JP2004233120A - Instrument and method for measuring temperature - Google Patents

Instrument and method for measuring temperature Download PDF

Info

Publication number
JP2004233120A
JP2004233120A JP2003019820A JP2003019820A JP2004233120A JP 2004233120 A JP2004233120 A JP 2004233120A JP 2003019820 A JP2003019820 A JP 2003019820A JP 2003019820 A JP2003019820 A JP 2003019820A JP 2004233120 A JP2004233120 A JP 2004233120A
Authority
JP
Japan
Prior art keywords
temperature
measured
coefficient
measurement
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003019820A
Other languages
Japanese (ja)
Other versions
JP4055588B2 (en
Inventor
Kazuaki Matsui
一晃 松井
Tetsuya Murata
徹也 村田
Noriaki Koyama
典昭 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
RKC Instrument Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RKC Instrument Inc filed Critical RKC Instrument Inc
Priority to JP2003019820A priority Critical patent/JP4055588B2/en
Publication of JP2004233120A publication Critical patent/JP2004233120A/en
Application granted granted Critical
Publication of JP4055588B2 publication Critical patent/JP4055588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument and method for measuring temperature by which the temperature of an object to be measured can be measured accurately without coming into direct contact with the object. <P>SOLUTION: A temperature detecting part 23 outputs measured temperatures T1 and T2 from first and second temperature measuring parts disposed at different distances from the object to be measured and a measured temperature T3 measured in advance from the object. An inputting part 33 inputs the measured temperatures T1, T2, and T3 after performing A/D conversion on the temperatures T1, T2, and T3. A factor setting part 39 sets factors K related to the thermal resistances between the first and second temperature measuring parts and the object. A factor correcting part 35 determines correction factors K' for temperature calculation by correcting the factors K by using a correction factor α in accordance with the variations in the measured temperatures T1 and T2. A temperature calculating part 37 calculates the temperature T3' of the object by correcting the measured temperatures T1 and T2 by using the correction factors K' for temperature calculation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は温度測定装置および温度測定方法に係り、特に、高温加熱物、移動体、回転物などのように温度センサを直接接触させて温度測定し難い被測定物について、実際の温度を精度良く測定する非接触方式の温度測定装置および温度測定方法に関する。
【0002】
【従来の技術】
従来、非接触方式の温度測定方法としては、図9に示すように、被測定物1に対し、一端を開放面3とした筒体5内に例えば熱電対からなる3つの温度測定部Pa、Pb、Pcを配置したセンサ部7を用い、被測定物1の被温度測定点Pdの温度Tdを測定するものがある。
【0003】
センサ部7は、温度測定部Pa、Pcを筒体5の開放面3近傍にて被測定物1の被温度測定点Pdから等距離に位置させ、温度測定部Pa、Pcを底辺とした2等辺三角形の頂点にして筒体5の奥を温度測定部Pbとし、温度測定部Pa、Pc間の電圧差Vを測定するものである。
【0004】
このような温度測定方法では、各温度測定部Pa〜Pcや被温度測定点Pdの温度Ta、Tb、Tc、Tdについて、温度差(Td−Ta)と(Tb−Ta)が等しくなるようセンサ部7の位置間隔x1、x2を調整すれば、温度Ta〜Tdの関係が次の式1のようになり、
Td=Ta−(Tb−Ta) (式1)
【0005】
電位差Vが次の式2のようになるから、
V∝Ta−(Tb−Ta) (式2)
電位差Vすなわちセンサ部7の温度測定部Pa、Pcにおける出力電圧を測定すれば、被測定物1における被温度測定点Pdの温度Tdを非接触で測定することができる。
【0006】
この種の特許文献1として、例えば特開昭58−83223号公報がある。
【0007】
また、別の温度測定方法としては、図10に示すように、間隔を置いてヒータ9で加熱された被測定物11に対し、間隔を置いて配置した熱板13に凹部15を設け、この凹部15内に熱流束センサ17および温度センサ19を配置してセンサ部21を形成し、以下の調整ステップ1、2からなる方法によって、被測定物11の被温度測定点Peの温度Teを測定するものがある。
【0008】
この温度測定方法は、予め事前測定である調整ステップ1として、被測定物11の被温度測定点Peの温度Teを適当な測定手段で測定し、センサ部21を貫通する熱流qを熱流束センサ17で測定するとともに、センサ部21の温度Tfを温度センサ19で測定する。
【0009】
ついで、熱板13の上面から被測定物11の被温度測定点Pe間の間隔g1に係る熱抵抗Rg1と被測定物11の熱抵抗Roとの合成熱抵抗(Ro+Rg1)、更に、被温度測定点Peの温度Te、温度センサ19での測定温度Tfおよび熱流束センサ17による熱流値qから、次の式3のように合成熱抵抗(Ro+Rg1)を係数kの形態で算出し、記憶しておく。
【0010】
(Ro+Rg1)=(Te−Tf)/q (式3)
【0011】
そして、実際の本測定である調整ステップ2として、その係数kと、本測定時の測定温度Tfおよび熱流値qから、次の式4のように被温度測定点Peの温度Te’を推定計算する。
【0012】
Te’=Tf+q(Ro+Rg1) (式4)
【0013】
なお、図10Bは同図Aの伝熱等価回路図であり、同図B中の符号Rg2、Rs、Retcは、ヒータ9と被測定物11間の間隔g2の熱抵抗、温度センサ19の熱抵抗、熱板13その他の熱抵抗である。
【0014】
この種の特許文献2として、例えば特開2002−170775号公報がある。
【0015】
【特許文献1】
特開昭58−83223号公報
【0016】
【特許文献2】
特開2002−170775号公報
【0017】
【発明が解決しようとする課題】
しかしながら、上述した図9に関する前者の温度測定方法では、各温度測定部Pa〜Pcや被温度測定点Pdの温度Ta〜Tdについて、温度差(Td−Ta)と(Tb−Ta)が等しくなるよう間隔x1、x2を物理的に調整する必要があるが、温度測定部Paと被温度測定点Pd間の熱抵抗が測定温度によって変化するため、測定温度全域にわたって間隔x1、x2を一定にすることが困難で、被測定物1の被測定温度Tdが変化する毎に、センサ部7内の温度測定部Pa〜Pcの物理的位置を調整する必要があり、測定操作が煩雑となる。
【0018】
また、上述した図10に関する後者の温度測定方法では、係数kを固定定数として考えているが、実際には係数kが温度の関数であって変化するから、調整ステップ1で求めた係数kを、異なる温度条件の調整ステップ2で演算に用いると、測定温度誤差が大きくなり易く、しかも調整ステップ2の温度条件が調整ステップ1の温度条件から離れるほどその誤差が大きくなり、場合によってはその誤差レベルが数℃に達して実用上問題となるおそれがある。
【0019】
さらに、センサ部21を熱板13の凹部15内に設置したことにより、熱流束センサ17、温度センサ19と熱板13との材料の違いなどから、それらセンサ17、19周囲の熱板13を貫通する熱流量とセンサ17、19を実際に貫通する熱流量qとが異なったり、熱板13には望ましくない温度分布が生じ、測定温度誤差の生じる原因となり易い課題もある。
【0020】
本発明はそのような課題を解決するためになされたもので、被測定物に直接接触せずにその温度を精度良く測定できる温度測定装置および温度測定方法の提供を目的とする。
【0021】
【課題を解決するための手段】
このような課題を解決するために本発明に係る温度測定装置は、被測定物に対して互いに異なる距離を置いて配置された第1の温度測定部およびその被測定物により近い第2の温度測定部とを有する温度検出部と、それら第1の温度測定部と第2の温度測定部間および第2の温度測定部と被測定物間の各々の熱抵抗に関係し予め係数が設定され、この設定された係数に対し、それら第1および第2の温度測定部からの測定温度の変化に応じて補正した温度算出用補正係数を求める係数補正部と、それら第1および第2の温度測定部からの測定温度を上記温度算出用補正係数で補正して被測定物の温度を算出する温度算出部とを具備して構成されている。
【0022】
しかも、本発明に係る温度測定装置は、上記係数補正部に、それら第1および第2の温度測定部からの測定温度の変化とこれに応じた上記温度算出用補正係数との組合せテーブルを設け、この組合せテーブルから当該測定温度に対応する上記温度算出用補正係数を出力するよう形成可能である。
【0023】
また、本発明に係る温度測定装置は、上記温度検出部に、その被測定物に接触して当該被測定物の温度を予め事前測定する第3の温度測定部を設け、事前測定時におけるそれら第1、第2および第3の温度測定部の測定温度から上記熱抵抗に関係するその係数を算出して予め設定するとともに、算出されたその係数を上記係数補正部に出力する係数設定部を具備する構成も可能である。
