for a synchronous motor according to a second embodiment of the present invention is applied.

【図3】図2に示す制御システムの動作のフローチャー
トである。
FIG. 3 is a flowchart of an operation of the control system shown in FIG. 2;

【符号の説明】[Explanation of symbols]

1 速度コントローラ 2 δ軸電流コントローラ 3 γ軸電流コントローラ 4 ベクトル制御回路 5 インバータ回路 6 同期電動機 7 相変換器 8 γ−δ軸電流・誘起電圧推定器 9 角速度導出器 10 ずれ角θe導出器 11 γ−δ軸位置補正器 12 γ相・δ相電流補正器 13 電動機定数同定器 14 軸電流指令補正器 Reference Signs List 1 speed controller 2 δ-axis current controller 3 γ-axis current controller 4 vector control circuit 5 inverter circuit 6 synchronous motor 7 phase converter 8 γ-δ-axis current / induced voltage estimator 9 angular velocity deriver 10 deviation angle θe deriver 11 γ −δ axis position corrector 12 γ phase / δ phase current corrector 13 Motor constant identifier 14 Axis current command corrector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 永久磁石を回転子とし、回転子の磁極上
に設定したd−q軸に、回転子上に想定したγ−δ軸が
一致するように制御する同期電動機のセンサレス速度制
御方法において、 時間k・TS 時(但し、k=0,1,2,3,・・・,
S はサンプリングタイム)に同期電動機に供給される
少なくとも2相分のステータ電流を検出し、該ステータ
電流をγ−δ座標系に変換することにより、γ軸電流i
γ(k)及びδ軸電流iδ(k)を導出し、これらγ軸
電流iγ(k)及びδ軸電流iδ(k)と前回の制御ル
ープで推定されたγ軸電流iγ est(k)及びδ軸電流
iδ est(k)との差iγ(k)−iγ est(k)及び
iδ(k)−iδ est (k)を補正量、γ−δ軸座標
系に変換された電圧指令値Vγ*(k)とVδ*(k)を
入力とし、同期電動機の回転子が回転することにより発
生するγ軸の誘起電圧εγ(k)とδ軸の誘起電圧εδ
(k)を、回転子が回転していない時の電流応答に対す
る外乱として状態推定器を構成し、時間(k+1)・T
S 秒のγ−δ軸座標系における電流iγ est(k+1)
及びiδ est(k+1)並びに誘起電圧εγ est(k+
1)及びεδ est(k+1)を推定し、この推定された
誘起電圧εδ est(k+1)の符号より回転子の速度の
符号を判別し、前記誘起電圧εγ est(k+1)とεδ
est(k+1)の2乗和と前記判別された符号より、回
転子の角速度ωr m(k+1)の推定値を推定し、δ軸
方向電流指令を同期電動機速度指令ωr r e f と速度推
定値ωr m est(k+1)との偏差をゲイン倍するフィー
ドバック制御より導出して同期電動機回転トルクを発生
させ、且つ、γ軸方向の電流指令を正とし、磁軸d軸を
γ軸に拘束するためのトルクを発生させることを特徴と
する同期電動機の速度制御方法。
A permanent magnet is used as a rotor, and a magnetic pole on the rotor is provided.
The γ-δ axis assumed on the rotor is
Sensorless speed control of synchronous motors controlled to match
In the method, time k · TS Time (however, k = 0, 1, 2, 3,...,
TS Is supplied to the synchronous motor at sampling time)
Detecting at least two phases of stator current,
By converting the current into a γ-δ coordinate system, the γ-axis current i
γ (k) and δ-axis current iδ (k) are derived, and these γ-axis
The current iγ (k) and the δ-axis current iδ (k) and the previous control
-Axis current iγ estimated in the loopest(K) and δ-axis current
estDifference from (k) iγ (k) −iγest(K) and
iδ (k) -iδest (K) is the correction amount, γ-δ axis coordinates
Voltage command value Vγ converted to the system*(K) and Vδ*(K)
Input, and is triggered by the rotation of the synchronous motor rotor.
The generated γ-axis induced voltage εγ (k) and δ-axis induced voltage εδ
(K) to the current response when the rotor is not rotating
A state estimator is constructed as a disturbance that takes time (k + 1) · T
SCurrent iγ in the γ-δ axis coordinate system in secondsest(K + 1)
And iδest(K + 1) and induced voltage εγ est(K +
1) and εδest(K + 1), and this estimated
Induced voltage εδ estFrom the sign of (k + 1), the speed of the rotor
The sign of the induced voltage εγest(K + 1) and εδ
est (From the sum of squares of (k + 1) and the determined code,
Trochanter angular velocity ωrmEstimate the estimated value of (k + 1), δ axis
Direction current command to synchronous motor speed command ωrrefAnd speed guessing
Constant value ωrm est (k + 1)
Generates synchronous motor rotation torque derived from feedback control
And the current command in the γ-axis direction is positive, and the magnetic axis d-axis is
It is characterized by generating torque for restraining to the γ axis
Speed control method for synchronous motors.
【請求項2】 同期電動機のセンサレス速度制御方法に
おいて、 同期電動機の磁軸をd軸、d軸から90°進んだ軸をq
軸とし、同期電動機回転速度ωr m で回転する座標d−
q軸と同期電動機の指定磁軸をγ、γから90°進んだ
軸をδとし同期電動機回転指令速度ωr m * で回転する
γ−δ軸を設定し、γ軸方向の電流指令iγ* 、δ軸方
向の電流指令iδ* を正とし、磁軸d軸をγ軸より進ん
だ角度に拘束するためのトルクを発生させ、かつδ軸方
向電流指令には同期電動機速度指令ωr m * と同期電動
機誘起電圧外乱としたδ軸電流方程式より作成した外乱
オブザーバより導出した速度推定値ωrmest との偏差を
ゲイン倍するフィードバック制御より導出し、δ軸電流
指令に同期電動機誘起電圧外乱としたγ軸電流方程式よ
り作成した外乱オブザーバから導出した外乱推定値を比
例積分制御器を介して導出した偏差角補正電流指令iδ
θ* を追加し、指令速度ωr m * で回転するγ軸を真の
磁軸d軸と一致させることを特徴とする同期電動機の速
度制御方法。
2. A sensorless speed control method for a synchronous motor, wherein the magnetic axis of the synchronous motor is d-axis, and the axis advanced by 90 ° from the d-axis is q.
Axis, and the coordinate d− rotating at the synchronous motor rotation speed ω rm
The designation magnetic axis of the q-axis and the synchronous motor gamma, the axis leading 90 ° from gamma and [delta] Set the gamma-[delta] axes rotating at synchronous motor rotation command speed ω r m *, γ axial current command i? * , The current command iδ * in the δ-axis direction is positive, a torque for restraining the magnetic axis d-axis at an angle advanced from the γ-axis is generated, and the δ-axis current command includes a synchronous motor speed command ω rm * and the deviation between the synchronous motor induced voltage disturbance and the δ axis current estimated speed value derived from the disturbance observer created from equation omega Rmest derived from feedback control for gain-multiplied, and the synchronous motor induced voltage disturbance δ-axis current command γ Deviation angle correction current command iδ derived from a disturbance observer derived from a disturbance observer created from the shaft current equation via a proportional integral controller
A speed control method for a synchronous motor, wherein θ * is added and a γ axis rotating at a command speed ω rm * is made to coincide with a true magnetic axis d axis.
JP35931999A 1999-05-28 1999-12-17 Synchronous motor speed control method Expired - Fee Related JP3956080B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35931999A JP3956080B2 (en) 1999-12-17 1999-12-17 Synchronous motor speed control method
PCT/JP2000/003363 WO2000074228A1 (en) 1999-05-28 2000-05-25 Speed control method for synchronous motor and constant identifying method
US09/979,798 US7076340B1 (en) 1999-05-28 2000-05-25 Method of controlling speed of synchronous motor, and method of identifying constant of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35931999A JP3956080B2 (en) 1999-12-17 1999-12-17 Synchronous motor speed control method

