JP2004235667A - Carrier metal foil with columnar pattern - Google Patents

Carrier metal foil with columnar pattern Download PDF

Info

Publication number
JP2004235667A
JP2004235667A JP2004132839A JP2004132839A JP2004235667A JP 2004235667 A JP2004235667 A JP 2004235667A JP 2004132839 A JP2004132839 A JP 2004132839A JP 2004132839 A JP2004132839 A JP 2004132839A JP 2004235667 A JP2004235667 A JP 2004235667A
Authority
JP
Japan
Prior art keywords
metal foil
pattern
columnar
columnar pattern
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004132839A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tsubomatsu
良明 坪松
Hajime Nakayama
肇 中山
Naoki Fukutomi
直樹 福富
Koichi Kaito
光一 海東
Yasunobu Yoshitomi
泰宣 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004132839A priority Critical patent/JP2004235667A/en
Publication of JP2004235667A publication Critical patent/JP2004235667A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process for a multilayer printed circuit board which has a high density and a high reliability of electrical connection between layers. <P>SOLUTION: By this process, columnar patterns which are to be electrical connection between layers parts are formed on one side of a carrier metal foil by electroplating in the subsequent process. The columnar patterns are embedded in an insulated substrate by superposing a first insulated substrate on the carrier metal foil by making the columnar patterns inside. A first circuit pattern is formed on the opposite side of the surface in which the columnar patterns of carrier metal foil are formed. While the first circuit pattern is embedded in a second insulated substrate by superposing the first insulated substrate on the second insulated substrate by making the first circuit pattern inside, the first and the second insulated substrates are unified. A second circuit pattern making a continuity with the columnar patterns is formed on the surface formed by the columnar patterns for connecting between layers and the first insulated substrate. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は多層配線板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer wiring board.

従来の多層配線板の製造法すなわち層間接続法としては、(1)配線パターンおよび絶縁層を貫通する穴をあけた後、めっき等によって穴内を金属化し層間の導通を得る方法、(2)配線パターン上に絶縁層を形成した後、層間接続をすべき部分の絶縁層を除去し、その後表面金属化と同時に層間接続を行う方法が使用されている。   As a conventional method of manufacturing a multilayer wiring board, that is, an interlayer connection method, (1) a method of forming a hole through a wiring pattern and an insulating layer, and then metallizing the inside of the hole by plating or the like to obtain conduction between layers, (2) wiring After an insulating layer is formed on a pattern, a method of removing an insulating layer at a portion where interlayer connection is to be performed and then performing interlayer connection simultaneously with surface metallization is used.

(1)の方法は一般の多層配線板で行われている層間接続方法であるが、貫通穴の形成にドリルをもちいるため、200μm径を下まわるような小径の形成は困難な上、穴位置精度も±30μm以上と十分でない。   The method (1) is an interlayer connection method used in a general multilayer wiring board. However, since a drill is used to form a through hole, it is difficult to form a small diameter smaller than 200 μm. The positional accuracy is not sufficient at ± 30 μm or more.

(2)の方法は主に半導体の多層配線形成に用いられている方法で、層間接続部の小径化や穴位置精度はフォトマスクによる位置合わせ技術を用いるため、(1)の方法に比べ一桁優れている。しかしこの方法の場合、下部の配線パターンの凹凸を吸収できず、表面に凹凸形状を残す。このことは、さらなる多層化や表面実装にとって障害となっているばかりか、表面配線の微細化をも阻害している。また、上記2方法とも層間接続用穴が微小径化しているため、めっき液等のスムーズな流れが得られず、十分な厚みの金属膜が形成しにくい。これは層間接続信頼性に直接影響する問題で深刻である。本発明は、高密度で層間接続信頼性の高い多層配線板の製造法を提供するものである。   The method (2) is mainly used for forming a multilayer wiring of a semiconductor. Since the diameter of the interlayer connection portion and the hole positioning accuracy use a photomask alignment technique, the method (2) is one method compared to the method (1). Digit is better. However, in this method, the unevenness of the lower wiring pattern cannot be absorbed, and the uneven shape remains on the surface. This not only hinders further multilayering and surface mounting, but also hinders miniaturization of surface wiring. Further, in both of the above methods, since the diameter of the interlayer connection hole is minute, a smooth flow of the plating solution or the like cannot be obtained, and it is difficult to form a metal film having a sufficient thickness. This is a serious problem directly affecting the interlayer connection reliability. The present invention provides a method for manufacturing a multilayer wiring board having high density and high interlayer connection reliability.

本願の第一の発明は、(A1)キャリヤー金属箔の片面に後工程で層間接続部となる柱状パターンを形成し、(B1)柱状パターンを内側にして第一の絶縁基材と重ね合わせて柱状パターンを第一の絶縁基材内に埋め込み、(C1)キャリヤー金属箔を所望する第一の配線パターンに加工し、(D1)第一の配線パターン面を内側にして第二の絶縁基材と重ね合わせて第二の絶縁基材内に埋め込むとともに第一及び第二の絶縁基材を一体化させ、(E1)第一の絶縁基材側から柱状パターンを露出させ、(F1)柱状パターンと導通した第二の配線パターンを形成する工程を含むことを特徴とするものである。   According to the first invention of the present application, (A1) a columnar pattern to be an interlayer connecting portion is formed on one side of a carrier metal foil in a post-process, and (B1) the columnar pattern is placed inside and superimposed on a first insulating base material. The columnar pattern is embedded in the first insulating base material, (C1) the carrier metal foil is processed into a desired first wiring pattern, and (D1) the second insulating base material with the first wiring pattern surface inside. And (E1) exposing the columnar pattern from the first insulating substrate side, and (F1) exposing the columnar pattern And forming a second wiring pattern that is electrically connected to the second wiring pattern.

本願の第二の発明は、(A2)可とう性を有するフィルム基材上に金属薄膜を形成し、(B2)金属薄膜上に後工程で層間接続部となる柱状パターンを形成し、(C2)柱状パターンを内側にして第一の絶縁基材と重ね合わせて柱状パターンを第一の絶縁基材内に埋め込み、(D2)フィルム基材を除去して金属薄膜面を露出させ、(E2)金属薄膜を含む第一の配線パターンを形成し、(F2)第一の配線パターン面を内側にして第二の絶縁基材と重ね合わせて第二の絶縁基材内に埋め込むとともに第一及び第二の絶縁基材を一体化させ、(G2)第一の絶縁基材側から柱状パターンを露出させ、(H2)柱状パターンと導通した第二の配線パターンを形成する工程を含むことを特徴とする多層配線板の製造法。   In the second invention of the present application, (A2) a metal thin film is formed on a flexible film base material, and (B2) a columnar pattern to be an interlayer connection part is formed on the metal thin film in a later step. And (E2) removing the film substrate to expose the metal thin film surface by embedding the columnar pattern in the first insulating substrate by superimposing the columnar pattern on the first insulating substrate with the columnar pattern inside, and (E2) A first wiring pattern including a metal thin film is formed, and (F2) the first wiring pattern surface is placed inside, the first wiring pattern is superimposed on the second insulating base material, and the first wiring pattern is embedded in the second insulating base material. (G2) exposing the columnar pattern from the first insulating substrate side, and (H2) forming a second wiring pattern electrically connected to the columnar pattern. Method of manufacturing multilayer wiring boards.

本発明により、高密度で接続信頼性の高い多層配線板の製造が可能になった。   According to the present invention, a multilayer wiring board having high density and high connection reliability can be manufactured.

図1により本願の第一の発明を具体的に説明する。キャリヤー金属箔1の片面にレジスト膜を形成し、これをフォトリソグラフ法で所定の形状にパターニングする。次に電気めっきにより後工程で層間接続部となる柱状パターン2を形成後、レジストパターンを剥離する(図1(a))。このようにして、50μm径程度の微細な層間接続用柱状パターンが10μm以下の精度で形成することができる。柱状パターン付きキャリヤー金属箔の製造方法としては、所定の厚さ(柱状パターン厚さ+キャリヤー金属箔厚さ)を有する金属箔上に所望する形状のレジストパターンを形成し、レジストパターン面から所定の深さまで化学的にエッチングする方法もある。この場合、柱状パターン厚さのばらつきを低減するために、金属箔の所定の深さに柱状パターンとエッチング条件が異なる金属薄層を内蔵した金属箔を用いることもできる。次に、柱状パターン2が形成されたキャリヤー金属箔1を柱状パターン面を内側にして第一の絶縁基材3と重ね合わせて柱状パターンを絶縁基材3内に埋め込む。柱状パターンはプレス等熱圧着によって容易に絶縁基材3の樹脂中に埋め込むことができる(図1(b))。この場合、柱状パターン上に存在する絶縁膜の厚さ(図1(b)、h)はプレス条件や第一の絶縁基材の樹脂分及び溶融粘度等により制御可能である。なお、柱状パターンを絶縁基材中に埋め込む方法としては、ポリイアミドワニスのような粘性のある樹脂を柱状パターン上に塗布後、加熱により硬化させてもよい。   The first invention of the present application will be specifically described with reference to FIG. A resist film is formed on one surface of the carrier metal foil 1, and is patterned into a predetermined shape by a photolithographic method. Next, after forming a columnar pattern 2 to be an interlayer connecting portion in a later step by electroplating, the resist pattern is peeled off (FIG. 1A). In this way, a fine columnar pattern for interlayer connection having a diameter of about 50 μm can be formed with an accuracy of 10 μm or less. As a method for manufacturing a carrier metal foil with a columnar pattern, a resist pattern of a desired shape is formed on a metal foil having a predetermined thickness (columnar pattern thickness + carrier metal foil thickness), and a predetermined pattern is formed from the resist pattern surface. There is also a method of chemically etching to the depth. In this case, in order to reduce the variation in the thickness of the columnar pattern, a metal foil having a built-in thin metal layer having a different etching condition from the columnar pattern at a predetermined depth of the metal foil may be used. Next, the carrier metal foil 1 on which the columnar pattern 2 is formed is overlapped with the first insulating substrate 3 with the columnar pattern surface inside, and the columnar pattern is embedded in the insulating substrate 3. The columnar pattern can be easily embedded in the resin of the insulating base material 3 by thermocompression such as pressing (FIG. 1B). In this case, the thickness (FIGS. 1B and 1H) of the insulating film existing on the columnar pattern can be controlled by pressing conditions, the resin content of the first insulating base material, the melt viscosity, and the like. As a method of embedding the columnar pattern in the insulating base material, a viscous resin such as polyamide varnish may be applied on the columnar pattern and then cured by heating.

次に、キャリヤー金属箔の柱状パターンを形成した面の反対面上にレジスト膜を形成し、これをフォトリソグラフ法で所望する配線形状にパターニングし、化学的エッチング法により第一の配線パターン4を形成する。その後、レジストパターンを剥離後(図1(c))、第一の配線パターンを内側にして第二の絶縁基材5と重ね合わせて第一の配線パターン4を第二の絶縁基材5内に埋め込むとともに、第一と第二の絶縁基材を一体化する(図1(d))。   Next, a resist film is formed on the surface opposite to the surface on which the columnar pattern of the carrier metal foil is formed, and this is patterned into a desired wiring shape by photolithography, and the first wiring pattern 4 is formed by chemical etching. Form. Thereafter, after the resist pattern is peeled off (FIG. 1C), the first wiring pattern is placed inside the second insulating base 5 by overlapping the first wiring pattern with the second insulating base 5 with the first wiring pattern inside. And the first and second insulating base materials are integrated (FIG. 1D).

この後、第一の絶縁基材側から柱状パターン2を露出させ、層間接続用柱状パターン2、第一の絶縁基材3とによって形成される表面に柱状パターンと導通した第二の配線パターン6を形成する(図1(e))。この場合、第二の配線パターンと良好な電気的接続を得るために、柱状パターン上にある絶縁層(樹脂層)を機械研磨したり、プラズマエッチングやエキシマレーザ照射等により除去・平坦化することは有効である。第二の配線パターンの形成は、エッチング法、アディティブ法いずれでも良い。例えば柱状パターン2、第一の絶縁基材3とによって形成される平坦な表面全面を金属化し柱状パターン2と導通をとり、この金属層をパターニングして第二の配線パターン6を形成する。表面金属化と層間接続を同時に行う金属化はスパッタリングや蒸着等の真空成膜技術を適用することもできる。この場合は、薄膜が形成されるので、その上にレジスト膜を形成した後、パターニングし、電気めっきで厚付けして、レジスト膜を除去し、当初形成した金属薄膜をエッチング除去するセミアディティブ法を採用することができる。セミアディティブ法を採用することにより、第二の配線パターン6は配線幅20μm、配線厚20μm程度にすることができる。   Thereafter, the columnar pattern 2 is exposed from the first insulating base material side, and the second wiring pattern 6 electrically connected to the columnar pattern on the surface formed by the interlayer connecting columnar pattern 2 and the first insulating base material 3. Is formed (FIG. 1E). In this case, in order to obtain good electrical connection with the second wiring pattern, the insulating layer (resin layer) on the columnar pattern is mechanically polished or removed and planarized by plasma etching, excimer laser irradiation, or the like. Is valid. The second wiring pattern may be formed by either an etching method or an additive method. For example, the entire flat surface formed by the columnar pattern 2 and the first insulating base material 3 is metallized to establish conduction with the columnar pattern 2, and this metal layer is patterned to form the second wiring pattern 6. Vacuum film formation techniques such as sputtering and vapor deposition can be applied to the surface metallization and the metallization for simultaneously performing interlayer connection. In this case, a thin film is formed. After forming a resist film on it, patterning, thickening by electroplating, removing the resist film, and etching away the originally formed metal thin film by a semi-additive method. Can be adopted. By employing the semi-additive method, the second wiring pattern 6 can have a wiring width of about 20 μm and a wiring thickness of about 20 μm.

図2により本願の第二の発明を具体的に説明する。可とう性を有するフィルム基材7上に厚さサブミクロンから数ミクロン程度の厚さを有する金属薄膜8を形成する。金属薄膜の形成方法としては、スパッタリングや蒸着等の真空成膜法や無電解めっき法が適している。金属薄膜8としては特に限定されるものではなくニッケルなど一般に配線板分野で使用される金属を適用できるが、めっきが析出し易く、かつ、後工程に於てフィルム基材7を容易に除去するためには、比抵抗が小さく、かつ、フィルム基材との親和性が低い金属として銅が最も好ましい。この場合、銅のフィルム基在中への拡散深さを30nm以下に抑えることにより、後工程でフィルム基材と銅薄膜とが容易に分離可能となる。フィルム基材としては、通常の高分子フィルムを適用できるが、厚さ0.03mm程度のステンレス箔も適用できる。ステンレス箔を使用する場合にも、プレス工程に於ける加熱・加圧工程に於いてステンレス箔/銅界面で相互拡散層が形成されるが、相互拡散層を0.03μm以下に抑えることにより容易にステンレス箔を除去可能となる。次に、金属薄膜上にレジスト膜を形成し、これをフォトリソグラフ法で所定の形状にパターニングする。次に、電気めっきにより後工程で層間接続部となる柱状パターン9を形成後、レジストパターンを剥離する(図2(a))。柱状パターン付きフィルム基材の製造方法としては、フィルム基材上に金属薄膜を形成した後、電気めっき等で所定の厚さまで厚付けし、厚付け面上に所望する形状のレジストパターンを形成し、レジストパターン面から化学的にエッチングする方法もある。このようにして、100μm径程度の微細な層間接続用柱状パターンが10μm以下の精度で形成することができる。次に、柱状パターン9が形成されたフィルム基材7を柱状パターン面を内側にして第一の絶縁基材10と重ね合わせて柱状パターンを絶縁基材10内に埋め込む。柱状パターンはプレス等熱圧着によって容易に絶縁基材10の樹脂中に埋め込むことができる(図2(b))。この場合、柱状パターン上に存在する絶縁膜の厚さ(図2(b)、h)はプレス条件や第一の絶縁基材の樹脂分及び溶融粘度等により制御可能である。   The second invention of the present application will be specifically described with reference to FIG. A metal thin film 8 having a thickness of submicron to several microns is formed on a flexible film substrate 7. As a method for forming a metal thin film, a vacuum film forming method such as sputtering or vapor deposition or an electroless plating method is suitable. The metal thin film 8 is not particularly limited, and a metal generally used in the field of wiring boards, such as nickel, can be applied. However, plating is easily deposited, and the film substrate 7 is easily removed in a later step. For this purpose, copper is most preferred as a metal having a low specific resistance and a low affinity for a film substrate. In this case, by suppressing the diffusion depth of copper into the film base to 30 nm or less, the film substrate and the copper thin film can be easily separated in a later step. As the film substrate, a normal polymer film can be used, but a stainless steel foil having a thickness of about 0.03 mm can also be used. When using a stainless steel foil, an interdiffusion layer is formed at the stainless steel foil / copper interface in the heating / pressing step in the pressing step. However, it is easy to suppress the interdiffusion layer to 0.03 μm or less. The stainless steel foil can be removed. Next, a resist film is formed on the metal thin film, and this is patterned into a predetermined shape by a photolithographic method. Next, after forming a columnar pattern 9 to be an interlayer connecting portion in a later step by electroplating, the resist pattern is peeled off (FIG. 2A). As a method of manufacturing a column-patterned film substrate, after forming a metal thin film on the film substrate, thickening to a predetermined thickness by electroplating or the like, forming a resist pattern of a desired shape on the thickened surface. There is also a method of chemically etching from the resist pattern surface. In this manner, a fine columnar pattern for interlayer connection having a diameter of about 100 μm can be formed with an accuracy of 10 μm or less. Next, the film substrate 7 on which the columnar pattern 9 is formed is overlapped with the first insulating substrate 10 with the columnar pattern surface inside, and the columnar pattern is embedded in the insulating substrate 10. The columnar pattern can be easily embedded in the resin of the insulating base material 10 by thermocompression bonding such as pressing (FIG. 2B). In this case, the thickness (FIGS. 2B and 2H) of the insulating film existing on the columnar pattern can be controlled by pressing conditions, the resin content of the first insulating base material, the melt viscosity, and the like.

次に、フィルム基材7を機械的に剥離して金属薄膜8を露出させ、露出した金属薄膜面上にレジスト膜を形成し、これをフォトリソグラフ法で所望する配線形状にパターニングし、電気めっき法により第一の配線パターン11を形成する。その後、レジストパターンを剥離し、クイックエッチングにより金属薄膜8の所望する領域を除去後(図2(c))、第一の配線パターンを内側にして第二の絶縁基材12と重ね合わせて第一の配線パターン11を第二の絶縁基材12内に埋め込むとともに、第一と第二の絶縁基材を一体化する(図2(d))。この後、第一の絶縁基材側から柱状パターン9を露出させ、柱状パターン9、第一の絶縁基材10とによって形成される表面に柱状パターンと導通した第二の配線パターン13を形成する(図2(e))。この場合、第二の配線パターンと良好な電気的接続を得るために、柱状パターン上にある絶縁層を機械研磨したり、プラズマエッチングやエキシマレーザ照射等により除去・平坦化することは有効である。第二の配線パターンの形成は、エッチング法、アディティブ法いずれでも良い。例えば柱状パターン9、第一の絶縁基材10とによって形成される平坦な表面全面を金属化し柱状パターン9と導通をとり、この金属層をパターニングして第二の配線パターン13を形成する。表面金属化と層間接続を同時に行う金属化はスパッタリングや蒸着等の真空成膜技術を適用することもできる。このようにして、高密度で層間接続信頼性の高い多層配線板ができる。   Next, the film base 7 is mechanically peeled to expose the metal thin film 8, a resist film is formed on the exposed metal thin film surface, and this is patterned into a desired wiring shape by photolithography, and electroplating is performed. The first wiring pattern 11 is formed by the method. Thereafter, the resist pattern is peeled off, and a desired region of the metal thin film 8 is removed by quick etching (FIG. 2C). One wiring pattern 11 is embedded in the second insulating base material 12, and the first and second insulating base materials are integrated (FIG. 2D). Thereafter, the columnar pattern 9 is exposed from the first insulating base material side, and a second wiring pattern 13 electrically connected to the columnar pattern is formed on the surface formed by the columnar pattern 9 and the first insulating base material 10. (FIG. 2 (e)). In this case, in order to obtain good electrical connection with the second wiring pattern, it is effective to mechanically polish the insulating layer on the columnar pattern, or remove and flatten the insulating layer by plasma etching, excimer laser irradiation, or the like. . The second wiring pattern may be formed by either an etching method or an additive method. For example, the entire flat surface formed by the columnar pattern 9 and the first insulating base material 10 is metallized to establish conduction with the columnar pattern 9, and this metal layer is patterned to form the second wiring pattern 13. Vacuum film formation technology such as sputtering or vapor deposition can be applied to metallization for simultaneously performing surface metallization and interlayer connection. Thus, a multilayer wiring board having high density and high interlayer connection reliability can be obtained.

実施例1
18μm厚の銅箔に25μm厚のフィルムレジスト(日立化成工業(株)製、商品名PHT 887AF)層を形成した後、層間接続部に相当するところのレジストを露光・現像によって除去した。次に、電気めっきにより銅を23μmめっき後、レジストを剥離液にて除去した。これによって、直径60μm、厚さ23μmの層間接続用の柱状パターンを形成した。防錆処理後、この柱状パターン付銅箔のパターン面に厚さ30μmのポリイミド絶縁膜を形成した。ポリイミド絶縁膜の形成方法は、まずポリアミドワニスをロールコーターで塗布後、2段階加熱(150℃、30分→350℃、120分)によりイミド化した。次に、銅箔の反対面に所定のレジストパターンを形成し、過硫酸アンモニウム溶液(濃度:40g/l、液温:40±3℃)により銅箔の所望する部分をエッチングしてライン/スペースが85/85μmの配線パターンを形成した。レジストパターンを除去後、配線パターンを内側にして、接着用ポリイミドプイプレグを介してガラス布ポリイミド樹脂基板とプレス圧着した。プレス条件は40kgf/cm、170℃で120分である。次に、機械研磨により柱状パターン上に存在するポリイミド層を除去し、洗浄、乾燥後、日本真空技術(株)製スパッタリング装置(MLH 6315型)によりクロム、銅薄膜を連続して形成した。スパッタリング条件を表1に示した。

Figure 2004235667
Example 1
After a film resist (PHT 887AF, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 25 μm was formed on a copper foil having a thickness of 18 μm, the resist corresponding to the interlayer connection portion was removed by exposure and development. Next, after copper was plated by 23 μm by electroplating, the resist was removed with a stripping solution. Thereby, a columnar pattern for interlayer connection having a diameter of 60 μm and a thickness of 23 μm was formed. After the rust prevention treatment, a polyimide insulating film having a thickness of 30 μm was formed on the pattern surface of the copper foil with the columnar pattern. As a method for forming the polyimide insulating film, first, a polyamide varnish was applied by a roll coater and then imidized by two-stage heating (150 ° C., 30 minutes → 350 ° C., 120 minutes). Next, a predetermined resist pattern is formed on the opposite surface of the copper foil, and a desired portion of the copper foil is etched with an ammonium persulfate solution (concentration: 40 g / l, liquid temperature: 40 ± 3 ° C.) to form a line / space. An 85/85 μm wiring pattern was formed. After the resist pattern was removed, the wiring pattern was pressed inside, and the resultant was press-bonded to a glass cloth polyimide resin substrate via an adhesive polyimide prepreg. The pressing conditions are 40 kgf / cm 2 and 170 ° C. for 120 minutes. Next, the polyimide layer existing on the columnar pattern was removed by mechanical polishing, and after washing and drying, a chromium and copper thin film were continuously formed by a sputtering apparatus (MLH 6315 type) manufactured by Japan Vacuum Engineering Co., Ltd. Table 1 shows the sputtering conditions.
Figure 2004235667

その後、銅薄膜上に液状レジスト(Shipley社製、商品名 TF−20)を回転塗布し(塗布条件:300rpm、30秒→700rpm、60秒)、85℃で20分前加熱を施し、露光量550mJで露光した後、専用現像液で現像してライン/スペースが20/20μm、厚さ18μmのレジストパターンを形成した。次に、電気めっきで銅配線層を15μm形成した後、レジストパターンをアセトンで除去し、過硫酸アンモニウム溶液(濃度:20g/l、液温:40±3℃)で銅薄膜、続いて、フェリシアン化カリウムと水酸化カリウムの混合溶液(濃度:フェリシアン化カリウム 300g/l、水酸化カリウム 50g/l, 液温40±3℃)でクロム薄膜をそれぞれクイックエッチングした。この結果、配線幅20μm及び配線厚15μm、層間接続部径60μmで、約60μm厚中に2層の配線を収納した高密度配線構造を形成できた。この多層配線板の接続信頼性は良好であった。なお、本発明の多層配線板は、通常の方法で形成した多層配線板上に使用しても有効である。   Then, a liquid resist (trade name: TF-20, manufactured by Shipley) is spin-coated on the copper thin film (coating condition: 300 rpm, 30 seconds → 700 rpm, 60 seconds), pre-heated at 85 ° C. for 20 minutes, and exposed. After exposure at 550 mJ, the resist pattern was developed with a dedicated developer to form a resist pattern having a line / space of 20/20 μm and a thickness of 18 μm. Next, after forming a copper wiring layer of 15 μm by electroplating, the resist pattern is removed with acetone, and a copper thin film is formed with an ammonium persulfate solution (concentration: 20 g / l, liquid temperature: 40 ± 3 ° C.), and then potassium ferricyanide The chromium thin films were each quick-etched with a mixed solution of potassium hydroxide and potassium hydroxide (concentration: potassium ferricyanide 300 g / l, potassium hydroxide 50 g / l, liquid temperature 40 ± 3 ° C.). As a result, a high-density wiring structure having a wiring width of 20 μm, a wiring thickness of 15 μm, an interlayer connection diameter of 60 μm, and containing two layers of wiring in a thickness of about 60 μm was formed. The connection reliability of this multilayer wiring board was good. The multilayer wiring board of the present invention is also effective when used on a multilayer wiring board formed by an ordinary method.

実施例2
250mm角のポリイミドフィルム(宇部興産(株)製、商品名 UPILEX S−type,厚さ50μm)上に日本真空技術(株)製スパッタリング装置(MLH 6315D型)を用いて厚さ1μmの銅薄膜を形成した。スパッタリング条件は表2に示した。

Figure 2004235667
Example 2
A 1 μm thick copper thin film was formed on a 250 mm square polyimide film (product name: UPILEX S-type, manufactured by Ube Industries, Ltd., thickness: 50 μm) using a sputtering device (MLH 6315D type) manufactured by Japan Vacuum Engineering Co., Ltd. Formed. Table 2 shows the sputtering conditions.
Figure 2004235667

次に、銅薄膜上に25μm厚のフィルムレジスト(日立化成工業(株)製、商品名PHT 887AF)層を形成した後、層間接続部に相当するところのレジストを露光・現像によって除去した。次に、電気めっきにより銅を23μmめっき後、レジストを剥離液にて除去した。これによって、直径60μm、厚さ23μmの層間接続用の柱状パターンを形成した。防錆処理後、柱状パターンを内側にして熱融着型ポリイミド絶縁フィルムとプレス圧着した。プレス条件は、圧力40kgf/cm、温度200℃で90分である。次に、ポリイミドフィルムを剥離し、露出した銅薄膜面にドライフィルムレジストをラミネートし、露光、現像により所定のレジストパターンを形成し、電気めっきにより配線パターンを形成した後、レジストパターンを除去した。次に、過硫酸アンモニウム溶液(濃度:40g/l、液温:40±3℃)により銅薄膜の所望する部分をクイックエッチングしてライン/スペースが50/50μm、厚さが25μmの配線パターンを形成した。次に、配線パターンを内側にして、接着用ポリイミドプイプレグを介してガラス布ポリイミド樹脂基板とプレス圧着した。プレス条件は40kgf/cm、175℃で120分である。次に、機械研磨により柱状パターン上に存在するポリイミド層を除去し、洗浄、乾燥後、スパッタリングによりクロム、銅薄膜を連続して形成した。スパッタリング条件を表3に示した。

Figure 2004235667
Next, after a 25 μm-thick film resist (PHT 887AF, manufactured by Hitachi Chemical Co., Ltd.) layer was formed on the copper thin film, the resist corresponding to the interlayer connection portion was removed by exposure and development. Next, after copper was plated by 23 μm by electroplating, the resist was removed with a stripping solution. Thereby, a columnar pattern for interlayer connection having a diameter of 60 μm and a thickness of 23 μm was formed. After the rust prevention treatment, the resultant was press-pressed to the heat-fusible polyimide insulating film with the columnar pattern inside. The pressing conditions are a pressure of 40 kgf / cm 2 and a temperature of 200 ° C. for 90 minutes. Next, the polyimide film was peeled off, a dry film resist was laminated on the exposed copper thin film surface, a predetermined resist pattern was formed by exposure and development, a wiring pattern was formed by electroplating, and the resist pattern was removed. Next, a desired portion of the copper thin film is quickly etched with an ammonium persulfate solution (concentration: 40 g / l, liquid temperature: 40 ± 3 ° C.) to form a wiring pattern having a line / space of 50/50 μm and a thickness of 25 μm. did. Next, with the wiring pattern on the inside, it was press-pressed to the glass cloth polyimide resin substrate via the polyimide prepreg for adhesion. The pressing conditions are 40 kgf / cm 2 and 175 ° C. for 120 minutes. Next, the polyimide layer existing on the columnar pattern was removed by mechanical polishing, and after washing and drying, chromium and copper thin films were continuously formed by sputtering. Table 3 shows the sputtering conditions.
Figure 2004235667

その後、銅薄膜上に液状レジスト(Shipley社製、商品名 TF−20)を塗布し、85℃で20分前加熱を施し、露光量550mJで露光した後、専用現像液で現像してライン/スペースが20/20μm、厚さ18μmのレジストパターンを形成した。次に、電気めっきで銅配線層を15μm形成した後、レジストパターンをアセトンで除去し、過硫酸アンモニウム溶液(濃度:20g/l、液温:40±3℃)で銅薄膜、続いて、フェリシアン化カリウムと水酸化カリウムの混合溶液(濃度:フェリシアン化カリウム 300g/l、水酸化カリウム 50g/l, 液温40±3℃)でクロム薄膜をそれぞれクイックエッチングした。この結果、約60μm厚中に上部配線密度20/20μm及び下部配線50/50μmの高密度2層配線を収納した高密度配線構造を形成できた。この多層配線板の接続信頼性は良好であった。なお、本発明の多層配線板は、通常の方法で形成した多層配線板上に使用しても有効である。その場合、既に形成した配線部との接続は例えばスルーホール接続等による。   After that, a liquid resist (trade name: TF-20, manufactured by Shipley) is applied on the copper thin film, pre-heated at 85 ° C. for 20 minutes, exposed at an exposure amount of 550 mJ, and developed with a special developing solution. A resist pattern having a space of 20/20 μm and a thickness of 18 μm was formed. Next, after forming a copper wiring layer of 15 μm by electroplating, the resist pattern is removed with acetone, and a copper thin film is formed with an ammonium persulfate solution (concentration: 20 g / l, liquid temperature: 40 ± 3 ° C.), and then potassium ferricyanide The chromium thin films were each quick-etched with a mixed solution of potassium hydroxide and potassium hydroxide (concentration: potassium ferricyanide 300 g / l, potassium hydroxide 50 g / l, liquid temperature 40 ± 3 ° C.). As a result, a high-density wiring structure in which a high-density two-layer wiring having an upper wiring density of 20/20 μm and a lower wiring of 50/50 μm was accommodated in a thickness of about 60 μm was formed. The connection reliability of this multilayer wiring board was good. The multilayer wiring board of the present invention is also effective when used on a multilayer wiring board formed by an ordinary method. In this case, the connection with the already formed wiring portion is based on, for example, a through-hole connection.

図1(a)〜(e)は本願の第一の発明の製造工程を示す部分断面図である。1 (a) to 1 (e) are partial cross-sectional views showing manufacturing steps of the first invention of the present application. 図1(a)〜(e)は本願の第二の発明の製造工程を示す部分断面図である。1 (a) to 1 (e) are partial cross-sectional views showing manufacturing steps of the second invention of the present application.

符号の説明Explanation of reference numerals

1.キャリヤー金属箔
2.柱状パターン
3.第一の絶縁基材
4.第一の配線パターン
5.第二の絶縁基材
6.第二の配線パターン
7.フィルム基材
8.金属薄膜
9.柱状パターン
10.第一の絶縁基材
11.第一の配線パターン
12.第二の絶縁基材
13.第二の配線パターン
h.柱状パターン頭頂部〜第一の絶縁基材表面間に存在する樹脂の厚さ
1. 1. carrier metal foil 2. Columnar pattern First insulating base material4. First wiring pattern5. Second insulating substrate 6. 6. Second wiring pattern Film base material8. Metal thin film9. Columnar pattern10. First insulating substrate 11. First wiring pattern 12. Second insulating substrate 13. Second wiring pattern h. The thickness of the resin existing between the top of the columnar pattern and the surface of the first insulating substrate

Claims (4)

キャリヤ金属箔と、金属箔と、前記キャリヤ金属箔と前記金属箔との間に配置された前記金属箔とはエッチング条件の異なる金属薄層とを備え、前記金属箔のエッチングにより形成され、その表面が防錆処理された層間接続を行う柱状パターンが形成された柱状パターン付きキャリヤ金属箔。   Carrier metal foil, metal foil, the metal foil disposed between the carrier metal foil and the metal foil comprises a thin metal layer with different etching conditions, formed by etching the metal foil, A carrier metal foil with a columnar pattern formed with a columnar pattern for interlayer connection whose surface is rustproofed. キャリヤ金属箔と、金属箔と、前記キャリヤ金属箔と前記金属箔との間に配置された前記金属箔とはエッチング条件の異なる金属薄層とを備え、前記金属箔の厚さを前記キャリヤ金属箔の厚さよりも大となし、前記金属箔のエッチングにより形成され、その表面が防錆処理された層間接続を行う柱状パターンが形成された柱状パターン付きキャリヤ金属箔。   A carrier metal foil, a metal foil, and a thin metal layer having different etching conditions from the metal foil disposed between the carrier metal foil and the metal foil, and the thickness of the metal foil is reduced by the carrier metal. A carrier metal foil with a columnar pattern, formed by etching the metal foil and having a rust-preventive surface and a columnar pattern for interlayer connection, the thickness being greater than the thickness of the foil. 前記金属薄層がニッケルである請求項1又は2に記載の柱状パターン付きキャリヤ金属箔。   The carrier metal foil with a columnar pattern according to claim 1 or 2, wherein the thin metal layer is nickel. 前記金属薄層が前記金属箔又は前記キャリヤ金属箔よりも薄い請求項1〜3のいずれかに記載の柱状パターン付きキャリヤ金属箔。   The carrier metal foil with a columnar pattern according to any one of claims 1 to 3, wherein the thin metal layer is thinner than the metal foil or the carrier metal foil.
JP2004132839A 2004-04-28 2004-04-28 Carrier metal foil with columnar pattern Pending JP2004235667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132839A JP2004235667A (en) 2004-04-28 2004-04-28 Carrier metal foil with columnar pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132839A JP2004235667A (en) 2004-04-28 2004-04-28 Carrier metal foil with columnar pattern

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP967194A Division JP3622219B2 (en) 1994-01-31 1994-01-31 Multilayer wiring board manufacturing method

Publications (1)

Publication Number Publication Date
JP2004235667A true JP2004235667A (en) 2004-08-19

Family

ID=32959981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132839A Pending JP2004235667A (en) 2004-04-28 2004-04-28 Carrier metal foil with columnar pattern

Country Status (1)

Country Link
JP (1) JP2004235667A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058005A1 (en) * 2005-11-16 2007-05-24 Ain Co., Ltd. Process for producing wiring board and wiring board
JP2010103283A (en) * 2008-10-23 2010-05-06 Toppan Printing Co Ltd Thin-film transistor, method of manufacturing thin-film transistor, thin-film transistor array, and image display
CN104010444A (en) * 2013-02-25 2014-08-27 北大方正集团有限公司 Manufacturing method of step circuit, circuit board including step circuit and manufacturing method of circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058005A1 (en) * 2005-11-16 2007-05-24 Ain Co., Ltd. Process for producing wiring board and wiring board
JP2010103283A (en) * 2008-10-23 2010-05-06 Toppan Printing Co Ltd Thin-film transistor, method of manufacturing thin-film transistor, thin-film transistor array, and image display
CN104010444A (en) * 2013-02-25 2014-08-27 北大方正集团有限公司 Manufacturing method of step circuit, circuit board including step circuit and manufacturing method of circuit board

Similar Documents

Publication Publication Date Title
KR100274764B1 (en) Manufacturing method of the wiring board
TWI392428B (en) Method for manufacturing double sided flexible printed wiring board
JP3541360B2 (en) Method for forming multilayer circuit structure and substrate having multilayer circuit structure
TW201132268A (en) Method of manufacturing multilayer wiring substrate, and multilayer wiring substrate
US8881381B2 (en) Method of manufacturing printed circuit board
JPH0432295A (en) Manufacture of multilayer wiring board
JP2003234573A (en) Method of manufacturing multilayer wiring board, and multilayer wiring board manufactured by the same
JP2009177153A (en) Wiring substrate and its manufacturing method
JP2000349435A (en) Multilayered printed wiring board and manufacture thereof
US11690178B2 (en) Multilayer printed wiring board and method of manufacturing the same
US6562250B1 (en) Method for manufacturing wiring circuit boards with bumps and method for forming bumps
KR20020006462A (en) Bump-attached wiring circuit board and method for manufacturing same
TWI429361B (en) Producing method of wired circuit board
TWI656819B (en) Flexible circuit board manufacturing method
TWI471073B (en) Circuit substrate and manufacturing method thereof
JP2006245213A (en) Manufacturing method of wiring circuit board
JP3622219B2 (en) Multilayer wiring board manufacturing method
JP4480548B2 (en) Double-sided circuit board and manufacturing method thereof
JP2004235667A (en) Carrier metal foil with columnar pattern
JP3402372B2 (en) Manufacturing method of wiring board
JP2001068856A (en) Insulation resin sheet and its manufacture
JP4826020B2 (en) Manufacturing method of multilayer wiring board
JP2004304196A (en) Carrier metal foil having columnar pattern
JP2586770B2 (en) Manufacturing method of multilayer wiring board
JP2007318080A (en) Flexible printed board

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Effective date: 20040720

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040917

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050413

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050520