【0024】
さらに、本発明に係る温度測定装置では、それら第1および第2の温度測定部からの測定温度の変化に応じて上記熱抵抗に関係する係数の補正係数を設定する補正係数設定部を具備し、補正係数設定部からの補正係数を用いて上記温度算出用補正係数を求めるよう上記係数補正部を形成する構成も可能である。
【0025】
さらにまた、本発明に係る温度測定装置では、その事前測定時におけるそれら第1、第2および第3の温度測定部の測定温度からその補正係数を算出して設定できるよう上記補正係数設定部を形成可能である。
【0026】
そして、本発明に係る温度測定方法は、被測定物に対して互いに異なる距離を置いて配置された第1の温度測定部およびその被測定物により近い第2の温度測定部、並びに前記被測定物に直接接触する第3の温度測定部の各測定温度から、所定の事前測定時に、それら第1、第2の温度測定部間の熱抵抗、および第2の温度測定部と被測定物間の熱抵抗に関係する係数を予め求めて設定する第1の工程と、その熱抵抗に関係する上記係数に対し、実際の本測定時に、それら第1および第2の温度測定部からの測定温度の変化に応じて補正した温度算出用補正係数を求める第2の工程と、それら第1および第2の温度測定部からの測定温度を上記温度算出用補正係数で補正し、実際の本測定時における被測定物の温度を算出する第3の工程とを具備して構成されている。
【0027】
また、その温度測定方法においては、上記事前測定時に、それら第1および第2の温度測定部からの測定温度の変化に応じてその熱抵抗に関係する係数の補正係数を、それら第1、第2および第3の温度測定部の測定温度から求める第4の工程を具備し、上記第2の工程はその補正係数から実際の本測定時の上記温度算出用補正係数を求める方法も可能である。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0029】
図1は本発明に係る温度測定装置に用いる温度検出部と被測定物を含めた図であり、図2はその伝熱等価回路図、図3は本発明に係る温度測定装置を示すブロック図である。
【0030】
なお、本発明に係る温度測定方法は、本発明に係る温度測定装置の動作を説明する過程で説明する。
【0031】
図1において、温度検出部23は、図示しないヒータなどの熱源25の配置された熱板27と、この熱板27中にその厚み方向に位置をずらせて直列的に配置された例えば熱電対からなる第1および第2の温度測定部P1、P2を有して形成されている。
【0032】
温度検出部23は、熱板27の上表面から間隔g1を置いて配置された被測定物29の被温度測定点P3の温度T3を、後述するように調整ステップ1および調整ステップ2によって測定し、それら第1の温度測定部P1や被測定物29により近い第2の温度測定部P2および被温度測定点P3の各測定温度を電気信号として出力するようになっている。
【0033】
被測定物29は、後述する調整ステップ1で、被温度測定点P3における熱板27とは反対側(図中上側)に直接接触する例えば熱電対などの第3の温度測定部(図示せず。)でその部分の温度T3が測定され出力されるよう形成されるとともに、熱板27とは反対側(図中上側)が開放されているが、便宜上、間隔g2を置いて室温に接する状態で図示されている。なお、適宜、第3の温度測定部も符号P3を用いる。
【0034】
図2は、上述したように温度検出部23および被測定物29を含めた伝熱等価回路図であり、符号Rg2、Ro、Rg1、Rs、Rx、Retcは、被測定物29と室温間の間隔g2の熱抵抗、被測定物29自体の熱抵抗、被測定物29と第2の温度測定部P2間の熱抵抗、第2、第1の温度測定部P2、P1間の熱抵抗、第1の温度測定部P1と熱板25間の熱抵抗、熱板25その他の熱抵抗である。
【0035】
本発明に係る温度測定装置を示す図3において、入力部33は、温度検出部23からの測定温度T1、T2、T3を示す測定電圧をA/D変換して取り込むもので、係数補正部35、温度算出部37、係数設定部39および補正係数設定部41に接続されている。
【0036】
係数設定部39は、事前測定時(後述する調整ステップ1)に、入力部33から入力した測定温度T1〜T3から、被測定物29と第2の温度測定部P2間の熱抵抗に関係する(比例)係数Kを算出するもので、スイッチSW1を介して係数補正部35に接続されている。
【0037】
その係数Kは、図2中の伝熱等価回路の熱抵抗比 (Ro+Rg1)/Rsに相当し、図4に示すように、測定温度(T1、T2)例えば測定温度T2のうち任意の基準測定温度T2rに対応するものである。図示はしないが、係数Kは、同様に測定温度T1のうち任意の基準測定温度T1rに対応するものである。
【0038】
補正係数設定部41は、事前測定時に、測定温度に応じてその係数Kを補正する補正係数αを予め設定した記憶部であり、スイッチSW1と連動するスイッチSW2を介して係数補正部35に接続されている。
【0039】
なお、スイッチSW1、SW2は温度測定装置31の外部からオン・オフ切換制御される。
【0040】
補正係数αは、係数Kの温度変化量を示すもので、事前測定時に求めるものである。例えば、図4に示す測定温度T2と係数Kの変化量が補正係数αであり、測定温度T2のうち基準とする基準測定温度T2rに対応した係数Kから、任意に変化する個々の測定温度T2の温度算出用補正係数K’が得られるようにその温度変化によるずれを補正するものである。
【0041】
なお、その補正係数αは、測定温度T1を考慮して温度算出用補正係数K’を算出することができものである。
【0042】
この補正係数αにより、任意に変化する測定温度T1、T2と係数Kから温度算出用補正係数K’を算出することができ、後述する係数補正部35で用いられる。
【0043】
係数補正部35は、事前測定時に、係数設定部39からの係数Kと補正係数設定部41からの補正係数αとを設定記憶するとともに、実際の本測定時(後述する調整ステップ2)に、入力部33からの測定温度T1、T2と、それら係数Kおよび補正係数αとを次の式3に示す関数Fに代入して演算することにより、それら測定温度T1、T2の変化に沿って変化する温度算出用補正係数K’を算出するもので、温度算出部37に接続されている。
【0044】
すなわち、温度算出用補正係数K’は、任意に変化する熱板27の測定温度(T1、T2)各々に対応し、かつ次式によって得られる係数の集合であり、基準の測定温度(T1r、T2r)に対応した係数Kを上述した補正係数αにより温度補正した係数である。
【0045】
K’=F(α、K、T1、T2) (式3)
【0046】
温度算出部37は、係数補正部35からの温度算出用補正係数K’と測定温度T1、T2を、次の式4の関数fに代入して演算することにより被測定物29の被温度測定点P3の温度T3’を算出するもので、表示部43に接続されている。
【0047】
T3’=f(K’、T1、T2) (式4)
【0048】
表示部43は、算出した被温度測定点P3の算出温度T3’を表示する公知のCRTや液晶表示器である。
【0049】
次に、上述した本発明に係る温度測定装置31の動作を説明する。
【0050】
上述した温度測定装置31に係る動作は、事前測定である調整ステップ1および実際の本測定である調整ステップ2からなっているので、まず、調整ステップ1から説明する。
【0051】
調整ステップ1は、被測定物29の被温度測定点P3に温度測定センサなどの第3の温度測定部(図示せず。)を接触して温度測定する期間であり、スイッチSW1、SW2がオン(閉)状となっている(第1の工程)。
【0052】
この状態で、係数設定部39は、入力部33からの測定温度T1、T2、T3から被測定物29と第2の温度測定部P2間の熱抵抗および第1の温度測定部P1と第2の温度測定部P2間の熱抵抗に関係し、図1中の伝熱等価回路の熱抵抗比 (Ro+Rg1)/Rsに相当する係数Kを算出し、スイッチSW1を介して係数補正部35へ出力する(第1の工程)。
【0053】
補正係数設定部41は、その係数Kを補正するために予め設定された補正係数αをスイッチSW2を介して係数補正部35へ出力し、係数補正部35はそれら係数Kおよび補正係数αを記憶する。
【0054】
次に、被測定物29の第3の温度測定点P3に第3の温度測定部を接触させることが許されない期間である調整ステップ2について説明する。この状態ではスイッチSW1、SW2がオフ(開)状となっている。
【0055】
この状態で、係数補正部35は、入力部33からの測定温度T1、T2、補正係数設定部41からの補正係数α、係数設定部39からの係数Kとに基づき、上述した式3「K’=F(α、K、T1、T2)」を用いて温度算出用補正係数K’を算出し、温度算出部37へ出力する(第2の工程)。
【0056】
温度算出部37では、係数補正部35からの温度算出用補正係数K’、測定温度T1、T2および補正係数αとを用いて、式4「T3’=f(K’、T1、T2)」で被温度測定点P3の温度T3’を算出し、表示部43へ出力する(第3の工程)。
【0057】
表示部43ではその被温度測定点P3の算出温度T3’を表示する。
【0058】
上述した実施の形態では、係数設定部39で係数Kを演算設定するとともに係数補正部35へ出力したが、本発明では、図示しない他の方法で知り得た既知の係数Kを予め係数設定部39に設定しておき、これを係数補正部35に出力して予め記憶するよう構成することも可能であり、設定構成は任意である。
【0059】
また、補正係数設定部41は、上述したように、既知の補正係数αを設定しておく構成に限らず、調整ステップ1において入力部33から入力した測定温度T1、T2、T3から補正係数αを演算して設定しておき、これを係数補正部35に出力するよう構成することも可能である(第4の工程)。
【0060】
さらに、係数補正部35についても、それら第1および第2の温度測定部P1、P2からの測定温度T1、T2の変化とこれに応じた温度算出用補正係数との組合せテーブルを設けておき、この組合せテーブルから当該測定温度に応じた上記温度算出用補正係数を求めて温度算出部37へ出力するよう形成しても良い。
【0061】
すなわち、本発明の基本的構成は、係数補正部35が、第1、第2の温度測定部P1、P2の測定温度T1、T2と、その第2の温度測定部P2と被測定物29間の熱抵抗に関係し予め設定された係数Kとを用い、それら第1、第2の温度測定部P1、P2からの測定温度T1、T2の変化に応じて係数Kを補正した温度算出用補正係数K’を求めるよう形成され、温度算出部37が、それら第1、第2の温度測定部P1、P2からの測定温度T1、T2をその温度算出用補正係数K’で補正して被測定物29の温度を算出するよう形成されていれば良い。
【0062】
そのような基本構成において、第1、第2の温度測定部P1、P2および被温度測定点(第3の温度測定部)P3の測定温度T1〜T3から係数設定部39で係数Kを演算して設定したり、補正係数設定部41で補正係数αを設定し、それら係数Kおよび補正係数αを用いて温度算出部37で温度を算出する構成や、更に、補正係数設定部41で第1、第2の温度測定部P1、P2および被温度測定点(第3の温度測定部)P3の測定温度T1〜T3から補正係数αを演算設定する構成が可能である。
【0063】
次に、上述した本発明に係る温度測定装置31および温度測定方法の応用例を説明する。
【0064】
図5は、上述した本発明と被測定物との関係を概略的に図示したものである。
【0065】
すなわち、図5Aは図1に対応し、同図Bは熱板27を省略して熱源25とは反対側に配置した熱板27aに第1および第2の温度測定部P1、P2を設け、温度検出部23と同様な温度検出部23aを形成したものであり、同図Cは同図Aの第2の温度測定部P2を熱版25とは反対側に配置した熱板27bに配置して温度検出部23cを形成し、第2の温度測定部P2のない温度検出部23bと温度検出部23cとで被測定物を29を挟むようにして温度測定可能にしたものである。