Publications (2)

Publication Number Publication Date
JP2001178174A true JP2001178174A (en) 2001-06-29
JP3956080B2 JP3956080B2 (en) 2007-08-08

Family

ID=18463902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35931999A Expired - Fee Related JP3956080B2 (en) 1999-05-28 1999-12-17 Synchronous motor speed control method

Country Status (1)

Country Link
JP (1) JP3956080B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428505B1 (en) * 2001-07-06 2004-04-28 삼성전자주식회사 Method of speed speed and flux estimation for induction motor
JP2006288083A (en) * 2005-03-31 2006-10-19 Fujitsu General Ltd Synchronous motor control method
JP2013078214A (en) * 2011-09-30 2013-04-25 Toshiba Schneider Inverter Corp Controlling device of permanent magnet synchronous motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428505B1 (en) * 2001-07-06 2004-04-28 삼성전자주식회사 Method of speed speed and flux estimation for induction motor
JP2006288083A (en) * 2005-03-31 2006-10-19 Fujitsu General Ltd Synchronous motor control method
JP2013078214A (en) * 2011-09-30 2013-04-25 Toshiba Schneider Inverter Corp Controlling device of permanent magnet synchronous motor

Also Published As

Publication number Publication date
JP3956080B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP3411878B2 (en) Method for estimating rotor position of synchronous motor, control method without position sensor, and control device
JP2858692B2 (en) Sensorless control method and device for permanent magnet type synchronous motor
US6674261B2 (en) Motor control apparatus
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
US8106619B2 (en) Position sensorless controller for permanent magnet motor
JP4198162B2 (en) Motor control device
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
KR101046802B1 (en) Control device of AC rotor and electric constant measurement method of AC rotor using this controller
JP3282657B2 (en) Initial magnetic pole position estimation method for permanent magnet type brushless motor
US7076340B1 (en) Method of controlling speed of synchronous motor, and method of identifying constant of synchronous motor
US20170264227A1 (en) Inverter control device and motor drive system
JP3253004B2 (en) Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position
US6940251B1 (en) Decoupling of cross coupling for floating reference frame controllers for sensorless control of synchronous machines
JP2008220169A (en) Motor controller
JP3797508B2 (en) Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof
JP5648310B2 (en) Synchronous motor control device and synchronous motor control method
KR20210000152A (en) Control Apparatus for Sensorless Motor of Inverter Type and Method Thereof
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
JP2001178174A (en) Speed control method for synchronous motor
JP4449419B2 (en) Control device for synchronous motor
JP4061446B2 (en) Resistance value identification method and control device for synchronous motor
JP2019068515A (en) Motor controller
JP4096663B2 (en) Estimation value correction method and control system of induction motor magnetic flux estimator
JP2020036513A (en) Motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees