JP2004233278A - Method for separating metallic element - Google Patents

Method for separating metallic element Download PDF

Info

Publication number
JP2004233278A
JP2004233278A JP2003024637A JP2003024637A JP2004233278A JP 2004233278 A JP2004233278 A JP 2004233278A JP 2003024637 A JP2003024637 A JP 2003024637A JP 2003024637 A JP2003024637 A JP 2003024637A JP 2004233278 A JP2004233278 A JP 2004233278A
Authority
JP
Japan
Prior art keywords
ion exchanger
extractant
adsorption
impregnated
eluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003024637A
Other languages
Japanese (ja)
Inventor
Ichiro Goto
一郎 後藤
Takahiro Kikuchi
孝浩 菊池
Kazunori Suzuki
和則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Research and Innovation
Original Assignee
Institute of Research and Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Research and Innovation filed Critical Institute of Research and Innovation
Priority to JP2003024637A priority Critical patent/JP2004233278A/en
Publication of JP2004233278A publication Critical patent/JP2004233278A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for separating metallic elements which can prolong the life of ion exchangers and can reactivate ion exchangers whose adsorption performance has already deteriorate. <P>SOLUTION: The method for separating the metallic elements includes an adsorption process for allowing impregnated ion exchangers made by impregnating an extractant into a carrier to adsorb metallic elements in a liquid solution and an eluting process for eluting the metallic elements adsorbed by the impregnated ion exchangers in the adsorption process in an extractant saturation elution liquid which is prepared so that the saturation concentration of the extractant can be reached. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、例えば有害金属を含有する廃液等の溶液系から有害金属等の金属元素を分離する金属元素の分離方法に関するものである。
【0002】
【従来の技術】
例えば、高レベル廃棄物の処分においては、処分廃棄物の低減を目的として、半減期約30年のCs(セシウム)−Ba(バリウム)およびSr(ストロンチウム)−Y(イットリウム)崩壊による発熱源元素と長半減期アクチノイド元素等の金属元素とを分離する方法が研究されている。
【0003】
図2は従来の金属元素の分離方法を示す工程図である。図2において、1は吸着塔である。吸着塔1内には、抽出剤等をシリカ担体等に含浸してなる含浸イオン交換体(図示せず)がカラム状に充填されている。この吸着塔1内の含浸イオン交換体(図示せず)に分離対象としての金属元素等を含有した被処理溶液(例えば廃液)2を送液すると、この被処理溶液2中の金属元素の一部は含浸イオン交換体(図示せず)に特異的に吸着される一方、含浸イオン交換体(図示せず)に吸着されない非吸着元素3や吸着されなかった上記金属元素の残部は被処理溶液2中に残って吸着塔1から排出される(第1の吸着工程A)。
【0004】
次に、この第1の吸着工程Aを経た吸着塔1に溶離液4を送液すると、吸着塔1内に充填された含浸イオン交換体(図示せず)に吸着された金属元素は溶離元素5として含浸イオン交換体(図示せず)から溶離され、溶離液4と共に吸着塔1から排出される(第1の溶離工程B)。
【0005】
次に、吸着操作が施されていない新規の被処理溶液2を吸着塔1に送液すると、被処理溶液2中の分離対象としての金属元素が含浸イオン交換体(図示せず)に特異的に吸着される一方、含浸イオン交換体(図示せず)に吸着されない非吸着元素3や吸着されなかった上記金属元素の残部は被処理溶液2中に残って吸着塔1から排出される(第2の吸着工程A)。
【0006】
次に、この第2の吸着工程Aを経た吸着塔1に溶離液4を送液すると、吸着塔1内に充填された含浸イオン交換体(図示せず)に吸着された金属元素は溶離元素5として含浸イオン交換体(図示せず)から溶離され、溶離液4と共に吸着塔1から排出される(第2の溶離工程B)。
【0007】
上述のように吸着工程Aおよび溶離工程Bは、必要に応じて、順次交互に繰り返されることで、被処理溶液2中に含有されていた分離対象としての金属元素が分離され、両工程を繰り返せば繰り返すほど、含浸イオン交換体(図示せず)に対する金属元素の吸着および溶離の繰り返しにより同一含浸イオン交換体(図示せず)に対する処理量を増すことができる。なお、上記第2の吸着工程Aにおいて、吸着操作が施されていない新規の被処理溶液2に代えて、第1の吸着工程Aで吸着塔1から排出された被処理溶液2を吸着塔1に送液する場合もある。
【0008】
なお、上記先行技術は当業者一般に知られた技術であって文献公知発明に係るものではない。
【0009】
【発明が解決しようとする課題】
しかし、従来の金属元素の分離方法は上述のような構成を有しているので、含浸イオン交換体として、抽出能に優れた抽出剤を多孔質シリカ担体に含浸したものを用いる場合には、充填塔1への通液量の増加に伴い、抽出剤が担体から溶出し、含浸イオン交換体(図示せず)の吸着性能が劣化してしまう。このような含浸イオン交換体(図示せず)は、一度、吸着性能が劣化すると従来再使用できなかったため、劣化した含浸イオン交換体(図示せず)を充填した吸着塔1を廃棄して新たなイオン交換体を充填した吸着塔と交換する必要がある。このため、不経済であり、廃棄物増加の観点からも好ましくないという課題があった。
【0010】
この発明は上記のような課題を解決するためになされたもので、イオン交換体の長寿命化および吸着性能が既に劣化したイオン交換体の再活性化を図れる金属元素の分離方法を得ることを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために、鋭意検討した結果、図2に示した含浸イオン交換体に吸着された分離対象としての金属元素を溶離する工程(溶離工程B)において、吸着塔1内に充填された含浸イオン交換体に含浸した抽出剤の一部が溶離液へ溶出し、含浸イオン交換体に含浸した抽出剤部分が減少しているという事実を確認した。また、この抽出剤部分の溶出現象は、溶離工程Bに比べて溶出量は少ないものの、含浸イオン交換体に分離対象としての金属元素を吸着させる工程(吸着工程A)においても同様に確認されている。このような結果を踏まえ、さらに検討したところ、抽出剤部分の溶出量の多い溶離工程Bの前段階において溶離液を抽出剤飽和状態とした新たな抽出剤飽和溶離液を吸着塔1内の含浸イオン交換体に通液して接触させると、含浸イオン交換体に含浸した抽出剤の上記抽出剤飽和溶離液への溶出を抑制することができるばかりか、一旦吸着性能が劣化した含浸イオン交換体に抽出剤を戻して再活性化することができるという重要な知見を得ることができた。この知見に基づいて、本発明者らは、以下の発明を完成するに至ったものである。
【0012】
この発明に係る金属元素の分離方法は、溶液中の金属元素を、抽出剤を担体に含浸してなる含浸イオン交換体に吸着させる吸着工程と、該吸着工程で前記含浸イオン交換体に吸着された前記金属元素を、抽出剤飽和濃度に調製した抽出剤飽和溶離液に溶離させる溶離工程とを含むように構成したものである。
【0013】
また、この発明に係る金属元素の分離方法は、含浸イオン交換体として吸着性能が劣化した含浸イオン交換体を用いるように構成したものである。
【0014】
さらに、この発明に係る金属元素の分離方法は、溶離工程に、吸着工程に用いられる含浸イオン交換体と同種の含浸イオン交換体を充填したプレカラムに、溶離液を通液して抽出剤飽和溶離液を調製する工程を含めるように構成したものである。
【0015】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による金属元素の分離方法を示す工程図である。なお、この実施の形態1における構成要素のうち、図2に示した従来の金属元素の分離における構成要素と共通するものについては、同一符号を付し、その部分の説明を省略する。
【0016】
図1において6は前段カラム(プレカラム)である。前段カラム6内には吸着塔1内に充填された含浸イオン交換体(図示せず)と同種の含浸イオン交換体(図示せず)がカラム状に充填されている。
【0017】
含浸イオン交換体(図示せず)としては、分離対象としての金属元素の種類等に応じて種々のものを用いることができる。含浸イオン交換体(図示せず)の担体としては、金属元素の分離に使用可能な全ての担体を用いることができ、例えば多孔性球状シリカ等を挙げることができる。また、抽出剤としては、上記担体への含浸が可能な全ての抽出剤を用いることができ、例えばオクチルフェニルーN,N´−ジイソブチルカーバモイルホスフィンオキサイド(以下、CMPOという)等の公知キレート剤などを挙げることができる。さらに、抽出剤の担体への含浸方法は特に限定されるものではない。このような含浸イオン交換体の好適例としては、多孔性球状シリカ担体上に、m/p−ホルミルスチレンとm/p−ジビニルベンゼンとの共重合体を担持し、その上にCMPOを含浸したもの(以下、CMPO含浸シリカ交換体という)を挙げることができるが、この発明はこれに限定されるものではない。
【0018】
ここで、前段カラム6内に充填された含浸イオン交換体(図示せず)を、吸着塔1内に充填された含浸イオン交換体(図示せず)と同種のものとした理由は、後述するように、前段カラム6内に通液される溶離液4中に、あえて抽出剤を溶出させて溶離液を抽出剤飽和溶離液に調製するためである。このため、吸着塔1および前段カラム6内に充填される含浸イオン交換体(図示せず)としては、担体、抽出剤等の組み合わせが同一であるものが好適に用いられるが、これに限定されるものではない。例えば、同一の抽出剤が異なる担体上に含浸可能であれば、吸着塔1内に充填された含浸イオン交換体(図示せず)の担体とは異なる担体上に同一の抽出剤を含浸した含浸イオン交換体(図示せず)を前段カラム6内に充填することも可能である。
【0019】
前段カラム6に送液される溶離液4としては、分離対象としての金属元素の種類あるいは含浸イオン交換体の種類等に応じて適宜決められるが、例えば、0.01mol/dm乃至0.1mol/dmの低濃度硝酸溶離液を挙げることができる。溶離液の硝酸濃度は低ければ低いほど溶離速度を速くすることが可能である。このため、硝酸濃度が0.1mol/dmを上回ると、溶離速度が遅くなり、金属元素の溶離の効率が低下する。また、硝酸濃度が0.01mol/dmを下回ると、溶離液のpHの上昇に伴い、吸着塔1から排出される溶離液中の金属元素が加水分解等により沈殿する場合があり、好ましくない。
【0020】
分離対象としての金属元素としては、例えば、高レベル廃棄物中に存在し、半減期約30年のCs(セシウム)−Ba(バリウム)およびSr(ストロンチウム)−Y(イットリウム)崩壊による発熱源元素(例えば、Cs、Sr)から分離すべき、Fe(鉄)、Zr(ジルコニウム)、Mo(モリブデン)、ランタノイド、長半減期アクチノイド元素等の金属元素を挙げることができる。
【0021】
次に、金属元素の分離方法について説明する。
まず、吸着塔1内に充填された含浸イオン交換体(図示せず。例えばCMPO含浸シリカ交換体)に分離対象としての金属(例えばNd(ネオジム))元素等を含有した被処理溶液(例えば1mol/dm未乃至3mol/dmの硝酸濃度に調製された高レベル廃液)2を送液すると、この被処理溶液2中の金属元素の一部は含浸イオン交換体(図示せず)に特異的に吸着される一方、含浸イオン交換体(図示せず)に吸着されない非吸着元素3や吸着されなかった上記金属元素の残部は被処理溶液2中に残って吸着塔1から排出される(第1の吸着工程A)。
【0022】
次に、溶離液4を前段カラム6に送液する。前段カラム6内では、上述したように、含浸イオン交換体(図示せず)の抽出剤(図示せず。例えばCMPO)を溶離液4中に溶出させて溶離液4を抽出剤飽和溶離液(図示せず。例えば硝酸濃度0.1mol/dmの溶離液)に調製する。次に、第1の吸着工程Aを経た吸着塔1に抽出剤飽和溶離液(図示せず)を送液して吸着塔1内の含浸イオン交換体(図示せず)に接触させる。このとき、第1の吸着工程Aにおいて、吸着塔1内の含浸イオン交換体(図示せず)に含浸した抽出剤(図示せず)が被処理溶液2へ若干溶出して当該含浸イオン交換体(図示せず)の吸着性能が若干劣化しているが、この含浸イオン交換体(図示せず)に抽出剤飽和溶離液(図示せず)を接触させることで、抽出剤(図示せず)の更なる溶出が確実に抑制されて含浸イオン交換体(図示せず)の吸着性能の劣化が防止される。一方、吸着塔1内の含浸イオン交換体(図示せず)に吸着された金属元素は溶離元素5として含浸イオン交換体(図示せず)から溶離され、抽出剤飽和溶離液(図示せず)と共に吸着塔1から排出される(第1の溶離工程C)。
【0023】
次に、吸着操作が施されていない新規の被処理溶液2を吸着塔1に送液する。このとき、第1の溶離工程Cにおける抽出剤飽和溶離液(図示せず)により含浸イオン交換体(図示せず)の抽出剤(図示せず)の溶出が確実に抑制される結果、含浸イオン交換体(図示せず)の吸着性能の劣化が抑制され、本来の吸着性能が維持される。このため、被処理溶液2中の分離対象としての金属元素は、本来の吸着性能とほぼ同等またはそれ以上の吸着性能で含浸イオン交換体(図示せず)に特異的に吸着される一方、含浸イオン交換体(図示せず)に吸着されない非吸着元素3や吸着されなかった上記金属元素の残部は被処理溶液2中に残って吸着塔1から排出される(第2の吸着工程A)。
【0024】
次に、溶離液4を前段カラム6に送液して調製した抽出剤飽和溶離液(図示せず)を、第2の吸着工程Aを経た吸着塔1に溶離液4を送液して接触させると、第1の溶離工程Cと同様に、吸着塔1内の含浸イオン交換体(図示せず)に吸着された金属元素は溶離元素5として含浸イオン交換体(図示せず)から溶離され、抽出剤飽和溶離液(図示せず)と共に吸着塔1から排出される(第2の溶離工程C)。
【0025】
上述のように吸着工程Aおよび溶離工程Cは、必要に応じて、順次交互に繰り返されることで、被処理溶液2中に含有されていた分離対象としての金属元素が効率よく分離され、両工程を繰り返せば繰り返すほど、含浸イオン交換体(図示せず)に対する金属元素の吸着および溶離の繰り返しにより同一含浸イオン交換体(図示せず)に対する処理量を増すことができる。なお、上記第2の吸着工程Aにおいて、吸着操作が施されていない新規の被処理溶液2に代えて、第1の吸着工程Aで吸着塔1から排出された被処理溶液2を吸着塔1に送液してもよい。
【0026】
以上のように、この実施の形態1によれば、吸着工程Aで含浸イオン交換体に吸着された金属元素を、抽出剤飽和濃度に調製した抽出剤飽和溶離液に溶離させる溶離工程Cを含むように構成したので、含浸イオン交換体から抽出剤飽和溶離液への抽出剤(例えばCMPO)の溶出を確実に抑制することができ、これにより吸着工程Aと溶離工程Cを繰り返しても、含浸イオン交換体の吸着性能を劣化させることなく、含浸イオン交換体の長寿命化を図ることができるという効果がある。
【0027】
この実施の形態1によれば、溶離工程Cに、吸着工程Aに用いられる含浸イオン交換体(図示せず)と同種の含浸イオン交換体(図示せず。例えばCMPO含浸シリカ交換体)を充填した前段カラム6に、溶離液4を通液して抽出剤飽和溶離液(図示せず)を調製する工程を含めるように構成したので、抽出剤飽和溶離液(図示せず)を簡便で効率的に調製することができるという効果がある。
【0028】
なお、この実施の形態1では、抽出剤飽和溶離液(図示せず)の調製に前段カラム6を用いるカラム式を採用したが、この発明はこれに限定されることなく、例えばバッチ式を採用してもよい。
【0029】
実施の形態2.
この実施の形態2の特徴は、金属元素の吸着および溶離の繰り返しにより吸着性能が劣化した含浸イオン交換体を用いた点にあり、これ以外の部分は実施の形態1と同様である。すなわち、この実施の形態2は、例えば図2に示した溶離工程Bに用いられて吸着性能が劣化した含浸イオン交換体(図示せず)に対するこの発明の適用例である。なお、前段カラム6内には、吸着性能が劣化した含浸イオン交換体(図示せず)と同種の含浸イオン交換体(図示せず)が充填されるが、この前段カラム6内に充填される含浸イオン交換体(図示せず)は吸着性能が劣化している必要はないことは勿論である。
【0030】
この実施の形態2では、溶離工程Cにおいて、抽出剤飽和溶離液(図示せず)を吸着塔1に通液して、吸着塔1に充填されかつ吸着性能が劣化した含浸イオン交換体(図示せず)に抽出剤飽和溶離液(図示せず)を接触させる。これにより、吸着性能が劣化した含浸イオン交換体(図示せず)に抽出剤部分を戻すことが可能である。
【0031】
以上のように、この実施の形態2によれば、含浸イオン交換体として吸着性能が劣化した含浸イオン交換体を用いるように構成したので、吸着性能が劣化した含浸イオン交換体を確実に再活性化させることができるという効果がある。
【0032】
実施例1.
イオン交換体としてCMPO含浸シリカ交換体を準備し、これをジャケット付きの直径(内径)8mm、長さ50mmのガラス製カラム(吸着塔)内に充填し、温度50℃に保温した。ネオジム(Nd)10mmol/dmおよび硝酸3mol/dmとなるように被処理溶液を調製し、溶離液として0.1mol/dm硝酸溶液を用いた。図1に示した吸着工程Aにおいては、上記被処理溶液を1ml/min、空間速度24h−1、および表1に示す通液倍数で上記カラム(吸着塔)に送液した。また、図1に示した溶離工程Cにおいては、上記溶離液を1ml/min、空間速度24h−1、および表1に示す通液倍数で、CMPO含浸シリカ交換体を充填した前段カラムに送液してCMPO飽和溶離液(抽出剤飽和溶離液)を調製し、これを上記カラム(吸着塔)に送液した。吸着工程Aおよび溶離工程Cを4回繰り返し行った。この実施例1について、初回の吸着工程Aおよび溶離工程Cにおけるネオジム(Nd)の吸着量に対する各回におけるネオジム(Nd)の吸着量の変化を測定し、その結果を表2および図3に示した。なお、図3では実施例1はプレカラム有で示されている。図3の吸着比(C/C0)は初回吸着量(C0)に対する各回の吸着量(C)の比を示すものであり、通液倍数(CV)はカラムボリュームを示すものである。
【0033】
比較例1.
溶離液として0.1mol/dm硝酸溶液を直接上記カラム(吸着塔)に送液した以外は、実施例1と同様に、表1に示す通液倍数で吸着工程Aおよび溶離工程Bを3回繰り返し行った。この実施例1と同様に、比較例1について、初回の吸着工程Aおよび溶離工程Bにおけるネオジム(Nd)の吸着量に対する各回におけるネオジム(Nd)の吸着量の変化を測定し、その結果を表2および図3に示した。なお、図3では比較例1はプレカラム無で示されている。
【表1】

Figure 2004233278
【表2】
Figure 2004233278
【0034】
表2から明らかなように、比較例1では、繰り返し回を重ねるごとにネオジム(Nd)の吸着量が減少しているのに対して、実施例1ではネオジム(Nd)の吸着量が全く減少せず、2回目は初回と等しく、3回目以降は初回の吸着量を大きく上回っているのが分かる。
【0035】
実施例2.
初回のみ、溶離液として0.01mol/dm硝酸溶液を直接上記カラム(吸着塔)に送液し、2回目以降は実施例1と同様の条件で、表3に示す通液倍数で吸着工程Aおよび溶離工程Cを3回繰り返し行った。この実施例2について、初回の吸着工程Aおよび溶離工程Cにおけるネオジム(Nd)の吸着量に対する各回におけるネオジム(Nd)の吸着量の変化を測定し、その結果を表4に示した。
【表3】
Figure 2004233278
【表4】
Figure 2004233278
【0036】
表4から明らかなように、初回の溶離工程Cにより含浸イオン交換体の吸着性能が0.74に低下したが、2回目の溶離工程CにおけるCMPO飽和溶離液により含浸イオン交換体の吸着性能が0.87に上昇し、吸着性能が回復したことが分かる。
【0037】
【発明の効果】
以上のように、この発明によれば、溶液中の金属元素を、抽出剤を担体に含浸してなる含浸イオン交換体に吸着させる吸着工程と、該吸着工程で前記含浸イオン交換体に吸着された前記金属元素を、抽出剤飽和濃度に調製した抽出剤飽和溶離液に溶離させる溶離工程とを含むように構成したので、抽出剤の溶出による含浸イオン交換体の吸着性能の劣化を確実に抑制して長寿命化を図ることができるという効果がある。これにより、従来の金属元素の分離方法に比べて、含浸イオン交換体の劣化による吸着塔の廃棄および交換をする必要がなくなるため、経済的であり、廃棄物を増加させない点で環境保護に積極的に貢献することができるという効果がある。
【0038】
この発明によれば、含浸イオン交換体として吸着性能が劣化した含浸イオン交換体を用いるように構成したので、吸着性能が劣化した含浸イオン交換体を確実に再活性化することができるという効果がある。
【0039】
この発明によれば、溶離工程に、吸着工程に用いられる含浸イオン交換体と同種の含浸イオン交換体を充填したプレカラムに、溶離液を通液して抽出剤飽和溶離液を調製する工程を含めるように構成したので、抽出剤飽和溶離液を簡便で効率的に調製することができるという効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1による金属元素の分離方法を示す工程図である。
【図2】従来の金属元素の分離方法を示す工程図である。
【図3】図1に示した工程を行う実施例1および図2に示した工程を行う比較例1における金属元素(Nd)吸着容量の変化を示すグラフである。
【符号の説明】
1 吸着塔
2 被処理溶液
3 非吸着元素
4 溶離液
5 溶離元素
6 前段カラム(プレカラム)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for separating a metal element such as a harmful metal from a solution system such as a waste liquid containing the harmful metal.
[0002]
[Prior art]
For example, in the disposal of high-level waste, in order to reduce disposal waste, a heat-generating element due to the decay of Cs (cesium) -Ba (barium) and Sr (strontium) -Y (yttrium) has a half-life of about 30 years. A method for separating a metal element such as a long half-life actinoid element has been studied.
[0003]
FIG. 2 is a process chart showing a conventional method for separating a metal element. In FIG. 2, reference numeral 1 denotes an adsorption tower. In the adsorption tower 1, an impregnated ion exchanger (not shown) formed by impregnating a silica carrier or the like with an extractant or the like is packed in a column shape. When a solution (for example, waste liquid) 2 containing a metal element or the like to be separated is sent to an impregnated ion exchanger (not shown) in the adsorption tower 1, one of the metal elements in the solution 2 is The part is specifically adsorbed to the impregnated ion exchanger (not shown), while the non-adsorbed element 3 not adsorbed to the impregnated ion exchanger (not shown) and the remaining metal element not adsorbed are the solution to be treated. 2 and is discharged from the adsorption tower 1 (first adsorption step A).
[0004]
Next, when the eluent 4 is sent to the adsorption tower 1 that has undergone the first adsorption step A, the metal element adsorbed by the impregnated ion exchanger (not shown) filled in the adsorption tower 1 becomes an eluent element. The sample 5 is eluted from the impregnated ion exchanger (not shown) and discharged from the adsorption tower 1 together with the eluent 4 (first elution step B).
[0005]
Next, when a new solution 2 to be treated which has not been subjected to the adsorption operation is sent to the adsorption tower 1, the metal element to be separated in the solution 2 to be treated is specific to the impregnated ion exchanger (not shown). On the other hand, the non-adsorbed element 3 not adsorbed by the impregnated ion exchanger (not shown) and the remaining metal element not adsorbed remain in the solution 2 to be treated and are discharged from the adsorption tower 1 (see FIG. 2 adsorption step A).
[0006]
Next, when the eluent 4 is sent to the adsorption tower 1 having passed through the second adsorption step A, the metal element adsorbed by the impregnated ion exchanger (not shown) filled in the adsorption tower 1 becomes an eluent element. The sample 5 is eluted from the impregnated ion exchanger (not shown), and is discharged from the adsorption tower 1 together with the eluent 4 (second elution step B).
[0007]
As described above, the adsorption step A and the elution step B are alternately repeated as necessary, whereby the metal element contained in the solution 2 to be separated is separated, and both steps can be repeated. As the number of repetitions increases, the amount of treatment for the same impregnated ion exchanger (not shown) can be increased by repeating the adsorption and elution of the metal element to the impregnated ion exchanger (not shown). In the second adsorption step A, the target solution 2 discharged from the adsorption tower 1 in the first adsorption step A is replaced with the new target solution 2 not subjected to the adsorption operation. In some cases.
[0008]
The above prior art is a technique generally known to those skilled in the art and does not relate to the invention disclosed in the literature.
[0009]
[Problems to be solved by the invention]
However, since the conventional method for separating a metal element has the above-described configuration, when using an impregnated ion exchanger impregnated with a porous silica carrier with an extractant having excellent extractability, As the amount of liquid passing through the packed tower 1 increases, the extractant elutes from the carrier, and the adsorption performance of the impregnated ion exchanger (not shown) deteriorates. Such an impregnated ion exchanger (not shown) cannot be reused in the past if its adsorption performance has been deteriorated. Therefore, the adsorption tower 1 filled with the deteriorated impregnated ion exchanger (not shown) is discarded and newly obtained. It is necessary to exchange with an adsorption tower packed with a suitable ion exchanger. For this reason, there is a problem that it is uneconomical and not preferable from the viewpoint of increasing waste.
[0010]
The present invention has been made in order to solve the above-described problems, and has an object to provide a method for separating a metal element capable of prolonging the life of an ion exchanger and reactivating an ion exchanger whose adsorption performance has already deteriorated. Aim.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object. As a result, in the step of eluting the metal element to be separated and adsorbed on the impregnated ion exchanger shown in FIG. 2 (elution step B), It was confirmed that a part of the extractant impregnated in the impregnated ion exchanger packed in the column 1 was eluted into the eluent, and the amount of the extractant impregnated in the impregnated ion exchanger was reduced. Although the elution phenomenon of the extractant portion is smaller than that in the elution step B, it is also confirmed in the step of adsorbing the metal element to be separated on the impregnated ion exchanger (adsorption step A). I have. Based on these results, further investigations revealed that a new extractant-saturated eluent in which the eluent was in an extractant-saturated state before the elution step B, in which the amount of the extractant part eluted was large, was impregnated in the adsorption tower 1. When the solution is passed through the ion exchanger and brought into contact therewith, not only can the extractant impregnated in the impregnated ion exchanger be eluted into the extractant-saturated eluent, but also the impregnated ion exchanger whose adsorption performance has once deteriorated. It was possible to obtain an important finding that the extractant can be returned and reactivated. Based on this finding, the present inventors have completed the following invention.
[0012]
In the method for separating a metal element according to the present invention, the metal element in the solution is adsorbed by the impregnated ion exchanger in the adsorption step in which the extractant is adsorbed on the impregnated ion exchanger obtained by impregnating the carrier with the extractant. An elution step of eluting the metal element into an extractant-saturated eluent adjusted to an extractant-saturated concentration.
[0013]
Further, the method for separating a metal element according to the present invention is configured to use an impregnated ion exchanger having deteriorated adsorption performance as the impregnated ion exchanger.
[0014]
Further, in the method for separating a metal element according to the present invention, in the elution step, the eluent is passed through a precolumn packed with an impregnated ion exchanger of the same type as the impregnated ion exchanger used in the adsorption step, and the extractant is saturated and eluted. It is configured to include a step of preparing a liquid.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
Embodiment 1 FIG.
FIG. 1 is a process chart showing a method for separating a metal element according to Embodiment 1 of the present invention. Note that among the components in the first embodiment, the same components as those in the conventional separation of metal elements shown in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.
[0016]
In FIG. 1, reference numeral 6 denotes a preceding column (pre-column). The pre-column 6 is filled with an impregnated ion exchanger (not shown) of the same type as the impregnated ion exchanger (not shown) filled in the adsorption tower 1 in a column shape.
[0017]
Various types of impregnated ion exchangers (not shown) can be used according to the type of metal element to be separated. As the carrier of the impregnated ion exchanger (not shown), any carrier that can be used for separating a metal element can be used, and examples thereof include porous spherical silica. As the extractant, any extractant capable of impregnating the above carrier can be used. For example, a known chelating agent such as octylphenyl-N, N'-diisobutylcarbamoylphosphine oxide (hereinafter referred to as CMPO) can be used. And the like. Furthermore, the method of impregnating the carrier with the extractant is not particularly limited. As a preferable example of such an impregnated ion exchanger, a copolymer of m / p-formylstyrene and m / p-divinylbenzene is supported on a porous spherical silica support, and CMPO is impregnated thereon. (Hereinafter referred to as a CMPO-impregnated silica exchanger), but the present invention is not limited thereto.
[0018]
Here, the reason why the impregnated ion exchanger (not shown) filled in the former-stage column 6 is of the same type as the impregnated ion exchanger (not shown) filled in the adsorption tower 1 will be described later. As described above, the extraction agent is intentionally eluted in the eluent 4 passed through the former-stage column 6 to prepare the eluent as an extractant-saturated eluent. For this reason, as the impregnated ion exchanger (not shown) filled in the adsorption tower 1 and the former-stage column 6, those having the same combination of the carrier, the extractant, and the like are preferably used, but are not limited thereto. Not something. For example, if the same extractant can be impregnated on a different carrier, impregnation in which the same extractant is impregnated on a carrier different from the carrier of the impregnated ion exchanger (not shown) packed in the adsorption tower 1 is used. It is also possible to pack an ion exchanger (not shown) into the precolumn 6.
[0019]
The eluent 4 sent to the former column 6 is appropriately determined according to the type of the metal element to be separated or the type of the impregnated ion exchanger, for example, 0.01 mol / dm 3 to 0.1 mol. / Dm 3 low concentration nitric acid eluent. The lower the nitric acid concentration of the eluent, the faster the elution rate can be made. For this reason, when the nitric acid concentration exceeds 0.1 mol / dm 3 , the elution speed becomes slow, and the efficiency of elution of the metal element decreases. If the nitric acid concentration is lower than 0.01 mol / dm 3 , the metal element in the eluent discharged from the adsorption tower 1 may precipitate due to hydrolysis or the like as the pH of the eluent increases, which is not preferable. .
[0020]
As the metal element to be separated, for example, a heat source element existing in high-level waste and decaying by Cs (cesium) -Ba (barium) and Sr (strontium) -Y (yttrium) decay of about 30 years Examples include metal elements such as Fe (iron), Zr (zirconium), Mo (molybdenum), lanthanoids, and long half-life actinoid elements to be separated from (for example, Cs, Sr).
[0021]
Next, a method for separating a metal element will be described.
First, a solution to be treated (for example, 1 mol) containing a metal (for example, Nd (neodymium)) element to be separated into an impregnated ion exchanger (not shown; for example, a CMPO-impregnated silica exchanger) filled in the adsorption tower 1. / Dm 3 and 3 mol / dm 3 of nitric acid concentration, a high-level waste liquid) 2 is sent, and a part of the metal elements in the solution 2 to be treated is specific to the impregnated ion exchanger (not shown). The non-adsorbed element 3 not adsorbed by the impregnated ion exchanger (not shown) and the remaining metal element not adsorbed on the impregnated ion exchanger (not shown) remain in the solution 2 to be treated and are discharged from the adsorption tower 1 ( First adsorption step A).
[0022]
Next, the eluent 4 is sent to the former column 6. In the pre-column 6, as described above, the extractant (not shown, for example, CMPO) of the impregnated ion exchanger (not shown) is eluted into the eluent 4, and the eluent 4 is extracted with the extractant saturated eluent ( (Not shown, for example, an eluent having a nitric acid concentration of 0.1 mol / dm 3 ). Next, an extractant-saturated eluent (not shown) is sent to the adsorption tower 1 after the first adsorption step A, and is brought into contact with the impregnated ion exchanger (not shown) in the adsorption tower 1. At this time, in the first adsorption step A, the extractant (not shown) impregnated in the impregnated ion exchanger (not shown) in the adsorption tower 1 slightly elutes into the solution to be treated 2 and The adsorption performance of the impregnated ion exchanger (not shown) is brought into contact with the extractant saturated eluent (not shown), but the extractant (not shown) is slightly deteriorated. Is further suppressed and the adsorption performance of the impregnated ion exchanger (not shown) is prevented from deteriorating. On the other hand, the metal element adsorbed on the impregnated ion exchanger (not shown) in the adsorption tower 1 is eluted from the impregnated ion exchanger (not shown) as the eluting element 5, and the extractant-saturated eluent (not shown) And is discharged from the adsorption tower 1 (first elution step C).
[0023]
Next, a new solution to be treated 2 that has not been subjected to the adsorption operation is sent to the adsorption tower 1. At this time, the elution of the extractant (not shown) of the impregnated ion exchanger (not shown) by the extractant-saturated eluent (not shown) in the first elution step C is suppressed as a result. Deterioration of the adsorption performance of the exchanger (not shown) is suppressed, and the original adsorption performance is maintained. Therefore, the metal element to be separated in the solution to be treated 2 is specifically adsorbed to the impregnated ion exchanger (not shown) with an adsorption performance substantially equal to or higher than the original adsorption performance, while the impregnation is performed. The non-adsorbed element 3 not adsorbed to the ion exchanger (not shown) and the remaining metal element not adsorbed remain in the solution 2 to be treated and are discharged from the adsorption tower 1 (second adsorption step A).
[0024]
Next, the extractant-saturated eluent (not shown) prepared by sending the eluent 4 to the former column 6 is sent to the adsorption tower 1 that has passed through the second adsorption step A, and the eluent 4 is contacted. Then, similarly to the first elution step C, the metal element adsorbed on the impregnated ion exchanger (not shown) in the adsorption tower 1 is eluted from the impregnated ion exchanger (not shown) as the eluting element 5. Then, it is discharged from the adsorption tower 1 together with the extractant-saturated eluent (not shown) (second elution step C).
[0025]
As described above, the adsorption step A and the elution step C are sequentially and alternately repeated as necessary, whereby the metal element contained in the solution to be treated 2 as a separation target is efficiently separated, and both steps are performed. The more the process is repeated, the more the amount of treatment for the same impregnated ion exchanger (not shown) can be increased by repeating the adsorption and elution of the metal element to the impregnated ion exchanger (not shown). In the second adsorption step A, the target solution 2 discharged from the adsorption tower 1 in the first adsorption step A is replaced with the new target solution 2 not subjected to the adsorption operation. May be sent.
[0026]
As described above, the first embodiment includes the elution step C in which the metal element adsorbed on the impregnated ion exchanger in the adsorption step A is eluted into the extractant-saturated eluent adjusted to the extractant-saturated concentration. With this configuration, the elution of the extractant (for example, CMPO) from the impregnated ion exchanger to the extractant-saturated eluent can be reliably suppressed, whereby even if the adsorption step A and the elution step C are repeated, There is an effect that the life of the impregnated ion exchanger can be extended without deteriorating the adsorption performance of the ion exchanger.
[0027]
According to the first embodiment, the elution step C is filled with an impregnated ion exchanger (not shown, for example, a CMPO-impregnated silica exchanger) of the same type as the impregnated ion exchanger (not shown) used in the adsorption step A. Since the step of preparing the extractant-saturated eluent (not shown) by passing the eluent 4 through the pre-column 6 described above is included, the extractant-saturated eluent (not shown) can be used simply and efficiently. This has the effect of being able to be prepared dynamically.
[0028]
In the first embodiment, the column type using the pre-column 6 is used for preparing the extractant saturated eluent (not shown). However, the present invention is not limited to this, and for example, a batch type is used. May be.
[0029]
Embodiment 2 FIG.
The feature of the second embodiment resides in that an impregnated ion exchanger whose adsorption performance is deteriorated due to repetition of adsorption and elution of a metal element is used, and other parts are the same as the first embodiment. That is, the second embodiment is an example of application of the present invention to an impregnated ion exchanger (not shown) which has been used in, for example, the elution step B shown in FIG. 2 and has deteriorated adsorption performance. The former column 6 is filled with an impregnated ion exchanger (not shown) of the same type as the impregnated ion exchanger (not shown) whose adsorption performance has been deteriorated. Of course, the impregnated ion exchanger (not shown) does not need to have deteriorated adsorption performance.
[0030]
In the second embodiment, in the elution step C, an extractant-saturated eluent (not shown) is passed through the adsorption tower 1 to fill the adsorption tower 1 and deteriorate the adsorption performance (see FIG. (Not shown) is brought into contact with an extractant-saturated eluent (not shown). Thereby, it is possible to return the extractant portion to the impregnated ion exchanger (not shown) whose adsorption performance has deteriorated.
[0031]
As described above, according to the second embodiment, since the impregnated ion exchanger having the deteriorated adsorption performance is used as the impregnated ion exchanger, the impregnated ion exchanger having the deteriorated adsorption performance is surely reactivated. There is an effect that can be made.
[0032]
Embodiment 1 FIG.
A CMPO-impregnated silica exchanger was prepared as an ion exchanger, and packed into a jacketed glass column (adsorption tower) having a diameter (inner diameter) of 8 mm and a length of 50 mm, and kept at a temperature of 50 ° C. A solution to be treated was prepared so that neodymium (Nd) became 10 mmol / dm 3 and nitric acid became 3 mol / dm 3, and a 0.1 mol / dm 3 nitric acid solution was used as an eluent. In the adsorption step A shown in FIG. 1, the solution to be treated was sent to the column (adsorption tower) at a rate of 1 ml / min, a space velocity of 24 h −1 , and a flow rate shown in Table 1. In the elution step C shown in FIG. 1, the eluate was sent to the former column filled with the CMPO-impregnated silica exchanger at a flow rate of 1 ml / min, a space velocity of 24 h −1 , and a flow rate shown in Table 1. As a result, a CMPO saturated eluent (extractant saturated eluent) was prepared and sent to the column (adsorption tower). The adsorption step A and the elution step C were repeated four times. For Example 1, the change in the amount of neodymium (Nd) adsorbed each time with respect to the amount of neodymium (Nd) adsorbed in the first adsorption step A and the elution step C was measured, and the results are shown in Table 2 and FIG. . In FIG. 3, Example 1 is shown with a pre-column. The adsorption ratio (C / C0) in FIG. 3 indicates the ratio of the adsorption amount (C) for each time to the initial adsorption amount (C0), and the liquid passage multiple (CV) indicates the column volume.
[0033]
Comparative Example 1
Except that the 0.1 mol / dm 3 nitric acid solution was directly sent to the above column (adsorption tower) as an eluent, the adsorption step A and the elution step B were performed in the same manner as in Example 1 with the flow ratio shown in Table 1. Repeated times. As in Example 1, for Comparative Example 1, the change in the amount of neodymium (Nd) adsorbed each time with respect to the amount of neodymium (Nd) adsorbed in the first adsorption step A and the elution step B was measured. 2 and FIG. In FIG. 3, Comparative Example 1 is shown without a precolumn.
[Table 1]
Figure 2004233278
[Table 2]
Figure 2004233278
[0034]
As is clear from Table 2, in Comparative Example 1, the amount of adsorbed neodymium (Nd) decreases with each repetition, whereas in Example 1, the amount of adsorbed neodymium (Nd) decreases at all. It can be seen that the second time is equal to the first time, and the third time and thereafter greatly exceed the first time adsorption amount.
[0035]
Embodiment 2. FIG.
Only in the first time, a 0.01 mol / dm 3 nitric acid solution is directly sent to the above column (adsorption tower) as an eluent, and in the second and subsequent times, under the same conditions as in Example 1, the adsorbing step is performed using the flow rate shown in Table 3 A and elution step C were repeated three times. For Example 2, the change in the amount of neodymium (Nd) adsorbed each time with respect to the amount of neodymium (Nd) adsorbed in the first adsorption step A and the elution step C was measured, and the results are shown in Table 4.
[Table 3]
Figure 2004233278
[Table 4]
Figure 2004233278
[0036]
As is clear from Table 4, the adsorption performance of the impregnated ion exchanger was reduced to 0.74 by the first elution step C, but the adsorption performance of the impregnated ion exchanger was reduced by the CMPO saturated eluent in the second elution step C. The value increased to 0.87, indicating that the adsorption performance was recovered.
[0037]
【The invention's effect】
As described above, according to the present invention, the metal element in the solution is adsorbed to the impregnated ion exchanger by the adsorption step of adsorbing the extractant onto the impregnated ion exchanger obtained by impregnating the carrier with the extractant. And an elution step of eluting the metal element into an extractant-saturated eluent adjusted to an extractant-saturated concentration, so that the deterioration of the adsorption performance of the impregnated ion exchanger due to the elution of the extractant is reliably suppressed. Thus, there is an effect that the life can be extended. This eliminates the need to dispose and replace the adsorption tower due to deterioration of the impregnated ion exchanger as compared with the conventional method for separating metal elements, so it is economical and actively pursues environmental protection in that it does not increase waste. There is an effect that it can contribute to the economy.
[0038]
According to the present invention, since the impregnated ion exchanger having the deteriorated adsorption performance is used as the impregnated ion exchanger, the impregnated ion exchanger having the deteriorated adsorption performance can be surely reactivated. is there.
[0039]
According to the present invention, the elution step includes a step of preparing the extractant-saturated eluate by passing the eluent through a precolumn packed with the same type of impregnated ion exchanger used in the adsorption step. With such a configuration, the extractant-saturated eluate can be easily and efficiently prepared.
[Brief description of the drawings]
FIG. 1 is a process chart showing a method for separating a metal element according to a first embodiment of the present invention.
FIG. 2 is a process chart showing a conventional method for separating a metal element.
3 is a graph showing a change in a metal element (Nd) adsorption capacity in Example 1 in which the step shown in FIG. 1 is performed and Comparative Example 1 in which the step shown in FIG. 2 is performed.
[Explanation of symbols]
1 Adsorption tower 2 Solution to be treated 3 Non-adsorbed element 4 Eluent 5 Eluting element 6 Pre-column (pre-column)

Claims (3)

溶液中の金属元素を、抽出剤を担体に含浸してなる含浸イオン交換体に吸着させる吸着工程と、該吸着工程で前記含浸イオン交換体に吸着された前記金属元素を、抽出剤飽和濃度に調製した抽出剤飽和溶離液に溶離させる溶離工程とを含むことを特徴とする金属元素の分離方法。An adsorption step of adsorbing the metal element in the solution onto an impregnated ion exchanger obtained by impregnating an extractant with a carrier, and bringing the metal element adsorbed on the impregnated ion exchanger in the adsorption step to an extractant saturated concentration. An elution step of elution with the prepared extractant saturated eluent. 含浸イオン交換体は吸着性能が劣化した含浸イオン交換体であることを特徴とする請求項1記載の金属元素の分離方法。The method for separating a metal element according to claim 1, wherein the impregnated ion exchanger is an impregnated ion exchanger having reduced adsorption performance. 溶離工程は、吸着工程に用いられる含浸イオン交換体と同種の含浸イオン交換体を充填したプレカラムに、溶離液を通液して抽出剤飽和溶離液を調製する工程を含むことを特徴とする請求項1または請求項2に記載の金属元素の分離方法。The elution step includes a step of preparing an extractant-saturated eluent by passing the eluent through a precolumn packed with the same type of impregnated ion exchanger used in the adsorption step. The method for separating a metal element according to claim 1 or 2.
JP2003024637A 2003-01-31 2003-01-31 Method for separating metallic element Pending JP2004233278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024637A JP2004233278A (en) 2003-01-31 2003-01-31 Method for separating metallic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024637A JP2004233278A (en) 2003-01-31 2003-01-31 Method for separating metallic element

Publications (1)

Publication Number Publication Date
JP2004233278A true JP2004233278A (en) 2004-08-19

Family

ID=32953117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024637A Pending JP2004233278A (en) 2003-01-31 2003-01-31 Method for separating metallic element

Country Status (1)

Country Link
JP (1) JP2004233278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199224A1 (en) * 2014-06-26 2015-12-30 国立大学法人九州大学 Ion exchange resin and method for adsorbing and separating metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199224A1 (en) * 2014-06-26 2015-12-30 国立大学法人九州大学 Ion exchange resin and method for adsorbing and separating metal
JP2016007601A (en) * 2014-06-26 2016-01-18 国立大学法人九州大学 Ion exchange resin and method of adsorption separation of metal
US9863018B2 (en) 2014-06-26 2018-01-09 Kyushu University, National University Corporation Ion exchange resin and method for adsorbing and separating metal

Similar Documents

Publication Publication Date Title
EP0797096A2 (en) Selective recognition of solutes in chromatographic media by artificially created affinity
JP2005512772A5 (en)
JP5284378B2 (en) Method and system for recovering rhenium from spent acid
JP7001903B2 (en) How to recover rare earth elements
JP2004233278A (en) Method for separating metallic element
JP2003201527A (en) Method for isolating rhenium
CN106731008A (en) It is a kind of to elute antimony, the composition of bismuth and its method from solid phase
JP2005061971A (en) Method for treating high-level radioactive liquid waste
JP3322952B2 (en) Adsorbent for removing rare earth elements and adsorption separation method using the same
CN112899492B (en) Method for adsorbing and separating palladium by using supermolecule adsorbent
JPH01246328A (en) Method for capturing scandium
JP2018091732A (en) Method for removing radioactive iodine compound and absorbent therefor
JP4523321B2 (en) Method for removing anionic metal complex
CN114797785A (en) 2-mercaptobenzothiazole composite material, preparation method and application thereof, and method for separating palladium ions in palladium-containing acidic solution
EP1504129B1 (en) Separation of platinum group metals
JP2016164297A (en) Reactivation method of activated carbon and recovery method of gold
RU2248405C2 (en) Method of recovering palladium from solutions
JP4247777B2 (en) Method for removing trace impurities in solution
JPS6261535B2 (en)
JP2019173041A (en) Method for refining copper, chelating resin, copper chelating agent and copper refiner
RU2153357C1 (en) Generator and method for preparation of sterile radioactive technetium-99m
JPH0446622B2 (en)
JP2002066318A (en) Method for eluting iodine from used iodine adsorbent
US2996375A (en) Process of recovering alkali metals
JP2007093375A (en) Method for separating metallic element