【0066】
本発明の温度測定装置31および方法は、それら図5A〜Cのいずれの構成でも実施可能である。
【0067】
図6は、図5Aの構成において、実測した測定温度T3(○印)と、上述した式3の係数Kを従来のように固定定数(T2=30℃で算出)として算出(推定)した温度T3’(■印)と、係数Kの温度変化を本発明に従って補正して算出(推定)した温度T3’(×印)とを比較した特性図であり、図中の▲印と●印は各々次のように定義した誤差を示している。
【0068】
▲印:T3(○印)−T3’(■印)
●印:T3(○印)−T3’(×印)
【0069】
この特性から、本発明では温度T2が上昇しても測定誤差(●印)が一定となり、本発明による算出温度(×印)が被測定物29の実測温度(○印)に重なり、全体で精度良く被測定物29の温度を測定できることが分かる。
【0070】
この点、従来では係数Kを定数としていたので、第2の温度測定部P2からの測定温度T2が上昇すると測定誤差(▲印)が大きくなっていた。
【0071】
図7および図8は、上述した本発明の温度測定装置31を更に具体的な装置に応用した場合の温度検出部を概略的に示す図である。
【0072】
図7は、射出成形機45から成形されたシート47についてローラ49に巻き取らせる途中に、図1のような温度検出部23を配置し、予めシート47の測定点P3の温度を測定しておき、本発明の温度測定装置31で温度測定するものである。
【0073】
図8は、その射出成形機45のシリンダ45a中の溶融樹脂(被測定物)の温度を測定するものである。
【0074】
すなわち、モータMで回転駆動されるスクリュー45b、材料樹脂を供給するホッパ45c、バンドヒータ45dを有するシリンダ45aにおいて、図8の部分拡大図で示すように、シリンダ45a中に第1および第2の温度測定部P1、P2を設け、そのシリンダ45a内壁とスクリュー45b間を被温度測定点P3として測定するものである。図8中の符号51は公知の金型である。
【0075】
なお、被温度測定点P3は適宜測定する部分であり、実際の射出動作時には温度センサなどを除去することは言うまでもない。
【0076】
さらに、図示はしないが、本発明の温度測定装置31は、半導体製造装置にあってフォトリソグラフィ工程のベーキング処理や成膜処理に用いることも可能である。
【0077】
すなわち、熱源を有するホットプレートなどの熱板の上に被測定物としてのウェハを載置し、熱板に第1および第2の温度測定部を配置し、テストウェハにテスト用の被温度測定点を設定する構成である。
【0078】
また、熱板に第1および第2の温度測定部の複数組を分散して配置したり、熱板に1個の第1の温度測定部と複数の第2の温度測定部を分散して配置する構成も可能である。
【0079】
すなわち、本発明は、第1〜第3の温度測定部P1〜P3を直線的に配置しなくともその目的達成が可能である。もっとも、第1〜第3の温度測定部P1〜P3を直線的に配置すれば、上述した計算式が簡素化されることが期待できる。
【0080】
ところで、本発明の温度測定装置は、図1および図5に示した温度検出部23〜23cと被測定物29が一定の間隔で離れた非接触な場合に好適するが、温度検出部温度検出部23〜23cと被測定物29を直接接触させる場合にも応用可能である。
【0081】
【発明の効果】
以上説明したように本発明に係る温度測定装置は、被測定物に対して互いに異なる距離を置いて配置された第1の温度測定部および被測定物により近い第2の温度測定部とを有する温度検出部と、それら第1および第2の温度測定部と被測定物間の熱抵抗に関係し予め係数を設定記憶し、この設定された係数に対し、それら第1および第2の温度測定部からの測定温度の変化に応じて補正した温度算出用補正係数を求める係数補正部と、それら第1および第2の温度測定部からの測定温度を上記温度算出用補正係数で補正して被測定物の温度を算出する温度算出部とを具備したから、被測定物と温度検出部間の熱抵抗を補正可能となり、被測定物に直接接触せずに、測定する全体の温度範囲についてその温度を精度良く測定できるうえ、次のような効果を有する。
すなわち、予め熱抵抗に関係した係数Kを用いるから、従来のような温度センサの精密な位置調整を必要とせずに温度を測定することができるし、被測定物の温度が変化したことにより伝熱等価回路の熱抵抗が変化しても、高精度な温度測定が可能となる利点がある。
さらに、温度検出部が2点の第1、第2の温度測定部からなって特別な構造は必要なく簡単であるから、温度検出部を貫通する熱流の阻害要素を小さくできる。
さらにまた、温度検出部に第1、第2の温度測定部を多数配置して被測定物の温度分布を測定することも可能で、被測定物が限定されずに幅広く応用可能である。
そして、それら第1および第2の温度測定部からの測定温度の変化とこれに応じた上記温度算出用補正係数との組合せテーブルを有し、この組合せテーブルから当該測定温度に対応する上記温度算出用補正係数を出力するよう上記係数補正部を形成する構成では、実際の本測定時に上記温度算出用補正係数の算出が不要となり、構成が簡素化されるとともに被測定物の温度算出を高速化される。
また、その被測定物に接触して当該被測定物の温度を予め事前測定する第3の温度測定部を上記温度検出部に設け、事前測定時におけるそれら第1、第2および第3の温度測定部の測定温度から上記熱抵抗に関係するその係数を算出して予め設定するとともに、算出されたその係数を上記係数補正部に出力する係数設定部を具備する構成では、上記熱抵抗に関係するその係数を自動的に算出可能となり、係数の設定が簡単となるばかりか、種々の被測定物の温度測定に応用可能である。
さらに、それら第1および第2の温度測定部からの測定温度の変化に応じ上記熱抵抗に関係する係数の補正係数を設定する補正係数設定部を具備し、この補正係数設定部からの補正係数から上記温度算出用補正係数を求めるよう上記係数補正部を形成する構成では、より正確な補正が可能となって信頼性が向上する。
さらにまた、その事前測定時におけるそれら第1、第2および第3の温度測定部の測定温度からその補正係数を算出して設定するよう上記補正係数設定部を形成する構成では、上記熱抵抗の補正に関係する補正係数を自動算出が可能となり、補正係数の設定が簡単となるばかりか、種々の被測定物の温度測定に応用可能である。
【図面の簡単な説明】
【図1】本発明に係る温度測定装置に用いる温度検出部を示す図である。
【図2】図1の温度検出部と被測定物を含めた伝熱等価回路図である。
【図3】本発明に係る温度測定装置の実施の形態を示すブロック図である。
【図4】本発明の温度測定装置における係数Kの温度変化を示す特性図である。
【図5】本発明の温度測定装置における温度検出部の具体例を説明する図である。
【図6】本発明および従来の温度測定装置又は温度測定方法による誤差温度変化を示す図である。
【図7】本発明の温度測定装置における温度検出部の別の具体例を説明する図である。
【図8】本発明の温度測定装置における温度検出部の別の具体例を説明する図である。
【図9】従来の温度測定方法を説明する図である。
【図10】従来の別の温度測定方法を説明する図である。
【符号の説明】
1、11、29 被測定物
3 開放面
5 筒体
7、21 センサ部
9、25 ヒータ
13、27、47 熱板
15 凹部
17 熱流束センサ
19 温度センサ
23 温度検出部
31 温度測定装置
33 入力部
35 係数設定部
37 係数補正部
39 温度算出部
41 補正係数設定部
43 表示部
45 射出成形機
45a シリンダ
45b スクリュー
45c ホッパ
45d バンドヒータ
47 シート(被測定物)
49 ローラ
51 金型
M モータ
P1 第1の温度測定部
P2 第2の温度測定部
P3 被温度測定点(第3の温度測定部)
Pa、Pb、Pc 温度測定部
Pd 被温度測定点
T1、T2、T3 測定温度
Ta、Tb、Tc、Td 測定温度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature measurement device and a temperature measurement method, and particularly to an object to be measured which is difficult to measure temperature by directly contacting a temperature sensor such as a high-temperature heating object, a moving body, a rotating object, etc. The present invention relates to a non-contact type temperature measuring device and a temperature measuring method for measuring.
[0002]
[Prior art]
Conventionally, as a non-contact type temperature measuring method, as shown in FIG. 9, three temperature measuring units Pa, for example, made of a thermocouple, are placed in a cylindrical body 5 having an open surface 3 at one end with respect to an object 1 to be measured. There is a type that measures the temperature Td of the measurement target point Pd of the DUT 1 using the sensor unit 7 on which Pb and Pc are arranged.
[0003]
The sensor unit 7 positions the temperature measurement units Pa and Pc at the same distance from the temperature measurement point Pd of the DUT 1 in the vicinity of the open surface 3 of the cylindrical body 5 and uses the temperature measurement units Pa and Pc as bases 2 The depth of the cylinder 5 is defined as a vertex of an equilateral triangle, and the depth of the cylinder 5 is defined as a temperature measuring portion Pb, and a voltage difference V between the temperature measuring portions Pa and Pc is measured.
[0004]
In such a temperature measurement method, the sensors are set so that the temperature difference (Td−Ta) and (Tb−Ta) become equal for the temperatures Ta, Tb, Tc, and Td of the temperature measurement units Pa to Pc and the temperature measurement point Pd. If the position intervals x1 and x2 of the unit 7 are adjusted, the relationship between the temperatures Ta to Td becomes as shown in the following Expression 1.
Td = Ta− (Tb−Ta) (Equation 1)
[0005]
Since the potential difference V is expressed by the following equation 2,
V∝Ta- (Tb-Ta) (Equation 2)
If the potential difference V, that is, the output voltage at the temperature measuring units Pa and Pc of the sensor unit 7 is measured, the temperature Td of the temperature measuring point Pd of the DUT 1 can be measured in a non-contact manner.
[0006]
Patent Document 1 of this type is, for example, Japanese Patent Application Laid-Open No. 58-83223.
[0007]
Further, as another temperature measuring method, as shown in FIG. 10, a concave portion 15 is provided on a hot plate 13 arranged at an interval with respect to an object 11 heated at an interval by a heater 9. The heat flux sensor 17 and the temperature sensor 19 are arranged in the recess 15 to form the sensor unit 21, and the temperature Te of the temperature measurement point Pe of the object 11 is measured by the method including the following adjustment steps 1 and 2. There is something to do.
[0008]
In this temperature measurement method, as an adjustment step 1 which is a pre-measurement, the temperature Te of the temperature measurement point Pe of the object 11 is measured by an appropriate measuring means, and the heat flow q passing through the sensor section 21 is measured by a heat flux sensor. 17 and the temperature Tf of the sensor section 21 is measured by the temperature sensor 19.
[0009]
Next, the combined thermal resistance (Ro + Rg1) of the thermal resistance Rg1 related to the distance g1 between the upper surface of the heating plate 13 and the temperature measurement point Pe of the object 11 and the thermal resistance Ro of the object 11 and the temperature measurement From the temperature Te at the point Pe, the measured temperature Tf at the temperature sensor 19, and the heat flow value q at the heat flux sensor 17, a combined thermal resistance (Ro + Rg1) is calculated in the form of a coefficient k as in the following Expression 3, and stored. deep.
[0010]
(Ro + Rg1) = (Te−Tf) / q (Equation 3)
[0011]
Then, as adjustment step 2 which is the actual main measurement, the temperature Te ′ of the measured temperature point Pe is estimated and calculated from the coefficient k, the measured temperature Tf and the heat flow value q at the time of the main measurement as in the following Expression 4. I do.
[0012]
Te ′ = Tf + q (Ro + Rg1) (Equation 4)
[0013]
FIG. 10B is a heat transfer equivalent circuit diagram of FIG. A. In FIG. 10B, reference symbols Rg2, Rs, and Retc denote the thermal resistance of the gap g2 between the heater 9 and the DUT, and the heat of the temperature sensor 19. Resistance, heat plate 13 and other thermal resistance.
[0014]
As this kind of Patent Document 2, there is, for example, JP-A-2002-170775.
[0015]
[Patent Document 1]
JP-A-58-83223
[0016]
[Patent Document 2]
JP-A-2002-170775
[0017]
[Problems to be solved by the invention]
However, in the temperature measurement method of FIG. 9 described above, the temperature difference (Td−Ta) becomes equal to (Tb−Ta) for the temperatures Ta to Td of the temperature measurement units Pa to Pc and the temperature measurement point Pd. It is necessary to physically adjust the distances x1 and x2 as described above, but since the thermal resistance between the temperature measuring unit Pa and the measured temperature point Pd changes depending on the measured temperature, the distances x1 and x2 are kept constant over the entire measured temperature range. It is difficult to do so, and every time the measured temperature Td of the DUT 1 changes, it is necessary to adjust the physical positions of the temperature measurement units Pa to Pc in the sensor unit 7, and the measurement operation becomes complicated.
[0018]
Further, in the latter temperature measurement method relating to FIG. 10 described above, the coefficient k is considered as a fixed constant. However, since the coefficient k is actually a function of temperature and changes, the coefficient k obtained in the adjustment step 1 is changed. When used in the calculation in the adjustment step 2 under different temperature conditions, the measured temperature error tends to increase, and the error increases as the temperature condition in the adjustment step 2 departs from the temperature condition in the adjustment step 1, and in some cases, the error increases. The level may reach several degrees Celsius and pose a practical problem.
[0019]
Further, since the sensor unit 21 is installed in the concave portion 15 of the heat plate 13, the heat plate 13 around the sensors 17 and 19 is removed due to a difference in material between the heat flux sensor 17 and the temperature sensor 19 and the heat plate 13. There is also a problem that the heat flow rate penetrating therethrough is different from the heat flow rate q actually penetrating the sensors 17 and 19, and an undesired temperature distribution is generated on the hot plate 13, which is likely to cause a measurement temperature error.
[0020]
The present invention has been made in order to solve such a problem, and an object of the present invention is to provide a temperature measuring device and a temperature measuring method capable of accurately measuring the temperature without directly contacting an object to be measured.
[0021]
[Means for Solving the Problems]
In order to solve such a problem, a temperature measuring device according to the present invention includes a first temperature measuring unit arranged at a different distance from an object to be measured and a second temperature closer to the object to be measured. A temperature detecting section having a measuring section, and a coefficient previously set in relation to each thermal resistance between the first temperature measuring section and the second temperature measuring section and between the second temperature measuring section and the device under test. A coefficient correction unit for obtaining a temperature calculation correction coefficient obtained by correcting the set coefficient according to a change in the measured temperature from the first and second temperature measurement units; and a first and second temperature correction unit. A temperature calculation unit configured to correct the measured temperature from the measurement unit with the temperature calculation correction coefficient to calculate the temperature of the device under test.
[0022]
Moreover, in the temperature measuring device according to the present invention, the coefficient correction unit is provided with a combination table of the change in the measured temperature from the first and second temperature measurement units and the temperature calculation correction coefficient in accordance therewith. The correction coefficient for temperature calculation corresponding to the measured temperature can be output from the combination table.
[0023]
Further, the temperature measuring device according to the present invention is provided with a third temperature measuring section, in which the temperature detecting section comes in contact with the object to be measured and preliminarily measures the temperature of the object to be measured. A coefficient setting unit that calculates the coefficient related to the thermal resistance from the measured temperatures of the first, second, and third temperature measuring units and sets the coefficient in advance, and outputs the calculated coefficient to the coefficient correction unit. A configuration having such a configuration is also possible.
[0024]
Furthermore, the temperature measurement device according to the present invention includes a correction coefficient setting unit that sets a correction coefficient of a coefficient related to the thermal resistance according to a change in measured temperature from the first and second temperature measurement units. Alternatively, the coefficient correction unit may be formed to obtain the temperature calculation correction coefficient using the correction coefficient from the correction coefficient setting unit.
[0025]
Still further, in the temperature measurement device according to the present invention, the correction coefficient setting unit is configured to calculate and set the correction coefficient from the measurement temperatures of the first, second, and third temperature measurement units at the time of the preliminary measurement. It can be formed.
[0026]
The temperature measurement method according to the present invention includes a first temperature measurement unit and a second temperature measurement unit closer to the measured object arranged at different distances from the measured object; From the respective measured temperatures of the third temperature measuring section that directly contacts the object, at a predetermined preliminary measurement, the thermal resistance between the first and second temperature measuring sections and the thermal resistance between the second temperature measuring section and the object to be measured. A first step of previously determining and setting a coefficient relating to the thermal resistance of the sample, and comparing the coefficient relating to the thermal resistance with the measured temperature from the first and second temperature measuring units during actual actual measurement. A second step of obtaining a temperature calculation correction coefficient corrected in accordance with the change of the temperature, and correcting the measured temperatures from the first and second temperature measuring units with the temperature calculation correction coefficient to obtain an actual actual measurement time. A third step of calculating the temperature of the device under test in It is constructed by Bei.
[0027]
Further, in the temperature measurement method, at the time of the pre-measurement, a correction coefficient of a coefficient related to the thermal resistance is changed according to a change in the measured temperature from the first and second temperature measurement units. There is provided a fourth step of obtaining from the measured temperatures of the second and third temperature measuring units, and the second step may be a method of obtaining the temperature-calculating correction coefficient at the time of actual main measurement from the correction coefficient. .
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029]
FIG. 1 is a diagram including a temperature detector and an object to be measured used in the temperature measuring device according to the present invention, FIG. 2 is a heat transfer equivalent circuit diagram thereof, and FIG. 3 is a block diagram showing the temperature measuring device according to the present invention. It is.
[0030]
Note that the temperature measurement method according to the present invention will be described in the process of describing the operation of the temperature measuring device according to the present invention.
[0031]
In FIG. 1, the temperature detecting unit 23 is composed of a hot plate 27 on which a heat source 25 such as a heater (not shown) is arranged, and a thermocouple arranged in series in the hot plate 27 so as to be shifted in the thickness direction. The first and second temperature measuring portions P1 and P2 are formed.
[0032]
The temperature detection unit 23 measures the temperature T3 of the measured temperature point P3 of the measured object 29 arranged at a distance g1 from the upper surface of the hot plate 27 by adjusting step 1 and adjusting step 2 as described later. The measured temperatures of the first temperature measuring section P1 and the second temperature measuring section P2 and the temperature measuring point P3 closer to the measured object 29 are output as electric signals.
[0033]
In the adjustment step 1 to be described later, the device under test 29 directly contacts the opposite side (upper side in the drawing) of the heating plate 27 at the temperature measurement point P3, for example, a third temperature measuring unit (not shown) such as a thermocouple. ) Is formed so that the temperature T3 of that portion is measured and output, and the opposite side (upper side in the figure) to the hot plate 27 is open, but for convenience, it is in contact with room temperature with an interval g2. Is shown in FIG. Note that the third temperature measurement unit also uses the reference symbol P3 as appropriate.
[0034]
FIG. 2 is a heat transfer equivalent circuit diagram including the temperature detection unit 23 and the device under test 29 as described above, and the symbols Rg2, Ro, Rg1, Rs, Rx, and Retc represent the temperature between the device under test 29 and room temperature. Thermal resistance at interval g2, thermal resistance of DUT 29 itself, thermal resistance between DUT 29 and second temperature measurement unit P2, thermal resistance between second and first temperature measurement units P2 and P1, 1 is the thermal resistance between the temperature measurement unit P1 and the hot plate 25, and the other heat resistances of the hot plate 25.
[0035]
In FIG. 3 showing the temperature measuring device according to the present invention, an input unit 33 converts the measured voltages indicating the measured temperatures T1, T2, and T3 from the temperature detecting unit 23 into analog signals and takes in the converted voltages. , A temperature calculating section 37, a coefficient setting section 39 and a correction coefficient setting section 41.
[0036]
The coefficient setting unit 39 relates to the thermal resistance between the DUT 29 and the second temperature measuring unit P2 from the measured temperatures T1 to T3 input from the input unit 33 during the preliminary measurement (adjustment step 1 described later). It calculates a (proportional) coefficient K, and is connected to the coefficient correction unit 35 via the switch SW1.
[0037]
The coefficient K corresponds to the thermal resistance ratio (Ro + Rg1) / Rs of the heat transfer equivalent circuit in FIG. 2, and as shown in FIG. 4, any reference temperature among the measurement temperatures (T1, T2), for example, the measurement temperature T2, This corresponds to the temperature T2r. Although not shown, the coefficient K similarly corresponds to an arbitrary reference measurement temperature T1r among the measurement temperatures T1.
[0038]
The correction coefficient setting unit 41 is a storage unit in which a correction coefficient α for correcting the coefficient K in accordance with the measured temperature is set in advance during the pre-measurement, and is connected to the coefficient correction unit 35 via a switch SW2 interlocked with the switch SW1. Have been.
[0039]
The switches SW1 and SW2 are ON / OFF switched from outside the temperature measuring device 31.
[0040]
The correction coefficient α indicates the amount of temperature change of the coefficient K, and is obtained at the time of preliminary measurement. For example, the amount of change between the measured temperature T2 and the coefficient K shown in FIG. 4 is the correction coefficient α, and the individual measured temperatures T2 that arbitrarily change from the coefficient K corresponding to the reference measured temperature T2r of the measured temperatures T2. In order to obtain the correction coefficient K ′ for temperature calculation, the deviation due to the temperature change is corrected.
[0041]
The correction coefficient α can be used to calculate the temperature calculation correction coefficient K ′ in consideration of the measured temperature T1.
[0042]
With this correction coefficient α, a temperature calculation correction coefficient K ′ can be calculated from the measurement temperatures T1 and T2 and the coefficient K, which are arbitrarily changed, and are used in the coefficient correction unit 35 described later.
[0043]
The coefficient correction unit 35 sets and stores the coefficient K from the coefficient setting unit 39 and the correction coefficient α from the correction coefficient setting unit 41 at the time of preliminary measurement, and at the time of actual main measurement (adjustment step 2 described later), By substituting the measured temperatures T1 and T2 from the input unit 33, the coefficient K and the correction coefficient α into a function F shown in the following equation 3, and calculating the values, the values change along with the changes in the measured temperatures T1 and T2. The temperature calculating correction coefficient K ′ is calculated, and is connected to the temperature calculating unit 37.
[0044]
In other words, the temperature calculation correction coefficient K ′ corresponds to each of the measurement temperatures (T1, T2) of the heating plate 27 that arbitrarily changes, and is a set of coefficients obtained by the following equation. The reference measurement temperature (T1r, T2r) is a coefficient obtained by temperature correction of the coefficient K corresponding to T2r) by the above-described correction coefficient α.
[0045]
K ′ = F (α, K, T1, T2) (Equation 3)
[0046]
The temperature calculation unit 37 substitutes the temperature calculation correction coefficient K ′ from the coefficient correction unit 35 and the measured temperatures T1 and T2 into a function f of the following equation 4 to calculate the temperature of the measured object 29. It calculates the temperature T3 ′ at the point P3, and is connected to the display unit 43.
[0047]
T3 ′ = f (K ′, T1, T2) (Equation 4)
[0048]
The display unit 43 is a known CRT or a liquid crystal display that displays the calculated temperature T3 ′ of the calculated measured temperature point P3.
[0049]
Next, the operation of the above-described temperature measuring device 31 according to the present invention will be described.
[0050]
The operation of the above-described temperature measurement device 31 includes an adjustment step 1 which is a pre-measurement and an adjustment step 2 which is an actual main measurement. Therefore, the adjustment step 1 will be described first.
[0051]
The adjustment step 1 is a period in which a third temperature measurement unit (not shown) such as a temperature measurement sensor is brought into contact with the temperature measurement point P3 of the measurement object 29 to measure the temperature, and the switches SW1 and SW2 are turned on. (Closed) state (first step).
[0052]
In this state, the coefficient setting unit 39 determines the thermal resistance between the DUT 29 and the second temperature measuring unit P2 and the first and second temperature measuring units P1 and P2 from the measured temperatures T1, T2, and T3 from the input unit 33. Calculates a coefficient K corresponding to the heat resistance ratio (Ro + Rg1) / Rs of the heat transfer equivalent circuit in FIG. 1 and outputs the coefficient K to the coefficient correction section 35 via the switch SW1. (First step).
[0053]
The correction coefficient setting unit 41 outputs a correction coefficient α preset for correcting the coefficient K to the coefficient correction unit 35 via the switch SW2, and the coefficient correction unit 35 stores the coefficient K and the correction coefficient α. I do.
[0054]
Next, adjustment step 2, which is a period during which the third temperature measurement unit is not allowed to contact the third temperature measurement point P3 of the device under test 29, will be described. In this state, the switches SW1 and SW2 are off (open).
[0055]
In this state, the coefficient correction unit 35 calculates the above equation 3 “K” based on the measured temperatures T1 and T2 from the input unit 33, the correction coefficient α from the correction coefficient setting unit 41, and the coefficient K from the coefficient setting unit 39. A temperature calculation correction coefficient K ′ is calculated using “= F (α, K, T1, T2)” and output to the temperature calculation unit 37 (second step).
[0056]
The temperature calculation unit 37 uses the temperature calculation correction coefficient K ′ from the coefficient correction unit 35, the measured temperatures T1, T2, and the correction coefficient α to obtain the equation 4 “T3 ′ = f (K ′, T1, T2)”. Calculates the temperature T3 'of the measured temperature point P3 and outputs it to the display unit 43 (third step).
[0057]
The display unit 43 displays the calculated temperature T3 'of the measured temperature point P3.
[0058]
In the above-described embodiment, the coefficient K is calculated and set by the coefficient setting unit 39 and output to the coefficient correction unit 35. However, in the present invention, a known coefficient K obtained by another method (not shown) is previously set in the coefficient setting unit 39. 39 may be set in advance, and this may be output to the coefficient correction unit 35 and stored in advance, and the setting configuration is arbitrary.
[0059]
Further, the correction coefficient setting unit 41 is not limited to the configuration in which the known correction coefficient α is set, as described above, and the correction coefficient α is obtained from the measured temperatures T1, T2, and T3 input from the input unit 33 in the adjustment step 1. Can be calculated and set, and this is output to the coefficient correction unit 35 (fourth step).
[0060]
Further, as for the coefficient correction unit 35, a combination table of changes in the measured temperatures T1 and T2 from the first and second temperature measurement units P1 and P2 and correction coefficients for temperature calculation corresponding thereto is provided. The temperature calculation correction coefficient according to the measured temperature may be obtained from the combination table and output to the temperature calculation unit 37.
[0061]
That is, the basic configuration of the present invention is as follows. The coefficient correction unit 35 is configured such that the measurement temperatures T1 and T2 of the first and second temperature measurement units P1 and P2 and the second temperature measurement unit P2 and the DUT 29 And a coefficient K previously set in relation to the thermal resistance of the first and second temperature measuring sections P1 and P2, and correcting the coefficient K in accordance with the change in the measured temperatures T1 and T2 from the first and second temperature measuring sections P1 and P2. The temperature calculating unit 37 is formed to obtain the coefficient K ′, and the temperature calculating unit 37 corrects the measured temperatures T1 and T2 from the first and second temperature measuring units P1 and P2 with the temperature calculating correction coefficient K ′ and What is necessary is just to be formed so that the temperature of the thing 29 may be calculated.
[0062]
In such a basic configuration, the coefficient K is calculated by the coefficient setting unit 39 from the measured temperatures T1 to T3 of the first and second temperature measuring units P1 and P2 and the measured temperature point (third temperature measuring unit) P3. Or the correction coefficient α is set by the correction coefficient setting unit 41, and the temperature is calculated by the temperature calculation unit 37 using the coefficient K and the correction coefficient α. A configuration is possible in which the correction coefficient α is calculated and set from the measured temperatures T1 to T3 of the second temperature measuring units P1 and P2 and the measured temperature point (third temperature measuring unit) P3.
[0063]
Next, an application example of the above-described temperature measuring device 31 and temperature measuring method according to the present invention will be described.
[0064]
FIG. 5 schematically illustrates the relationship between the present invention described above and an object to be measured.
[0065]
That is, FIG. 5A corresponds to FIG. 1, and FIG. 5B provides the first and second temperature measuring units P1 and P2 on a hot plate 27a arranged on the side opposite to the heat source 25 omitting the hot plate 27, FIG. 2C shows a second embodiment in which a temperature detecting section 23a similar to the temperature detecting section 23 is formed. In FIG. 2C, the second temperature measuring section P2 in FIG. Thus, the temperature measuring unit 23c is formed, and the temperature measuring unit 23b and the temperature detecting unit 23c without the second temperature measuring unit P2 can measure the temperature by sandwiching the object to be measured 29.
[0066]
The temperature measuring device 31 and the method of the present invention can be implemented by any of the configurations shown in FIGS.
[0067]
FIG. 6 shows the measured (estimated) temperature T3 (indicated by a circle) and the coefficient K of Equation 3 as a fixed constant (calculated at T2 = 30 ° C.) as in the prior art, in the configuration of FIG. 5A. FIG. 9 is a characteristic diagram comparing T3 ′ (■) and a temperature T3 ′ (×) calculated (estimated) by correcting the temperature change of the coefficient K according to the present invention. Each shows an error defined as follows.
[0068]
▲: T3 (○)-T3 '(■)
● mark: T3 (○ mark)-T3 '(x mark)
[0069]
From this characteristic, in the present invention, even when the temperature T2 rises, the measurement error (● mark) becomes constant, and the calculated temperature (x mark) according to the present invention overlaps with the actually measured temperature (○ mark) of the DUT 29, and It can be seen that the temperature of the DUT 29 can be accurately measured.
[0070]
In this regard, since the coefficient K is conventionally a constant, when the measured temperature T2 from the second temperature measuring section P2 increases, the measurement error (() increases.
[0071]
FIGS. 7 and 8 are diagrams schematically showing a temperature detecting unit when the above-described temperature measuring device 31 of the present invention is applied to a more specific device.
[0072]
FIG. 7 shows a state in which the temperature detector 23 as shown in FIG. 1 is arranged in the course of winding the sheet 47 formed from the injection molding machine 45 by the roller 49, and the temperature of the measurement point P3 of the sheet 47 is measured in advance. The temperature is measured by the temperature measuring device 31 of the present invention.
[0073]
FIG. 8 shows the measurement of the temperature of the molten resin (measured object) in the cylinder 45a of the injection molding machine 45.
[0074]
That is, in a cylinder 45a having a screw 45b rotated by a motor M, a hopper 45c for supplying material resin, and a band heater 45d, as shown in a partially enlarged view of FIG. The temperature measuring portions P1 and P2 are provided, and the temperature between the inner wall of the cylinder 45a and the screw 45b is measured as a temperature measurement point P3. Reference numeral 51 in FIG. 8 is a known mold.
[0075]
The temperature measurement point P3 is a portion to be measured appropriately, and it goes without saying that the temperature sensor and the like are removed during the actual injection operation.
[0076]
Further, although not shown, the temperature measuring device 31 of the present invention can be used in a baking process or a film forming process in a photolithography process in a semiconductor manufacturing apparatus.
[0077]
That is, a wafer as an object to be measured is placed on a hot plate such as a hot plate having a heat source, the first and second temperature measuring sections are arranged on the hot plate, and a temperature measurement for test is performed on a test wafer. This is a configuration for setting points.
[0078]
Further, a plurality of sets of the first and second temperature measuring units are dispersedly arranged on the hot plate, or one first temperature measuring unit and a plurality of second temperature measuring units are dispersed on the hot plate. A configuration in which they are arranged is also possible.
[0079]
That is, the present invention can achieve the object without arranging the first to third temperature measuring units P1 to P3 linearly. However, if the first to third temperature measuring units P1 to P3 are linearly arranged, it can be expected that the above-described calculation formula is simplified.
[0080]
By the way, the temperature measuring device of the present invention is suitable for the case where the temperature detectors 23 to 23c shown in FIGS. The present invention is also applicable to a case where the parts 23 to 23c and the DUT 29 are brought into direct contact.
[0081]
【The invention's effect】
As described above, the temperature measurement device according to the present invention includes the first temperature measurement unit and the second temperature measurement unit closer to the measured object, which are arranged at different distances from the measured object. A coefficient is set and stored in advance in relation to the temperature detector, the thermal resistance between the first and second temperature measuring units and the object to be measured, and the first and second temperature measurement are performed on the set coefficient. A coefficient correction unit for obtaining a temperature calculation correction coefficient corrected according to a change in the measured temperature from the unit, and a correction unit that corrects the measured temperatures from the first and second temperature measurement units using the temperature calculation correction coefficient. Since it has a temperature calculation unit for calculating the temperature of the measured object, it is possible to correct the thermal resistance between the measured object and the temperature detecting unit, without directly contacting the measured object, for the entire temperature range to be measured. Temperature can be measured accurately and the following UNA has an effect.
That is, since the coefficient K related to the thermal resistance is used in advance, the temperature can be measured without the necessity of precise position adjustment of the temperature sensor as in the related art, and the transmission can be performed by changing the temperature of the object to be measured. There is an advantage that even if the thermal resistance of the thermal equivalent circuit changes, highly accurate temperature measurement can be performed.
Furthermore, since the temperature detecting section is composed of two first and second temperature measuring sections and requires no special structure and is simple, it is possible to reduce the obstruction element of the heat flow passing through the temperature detecting section.
Furthermore, it is also possible to arrange a large number of first and second temperature measuring units in the temperature detecting unit to measure the temperature distribution of the object to be measured, so that the object to be measured is not limited and can be widely applied.
And a combination table of the change of the measured temperature from the first and second temperature measuring units and the correction coefficient for the temperature calculation corresponding to the change, and from the combination table, the temperature calculation corresponding to the measured temperature. In the configuration in which the coefficient correction section is formed so as to output the correction coefficient for use, it is not necessary to calculate the correction coefficient for temperature calculation during actual actual measurement, which simplifies the configuration and speeds up the temperature calculation of the DUT. Is done.
In addition, a third temperature measuring unit that preliminarily measures the temperature of the object to be measured by contacting the object to be measured is provided in the temperature detecting unit, and the first, second, and third temperatures during the preliminary measurement are measured. In a configuration including a coefficient setting unit for calculating and presetting the coefficient related to the thermal resistance from the measurement temperature of the measuring unit and outputting the calculated coefficient to the coefficient correction unit, The coefficient can be automatically calculated, and the setting of the coefficient can be simplified, and the present invention can be applied to temperature measurement of various objects to be measured.
And a correction coefficient setting section for setting a correction coefficient of a coefficient relating to the thermal resistance in accordance with a change in the measured temperature from the first and second temperature measurement sections. In the configuration in which the coefficient correction unit is formed so as to obtain the correction coefficient for temperature calculation from above, more accurate correction can be performed and reliability is improved.
Furthermore, in the configuration in which the correction coefficient setting section is formed so as to calculate and set the correction coefficient from the measured temperatures of the first, second, and third temperature measuring sections at the time of the preliminary measurement, The correction coefficient relating to the correction can be automatically calculated, so that the setting of the correction coefficient is not only simple, but also applicable to the temperature measurement of various objects to be measured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a temperature detector used in a temperature measuring device according to the present invention.
FIG. 2 is a heat transfer equivalent circuit diagram including the temperature detector and the device under test in FIG. 1;
FIG. 3 is a block diagram showing an embodiment of a temperature measuring device according to the present invention.
FIG. 4 is a characteristic diagram showing a temperature change of a coefficient K in the temperature measuring device of the present invention.
FIG. 5 is a diagram illustrating a specific example of a temperature detection unit in the temperature measurement device according to the present invention.
FIG. 6 is a diagram showing an error temperature change according to the present invention and a conventional temperature measuring device or temperature measuring method.
FIG. 7 is a diagram illustrating another specific example of the temperature detection unit in the temperature measurement device according to the present invention.
FIG. 8 is a diagram illustrating another specific example of a temperature detection unit in the temperature measurement device according to the present invention.
FIG. 9 is a diagram illustrating a conventional temperature measurement method.
FIG. 10 is a diagram illustrating another conventional temperature measurement method.
[Explanation of symbols]
1, 11, 29 DUT
3 open side
5 cylinder
7, 21 Sensor unit
9, 25 heater
13,27,47 Hot plate
15 recess
17 Heat flux sensor
19 Temperature sensor
23 Temperature detector
31 Temperature measuring device
33 Input section
35 Coefficient setting section
37 coefficient correction unit
39 Temperature calculator
41 Correction coefficient setting section
43 Display
45 Injection molding machine
45a cylinder
45b screw
45c hopper
45d band heater
47 sheets (measurement object)
49 Laura
51 Mold
M motor
P1 First temperature measurement unit
P2 Second temperature measuring unit
P3 Temperature measurement point (third temperature measurement unit)
Pa, Pb, Pc Temperature measurement unit
Pd Temperature measurement point
T1, T2, T3 Measurement temperature
Ta, Tb, Tc, Td Measurement temperature

Claims (7)

被測定物に直接接触せずに当該被測定物の温度を測定する温度測定装置であって、
前記被測定物に対して互いに異なる距離を置いて配置された第1の温度測定部および第2の温度測定部とを有する温度検出部と、
前記第1および第2の温度測定部と被測定物間の熱抵抗に関係し予め設定された係数に対し、前記第1および第2の温度測定部からの測定温度の変化に応じて補正した温度算出用補正係数を求める係数補正部と、
前記第1および第2の温度測定部からの前記測定温度を前記温度算出用補正係数で補正して前記被測定物の温度を算出する温度算出部と、
を具備することを特徴とする温度測定装置。
A temperature measuring device that measures the temperature of the measured object without directly contacting the measured object,
A temperature detection unit having a first temperature measurement unit and a second temperature measurement unit arranged at different distances from each other with respect to the object to be measured;
A coefficient preset in relation to the thermal resistance between the first and second temperature measuring units and the object to be measured was corrected according to a change in the measured temperature from the first and second temperature measuring units. A coefficient correction unit for determining a correction coefficient for temperature calculation;
A temperature calculation unit that corrects the measured temperature from the first and second temperature measurement units with the temperature calculation correction coefficient to calculate the temperature of the device under test;
A temperature measuring device comprising:
前記係数補正部は、前記第1および第2の温度測定部からの前記測定温度の変化とこれに応じた前記温度算出用補正係数との組合せテーブルを有し、この組合せテーブルから当該測定温度に対応する前記温度算出用補正係数を出力する請求項1記載の温度測定装置。The coefficient correction unit has a combination table of the change in the measured temperature from the first and second temperature measurement units and the correction coefficient for temperature calculation in accordance with the change, and from this combination table to the measured temperature. The temperature measuring device according to claim 1, wherein the corresponding temperature calculation correction coefficient is output. 前記温度検出部は前記被測定物に接触して当該被測定物の温度を予め事前測定する第3の温度測定部を有し、
前記事前測定時における前記第1、第2および第3の温度測定部の前記測定温度から前記熱抵抗に関係する前記係数を算出して予め設定するとともに、算出されたこの係数を前記係数補正部に出力する係数設定部を具備する請求項1記載の温度測定装置。
The temperature detection unit includes a third temperature measurement unit that comes into contact with the object to be measured and preliminarily measures the temperature of the object to be measured,
The coefficient relating to the thermal resistance is calculated and set in advance from the measured temperatures of the first, second and third temperature measuring units at the time of the preliminary measurement, and the calculated coefficient is corrected for the coefficient. The temperature measuring device according to claim 1, further comprising a coefficient setting unit that outputs the coefficient setting unit.
前記第1および第2の温度測定部からの前記測定温度の変化に応じ、前記熱抵抗に関係する前記係数を補正する補正係数を設定する補正係数設定部を具備し、
前記係数補正部は前記補正係数設定部からの前記補正係数を用いて前記温度算出用補正係数を求めるものである請求項3記載の温度測定装置。
A correction coefficient setting unit that sets a correction coefficient for correcting the coefficient related to the thermal resistance according to a change in the measured temperature from the first and second temperature measurement units;
4. The temperature measuring device according to claim 3, wherein the coefficient correction unit obtains the temperature calculation correction coefficient using the correction coefficient from the correction coefficient setting unit.
前記補正係数設定部は、前記事前測定時における前記第1、第2および第3の温度測定部の前記測定温度から前記補正係数を算出して設定するものである請求項4項記載の温度測定装置。The temperature according to claim 4, wherein the correction coefficient setting unit calculates and sets the correction coefficient from the measured temperatures of the first, second, and third temperature measuring units at the time of the preliminary measurement. measuring device. 被測定物に直接接触せずに当該被測定物の温度を測定する温度測定方法であって、
前記被測定物に対して互いに異なる距離を置いて配置された第1の温度測定部および第2の温度測定部、並びに前記被測定物に直接接触する第3の温度測定部の各測定温度から、所定の事前測定時に、前記第1および第2の温度測定部と前記被測定物間の前記熱抵抗に関係する係数を予め求めて設定する第1の工程と、
前記熱抵抗に関係する前記係数に対し、実際の本測定時に、前記第1および第2の温度測定部からの前記測定温度の変化に応じて補正した温度算出用補正係数を求める第2の工程と、
前記第1および第2の温度測定部からの前記測定温度を前記温度算出用補正係数で補正し、実際の本測定時における前記被測定物の温度を算出する第3の工程と、
を具備することを特徴とする温度測定方法。
A temperature measurement method for measuring the temperature of the measured object without directly contacting the measured object,
The first temperature measurement unit and the second temperature measurement unit arranged at different distances from each other with respect to the object to be measured, and the measured temperatures of the third temperature measurement unit that directly contacts the object to be measured. A first step of determining and setting in advance a coefficient relating to the thermal resistance between the first and second temperature measuring units and the object to be measured at a predetermined preliminary measurement;
A second step of obtaining a temperature calculation correction coefficient for the coefficient relating to the thermal resistance, which is corrected in accordance with a change in the measured temperature from the first and second temperature measurement units during actual main measurement. When,
A third step of correcting the measured temperature from the first and second temperature measurement units with the temperature calculation correction coefficient and calculating the temperature of the device under test during actual main measurement;
A temperature measuring method, comprising:
前記事前測定時に、前記第1および第2の温度測定部からの測定温度の変化に応じて前記熱抵抗に関係する前記係数を補正する補正係数を、前記第1、第2および第3の温度測定部の前記測定温度から求める第4の工程を具備し、前記第2の工程は前記補正係数から実際の本測定時の前記温度算出用補正係数を求めるものである請求項6記載の温度測定方法。At the time of the preliminary measurement, the first, second, and third correction coefficients for correcting the coefficient relating to the thermal resistance according to a change in the measured temperature from the first and second temperature measurement units 7. The temperature according to claim 6, further comprising a fourth step of obtaining from the measured temperature of the temperature measuring unit, the second step of calculating the correction coefficient for the actual temperature calculation during the actual measurement from the correction coefficient. Measuring method.
JP2003019820A 2003-01-29 2003-01-29 Temperature measuring apparatus and temperature measuring method Expired - Fee Related JP4055588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019820A JP4055588B2 (en) 2003-01-29 2003-01-29 Temperature measuring apparatus and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019820A JP4055588B2 (en) 2003-01-29 2003-01-29 Temperature measuring apparatus and temperature measuring method

Publications (2)

Publication Number Publication Date
JP2004233120A true JP2004233120A (en) 2004-08-19
JP4055588B2 JP4055588B2 (en) 2008-03-05

Family

ID=32949601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019820A Expired - Fee Related JP4055588B2 (en) 2003-01-29 2003-01-29 Temperature measuring apparatus and temperature measuring method

Country Status (1)

Country Link
JP (1) JP4055588B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017669A (en) * 2009-07-10 2011-01-27 Japan Atomic Energy Agency Temperature/heat flux measuring device, method of measuring temperature, and method of measuring heat flux
JP2013061232A (en) * 2011-09-13 2013-04-04 Seiko Epson Corp Temperature measurement system and temperature calculation method
KR101549341B1 (en) 2014-06-09 2015-09-14 한국과학기술원 An appratus for sensing temperature using a sensor resistor and a method thereof
JP2016029382A (en) * 2015-10-07 2016-03-03 セイコーエプソン株式会社 Temperature measurement system and temperature calculation method
JP2016057199A (en) * 2014-09-10 2016-04-21 セイコーエプソン株式会社 Temperature measurement device and temperature measurement method
JP2017053677A (en) * 2015-09-08 2017-03-16 株式会社デンソーウェーブ Electronic apparatus
WO2018087911A1 (en) * 2016-11-14 2018-05-17 理化工業株式会社 Temperature measurement device, thermometer, and temperature controller

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017669A (en) * 2009-07-10 2011-01-27 Japan Atomic Energy Agency Temperature/heat flux measuring device, method of measuring temperature, and method of measuring heat flux
JP2013061232A (en) * 2011-09-13 2013-04-04 Seiko Epson Corp Temperature measurement system and temperature calculation method
KR101549341B1 (en) 2014-06-09 2015-09-14 한국과학기술원 An appratus for sensing temperature using a sensor resistor and a method thereof
JP2016057199A (en) * 2014-09-10 2016-04-21 セイコーエプソン株式会社 Temperature measurement device and temperature measurement method
JP2017053677A (en) * 2015-09-08 2017-03-16 株式会社デンソーウェーブ Electronic apparatus
JP2016029382A (en) * 2015-10-07 2016-03-03 セイコーエプソン株式会社 Temperature measurement system and temperature calculation method
WO2018087911A1 (en) * 2016-11-14 2018-05-17 理化工業株式会社 Temperature measurement device, thermometer, and temperature controller

Also Published As

Publication number Publication date
JP4055588B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
KR940010643B1 (en) Mehtod of and apparatus for controlling temperature in the processing of a substrate
TWI454671B (en) Method and apparatus for measuring the temperature of a gas in a mass flow controller
US8590360B2 (en) Flowmeters and methods for diagnosis of sensor units
CN108152325B (en) Method for calibrating heat conductivity instrument based on heat shield plate method
US10175120B2 (en) Internal temperature measurement method and internal temperature measurement device
Pishchur et al. Recommendations on DSC calibration: how to escape the transformation of a random error into the systematic error
JP2004233120A (en) Instrument and method for measuring temperature
US10337904B2 (en) Apparatus and method for determining flow of a medium
Dos Santos Thermal properties of melt polymers by the hot wire technique
US2769340A (en) Room temperature compensating circuits for pyrometers
WO2003029759A1 (en) Flow rate measuring instrument
TW202211721A (en) Passive and active calibration methods for a resistive heater
JP3726261B2 (en) Thermal flow meter
US20190086346A1 (en) Thermophysical property measurement method and thermophysical property measurement apparatus
Merzlyakov Method of rapid (100 000 K s− 1) controlled cooling and heating of thin samples
CN104534895B (en) Device and method for measuring material temperature uniformity of heating furnace
JP3681468B2 (en) Temperature coefficient correction type temperature detector
JP7079471B2 (en) Thermophysical property measuring device and thermophysical property measuring method
WO2019163363A1 (en) Temperature measuring device, ambient temperature measuring method, and ambient temperature measuring program
JP5328303B2 (en) Optical element manufacturing apparatus and manufacturing method thereof
RU2727564C1 (en) Self-calibrating temperature sensor
WO2022163214A1 (en) Heater control device
JP6299876B2 (en) Surface temperature sensor calibration device
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JP2732270B2 (en) Temperature control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4055588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees