JP2004232925A - Method and device for manufacturing cool water - Google Patents

Method and device for manufacturing cool water Download PDF

Info

Publication number
JP2004232925A
JP2004232925A JP2003020477A JP2003020477A JP2004232925A JP 2004232925 A JP2004232925 A JP 2004232925A JP 2003020477 A JP2003020477 A JP 2003020477A JP 2003020477 A JP2003020477 A JP 2003020477A JP 2004232925 A JP2004232925 A JP 2004232925A
Authority
JP
Japan
Prior art keywords
water
cooling
steam
temperature
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003020477A
Other languages
Japanese (ja)
Inventor
Kazuhiko Tanizaki
一彦 谷崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEJAA KK
YAE KOGYO KK
Original Assignee
MEJAA KK
YAE KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEJAA KK, YAE KOGYO KK filed Critical MEJAA KK
Priority to JP2003020477A priority Critical patent/JP2004232925A/en
Publication of JP2004232925A publication Critical patent/JP2004232925A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for manufacturing cool water capable of efficiently cooling hot water generated by the cooling of external equipment and supplying as cool water again to the external equipment. <P>SOLUTION: This cool water manufacturing device 10 comprises a cooling tower 11 cooling high temperature water generated by the external equipment and returning to the external equipment, a pressure reducing means 12 holding the inside of the cooling tower 11 in a reduced pressure state, water receiving parts 13 installed in multiple stages in the cooling tower 11 and, while making the supplied water, stagnant downwardly moving the supplied water in order, and water absorbing materials 14 installed on the water receiving parts 13 and having gas permeability. The water supplied to the cooling tower 11 in a reduced pressure state is, while being stagnant temporarily in the water receiving parts 13, moved in order to the water receiving parts 13 located under the cooling water and then moved to the bottom of the cooling tower 11. A part of the water made stagnant in the water receiving parts 13 is diffused in the water absorbing members 14 and evaporated from the surfaces thereof to remove latent heat and lower the temperature of the remaining water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、外部機器で発生した温水の温度を下げて冷水として外部機器に供給する冷水の製造方法及びその装置に関する。
【0002】
【従来の技術】
従来より、外部機器(例えば、コンプレッサ、エンジン等)の冷却で発生した温水の温度を下げて冷水とし、再び外部機器に供給する場合、温水の冷却には、例えば、上下端が開放された第1の通路の壁面に冷却用の水を流下させ、これを下部より導入した空気と接触させることにより蒸発冷却させながら循環して壁面を冷却し、側部がこの壁面と共有され上下端が閉じられて第1の通路と直交して形成されたスパイラル状の第2の通路中に温水を流して冷却する蒸発冷却器が使用されている。
このとき、温水は上下端が閉じられた、狭いスパイラル状の第2の通路内を旋回しながら通過するため、流れが乱されて、境膜伝熱係数が向上し冷却効率が向上するとされている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平10−019478号公報
【0004】
【発明が解決しようとする課題】
しかしながら、温水の冷却は壁面を介した熱伝導で行なわれるため、温水の温度が高くない場合や、冷却用の水による壁面の冷却が不十分である場合は、壁面と温水との温度差が小さくなって、温水を効率的に冷却できないという問題が生じる。
更に、冷却用の水は外部から導入された空気と接触しながら第1の流路内を循環しているので、冷却用の水には塵等が混入する可能性が高く、混入した塵が壁面に付着して伝熱効率を低下させたり、第1の流路を部分的に閉塞させたりする可能性がある。
本発明はかかる事情に鑑みてなされたもので、外部機器の冷却で発生した温水を効率よく冷却して冷水として再び外部機器に供給することが可能な冷水の製造方法及びその装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う第1の発明に係る冷水の製造方法は、外部機器によって発生した温度の高い水を冷却塔の上側から供給し下方に落下させながら該水の温度を下げ、降温された水を該冷却塔の下部から排出する冷水の製造方法であって、前記冷却塔を減圧状態に保持し、供給された前記温度の高い水は多段にわたって設けられた各受水部で一旦滞留されながら順次その下方に設けられた受水部に移されて前記冷却塔の下部まで移動され、しかも、該各受水部には通気性を備えた吸水性部材が設けられ、滞留している水の一部を該吸水性部材内に拡散させてその表面から蒸発させることにより気化熱を奪って、残りの水の温度を下げる。
【0006】
冷却塔内を減圧状態に保持しているので、冷却塔内での水の沸点は低下する。そこで、冷却塔に供給する水の温度に応じて冷却塔内の減圧程度を調整することにより、水の沸点を水の温度近くまで下げることができ、水を効率的に蒸発させることが可能となる。
この際、水の温度が高くなるほど飽和水蒸気圧は高くなるので、供給する水の温度が低くなるほど、冷却塔内の絶対圧力を下げる(減圧程度を下げる)必要がある。なお、水の蒸発を促進するには蒸発面積を大きくすることが有効であり、そのため水は冷却塔内に微小な水滴状で供給することが好ましい。
一方、水が蒸発する際には、気化熱が必要となるが、冷却塔内には水が蒸発するために必要な気化熱を供給する熱源は存在しない。そこで、水が蒸発する際には、水自体が有している熱の一部を気化熱として利用することになる。
従って、水が蒸発すると、残りの水からは蒸発した水に比例した気化熱が奪われることになる。このため、残りの水の温度は低下する。
【0007】
温度が低下した水は、冷却塔内を落下して第1段(最上段)の受水部で受けられて滞留される。第1段の受水部には通気性を備えた吸水性部材、例えば親水性繊維で織られた織物が広げられて設けられている。そこで、第1段の受水部で受けられた水の一部は吸水性部材内に進入して吸水性部材内で一様に広がる。このため、吸水性部材内に進入した水の表面積は拡大し、蒸発が促進される。
その結果、吸水性部材内に残留した水の温度が下がり、吸水性部材内の水と接触した第1段の受水部に滞留している水の温度も、熱伝導で低下する。なお、第1段の受水部に滞留される水量には上限があるため、温水が連続的に供給される状態では、第1段の受水部に滞留されて温度が下がった水は第2段の受水部に移動する。
【0008】
第2段の受水部にも吸水性部材が第1段と実質的に同一の状態で設けられている。このため、第2段の受水部で受けられた水は吸水性部材内に進入し一様に広がって蒸発する。
その結果、吸水性部材内に残留した水の温度が下がり、第2段の受水部に滞留されている水の温度も、熱伝導で低下する。なお、第1段の受水部からは順次水が第2段の受水部に向けて移動してくるので、第2段の受水部に滞留されて温度が下がった水は下側の第3段の受水部に移動する。このように、冷却塔内に供給された水は、各受水部で滞留されながら冷却が繰り返えされるため、受水部を順次通過して冷却塔の下部まで到達した時点で水の温度は低下して冷水となっている。
【0009】
第1の発明に係る冷水の製造方法において、前記冷却塔の下側からは空気を流入させ、該冷却塔内を通過させて該冷却塔の上側から排出することが好ましい。
冷却塔に供給された水は、冷却塔内を下方に移動しながら各受水部で滞留中に冷却されるため、各受水部を通過する度に水の蒸発は徐々に起こりにくくなる。また、水の蒸発は冷却塔内の水蒸気圧が高くなる程生じにくくなる。
このため、冷却塔の下側から外部の空気を流入させて冷却塔内を通過させて冷却塔の上側から排出する空気の流れを形成することにより、発生した水蒸気はこの空気の流れの中に混入して冷却塔の外部に排出されるので、冷却塔内の水蒸気圧(湿度)が高くなるのを防止できる。
その結果、水蒸気圧を下げることができ水の温度が低下しても水の蒸発を継続して起こさせることができる。なお、各受水部に設けらた吸水性部材は通気性を有しているため、水蒸気を含んだ空気は吸水性部材を自由に透過することができる。
【0010】
第1の発明に係る冷水の製造方法において、前記冷却塔の下側から流入させる空気は加熱及び/又は乾燥されていることが好ましい。
外部から冷却塔内に流入させた空気に水蒸気が混入する際、空気中の水蒸気圧が低い程多量の水蒸気を混入させることができるので好ましい。空気中の水蒸気圧を下げるには、流入させる空気を加熱し冷却塔内の温度を上げて飽和水蒸気圧を高めることで、相対的に水蒸気圧を下げることができる。
また、空気を乾燥させることで、水蒸気圧を絶対的に下げることができる。更に、空気を加熱し乾燥させて水蒸気圧をより低下させることもできる。
【0011】
第1の発明に係る冷水の製造方法において、前記外部機器によって発生した温度の高い水は、加熱されて前記冷却塔に供給されることが好ましい。
冷却塔内で水を効率的に蒸発させるには、水の温度は実質的に沸点温度、あるいは沸点温度に近いことが好ましい。一方、水の沸点は冷却塔内の圧力が低い程低下するので、水の温度が高くない場合(例えば、40℃未満)、温水の蒸発を促進するには、冷却塔内の圧力を低圧(例えば、絶対圧力で0.06kg/cm 以下)に維持する必要がある。
このため、水を加温して、例えば、40〜80℃としてから冷却塔内に供給すると、冷却塔内の圧力を絶対圧力で0.07〜0.6kg/cm の範囲に維持するだけで効率的に水の蒸発を行なうことができるので、冷却塔内をより低圧に維持する必要がなくなる。
【0012】
前記目的に沿う第2の発明に係る冷水の製造装置は、外部機器によって発生する温度の高い水を冷却して該外部機器に戻すための冷水の製造装置であって、上部に水蒸気排出口を備えると共に上側位置には外部から供給される前記水をシャワー状に入れる吹き込み手段を備え、更に下部には処理されて温度の下がった水を外部に排出する排水口を設けた冷却塔と、前記水蒸気排出口に連結され前記冷却塔内を減圧状態に保持する減圧手段と、前記冷却塔内に多段に設けられて供給された水を滞留しながら順次下方に移動させる受水部と、前記各受水部に設けられ、該各受水部に滞留されている水の一部を吸引し蒸発させて残りの水の温度を下げる通気性を備えた吸水性部材とを有する。
【0013】
減圧状態に保持された冷却塔の上側から水を吹き込むと、水は水滴となって落下を始めその表面では蒸発が生じる。このため、水は落下しながら気化熱が奪われ、残りの水の温度は急激に低下する。
次いで、この水を受水部で受けて、受水部に設けられた吸水性部材にその一部を吸引させて蒸発させることにより、受水部に残った水を更に冷却することができる。
なお、各受水部では、水を滞留しながら順次下方に移動させているので、水は冷却されながら各受水部を上段から下段に向かって移動する。その結果、冷却塔の下部に冷水を集めることができる。
【0014】
第2の発明に係る冷水の製造装置において、前記各受水部には滞留している水を下方に移す複数の小孔が散在して設けられていることが好ましい。
受水部に小孔を設けることにより、一定量の水を受水部に滞留しながら、余分の水を下側に設けられた受水部に移すことができる。
【0015】
第2の発明に係る冷水の製造装置において、前記各受水部には発生した水蒸気を前記冷却塔内で上側に移動させる複数の水蒸気通過口が設けられていることが好ましい。
受水部に水蒸気通過口を設けることにより、下側で発生した水蒸気を上側に移動させることができ、上部の水蒸気排出口から冷却塔外に容易に排出することができる。
その結果、冷却塔内に水蒸気が滞留することを防止できる。
【0016】
第2の発明に係る冷水の製造装置において、前記冷却塔の下側には該冷却塔内に空気を流入させる空気流入口が設けられていることが好ましい。
水の蒸発量は、冷却塔内の空気の水蒸気圧と飽和水蒸気圧との差に比例する。このため、水の蒸発が進行して空気中の水蒸気圧が上昇してくると、蒸発量は徐々に少なくなる。従って、空気流入口を冷却塔の下側に設けて冷却塔内に空気を流入させて、例えば水蒸気排出口から外部に排出させることにより、冷却塔内の空気の水蒸気圧を低いレベルに維持することができる。
その結果、冷却塔内で水を継続して蒸発させることができる。
【0017】
第2の発明に係る冷水の製造装置において、前記空気流入口には加熱器及び/又は乾燥器が接続されていることが好ましい。
外部から流入する空気の水蒸気圧が低い程、冷却塔内の空気の水蒸気圧を下げることができる。ここで、加熱器で流入する空気を加熱して冷却塔内に流入させると、冷却塔内の温度が上昇して空気中の飽和水蒸気圧を上げることができ、冷却塔内の空気の水蒸気圧を相対的に下げて、冷却塔内の空気の水蒸気圧と飽和水蒸気圧との差を大きくすることができる。
また、乾燥器で流入する空気を乾燥して冷却塔内に流入させると、冷却塔内の空気の水蒸気圧を絶対的に下げることができ、冷却塔内の空気の水蒸気圧と飽和水蒸気圧との差を大きくすることができる。
更に、加熱器と乾燥器を併用して、加熱した乾燥空気を冷却塔内に吹き込むことにより、冷却塔内の空気の水蒸気圧を絶対的に下げると共に、冷却塔内の空気の飽和水蒸気圧を上げることができ、冷却塔内の空気の水蒸気圧と飽和水蒸気圧との差を更に大きくすることができる。
【0018】
第2の発明に係る冷水の製造装置において、前記吹き込み手段には、前記冷却塔に供給する温度の高い水を加熱する加熱器が接続されていることが好ましい。
加熱器により冷却塔に供給する水を加温することで、水の温度を冷却塔内での水の沸点に近づけることができ、水の蒸発を促進することができる。
【0019】
前記目的に沿う第3の発明に係る冷水の製造装置は、外部機器によって発生する温度の高い水を冷却して該外部機器に戻すための冷水の製造装置であって、熱媒体を貯留し加熱してその一部を蒸気にする蒸気発生部、前記蒸気発生部で生成した前記蒸気を流入させて凝縮させ、更にその一部を再度蒸発させて温度の下がった熱媒体を生成する冷熱媒体生成部、前記温度の下がった熱媒体と前記水とを熱交換させて該水の温度を下げる水冷却部、及び前記水冷却部で熱交換された後の熱媒体を前記蒸気発生部に戻す熱媒体還流管とを備えた冷却手段と、前記冷熱媒体生成部内の蒸気を吸引し圧縮して高温化した熱媒体にして前記蒸気発生部に供給する吸引圧縮手段とを有し、前記熱媒体の加熱は前記蒸気発生部に供給された前記高温化した熱媒体との間の熱交換により行ない、前記蒸気の凝縮は前記蒸気発生部で熱交換した後の温度の下がった熱媒体を前記冷熱媒体生成部に供給し熱交換させることにより行う。
【0020】
蒸気発生部で生成した蒸気を流入させると共に、熱交換した後の温度の下がった熱媒体を冷熱媒体生成部内に供給して相互に熱交換させることにより、蒸気を凝縮させて熱媒体に戻すことができる。そして、冷熱媒体生成部内は吸引圧縮手段で吸引されて減圧状態になっているので、凝縮して生成した熱媒体の表面では蒸発が生じ易くなっている。このため、凝縮して生成した熱媒体の表面では蒸発が活発に起こり、熱媒体からは蒸発に伴う蒸発熱が奪われることになり、熱媒体の温度は徐々に低下する。そして、温度の下がった熱媒体は冷熱媒体生成部に溜まる。
従って、この温度の下がった熱媒体と外部機器から発生する温度の高い水とを水冷却部に供給して熱交換させることにより、この水の温度を下げることができる。
【0021】
また、水冷却部で熱交換されて温度が上がった熱媒体を蒸気発生部に還流させると共に、冷熱媒体生成部内で凝縮しない蒸気を圧縮して高温化して蒸気発生部に貯留している熱媒体の加熱に利用するようにしているので、熱媒体を循環させて繰り返し使用することができる。更に、高温の熱媒体は、冷熱媒体生成部内の蒸気を吸引圧縮手段で吸引し圧縮することにより生成させるので、高温の熱媒体を効率的に得ることができる。
なお、熱媒体には、例えば、水、エチルアルコール、アンモニアを使用することができる。
【0022】
第3の発明に係る冷水の製造装置において、前記冷却手段が2以上の場合、前記各蒸気発生部に貯留された前記熱媒体の加熱は、前記各蒸気発生部を第1の熱媒体連通管で直列に連通し前記高温化させた熱媒体を前記水の流れる方向の上流側に設けた前記蒸気発生部から下流側に設けた前記蒸気発生部に向けて通過させることにより行ない、また、最下流側の前記冷熱媒体生成部内の蒸気の凝縮は最下流側の前記蒸気発生部で熱交換した後の温度の下がった熱媒体を前記冷熱媒体生成部に供給し熱交換させることにより行ない、更に、前記各冷熱媒体生成部をその1つ下流側の前記冷熱媒体生成部と第2の熱媒体連通管で直列に連通し、該最下流側の前記冷熱媒体生成部を除く前記各冷熱媒体生成部内の蒸気の凝縮は前記各冷熱媒体生成部にその1つ下流側の前記冷熱媒体生成部内の蒸気を流入させて混合することにより行ない、しかも、最上流側の前記冷熱媒体生成部内の蒸気を前記吸引圧縮手段に戻すことが好ましい。
【0023】
冷却手段を2以上使用して水の冷却を行う場合、各蒸気発生部を第1の熱媒体連通管で直列に連通し高温化させた熱媒体を上流側の蒸気発生部から下流側の蒸気発生部に向けて通過させている。
その結果、上流側の蒸気発生部程、温度の高い熱媒体が流入することになり、熱媒体の蒸発が活発になる。
また、各冷熱媒体生成部を第2の熱媒体連通管で直列に連通し、最下流側の冷熱媒体生成部内には最下流側の蒸気発生部で熱交換した後の温度の下がった熱媒体を供給し、最下流側の冷熱媒体生成部を除く各冷熱媒体生成部内には各冷熱媒体生成部の1つ下流側の冷熱媒体生成部内の蒸気を流入させるようにしている。ここで、最下流側の蒸気発生部で熱交換した後の熱媒体の温度よりは最下流側の冷熱媒体生成部内の蒸気の温度は高くなっている。また、上流側の冷熱媒体生成部内の蒸気程、その温度は高くなっている。
その結果、最下流側の冷熱媒体生成部内には最下流側の蒸気発生部で熱交換した後の熱媒体を供給し、最下流側の冷熱媒体生成部を除く各冷熱媒体生成部内にはその1つ下流側の冷熱媒体生成部内の蒸気を流入させることにより、各蒸気発生部から冷熱媒体生成部内に流入した温度の高い蒸気を冷却して凝縮させることができる。
【0024】
更に、各冷熱媒体生成部は第2の熱媒体連通管で直列に連通されて、最上流側の冷熱媒体生成部が吸引圧縮手段に接続されているので、上流側の冷熱媒体生成部内程、減圧状態が向上している。このため、上流側の冷熱媒体生成部内で凝縮した熱媒体程、蒸発が活発になる。その結果、上流側の冷熱媒体生成部内で凝縮した熱媒体程、その温度は低下する。そして、温度の下がった熱媒体は各冷熱媒体生成部の下部に溜まる。なお、最下流側の冷熱媒体生成部内では、蒸気と熱交換した後の熱媒体が蒸気から生成した温度の低い熱媒体と混合されて溜まる。
以上のことから、冷却手段を2以上使用した場合、上流側の冷熱媒体生成部程、多くのより温度の下がった熱媒体を生成することができる。その結果、上流側の水冷却部程、多くのより温度の下がった熱媒体が供給されることになって、冷却能率が高くなる。
従って、温度の高い水を上流側の水冷却部から下流側の水冷却部に順次供給することにより、上流側の水冷却部程、温度の下がった熱媒体と水との間の温度差を大きく保つことができ、効率的な水の冷却を行うことができる。
【0025】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。ここに、図1は本発明の第1の実施の形態に係る冷水の製造装置の説明図、図2は本発明の第2の実施の形態に係る冷水の製造装置の説明図、図3は本発明の第3の実施の形態に係る冷水の製造装置の説明図である。
図1に示すように、本発明の第1の実施の形態に係る冷水の製造装置10は、図示しない外部機器で発生した温度の高い水を冷却して外部機器に戻す冷却塔11と、冷却塔11内を減圧状態に保持する減圧手段の一例である吸引圧縮ポンプ12と、冷却塔11内に多段(ここでは、3段)に設けられて供給された水を滞留しながら順次下方に移動させる受水部13と、各受水部13に設けられ、各受水部13に滞留されている水の一部を吸引し蒸発させて残りの水の温度を下げる通気性を備えた吸水性部材の一例である複数の木綿織物(木綿布)14とを有している。以下、これらについて詳細に説明する。
【0026】
冷却塔11は、内部を減圧状態に保持した際に大気圧との間に生じる圧力差による変形に耐えられる強さを備えた、例えば鉄製の容器である。そして、上部に冷却塔11内で発生した水蒸気を排出する水蒸気排出口15を備えると共に、上側位置には外部から供給される温度の高い水を冷却塔11内に吹き込む吹き込み手段の一例であって吐出ポンプ16を有する噴霧ノズル17を備えている。更に、冷却塔11の下側には冷却塔11内に空気を流入させる空気流入口18と、冷却塔11の下部には処理されて温度の下がった冷水を外部に排出する排水口19が設けられている。
このような構成とすることにより、冷却塔11内を吸引圧縮ポンプ12で排気して、冷却塔11内を、例えば絶対圧力で0.05〜0.9kg/cm の減圧状態に保持することができる。そして、減圧状態に保持された冷却塔11内に温度の高い水を噴霧ノズル17を介してシャワー状に噴出させることにより、冷却塔11内で水滴を形成して、下方に向け落下させることができる。その際、水滴表面において水の一部を蒸発させ、その際に気化熱が奪われることによって、残りの水の温度を下げて温度の下がった水滴を生成することができる。
【0027】
吸引圧縮ポンプ12は、水蒸気排出口15に水蒸気排出配管20を介して接続されており、例えば、水封止型の真空ポンプ21と真空ポンプ21の排気側に接続された排気配管22に設けられた絞り弁23を有している。
真空ポンプ21を運転することにより、冷却塔11内を減圧状態に保持しながら、冷却塔11内の水から蒸発して生成した水蒸気を吸引することができる。吸引された水蒸気は排気配管22に絞り弁23が設けられているため、真空ポンプ21内と絞り弁23より上流側の排気配管22内で圧縮(水蒸気の圧力は、例えば1.1〜2.5kg/cm となる)されて高温化し、次いでその一部が凝縮して高温の水蒸気混じりの温熱水を生成する。生成した温熱水は、二次側が2系統の流路を備えた熱交換器24の一次側に流入し熱交換を行なって排出される。
【0028】
ここで、熱交換器24の二次側の一方に外部機器から排出された温度の高い水(温水)を流入させて、排出側に接続した配管25により吐出ポンプ16の入側に供給することにより、熱交換器24を冷却塔11に供給する温度の高い水を更に加熱する加熱器として使用することができる。また、熱交換器24の二次側の他方に送風機26により空気を流入させて、排出側に接続した配管27を介して空気流入口18に供給することにより、熱交換器24を冷却塔11に流入させる空気を加熱する加熱器として使用することができる。なお、配管27には、加熱された空気を乾燥する乾燥器の一例として吸湿剤型乾燥器28が設けられている。ここで、吸湿剤型乾燥器28に使用する吸湿剤としては、固体状のものとしてはシリカゲル、活性アルミナ、また液体状のものとしては塩化カルシウム等のハロゲン塩の水溶液や、エチレングリコール等のグリコールの誘導体を使用することができる。
【0029】
各受水部13は、冷却塔11の内壁に取付けられた底板29を有し、底板29には複数の水蒸気通過口30と、水蒸気通過口30が形成されていない箇所に複数の小孔31を散在させて設けている。更に、水蒸気通過口30の周囲には、堰32が設けられている。各水蒸気通過口30の中央部上方の位置には、木綿織物14を掛止して配置させる掛止部材33が冷却塔11の内壁に取付けられた図示しない支持部材により固定されている。ここで、木綿織物14は、例えば、一端側が閉じた円筒形状に縫合されており、一端側を掛止部材33に掛止し、開口した他端側を水蒸気通過口30の外周側の底板29と接触させ、水蒸気通過口30を上から覆い囲むように設置している。
このような構成とすることにより、噴霧ノズル17から温度の高い水を冷却塔11内に噴出させると、水滴となった水の一部は最上段(第1段)の受水部13に取付けられた木綿織物14の表面に付着して木綿織物14の繊維間の隙間に進入する。また、残りの液滴は底板29の上に落下して滞留水34として滞留される。滞留水34の一部は小孔31を通って落下するが、滞留水34の更に一部は木綿織物14に吸水されて木綿織物14内の繊維間の隙間に進入する。
【0030】
小孔31を通過した水は、その下側の(ここでは第2段の)受水部13に設けられた底板29上に滞留されて滞留水34となる。そして、その滞留水34の一部は木綿織物14に吸水されて木綿織物14内の繊維間の隙間に進入し、更に一部は下側の(ここでは最下段の)受水部13に落下して滞留水34となる。このようにして、冷却塔11内に供給された温水は、各受水部13に順次受けられて滞留水34を形成し、最終段の受水部13の底板29に設けられた小孔31を通過した水は、冷却塔11の下部に貯留水35として貯留される。なお、貯留水35の表面、滞留水34の表面、及び木綿織物14の表面からは、水が蒸発するため水蒸気が発生する。
そして、最上段の受水部13で発生した水蒸気は、冷却塔11の上部の水蒸気排出口15から冷却塔11の外部に排出される。また、第2段以降の受水部13で発生した水蒸気、及び貯留水35表面から発生した水蒸気は、その上の段の底板29に設けられた水蒸気通過口30を通過して円筒形状をした木綿織物14の内側に進入する。木綿織物14には通気性がある(例えば微細な孔が多数形成されている)ので、水蒸気は容易に木綿織物14を通過して冷却塔11の上部にまで達し、水蒸気排出口15から冷却塔11の外部に出ることができる。
【0031】
冷却塔11の下側には循環ポンプ36を備えた噴霧ノズル37が設けられている。循環ポンプ36を運転して冷却塔11の下部に貯留された貯留水35を吸引して噴霧ノズル37の噴出口37aから水滴として落下させることにより、落下中の水滴表面から一部の水を蒸発させて、水滴の温度を下げることができる。この水滴は貯留水35の表面に着水することにより回収される。
従って、循環ポンプ36を運転して貯留水35を噴霧ノズル37を介して循環させることにより、貯留水35の温度を更に下げることができる。
【0032】
次に、本発明の第1の実施の形態に係る冷水の製造装置10を用いた冷水の製造方法について詳細に説明する。
冷水の製造装置10の運転を開始する場合、排水口19に接続した図示しない停止弁を閉じて、外部機器から供給された温度の高い水を冷却して外部機器に安定して戻すことが可能となるまでの間に外部機器が必要とする量の水を、冷却塔11の下部に設けられた図示しない給水口から冷却塔11に給水して貯留水35として貯留する。
そして、配管25、27に設けた図示しない停止弁、絞り弁23を閉じた状態で真空ポンプ21を運転して、真空ポンプ21に設けられた図示しない排気口から空気を排出する。これによって、冷却塔11内は減圧状態となる。なお、真空ポンプ21の排気口には圧力調整弁が設けられているので、予め設定した圧力まで減圧される。冷却塔15内の圧力が、例えば0.07〜0.6kg/cm となったことを確認した後、絞り弁23を開ける。
【0033】
次いで、排水口19に接続した停止弁と、配管25に設けた停止弁をそれぞれ開けて吐出ポンプ16を運転して、外部機器から供給され熱交換器24を通過して温度が更に高くなった水を噴霧ノズル17より冷却塔11内に噴霧する。
一方、冷却塔11の下部に貯留されている貯留水35の一部を外部機器に戻す。また、配管27に設けた停止弁を開けて送風機26を運転して、熱交換器24を通過した空気を吸湿剤型乾燥器28を経由させて空気流入口18から冷却塔11内に流入させる。なお、流入させる空気量は、冷却塔11内の圧力が、例えば0.07〜0.6kg/cm に保持されるように送風機26で調製する。
更に、循環ポンプ36を運転して、噴霧ノズル37から貯留水35を噴霧させる。噴霧ノズル37から噴霧された貯留水35の水滴は、落下中に水滴の表面から一部の水が蒸発して水滴の温度が下がり、温度の下がった水滴が貯留水35の水面に着水する。これによって、貯留水35の温度を下げることができる。
【0034】
なお、発生した水蒸気は、空気流入口18から流入した乾燥空気に混入する。この空気は、最下段の受水部13の底板29に設けられた水蒸気通過口30を通って最下段の受水部13に取付けられた木綿織物14の内側に進入し、更に木綿織物14を透過して最下段の受水部13の上側の空間部に到達する。
そして、この空気は更に上側に設けられた各受水部13を同様の経路を通って通過して、最上段の受水部13の上側の空間部に到達する。次いで、この空気は、冷却塔11の上部の水蒸気排出口15から真空ポンプ21に吸引される。
【0035】
噴霧ノズル17より冷却塔11内に噴霧された水は微小な水滴となって冷却塔11内を落下する。その際、冷却塔11内は減圧状態に保持されているので、水滴の表面からは、水の一部が蒸発して水滴の温度を下げる。温度の下がった水滴の一部は、第1段目の受水部13に取付けられた木綿織物14に付着してその繊維間の隙間に進入する。
また、残りの水滴は第1段目の受水部13の底板29に受けられて滞留水34となる。この滞留水34の一部は底板29に設けられた小孔31を通過して落下する。
【0036】
更に、一部の滞留水34は、木綿織物14に吸水されて繊維間の隙間に進入する。木綿織物14に吸水された水は繊維間の隙間に進入して均一に広がる。このため、木綿織物14内に進入した水は木綿織物14の表面でから容易に蒸発することができ、気化熱を奪われた残りの水の温度は低下する。
その結果、第1段目の受水部13の底板29上に溜まった滞留水34と木綿織物14内に進入した水との間に温度差が生じて、温度の高い滞留水34から温度の低い木綿織物14内に進入した水に向けて熱が移動するため、滞留水34の温度は低下する。更に、第1段目の受水部13の底板29上に溜まった滞留水34の表面からも水の蒸発が生じるため、滞留水34の温度は更に低下する。
【0037】
温度の下がった滞留水34は、底板29の小孔31から落下して第2段目の受水部13の底板29に受けられて滞留水34となる。この滞留水34の一部は底板29に設けられた小孔31を通過して落下する。更に、一部の滞留水34は、第2段目の受水部13に取付けられた木綿織物14に吸水されて繊維間の隙間に進入する。そして、木綿織物14に吸水された水は木綿織物14の表面から容易に蒸発して木綿織物14内の残りの水の温度を低下させる。
このため、第2段目の受水部13の底板29上に溜まった滞留水34と木綿織物14内に進入した水との間に温度差が生じ、温度の高い滞留水34から温度の低い木綿織物14内に進入した水に向けて熱が移動して、第2段目の受水部13の底板29に溜まった滞留水34の温度を低下させる。また、第2段目の受水部13の底板29上に溜まった滞留水34の表面からも水の蒸発が生じるため、滞留水34の温度は更に低下する。
【0038】
このように受水部13に溜まって一部が蒸発することで温度の下がった滞留水34が、下側の受水部13に供給されその一部を蒸発させて滞留水34の温度を更に下げることを繰り返すことにより、最下段の受水部13の底板29に設けられた小孔31から落下する水の温度は、冷却塔11に供給された温度の高い水の温度と比較して大きく低下する。そして、最下段の受水部13の底板29に設けられた小孔31から落下する水は、冷却塔11の下部に貯留される貯留水35中に混入し、貯留水35の温度を下げる。
なお、各受水部13に取付けた各木綿織物14の表面、及び各底板29上に溜まった滞留水34の表面から蒸発して発生した水蒸気は、空気流入口18から導入した乾燥空気から形成され冷却塔11の下側から上側に向かって流れる空気の流れの中に混入し、水蒸気排出口15から排出する。このため、冷却塔11内で発生した水蒸気の滞留が発生せず、継続した水の蒸発が進行する。
【0039】
各受水部13に取付けた各木綿織物14の表面、及び各底板29上に溜まった滞留水34の表面から安定して水蒸気が発生するようになると、真空ポンプ21内には多くの水蒸気が流れ込むことになる。その結果、真空ポンプ21内と絞り弁23より上流側の排気配管22内では水蒸気の圧縮が行なわれて水蒸気は高温化し、次いでその一部が凝縮して高温の水蒸気混じりの温熱水が生成する。この温熱水は、熱交換器24の一次側に流入するので、二次側を通過する温水と、空気はそれぞれ加熱されて冷却塔11内に供給される。
冷却塔11に供給する水の温度が高くなると、冷却塔11内での水の沸点との温度差が小さくなって水は蒸発し易くなる。このため、冷却塔11に供給した水の温度が大きく低下するようになる。
また、空気が加熱されると、空気の飽和水蒸気圧が高くなり、冷却塔11内で発生した水蒸気は空気中に混入し易くなって冷却塔11内の水蒸気圧が上昇せず、水の蒸発が促進される。このため、水の温度は大きく低下する。その結果、冷却塔11の下部に貯留する貯留水35の温度も大きく下がり、より低温の冷水が排水口19から外部機器に戻る。
【0040】
図2に示すように、本発明の第2の実施の形態に係る冷水の製造装置38は、熱媒体の一例である水(以下、熱媒水という)を貯留し加熱してその一部を水蒸気にする蒸気発生部39と、蒸気発生部39で生成した水蒸気を流入させて凝縮させ、更にその一部を再度蒸発させて温度の下がった熱媒水を生成する冷熱媒体生成部40と、温度の下がった熱媒水と図示しない外部機器によって発生する温度の高い水とを熱交換させて、温度の高い水の温度を下げる水冷却部41と、水冷却部41で熱交換された後の熱媒水を蒸気発生部39に戻す熱媒体還流管42とを備えた冷却手段43が直列に複数(図2では3基)接続されて構成されている。
更に、冷水の製造装置38には、最上流の冷却手段43の冷熱媒体生成部40内で凝縮しなかった蒸気を吸引し圧縮して高温化した熱媒体にして最上流側の冷却手段43の蒸気発生部39に供給する吸引圧縮手段44が設けられている。以下、これらについて詳細に説明する。
【0041】
吸引圧縮手段44は、最上流側の冷却手段43の冷熱媒体生成部40内で凝縮しなかった水蒸気を排出する蒸気回収管45と、蒸気回収管45の一端側が吸気側に接続されている真空ポンプ46と、真空ポンプ46の排気側に一端側が接続された排気配管47に設けられた絞り弁48を有している。更に、吸引圧縮手段44は、排気配管47の他端側が流入側に接続された温熱水タンク49と、温熱水タンク49の流出側に接続した温熱水供給管50を有している。
【0042】
真空ポンプ46を使用することにより、冷熱媒体生成部40内で凝縮しなかった水蒸気を吸引することができる。また、吸引された水蒸気は排気配管47に絞り弁48が設けられているため、真空ポンプ46内と絞り弁48より上流側の排気配管47内で圧縮されて高温化し温熱水にすることができる。そして、生成した温熱水を温熱水タンク49に流入させて貯留し、その一部を排出することができる。温熱水を温熱水タンク49に貯留してから排出するようにしたので、温熱水を安定して供給することが可能となる。
なお、温熱水タンク49には、加熱ヒータ51を設けることが好ましい。加熱ヒータ51を設けることにより、必要に応じて温熱水の温度を更に上げたり、生成した温熱水の保温を行うことができる。
【0043】
各蒸気発生部39は、熱媒水を貯留する蒸気発生部本体52と、蒸気発生部本体52内の下部に設けられ貯留している熱媒水を加熱する加熱用熱交換器53と、熱媒水を加熱して発生させた水蒸気を冷熱媒体生成部40に輸送する蒸気管54を有している。
そして、最上流側の冷却手段43の蒸気発生部39に設けられた加熱用熱交換器53の一次側の流入側には温熱水供給管50が接続されている。また、各冷却手段43の蒸気発生部39に設けられた各加熱用熱交換器53の一次側の流出側とその一つ下流側の冷却手段43の蒸気発生部39に設けられた加熱用熱交換器53の一次側の流入側とはそれぞれ第1の熱媒体連通管55で接続されている。
このような構成とすることにより、温熱水タンク49に貯留している温熱水を、上流側の冷却手段43の加熱用熱交換器53から下流側の冷却手段43の加熱用熱交換器53に向けて順次供給することができ、各蒸気発生部本体52内に貯留されている熱媒水を加熱することができ、そのとき発生した水蒸気を各蒸気管54を介して各冷熱媒体生成部40に輸送することができる。
【0044】
各冷熱媒体生成部40は、蒸気管54が接続され流入した水蒸気が凝縮して貯留される冷熱媒体生成部本体56と、冷熱媒体生成部本体56の下側位置に接続された冷熱媒体排出管57を有している。
最下流側の冷却手段43の冷熱媒体生成部40には、冷熱媒体生成部本体56の上部側と最下流側の冷却手段43の蒸気発生部39に設けられた加熱用熱交換器53の一次側の流出側とを接続する戻り配管58が設けられている。また、最上流側の冷却手段43の冷熱媒体生成部本体56の上側位置には蒸気回収管45の他端側が接続されている。そして、最下流側の冷却手段43を除く各冷却手段43のそれぞれの冷熱媒体生成部40には、各冷熱媒体生成部本体56の上部側とその一つ下流側の冷却手段43の冷熱媒体生成部本体56の上側位置とを接続する第2の熱媒体連通管59がそれぞれ設けられている。
【0045】
このような構成とすることにより、吸引圧縮手段44の真空ポンプ46により、各冷熱媒体生成部40内を減圧状態に保つことができる。そして、最下流側の蒸気発生部39で熱交換した後の温度の下がった熱媒水を最下流側の冷熱媒体生成部40に供給することができ、最下流側の冷熱媒体生成部40内の水蒸気を冷却し凝縮させて熱媒水を生成させることができる。ここで、熱媒水を戻り配管58を介して冷熱媒体生成部40内に供給する際には、例えば、戻り配管58の先端側に噴霧ノズルを設けて熱媒水を霧状にして供給することが好ましい。
また、最下流側の冷却手段43を除く各冷却手段43の冷熱媒体生成部本体56内の水蒸気は、一つ下流側の冷熱媒体生成部本体56から流入する水蒸気と熱交換させて凝縮させることができる。
そして、各冷熱媒体生成部本体56で生成した熱媒水は、各冷熱媒体生成部本体56内が減圧状態になっているため蒸発し易く、その一部を蒸発させることにより温度の下がった熱媒水になって、各冷熱媒体生成部本体56の下部に貯留される。
【0046】
特に、最下流側の冷熱媒体生成部40で熱媒水を霧状で供給するようにすると、霧状の熱媒水でも蒸発が生じるので、霧状の熱媒水から直接温度の下がった熱媒水を生成させることができる。そして、最下流側の蒸気発生部39では、それより上流側の蒸気発生部39に比較して発生する水蒸気の量が少ないため、霧状の熱媒水から直接温度の下がった熱媒水を生成させることによって、必要な量の温度の下がった熱媒水を確保することができる。
なお、最上流側の冷却手段43の冷熱媒体生成部本体56内の蒸気は、蒸気回収管45を介して吸引圧縮手段44に流入して再び温熱水になって繰り返し使用することができる。
【0047】
各水冷却部41は、例えば、一次側の流入側が冷熱媒体排出管57に、一次側の流出側が熱媒体還流管42にそれぞれ接続して、二次側に外部機器から発生した温度の高い水を流通させるようにした熱交換器を用いて構成することができる。ここで、最上流側の熱交換器の二次側の流入側は、外部機器から温度の高い水を排出する往き配管60に接続され、最下流側の熱交換器の二次側の流出側は、外部機器に水を戻す復り配管61に接続されており、最下流側の熱交換器を除いた各熱交換器の二次側の流出側は、その一つ下流側の熱交換器の二次側の流入側と連通管62を介して接続されている。
このような構成にすることにより、各熱交換器の一次側に流入する温度の下がった熱媒水は、熱交換されて温度が高くなって各蒸気発生部39に還流するので、熱媒水を繰り返し使用することができる。また、外部機器から発生した温度の高い水は、各熱交換器の二次側を順次通過していくので、徐々に温度が低下し最下流側の熱交換器から排出されたときには十分に冷却されて、再び外部機器に戻すことができる。
【0048】
次に、本発明の第2の実施の形態に係る冷水の製造装置38を用いた冷水の製造方法について詳細に説明する。
先ず、各蒸気発生部39、温熱水タンク49内にそれぞれ予め設定した量の熱媒水を注入する。そして、絞り弁48、温熱水供給管50に設けられた図示しないバルブを閉じた状態で真空ポンプ46を運転して、真空ポンプ46に設けられた図示しない排気口から空気を排出する。これによって、蒸気発生部39、冷熱媒体生成部40内は減圧状態となる。なお、排気口には圧力調整弁が設けられているので、予め設定した圧力まで減圧される。
また、温熱水タンク49の加熱ヒータ51で貯留している熱媒水を加熱する。そして、蒸気発生部39、冷熱媒体生成部40の圧力が、例えば、0.04〜0.4kg/cm となって、温熱水タンク49内の熱媒水の温度が、例えば40〜70℃となったことを確認した後、加熱ヒータ51での加熱を停止し、絞り弁48及び温熱水供給管50に設けられたバルブを開ける。
【0049】
温熱水供給管50に設けられたバルブを開けることにより、温熱水タンク51から温熱水が最上流側の蒸気発生部39の加熱用熱交換器53に供給され、次いで、各第1の熱媒体連通管55を介してその一つ下流側の蒸気発生部39の加熱用熱交換器53に供給されるので、各蒸気発生部本体52では貯留されている熱媒水が加熱されて水蒸気が発生する。
最下流側の加熱用熱交換器53で熱交換された後の温度の下がった熱媒水は戻り配管58を介して最下流側の冷熱媒体生成部本体56内に供給されるので、最下流側の冷熱媒体生成部本体56内の水蒸気は冷却されて凝縮し熱媒水になる。
また、最下流側の冷却手段43を除く各冷却手段43の冷熱媒体生成部本体56内の水蒸気は、一つ下流側の冷熱媒体生成部本体56から第2の熱媒体連通管を介して流入する水蒸気で冷却されて凝縮し熱媒水になる。各冷熱媒体生成部本体56で生成した熱媒水は、各冷熱媒体生成部本体56内が減圧状態になっているためその一部が蒸発し、温度の下がった熱媒水になって各冷熱媒体生成部本体56の下部に貯留する。
なお、最下流側の冷熱媒体生成部本体56の下部には、戻り配管58を介して供給されて水蒸気と熱交換した後の熱媒水が、蒸気から生成した温度の低い熱媒体と混合されて溜まる。
【0050】
一方、最上流側の冷却手段43の冷熱媒体生成部本体56内の水蒸気は蒸気回収管45を介して真空ポンプ46内に吸引され圧縮されて再び温熱水になって、温熱水タンク49に貯留される。
ここで、温熱水タンク49内に温熱水が流入することを確認して、外部機器から発生した温度の高い水を往き配管60を介して最上流側の熱交換器の二次側に流入させ、連通管62を介して順次下流側の熱交換器の二次側を通過させる。
一方、各熱交換器の一次側には、各冷熱媒体生成部本体56内で生成し貯留されている温度の下がった熱媒水が冷熱媒体排出管57を介して供給され、熱媒体還流管42を介して各蒸気発生部本体52に戻されているので、外部機器から発生した温度の高い水は二次側を通過する際に温度の下がった熱媒水との間で熱交換を行って徐々に温度を下げていく。そして、最下流側の熱交換器の二次側の流出側から復り配管61を介して外部機器に戻す。
【0051】
図3に示すように、本発明の第3の実施の形態に係る冷水の製造装置63は、第2の実施の形態に係る冷水の製造装置38の各水冷却部41の代りに、例えば、水冷却部本体64と、水冷却部本体64内に設けられ流入側が冷熱媒体排出管57に、流出側が熱媒体還流管42にそれぞれ接続する冷媒通路65と、冷媒通路65の外表面に水を吹きかける水噴出器66を備えた水冷却部67をそれぞれ使用することが特徴になっている。このため、水冷却部67についてのみ説明する。
最上流側の水冷却部67に設けられた水噴出器66の流入側は、外部機器から温度の高い水を排出する往き配管60に接続され、最下流側の水冷却部67の水冷却部本体64の下端側は、水冷却部本体64の下部に溜まった水を外部機器に戻す復り配管61が接続されている。また、最下流側の水冷却部67を除いた各水冷却部67の水冷却部本体64の下端側と、その一つ下流側の水冷却部67の水噴出器66の流入側とは連絡管68を介して接続されている。更に、各水冷却部本体64の上端側には、各水冷却部本体64内に存在する水蒸気を吸引圧縮手段44に供給する水蒸気配管69が設けられている。
【0052】
このような構成にすることにより、各水冷却部67の冷媒通路65に温度の下がった熱媒水を流しながら、その外表面に外部機器から排出される水を吹きかけることができる。その結果、外部機器から排出される水を冷媒通路65の外表面に接触させて、その温度を下げることができる。一方、冷媒通路65内を流れる熱媒水は冷媒通路65の内表面に接触して温度が高くなって各蒸気発生部39に還流するので、熱媒水を繰り返し使用することができる。
また、外部機器から発生した温度の高い水は、各水冷却部67を順次通過していくので、徐々に温度が低下し最下流側の水冷却部67から排出されたときには十分に冷却されて、再び外部機器に戻すことができる。
更に、各水冷却部本体64内に存在する水蒸気は水蒸気配管69を介して吸引圧縮手段44に供給されるので、吸引圧縮手段44に供給される水蒸気量がより安定して確保されると共に、これを温熱水として再利用することができる。
【0053】
次に、本発明の第3の実施の形態に係る冷水の製造装置63を用いた冷水の製造方法について詳細に説明するが、第2の実施の形態に係る冷水の製造装置38を用いた冷水の製造方法と比較して水冷却部67で冷水の製造を行うことが特徴となっている。従って、水冷却部67の使用方法に関することのみ説明する。
先ず、各蒸気発生部39、温熱水タンク49内にそれぞれ予め設定した量の熱媒水を注入する。そして、絞り弁48、温熱水供給管50に設けられた図示しないバルブを閉じた状態で真空ポンプ46を運転して、真空ポンプ46に設けられた図示しない排気口から空気を排出して、蒸気発生部39、冷熱媒体生成部40、及び水冷却部67内を減圧状態にする。なお、排気口には圧力調整弁が設けられているので、予め設定した圧力まで減圧される。
【0054】
そして、温熱水タンク49内に温熱水が流入することを確認して、外部機器から発生した温度の高い水を往き配管60を介して最上流側の水冷却部67の水噴出器66に供給し、水冷却部本体64内に噴出させて冷媒通路65の外表面に吹きかける。一方、冷媒通路65には、各冷熱媒体生成部本体56内で生成し貯留されている温度の下がった熱媒水が冷熱媒体排出管57を介して供給され、熱媒体還流管42を介して各蒸気発生部本体52に戻されているので、外部機器から発生した温度の高い水は冷媒通路65の外表面と接触して温度を下げていく。そして、温度が下がった水は水冷却部本体64の下部に溜まる。
ここで、水冷却部本体64の下端側と、その一つ下流側の水冷却部67の水噴出器66の流入側とは連絡管68を介して接続されている。このため、水冷却部本体64の下部に溜まった温度の下がった水は、一つ下流側の水冷却部67の水噴出器66から再び水冷却部本体64内に噴出されて、その内部に設けられた冷媒通路65と接触して温度が低下する。
このように、各水冷却部67を通過する度に水は徐々に温度を下げていくので、最下流側の水冷却部67の水冷却部本体64の下端側には、十分に温度が下がった水が溜まることになる。そして、十分に温度が下がった水は、復り配管61を介して外部機器に戻される。
【0055】
以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の冷水の製造方法及びその装置を構成する場合も本発明の権利範囲に含まれる。例えば、第1の実施の形態では、冷却塔から排出される水蒸気を圧縮して高温化させて温熱水を生成しこの温熱水を熱源にして冷却塔に供給する温水と空気の加熱を行なったが、電気ヒータ等の他の熱源を用いて加熱してもよい。また、空気の乾燥に吸湿剤型乾燥器を使用したが、空気を冷却し含有される水蒸気を凝縮させることにより乾燥させる冷却型乾燥器を使用してもよい。更に、冷却塔に供給する温度の高い水を噴霧ノズルを用いて微小な水滴として冷却塔内に供給したが、超音波振動を用いて微小な水滴として冷却塔内に供給することもできる。
第2の実施の形態では、冷却手段を複数直列に設けたが、冷却手段を1基にすることも可能である。
【0056】
【発明の効果】
請求項1〜4記載の冷水の製造方法においては、冷却塔を減圧状態に保持し、供給された温度の高い水は多段にわたって設けられた各受水部で一旦滞留されながら順次その下方に設けられた受水部に移されて冷却塔の下部まで移動され、しかも、各受水部には通気性を備えた吸水性部材が設けられ、滞留している水の一部を吸水性部材内に拡散させてその表面から蒸発させることにより気化熱を奪って、残りの水の温度を下げるので、外部機器の冷却で発生した温度の高い水を効率よく安価に冷却して冷水として外部機器に戻すことが可能となる。
【0057】
特に、請求項2記載の冷水の製造方法においては、冷却塔の下側からは空気を流入させ、冷却塔内を通過させて冷却塔の上側から排出するので、発生した水蒸気は空気の流れの中に混入して冷却塔の外部に排出され、冷却塔内の水蒸気圧の上昇を防止して水の温度が低下しても水の蒸発を継続して起こさせることができ、温度の下がった冷水を効率的に製造することが可能となる。
【0058】
請求項3記載の冷水の製造方法においては、冷却塔の下側から流入させる空気は加熱及び/又は乾燥されているので、冷却塔内の空気の水蒸気圧を低いレベルに維持して冷却塔内で水を継続して蒸発させることができ、温度の下がった冷水を製造することが可能となる。
【0059】
請求項4記載の冷水の製造方法においては、外部機器によって発生した温度の高い水は、加熱されて冷却塔に供給されるので、水の温度を冷却塔内での水の沸点に近づけて水の蒸発を促進することができ、水の冷却効率を向上させることが可能となって、より温度の下がった冷水を製造することが可能となる。
【0060】
請求項5〜10記載の冷水の製造装置においては、上部に水蒸気排出口を備えると共に上側位置には外部から供給される水をシャワー状に入れる吹き込み手段を備え、更に下部には処理されて温度の下がった水を外部に排出する排水口を設けた冷却塔と、水蒸気排出口に連結され冷却塔内を減圧状態に保持する減圧手段と、冷却塔内に多段に設けられて供給された水を滞留しながら順次下方に移動させる受水部と、各受水部に設けられ、各受水部に滞留されている水の一部を吸引し蒸発させて残りの水の温度を下げる通気性を備えた吸水性部材とを有するので、簡単な装置構成で外部機器の冷却で発生した温度の高い水を安価に効率よく冷却して冷水として再び外部機器に戻すことが可能となる。
【0061】
特に、請求項6記載の冷水の製造装置においては、各受水部には滞留している水を下方に移す複数の小孔が散在して設けられているので、各受水部では滞留している水の冷却を行ないながら、冷却された水を下側の受水部に供給することが可能となる。
【0062】
請求項7記載の冷水の製造装置においては、各受水部には発生した水蒸気を冷却塔内で上側に移動させる複数の水蒸気通過口が設けられているので、下側で発生した水蒸気を上側に移動させて冷却塔内に水蒸気が滞留することを防止でき、冷却塔内で水を継続して蒸発させて温度の下がった冷水を製造することが可能となる。
【0063】
請求項8記載の冷水の製造装置においては、冷却塔の下側には冷却塔内に空気を流入させる空気流入口が設けられているので、冷却塔内の空気の水蒸気圧を低いレベルに維持して冷却塔内で水を継続して蒸発させることができ、温度の下がった冷水を製造することが可能となる。
【0064】
請求項9記載の冷水の製造装置においては、空気流入口には加熱器及び/又は乾燥器が接続されているので、冷却塔内の空気の水蒸気圧と飽和水蒸気圧との差を大きく保って水を継続して蒸発させることができ、温度の下がった冷水を製造することが可能となる。
【0065】
請求項10記載の冷水の製造装置においては、吹き込み手段には、冷却塔に供給する温度の高い水を加熱する加熱器が接続されているので、冷却塔に供給する温度の高い水を加温して水の温度を冷却塔内での水の沸点に近づけて水の蒸発を促進することができ、水の冷却効率を向上させることが可能となる。その結果、より温度の下がった冷水を製造することが可能となる。
【0066】
請求項11及び12記載の冷水の製造装置においては、熱媒体を貯留し加熱してその一部を蒸気にする蒸気発生部、蒸気発生部で生成した蒸気を流入させて凝縮させ、更にその一部を再度蒸発させて温度の下がった熱媒体を生成する冷熱媒体生成部、温度の下がった熱媒体と水とを熱交換させて水の温度を下げる水冷却部、及び水冷却部で熱交換された後の熱媒体を蒸気発生部に戻す熱媒体還流管とを備えた冷却手段と、冷熱媒体生成部内の蒸気を吸引し圧縮して高温化した熱媒体にして蒸気発生部に供給する吸引圧縮手段とを有し、熱媒体の加熱は蒸気発生部に供給された高温化した熱媒体との間の熱交換により行ない、蒸気の凝縮は蒸気発生部で熱交換した後の温度の下がった熱媒体を冷熱媒体生成部に供給し熱交換させることにより行うので、温度の下がった熱媒体及び高温化した熱媒体を効率的に得ることができ、更に、熱媒体を外部に排出しないで循環させて繰り返し使用することができ、外部機器の冷却で発生した温度の高い水を効率よく安価に冷却して冷水として外部機器に戻すことが可能となる。
【0067】
特に、請求項12記載の冷水の製造装置においては、冷却手段が2以上の場合、各蒸気発生部に貯留された熱媒体の加熱は、各蒸気発生部を第1の熱媒体連通管で直列に連通し高温化させた熱媒体を上流側に設けた蒸気発生部から下流側に設けた蒸気発生部に向けて通過させることにより行ない、また、最下流側の冷熱媒体生成部内の蒸気の凝縮は最下流側の蒸気発生部で熱交換した後の温度の下がった熱媒体を冷熱媒体生成部に供給し熱交換させることにより行ない、更に、各冷熱媒体生成部をその1つ下流側の冷熱媒体生成部と第2の熱媒体連通管で直列に連通し、最下流側の冷熱媒体生成部を除く各冷熱媒体生成部内の蒸気の凝縮は各冷熱媒体生成部にその1つ下流側の冷熱媒体生成部内の蒸気を流入させて混合することにより行ない、しかも、最上流側の冷熱媒体生成部内の蒸気を吸引圧縮手段に戻すので、各水冷却部内では温度の下がった熱媒体と水との間の温度差を大きく保って効率的に水を冷却することができ、多量の水の冷却を行うことが可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る冷水の製造装置の説明図である。
【図2】本発明の第2の実施の形態に係る冷水の製造装置の説明図である。
【図3】本発明の第3の実施の形態に係る冷水の製造装置の説明図である。
【符号の説明】
10:冷水の製造装置、11:冷却塔、12:吸引圧縮ポンプ、13:受水部、14:木綿織物、15:水蒸気排出口、16:吐出ポンプ、17:噴霧ノズル、18:空気流入口、19:排水口、20:水蒸気排出配管、21:真空ポンプ、22:排気配管、23:絞り弁、24:熱交換器、25:配管、26:送風機、27:配管、28:吸湿剤型乾燥器、29:底板、30:水蒸気通過口、31:小孔、32:堰、33:掛止部材、34:滞留水、35:貯留水、36:循環ポンプ、37:噴霧ノズル、37a:噴出口、38:冷水の製造装置、39:蒸気発生部、40:冷熱媒体生成部、41:水冷却部、42:熱媒体還流管、43:冷却手段、44:吸引圧縮手段、45:蒸気回収管、46:真空ポンプ、47:排気配管、48:絞り弁、49:温熱水タンク、50:温熱水供給管、51:加熱ヒータ、52:蒸気発生部本体、53:加熱用熱交換器、54:蒸気管、55:第1の熱媒体連通管、56:冷熱媒体生成部本体、57:冷熱媒体排出管、58:戻り配管、59:第2の熱媒体連通管、60:往き配管、61:復り配管、62:連通管、63:冷水の製造装置、64:水冷却部本体、65:冷媒通路、66:水噴出器、67:水冷却部、68:連絡管、69:水蒸気配管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a device for producing cold water in which the temperature of hot water generated in an external device is reduced and supplied to the external device as cold water.
[0002]
[Prior art]
Conventionally, when lowering the temperature of hot water generated by cooling an external device (for example, a compressor, an engine, etc.) to make it cold water and supplying it to the external device again, for example, the upper and lower ends of the upper and lower ends are opened for cooling the hot water. Cooling water is allowed to flow down the wall of the passage 1, and it is circulated while evaporatively cooled by contacting it with air introduced from below to cool the wall, the sides are shared with this wall, and the upper and lower ends are closed. An evaporative cooler that cools hot water by flowing it into a spiral second passage formed orthogonal to the first passage is used.
At this time, the hot water passes while turning inside the narrow spiral second passageway whose upper and lower ends are closed, so that the flow is disturbed, the film heat transfer coefficient is improved, and the cooling efficiency is improved. (For example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-10-019478
[0004]
[Problems to be solved by the invention]
However, since the cooling of hot water is performed by heat conduction through the wall, if the temperature of the hot water is not high, or if the cooling of the wall by the cooling water is insufficient, the temperature difference between the wall and the hot water is reduced. This causes a problem that the hot water cannot be cooled efficiently.
Further, since the cooling water circulates through the first flow path while contacting the air introduced from the outside, there is a high possibility that dust or the like is mixed in the cooling water, and the mixed dust is There is a possibility that heat transfer efficiency is reduced by adhering to the wall surface, or the first flow path is partially closed.
The present invention has been made in view of such circumstances, and provides a method and apparatus for producing cold water capable of efficiently cooling hot water generated by cooling of external devices and supplying the cooled water again to the external devices. With the goal.
[0005]
[Means for Solving the Problems]
The method for producing cold water according to the first invention, which meets the above object, reduces the temperature of the water while supplying high-temperature water generated by an external device from the upper side of the cooling tower and dropping the water downward, and cooling the cooled water. A method for producing cold water discharged from a lower portion of the cooling tower, wherein the cooling tower is kept in a reduced pressure state, and the supplied high-temperature water is sequentially retained while temporarily staying in each of the water receiving units provided in multiple stages. The water is transferred to a water receiving section provided therebelow and is moved to the lower part of the cooling tower. In addition, each of the water receiving sections is provided with a water-absorbing member having air permeability, and one of the remaining water is provided. The part is diffused into the water-absorbing member and evaporated from its surface, thereby removing heat of vaporization and lowering the temperature of the remaining water.
[0006]
Since the inside of the cooling tower is kept under a reduced pressure, the boiling point of water in the cooling tower decreases. Therefore, by adjusting the degree of pressure reduction in the cooling tower according to the temperature of the water supplied to the cooling tower, the boiling point of the water can be reduced to near the temperature of the water, and the water can be efficiently evaporated. Become.
At this time, the saturated water vapor pressure increases as the temperature of the water increases. Therefore, as the temperature of the supplied water decreases, it is necessary to lower the absolute pressure in the cooling tower (decrease the degree of pressure reduction). In order to promote the evaporation of water, it is effective to increase the evaporation area. Therefore, it is preferable to supply the water in the cooling tower in the form of small droplets.
On the other hand, when water evaporates, heat of vaporization is required, but there is no heat source in the cooling tower that supplies the heat of vaporization necessary for water to evaporate. Therefore, when water evaporates, part of the heat of the water itself is used as heat of vaporization.
Therefore, when water evaporates, the remaining water loses heat of vaporization in proportion to the evaporated water. Therefore, the temperature of the remaining water decreases.
[0007]
The water whose temperature has dropped falls in the cooling tower, is received by the first (uppermost) water receiving section, and stays there. A water-absorbing member having air permeability, for example, a woven fabric woven with hydrophilic fibers, is provided in the first-stage water-receiving portion in an expanded manner. Therefore, a part of the water received by the first-stage water receiving part enters the water absorbing member and spreads uniformly in the water absorbing member. For this reason, the surface area of the water that has entered the water absorbing member is increased, and evaporation is promoted.
As a result, the temperature of the water remaining in the water-absorbing member decreases, and the temperature of the water staying in the first-stage water-receiving portion in contact with the water in the water-absorbing member also decreases due to heat conduction. Since the amount of water retained in the first-stage water receiving section has an upper limit, in a state where the hot water is continuously supplied, the water retained in the first-stage water receiving section and whose temperature has dropped is reduced to the first level. Move to the two-stage water receiving section.
[0008]
The water-absorbing member is also provided in the second-stage water receiving portion in substantially the same state as in the first stage. Therefore, the water received by the second-stage water receiving section enters the water-absorbing member, spreads uniformly, and evaporates.
As a result, the temperature of the water remaining in the water-absorbing member decreases, and the temperature of the water retained in the second-stage water receiving unit also decreases due to heat conduction. In addition, since water moves sequentially from the first-stage water receiving section toward the second-stage water-receiving section, the water that has accumulated in the second-stage water-receiving section and whose temperature has dropped is lower. Move to the third stage water receiving section. As described above, since the water supplied into the cooling tower is repeatedly cooled while being retained at each water receiving section, the temperature of the water at the time when the water sequentially passes through the water receiving sections and reaches the lower part of the cooling tower is reached. Has dropped to cold water.
[0009]
In the method for producing cold water according to the first invention, it is preferable that air be introduced into the cooling tower from below, pass through the cooling tower, and be discharged from above the cooling tower.
The water supplied to the cooling tower is cooled while staying in each water receiving section while moving down in the cooling tower, so that the water is less likely to evaporate each time the water passes through each water receiving section. Further, the evaporation of water is less likely to occur as the water vapor pressure in the cooling tower increases.
For this reason, by causing external air to flow in from the lower side of the cooling tower, pass through the cooling tower, and form a flow of air exhausted from the upper side of the cooling tower, the generated steam is contained in this air flow. Since it is mixed and discharged to the outside of the cooling tower, it is possible to prevent the water vapor pressure (humidity) in the cooling tower from increasing.
As a result, the water vapor pressure can be reduced, and the evaporation of water can be continued even if the temperature of the water decreases. In addition, since the water-absorbing member provided in each water receiving portion has air permeability, air containing water vapor can freely pass through the water-absorbing member.
[0010]
In the method for producing cold water according to the first invention, it is preferable that the air flowing from below the cooling tower is heated and / or dried.
When water vapor is mixed into the air that has flowed into the cooling tower from the outside, it is preferable that the lower the water vapor pressure in the air is, the more water vapor can be mixed. In order to lower the water vapor pressure in the air, it is possible to relatively lower the water vapor pressure by heating the inflowing air and raising the temperature in the cooling tower to increase the saturated water vapor pressure.
Further, by drying the air, the water vapor pressure can be absolutely reduced. Furthermore, the air can be heated and dried to further reduce the water vapor pressure.
[0011]
In the method for producing cold water according to the first invention, it is preferable that the high-temperature water generated by the external device be heated and supplied to the cooling tower.
In order to evaporate water efficiently in the cooling tower, it is preferable that the temperature of the water is substantially at or close to the boiling point. On the other hand, since the boiling point of water decreases as the pressure in the cooling tower decreases, if the temperature of the water is not high (for example, less than 40 ° C.), the pressure in the cooling tower is reduced to a low pressure ( For example, 0.06 kg / cm in absolute pressure 2 Below).
Therefore, when the water is heated to, for example, 40 to 80 ° C. and then supplied into the cooling tower, the pressure in the cooling tower is set to 0.07 to 0.6 kg / cm in absolute pressure. 2 The water can be efficiently evaporated only by maintaining the pressure in the range, so that it is not necessary to maintain the pressure in the cooling tower at a lower pressure.
[0012]
A cold water producing apparatus according to a second aspect of the present invention is a cold water producing apparatus for cooling high-temperature water generated by an external device and returning the cooled water to the external device. A cooling tower provided with a blowing means for supplying the water supplied from the outside in a shower shape at an upper position, and a drainage port for discharging treated and lowered water to the outside at a lower portion, A decompression means connected to a steam discharge port to maintain the inside of the cooling tower in a decompressed state, a water receiving section provided in multiple stages in the cooling tower and sequentially moving downward while retaining supplied water, A water-absorbing member that is provided in the water-receiving section and has air permeability that lowers the temperature of the remaining water by sucking and evaporating a part of the water retained in each of the water-receiving sections.
[0013]
When water is blown from the upper side of the cooling tower maintained in a reduced pressure state, the water starts to fall as water droplets and evaporates on its surface. For this reason, the heat of vaporization is taken off as the water falls, and the temperature of the remaining water drops rapidly.
Next, the water remaining in the water receiving portion can be further cooled by receiving the water in the water receiving portion, and sucking and evaporating a part of the water by the water absorbing member provided in the water receiving portion.
In addition, since each water receiving part moves sequentially downward while retaining water, the water moves each water receiving part from the upper stage to the lower stage while being cooled. As a result, cold water can be collected at the lower part of the cooling tower.
[0014]
In the apparatus for producing cold water according to the second invention, it is preferable that a plurality of small holes for displacing stagnant water downward are provided in each of the water receiving portions.
By providing a small hole in the water receiving portion, excess water can be transferred to the water receiving portion provided below while a certain amount of water stays in the water receiving portion.
[0015]
In the apparatus for producing cold water according to the second invention, it is preferable that each of the water receiving sections is provided with a plurality of water vapor passages for moving generated steam upward in the cooling tower.
By providing the water vapor passage in the water receiving section, the water vapor generated on the lower side can be moved upward, and can be easily discharged from the upper water vapor discharge port to the outside of the cooling tower.
As a result, it is possible to prevent steam from staying in the cooling tower.
[0016]
In the apparatus for producing cold water according to the second invention, it is preferable that an air inlet for introducing air into the cooling tower is provided below the cooling tower.
The amount of water evaporation is proportional to the difference between the steam pressure of the air in the cooling tower and the saturated steam pressure. Therefore, as the evaporation of water progresses and the water vapor pressure in the air increases, the amount of evaporation gradually decreases. Therefore, the air pressure inlet is provided below the cooling tower to allow air to flow into the cooling tower, for example, to be discharged to the outside from the steam outlet, thereby maintaining the water vapor pressure of the air in the cooling tower at a low level. be able to.
As a result, water can be continuously evaporated in the cooling tower.
[0017]
In the apparatus for producing cold water according to the second invention, it is preferable that a heater and / or a dryer be connected to the air inlet.
The lower the steam pressure of the air flowing in from the outside, the lower the steam pressure of the air in the cooling tower can be reduced. Here, when the air flowing in by the heater is heated and flows into the cooling tower, the temperature in the cooling tower rises, and the saturated steam pressure in the air can be increased, and the steam pressure of the air in the cooling tower can be increased. , The difference between the steam pressure of the air in the cooling tower and the saturated steam pressure can be increased.
Also, if the air flowing in the dryer is dried and allowed to flow into the cooling tower, the steam pressure of the air in the cooling tower can be absolutely reduced, and the steam pressure of the air in the cooling tower and the saturated steam pressure are reduced. Can be increased.
Furthermore, by using a heater and a dryer together and blowing heated dry air into the cooling tower, the steam pressure of the air in the cooling tower is absolutely reduced, and the saturated steam pressure of the air in the cooling tower is reduced. And the difference between the steam pressure of the air in the cooling tower and the saturated steam pressure can be further increased.
[0018]
In the apparatus for producing cold water according to the second invention, it is preferable that a heater for heating high-temperature water supplied to the cooling tower is connected to the blowing unit.
By heating the water supplied to the cooling tower by the heater, the temperature of the water can be brought close to the boiling point of water in the cooling tower, and the evaporation of water can be promoted.
[0019]
According to a third aspect of the present invention, there is provided a cold water manufacturing apparatus for cooling high-temperature water generated by an external device and returning the cooled water to the external device. A steam generating unit for converting a part of the generated steam into a steam, flowing the steam generated by the steam generating unit, condensing the steam, and further evaporating a part of the steam again to generate a cooling medium having a lowered temperature. A water cooling unit for lowering the temperature of the water by exchanging heat with the heat medium having the lowered temperature and the water; and a heat returning the heat medium after the heat exchange in the water cooling unit to the steam generating unit. A cooling means provided with a medium recirculation pipe, and suction and compression means for sucking and compressing the steam in the cooling and heating medium generating unit to supply a high-temperature heating medium to the steam generating unit and supplying the steam to the steam generating unit. The heating is performed by heating the heated medium supplied to the steam generating section. Performed by heat exchange between the condensation of the steam is carried out by the cold medium supply to the heat exchanger to the generating unit a lowered heat medium temperature after the heat exchange with the steam generating unit.
[0020]
Condensing the steam and returning it to the heat medium by allowing the steam generated in the steam generation section to flow in, and supplying the heat medium whose temperature has been reduced after the heat exchange to the cooling medium generation section and exchanging heat with each other. Can be. Since the inside of the cooling medium generating unit is sucked by the suction and compression means and is in a reduced pressure state, the surface of the heat medium condensed and generated easily evaporates. For this reason, evaporation occurs actively on the surface of the heat medium generated by condensation, heat of evaporation accompanying the evaporation is taken from the heat medium, and the temperature of the heat medium gradually decreases. Then, the heat medium whose temperature has dropped accumulates in the cold heat medium generation unit.
Therefore, the temperature of the water can be reduced by supplying the cooled heat medium and the high-temperature water generated from the external device to the water cooling unit to perform heat exchange.
[0021]
In addition, the heat medium whose temperature has been increased by heat exchange in the water cooling unit is returned to the steam generation unit, and the non-condensable steam in the cooling medium generation unit is compressed to a high temperature and stored in the steam generation unit. Since the heat medium is used for heating, the heat medium can be circulated and used repeatedly. Further, the high-temperature heat medium is generated by sucking and compressing the steam in the cold-medium generation unit by the suction and compression means, so that the high-temperature heat medium can be efficiently obtained.
In addition, as the heat medium, for example, water, ethyl alcohol, and ammonia can be used.
[0022]
In the apparatus for producing cold water according to the third invention, when the number of the cooling units is two or more, the heating of the heat medium stored in each of the steam generators is performed by connecting each of the steam generators to the first heat medium communication pipe. By passing the heat medium heated at a high temperature from the steam generating section provided on the upstream side in the water flowing direction to the steam generating section provided on the downstream side. Condensation of the steam in the cooling medium generating section on the downstream side is performed by supplying a heat medium whose temperature has been lowered after heat exchange in the steam generating section on the most downstream side to the cooling medium generating section and performing heat exchange. The cooling medium generating section is connected in series with the cooling medium generating section on one downstream side by a second heat medium communication pipe, and the cooling medium generating sections are excluded except for the cooling medium generating section on the most downstream side. Condensation of the steam inside the unit Said one downstream side of the flowed a vapor of chilling medium in the generator performs by mixing, moreover, it is preferable to return the steam in the chilling medium generating unit on the most upstream side to the suction compression means.
[0023]
When water is cooled by using two or more cooling means, each steam generator is communicated in series with a first heat medium communication pipe to raise the temperature of the heat medium from the upstream steam generator to the downstream steam. It is passed toward the generating part.
As a result, the higher temperature of the heat medium flows into the steam generation section on the upstream side, and the heat medium evaporates more actively.
Further, each cooling medium generating unit is connected in series by a second heat medium communicating pipe, and the temperature of the cooling medium after the heat exchange in the most downstream steam generating unit is lowered in the most downstream cooling medium generating unit. Is supplied, and the steam in the cooling medium generating section on the downstream side of one of the cooling medium generating sections is caused to flow into each cooling medium generating section except the cooling medium generating section on the most downstream side. Here, the temperature of the steam in the cooling medium generating unit on the most downstream side is higher than the temperature of the heat medium after the heat exchange in the most downstream steam generating unit. Further, the temperature of the steam in the upstream-side cooling / medium generating unit is higher.
As a result, the heat medium that has undergone heat exchange in the most downstream steam generation section is supplied into the most downstream cooling medium generation section, and the respective cooling medium generation sections except for the most downstream cooling medium generation section are supplied with the heat medium. By flowing the steam in the cooling medium generating unit on the downstream side, the high-temperature steam flowing from each steam generating unit into the cooling medium generating unit can be cooled and condensed.
[0024]
Furthermore, since each cooling medium generating part is connected in series by the second heat medium communication pipe, and the most upstream cooling medium generating part is connected to the suction compression means, the inside of the upstream cooling medium generating part is The decompression state is improving. For this reason, the more the heat medium condensed in the upstream-side cold medium generation unit, the more active the evaporation. As a result, the temperature of the heat medium condensed in the upstream heat medium generation unit decreases as the heat medium condenses. Then, the heat medium whose temperature has dropped accumulates in the lower part of each cooling medium generating unit. Note that, in the coldest heat generation unit on the most downstream side, the heat medium after heat exchange with the steam is mixed with the heat medium having a low temperature generated from the steam and accumulates.
As described above, when two or more cooling units are used, the heat medium with a lower temperature can be generated as much as the cooling medium generating unit on the upstream side. As a result, the more the temperature of the cooling medium is reduced, the higher the cooling efficiency becomes.
Therefore, by sequentially supplying high-temperature water from the upstream water cooling unit to the downstream water cooling unit, the upstream water cooling unit reduces the temperature difference between the heated heat medium and water. It can be kept large and water can be cooled efficiently.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is an explanatory diagram of a device for producing cold water according to the first embodiment of the present invention, FIG. 2 is an explanatory diagram of a device for producing cold water according to the second embodiment of the present invention, and FIG. It is explanatory drawing of the cold water manufacturing apparatus which concerns on 3rd Embodiment of this invention.
As shown in FIG. 1, a cold water producing apparatus 10 according to a first embodiment of the present invention includes a cooling tower 11 for cooling high-temperature water generated in an external device (not shown) and returning the same to the external device; A suction / compression pump 12 which is an example of a decompression means for keeping the inside of the tower 11 in a decompressed state, and a plurality of stages (here, three stages) provided in the cooling tower 11 to sequentially move downward while retaining the supplied water. And a water-absorbing portion provided in each of the water-receiving portions 13 and having air permeability for lowering the temperature of the remaining water by sucking and evaporating a part of the water retained in each of the water-receiving portions 13. And a plurality of cotton fabrics (cotton cloth) 14 as an example of a member. Hereinafter, these will be described in detail.
[0026]
The cooling tower 11 is, for example, an iron container having a strength enough to withstand deformation due to a pressure difference generated between the cooling tower 11 and the atmospheric pressure when the inside of the cooling tower 11 is kept under reduced pressure. An upper part of the cooling tower 11 is provided with a water vapor discharge port 15 for discharging water vapor generated in the cooling tower 11 and an upper part of the blowing means for blowing high-temperature water supplied from outside into the cooling tower 11. A spray nozzle 17 having a discharge pump 16 is provided. Further, an air inlet 18 through which air flows into the cooling tower 11 is provided below the cooling tower 11, and a drainage port 19 through which treated cold water is discharged to the outside is provided below the cooling tower 11. Have been.
With such a configuration, the inside of the cooling tower 11 is evacuated by the suction / compression pump 12, and the inside of the cooling tower 11 is, for example, 0.05 to 0.9 kg / cm in absolute pressure. 2 At a reduced pressure. Then, by spraying high-temperature water into the cooling tower 11 held in a depressurized state in the form of a shower through the spray nozzle 17, water droplets are formed in the cooling tower 11 and dropped downward. it can. At that time, a part of the water is evaporated on the surface of the water droplet, and at that time, the heat of vaporization is taken away, so that the temperature of the remaining water can be lowered to generate a water droplet having a lowered temperature.
[0027]
The suction / compression pump 12 is connected to the water vapor discharge port 15 via a water vapor discharge pipe 20, and is provided, for example, on a water-sealed vacuum pump 21 and a discharge pipe 22 connected to the discharge side of the vacuum pump 21. The throttle valve 23 is provided.
By operating the vacuum pump 21, it is possible to suck water vapor generated by evaporating water from the cooling tower 11 while maintaining the inside of the cooling tower 11 in a reduced pressure state. The sucked steam is compressed in the vacuum pump 21 and the exhaust pipe 22 upstream of the throttle valve 23 because the throttle valve 23 is provided in the exhaust pipe 22 (the pressure of the steam is, for example, 1.1 to 2. 5kg / cm 2 ) To a high temperature, and then a part thereof condenses to generate hot water mixed with high-temperature steam. The generated hot water flows into the primary side of the heat exchanger 24 having the two channels on the secondary side, performs heat exchange, and is discharged.
[0028]
Here, high-temperature water (hot water) discharged from an external device flows into one of the secondary sides of the heat exchanger 24 and is supplied to the inlet side of the discharge pump 16 through a pipe 25 connected to the discharge side. Thereby, the heat exchanger 24 can be used as a heater for further heating the high-temperature water supplied to the cooling tower 11. In addition, air is introduced into the other side of the secondary side of the heat exchanger 24 by the blower 26 and supplied to the air inlet 18 through a pipe 27 connected to the discharge side, so that the heat exchanger 24 is cooled. Can be used as a heater for heating the air flowing into the air. The pipe 27 is provided with a moisture absorbent type dryer 28 as an example of a dryer for drying heated air. The desiccant used in the desiccant type dryer 28 is silica gel or activated alumina as a solid, and an aqueous solution of a halogen salt such as calcium chloride or a glycol such as ethylene glycol as a liquid. Can be used.
[0029]
Each water receiving portion 13 has a bottom plate 29 attached to the inner wall of the cooling tower 11, and the bottom plate 29 has a plurality of water vapor passages 30 and a plurality of small holes 31 at locations where the water vapor passages 30 are not formed. Are scattered. Further, a weir 32 is provided around the water vapor passage 30. At a position above the center of each water vapor passage 30, a retaining member 33 for retaining and arranging the cotton fabric 14 is fixed by a support member (not shown) attached to the inner wall of the cooling tower 11. Here, the cotton fabric 14 is, for example, sewn into a cylindrical shape with one end closed, one end is hooked on the hooking member 33, and the other end opened is the bottom plate 29 on the outer peripheral side of the steam passage 30. And installed so as to cover the water vapor passage 30 from above.
With such a configuration, when high-temperature water is ejected from the spray nozzle 17 into the cooling tower 11, a part of the water that has become water droplets is attached to the uppermost (first-stage) water receiving portion 13. The fibers adhere to the surface of the cotton fabric 14 and enter the gaps between the fibers of the cotton fabric 14. Further, the remaining droplets fall on the bottom plate 29 and stay as staying water 34. A part of the accumulated water 34 falls through the small holes 31, but a part of the accumulated water 34 is absorbed by the cotton fabric 14 and enters the gaps between the fibers in the cotton fabric 14.
[0030]
The water that has passed through the small hole 31 is retained on a bottom plate 29 provided on the lower (here, the second stage) water receiving portion 13 to become retained water 34. Then, a part of the accumulated water 34 is absorbed by the cotton fabric 14 and enters the gap between the fibers in the cotton fabric 14, and a part further falls to the lower (here, the lowermost) water receiving portion 13. As a result, stagnant water 34 is formed. In this manner, the warm water supplied into the cooling tower 11 is sequentially received by the water receiving portions 13 to form the stagnant water 34, and the small holes 31 provided in the bottom plate 29 of the water receiving portion 13 at the final stage. The water that has passed through is stored as stored water 35 in the lower part of the cooling tower 11. In addition, since water evaporates from the surface of the storage water 35, the surface of the retained water 34, and the surface of the cotton fabric 14, water vapor is generated.
The water vapor generated in the uppermost water receiving section 13 is discharged to the outside of the cooling tower 11 from the water vapor discharge port 15 on the upper part of the cooling tower 11. Further, the water vapor generated in the water receiving portion 13 of the second and subsequent stages and the water vapor generated from the surface of the storage water 35 pass through the water vapor passage 30 provided in the bottom plate 29 of the upper stage, and have a cylindrical shape. The inside of the cotton fabric 14 is entered. Since the cotton fabric 14 has air permeability (for example, a large number of fine holes are formed), the steam easily passes through the cotton fabric 14 and reaches the upper portion of the cooling tower 11, and the steam is discharged from the steam outlet 15 to the cooling tower. 11 can go outside.
[0031]
A spray nozzle 37 having a circulation pump 36 is provided below the cooling tower 11. By operating the circulation pump 36 to suck the stored water 35 stored in the lower part of the cooling tower 11 and drop it as water droplets from the ejection port 37a of the spray nozzle 37, a part of water is evaporated from the surface of the falling water droplets As a result, the temperature of the water droplet can be reduced. The water droplets are collected by landing on the surface of the stored water 35.
Therefore, by operating the circulation pump 36 to circulate the stored water 35 through the spray nozzle 37, the temperature of the stored water 35 can be further reduced.
[0032]
Next, a method for producing cold water using the apparatus 10 for producing cold water according to the first embodiment of the present invention will be described in detail.
When the operation of the cold water production apparatus 10 is started, a stop valve (not shown) connected to the drain port 19 is closed to cool the high-temperature water supplied from the external device and stably return it to the external device. During this time, water required by the external device is supplied to the cooling tower 11 from a water supply port (not shown) provided at the lower part of the cooling tower 11 and stored as the stored water 35.
Then, the vacuum pump 21 is operated with the stop valve and the throttle valve 23 (not shown) provided in the pipes 25 and 27 closed, and air is exhausted from an exhaust port (not shown) provided in the vacuum pump 21. Thereby, the inside of the cooling tower 11 is in a reduced pressure state. Since a pressure adjusting valve is provided at the exhaust port of the vacuum pump 21, the pressure is reduced to a preset pressure. The pressure in the cooling tower 15 is, for example, 0.07 to 0.6 kg / cm. 2 After confirming that, the throttle valve 23 is opened.
[0033]
Next, the stop valve connected to the drain port 19 and the stop valve provided in the pipe 25 were opened to operate the discharge pump 16, and the temperature was further increased after passing from the external device and passing through the heat exchanger 24. Water is sprayed into the cooling tower 11 from the spray nozzle 17.
On the other hand, a part of the stored water 35 stored in the lower part of the cooling tower 11 is returned to the external device. Further, the blower 26 is operated by opening the stop valve provided in the pipe 27, and the air that has passed through the heat exchanger 24 flows into the cooling tower 11 from the air inlet 18 through the desiccant type dryer 28. . The amount of air that flows in the cooling tower 11 is, for example, 0.07 to 0.6 kg / cm. 2 Is prepared by the blower 26 so as to be held at
Further, the circulation pump 36 is operated to spray the stored water 35 from the spray nozzle 37. The water droplets of the stored water 35 sprayed from the spray nozzle 37 evaporate from the surface of the water droplets during falling, and the temperature of the water droplets decreases, and the cooled water droplets land on the surface of the stored water 35. . Thereby, the temperature of the storage water 35 can be lowered.
[0034]
The generated water vapor is mixed with the dry air flowing from the air inlet 18. This air passes through a water vapor passage 30 provided in the bottom plate 29 of the lowermost water receiving portion 13 and enters the inside of the cotton fabric 14 attached to the lowermost water receiving portion 13. It permeates and reaches the space above the lower water receiving section 13.
Then, this air passes through each of the water receiving portions 13 provided further above through the same route, and reaches the space above the uppermost water receiving portion 13. Next, the air is sucked into the vacuum pump 21 from the steam outlet 15 on the upper part of the cooling tower 11.
[0035]
Water sprayed into the cooling tower 11 from the spray nozzle 17 falls as small water droplets in the cooling tower 11. At this time, since the inside of the cooling tower 11 is maintained in a reduced pressure state, a part of the water evaporates from the surface of the water droplet to lower the temperature of the water droplet. Some of the water droplets whose temperature has dropped adhere to the cotton fabric 14 attached to the first-stage water receiving portion 13 and enter the gap between the fibers.
Further, the remaining water droplets are received by the bottom plate 29 of the first-stage water receiving portion 13 and become the retained water 34. A part of the accumulated water 34 drops through the small holes 31 provided in the bottom plate 29.
[0036]
Further, a part of the retained water 34 is absorbed by the cotton fabric 14 and enters the gap between the fibers. The water absorbed by the cotton fabric 14 enters the gaps between the fibers and spreads uniformly. For this reason, the water that has entered the cotton fabric 14 can easily evaporate from the surface of the cotton fabric 14, and the temperature of the remaining water deprived of the heat of vaporization decreases.
As a result, a temperature difference is generated between the accumulated water 34 accumulated on the bottom plate 29 of the first-stage water receiving section 13 and the water that has entered the cotton fabric 14, and the temperature of the accumulated water 34 from the high-temperature accumulated water 34 decreases. The temperature of the stagnant water 34 decreases as heat moves toward the water that has entered the low cotton fabric 14. Furthermore, since water evaporates also from the surface of the accumulated water 34 accumulated on the bottom plate 29 of the first-stage water receiving section 13, the temperature of the accumulated water 34 further decreases.
[0037]
The retained water 34 whose temperature has dropped falls from the small hole 31 of the bottom plate 29 and is received by the bottom plate 29 of the second-stage water receiving portion 13 to become the retained water 34. A part of the accumulated water 34 drops through the small holes 31 provided in the bottom plate 29. Further, a part of the retained water 34 is absorbed by the cotton fabric 14 attached to the second-stage water receiving portion 13 and enters the gap between the fibers. The water absorbed by the cotton fabric 14 easily evaporates from the surface of the cotton fabric 14 and lowers the temperature of the remaining water in the cotton fabric 14.
For this reason, a temperature difference is generated between the accumulated water 34 accumulated on the bottom plate 29 of the second-stage water receiving portion 13 and the water that has entered the cotton fabric 14, and the accumulated water 34 having a higher temperature has a lower temperature. The heat moves toward the water that has entered the cotton fabric 14 and lowers the temperature of the stagnant water 34 that has accumulated in the bottom plate 29 of the second-stage water receiving unit 13. In addition, since the water is also evaporated from the surface of the accumulated water 34 accumulated on the bottom plate 29 of the second-stage water receiving section 13, the temperature of the accumulated water 34 further decreases.
[0038]
The stagnant water 34, which has accumulated in the water receiving portion 13 and partially evaporates, has been lowered in temperature, is supplied to the lower water receiving portion 13 and partially evaporates to further raise the temperature of the stagnant water 34. By repeating the lowering, the temperature of the water falling from the small holes 31 provided in the bottom plate 29 of the lowermost water receiving section 13 is higher than the temperature of the high-temperature water supplied to the cooling tower 11. descend. The water falling from the small holes 31 provided in the bottom plate 29 of the lowermost water receiving section 13 is mixed into the stored water 35 stored in the lower part of the cooling tower 11 and lowers the temperature of the stored water 35.
The water vapor generated by evaporating from the surface of each cotton fabric 14 attached to each water receiving portion 13 and the surface of the stagnant water 34 collected on each bottom plate 29 is formed from dry air introduced from the air inlet 18. The air is then mixed into the flow of air flowing from the lower side to the upper side of the cooling tower 11 and discharged from the steam discharge port 15. Therefore, the water vapor generated in the cooling tower 11 does not stay, and the continuous evaporation of water proceeds.
[0039]
When water vapor is stably generated from the surface of each cotton fabric 14 attached to each water receiving portion 13 and the surface of the accumulated water 34 accumulated on each bottom plate 29, a large amount of water vapor is generated in the vacuum pump 21. Will flow in. As a result, the steam is compressed in the vacuum pump 21 and the exhaust pipe 22 upstream of the throttle valve 23 to increase the temperature of the steam, and then a portion thereof is condensed to generate hot water mixed with the high-temperature steam. . Since the hot water flows into the primary side of the heat exchanger 24, the hot water and the air passing through the secondary side are heated and supplied to the cooling tower 11 respectively.
When the temperature of the water supplied to the cooling tower 11 increases, the temperature difference between the water and the boiling point in the cooling tower 11 decreases, and the water easily evaporates. For this reason, the temperature of the water supplied to the cooling tower 11 greatly decreases.
In addition, when the air is heated, the saturated steam pressure of the air increases, and the steam generated in the cooling tower 11 is easily mixed into the air, so that the steam pressure in the cooling tower 11 does not increase, and the water evaporates. Is promoted. For this reason, the temperature of the water drops significantly. As a result, the temperature of the stored water 35 stored in the lower part of the cooling tower 11 is also greatly reduced, and the colder colder water returns to the external device from the drain port 19.
[0040]
As shown in FIG. 2, a cold water producing device 38 according to the second embodiment of the present invention stores water (hereinafter, referred to as a heat medium water) as an example of a heat medium, heats the water, and partially cools the water. A steam generating unit 39 that converts the steam into steam, a cooling medium generating unit 40 that causes the steam generated by the steam generating unit 39 to flow therein, condenses the steam, and further evaporates a part of the steam to generate a cooling medium having a lowered temperature. A water cooling unit 41 for lowering the temperature of the high-temperature water by exchanging heat with the high-temperature water generated by an external device (not shown), and A plurality of cooling means 43 (three in FIG. 2) are connected in series with a heat medium recirculation pipe 42 for returning the heat medium water to the steam generation section 39.
Further, in the cold water producing device 38, the vapor not condensed in the cooling medium generating unit 40 of the cooling device 43 of the most upstream is sucked, compressed, and turned into a high-temperature heating medium. A suction / compression unit 44 for supplying the steam to the steam generator 39 is provided. Hereinafter, these will be described in detail.
[0041]
The suction / compression means 44 includes a steam recovery pipe 45 for discharging water vapor not condensed in the cooling medium generator 40 of the cooling means 43 on the most upstream side, and a vacuum in which one end of the steam recovery pipe 45 is connected to the suction side. It has a pump 46 and a throttle valve 48 provided in an exhaust pipe 47 having one end connected to the exhaust side of the vacuum pump 46. Further, the suction / compression means 44 has a hot water tank 49 having the other end of the exhaust pipe 47 connected to the inflow side, and a hot water supply pipe 50 connected to the outflow side of the hot water tank 49.
[0042]
By using the vacuum pump 46, water vapor that has not been condensed in the cooling medium generator 40 can be sucked. Further, since the sucked water vapor is provided with the throttle valve 48 in the exhaust pipe 47, it is compressed in the vacuum pump 46 and in the exhaust pipe 47 upstream of the throttle valve 48 to be heated to a high temperature to become hot water. . Then, the generated hot water can be flowed into the hot water tank 49 and stored, and a part thereof can be discharged. Since the hot water is stored in the hot water tank 49 and then discharged, it is possible to supply the hot water stably.
It is preferable that the hot water tank 49 be provided with a heater 51. By providing the heater 51, it is possible to further raise the temperature of the hot water or to keep the generated hot water as needed.
[0043]
Each of the steam generating sections 39 includes a steam generating section main body 52 that stores the heat medium water, a heating heat exchanger 53 that is provided in a lower portion of the steam generating section main body 52 and heats the stored heat medium water, It has a steam pipe 54 for transporting steam generated by heating the medium water to the cooling medium generator 40.
A hot water supply pipe 50 is connected to the primary inflow side of the heating heat exchanger 53 provided in the steam generation section 39 of the cooling means 43 on the most upstream side. In addition, the heating heat exchanger 53 provided in the steam generating section 39 of each cooling means 43 has a primary heat-exiting side and the heating heat exchanger provided in the steam generating section 39 of the cooling means 43 one downstream thereof. The first inlet side of the exchanger 53 is connected to the first heat medium communication pipe 55.
With this configuration, the hot water stored in the hot water tank 49 is transferred from the heating heat exchanger 53 of the upstream cooling unit 43 to the heating heat exchanger 53 of the downstream cooling unit 43. The heating medium water stored in each steam generating section main body 52 can be heated, and the steam generated at that time can be supplied to each cooling / heating medium generating section 40 through each steam pipe 54. Can be transported to.
[0044]
Each of the cooling medium generating units 40 includes a cooling medium generating unit main body 56 to which the steam pipe 54 is connected and into which the inflowing steam is condensed and stored, and a cooling medium discharging pipe connected to a lower position of the cooling medium generating unit main body 56. 57.
The cooling medium generating unit 40 of the cooling unit 43 on the most downstream side includes a primary part of the heating heat exchanger 53 provided on the upper side of the cooling medium generating unit main body 56 and the steam generating unit 39 of the cooling unit 43 on the most downstream side. A return pipe 58 is provided for connecting the outlet side to the outlet side. The other end of the steam recovery pipe 45 is connected to an upper position of the cooling medium generator main body 56 of the cooling means 43 on the most upstream side. The cooling medium generating sections 40 of the cooling means 43 except for the cooling means 43 on the most downstream side are provided with the cooling medium generating sections of the cooling means 43 on the upper side of the cooling medium generating section main body 56 and the cooling means 43 one downstream thereof. Second heat medium communication pipes 59 that connect the upper part of the main body 56 are provided.
[0045]
With such a configuration, the inside of each cooling and heating medium generating unit 40 can be maintained in a reduced pressure state by the vacuum pump 46 of the suction and compression unit 44. Then, the heat medium water whose temperature has been lowered after the heat exchange in the most downstream steam generating section 39 can be supplied to the most downstream cooling medium generating section 40, and the inside of the most downstream cooling medium generating section 40 can be supplied. The water vapor can be cooled and condensed to generate heat transfer water. Here, when supplying the heating medium water into the cooling / heating medium generation unit 40 via the return pipe 58, for example, a spray nozzle is provided at the tip side of the return pipe 58 to supply the heating medium water in a mist state. Is preferred.
The steam in the cooling medium generating unit main body 56 of each cooling unit 43 except for the cooling unit 43 on the most downstream side is condensed by exchanging heat with the steam flowing from the cooling medium generating unit main body 56 on one downstream side. Can be.
The heating medium water generated in each cooling medium generating unit main body 56 easily evaporates because the inside of each cooling medium generating unit main body 56 is in a depressurized state. It becomes medium water and is stored in the lower part of each cooling / heating medium generating unit main body 56.
[0046]
In particular, when the heat transfer water is supplied in the form of a mist in the coldest heat generation unit 40 on the most downstream side, evaporation occurs even in the mist-like heat transfer water, so that the temperature of the mist-like heat transfer water decreases directly. Medium water can be generated. Since the amount of water vapor generated in the most downstream steam generation section 39 is smaller than that in the upstream steam generation section 39, the heat medium water whose temperature has directly decreased from the mist heat medium water is removed. By the generation, a required amount of the temperature-reduced heat transfer water can be secured.
The steam in the cooling medium generating portion main body 56 of the cooling means 43 on the most upstream side flows into the suction compression means 44 via the steam recovery pipe 45, becomes hot water again, and can be used repeatedly.
[0047]
Each of the water cooling units 41 is connected to the cooling medium discharge pipe 57 on the primary side and the heating medium recirculation pipe 42 on the primary side, respectively. Can be configured using a heat exchanger that allows the gas to flow. Here, the secondary inflow side of the most upstream heat exchanger is connected to the outgoing pipe 60 for discharging hot water from external equipment, and the secondary outflow side of the most downstream heat exchanger. Is connected to a return pipe 61 for returning water to external equipment, and the secondary outflow side of each heat exchanger excluding the most downstream heat exchanger has one downstream heat exchanger. Is connected to a secondary inflow side through a communication pipe 62.
With such a configuration, the temperature of the heat transfer water flowing into the primary side of each heat exchanger and having a lowered temperature is increased by the heat exchange and is returned to each steam generating section 39. Can be used repeatedly. In addition, high-temperature water generated from external equipment passes sequentially through the secondary side of each heat exchanger, so that when the temperature gradually decreases and is discharged from the most downstream heat exchanger, it is sufficiently cooled. Then, it can be returned to the external device again.
[0048]
Next, a method for producing cold water using the device 38 for producing cold water according to the second embodiment of the present invention will be described in detail.
First, a predetermined amount of heat transfer water is injected into each of the steam generators 39 and the hot and cold water tank 49. Then, the vacuum pump 46 is operated with the valve (not shown) provided on the throttle valve 48 and the hot water supply pipe 50 closed, and air is exhausted from an exhaust port (not shown) provided on the vacuum pump 46. As a result, the inside of the steam generating section 39 and the cooling medium generating section 40 are in a reduced pressure state. Since a pressure regulating valve is provided at the exhaust port, the pressure is reduced to a preset pressure.
Further, the heating medium stored in the heating heater 51 of the hot water tank 49 is heated. Then, the pressure of the steam generator 39 and the cooling medium generator 40 is, for example, 0.04 to 0.4 kg / cm. 2 Then, after confirming that the temperature of the heat transfer water in the hot water tank 49 becomes, for example, 40 to 70 ° C., the heating by the heater 51 is stopped, and the throttle valve 48 and the hot water supply pipe 50 are stopped. Open the valve provided in.
[0049]
By opening a valve provided on the hot water supply pipe 50, hot water is supplied from the hot water tank 51 to the heating heat exchanger 53 of the steam generation section 39 on the most upstream side, and then each first heat medium Since the heat is supplied to the heating heat exchanger 53 of the steam generator 39 on one downstream side through the communication pipe 55, the stored heat transfer water is heated in each steam generator main body 52 to generate steam. I do.
Since the temperature of the heat medium water after the heat exchange in the heating heat exchanger 53 on the lowermost stream side is reduced is supplied to the cooling medium generator section 56 on the lowermost stream side via the return pipe 58, The water vapor in the cooling medium generating unit main body 56 on the side is cooled and condensed to become heat medium water.
In addition, the steam in the cooling medium generating unit main body 56 of each cooling unit 43 except the cooling unit 43 on the most downstream side flows in from the cooling medium generating unit main body 56 on one downstream side via the second heat medium communication pipe. It is cooled by the generated steam and condensed to become heat transfer water. Since the inside of each cooling medium generating unit 56 is in a decompressed state, a part of the heat transfer water generated in each cooling medium generating unit main body 56 evaporates, and becomes a cooling medium water whose temperature is lowered to form each cooling medium water. It is stored in the lower part of the medium generation unit main body 56.
At the lowermost part of the cooling / heating medium generating unit main body 56 on the most downstream side, the heating medium water that has been supplied through the return pipe 58 and has exchanged heat with steam is mixed with the heating medium having a low temperature generated from the steam. Accumulate.
[0050]
On the other hand, the steam in the cooling / heating medium generating unit main body 56 of the cooling means 43 on the most upstream side is sucked into the vacuum pump 46 via the steam recovery pipe 45, compressed and becomes hot water again, and stored in the hot water tank 49. Is done.
Here, it is confirmed that hot water flows into the hot water tank 49, and high-temperature water generated from the external device flows into the secondary side of the heat exchanger on the most upstream side via the outgoing pipe 60. , Through the communication pipe 62 and sequentially through the secondary side of the downstream heat exchanger.
On the other hand, to the primary side of each heat exchanger, a low-temperature heat medium water generated and stored in each cold-heat medium generating unit main body 56 is supplied via a cold-heat medium discharge pipe 57, and a heat medium recirculation pipe is provided. Since the high temperature water generated from the external device passes through the secondary side, heat exchange is performed between the high temperature water and the heat medium water whose temperature has been reduced since the water is returned to the respective steam generating unit main bodies 52 through 42. And gradually lower the temperature. Then, the heat is returned to the external device via the return pipe 61 from the secondary outflow side of the most downstream heat exchanger.
[0051]
As shown in FIG. 3, a cold water production device 63 according to the third embodiment of the present invention includes, for example, instead of each water cooling unit 41 of the cold water production device 38 according to the second embodiment, A water cooling unit main body 64, a refrigerant passage 65 provided in the water cooling unit main body 64, the inflow side of which is connected to the cooling medium discharge pipe 57, and the outflow side of which is connected to the heat medium recirculation pipe 42, respectively. It is characterized in that a water cooling section 67 provided with a water jetting device 66 is used. Therefore, only the water cooling section 67 will be described.
The inflow side of the water ejector 66 provided in the most upstream water cooling unit 67 is connected to the outgoing pipe 60 for discharging high-temperature water from external equipment, and the water cooling unit of the most downstream water cooling unit 67 is connected. The lower end of the main body 64 is connected to a return pipe 61 for returning water collected in a lower portion of the water cooling unit main body 64 to an external device. In addition, the lower end of the water cooling unit main body 64 of each water cooling unit 67 excluding the most downstream water cooling unit 67 communicates with the inflow side of the water ejector 66 of the one downstream water cooling unit 67. It is connected via a tube 68. Further, on the upper end side of each water cooling unit main body 64, a water vapor pipe 69 for supplying water vapor existing in each water cooling unit main body 64 to the suction / compression means 44 is provided.
[0052]
With such a configuration, it is possible to spray water discharged from the external device on the outer surface of the coolant passage 65 of the water cooling unit 67 while flowing the cooling medium water having a lowered temperature. As a result, the water discharged from the external device can be brought into contact with the outer surface of the refrigerant passage 65 to lower its temperature. On the other hand, the heat transfer water flowing in the refrigerant passage 65 comes into contact with the inner surface of the refrigerant passage 65 to increase in temperature and to return to each of the steam generators 39, so that the heat transfer water can be used repeatedly.
In addition, since the high-temperature water generated from the external device sequentially passes through each water cooling unit 67, when the temperature gradually decreases and is discharged from the most downstream water cooling unit 67, it is sufficiently cooled. Can be returned to the external device again.
Furthermore, since the steam present in each water cooling unit main body 64 is supplied to the suction compression means 44 via the steam pipe 69, the amount of steam supplied to the suction compression means 44 is more stably secured, This can be reused as hot water.
[0053]
Next, a method for producing cold water using the cold water producing device 63 according to the third embodiment of the present invention will be described in detail, but the method for producing cold water using the cold water producing device 38 according to the second embodiment will be described. It is characterized in that cold water is produced by the water cooling section 67 as compared with the production method of (1). Therefore, only the method of using the water cooling unit 67 will be described.
First, a predetermined amount of heat transfer water is injected into each of the steam generators 39 and the hot and cold water tank 49. Then, the vacuum pump 46 is operated with the throttle valve 48 and a valve (not shown) provided on the hot water supply pipe 50 closed, and air is discharged from an exhaust port (not shown) provided on the vacuum pump 46, and steam is discharged. The inside of the generating unit 39, the cooling / heating medium generating unit 40, and the water cooling unit 67 is brought into a reduced pressure state. Since a pressure regulating valve is provided at the exhaust port, the pressure is reduced to a preset pressure.
[0054]
Then, it is confirmed that hot water flows into the hot water tank 49, and high-temperature water generated from external equipment is supplied to the water jet 66 of the water cooling section 67 on the most upstream side via the pipe 60. Then, the refrigerant is jetted into the water cooling unit main body 64 and sprayed on the outer surface of the refrigerant passage 65. On the other hand, the cooling medium passage 65 is supplied with cooling medium water having a reduced temperature generated and stored in each cooling medium generating unit main body 56 through a cooling medium discharging pipe 57, and through a heating medium recirculating pipe 42. Since the water is returned to the steam generating section main bodies 52, the high-temperature water generated from the external device comes into contact with the outer surface of the refrigerant passage 65 to lower the temperature. Then, the cooled water accumulates in the lower part of the water cooling unit main body 64.
Here, the lower end side of the water cooling unit main body 64 and the inflow side of the water jetting unit 66 of the water cooling unit 67 on one downstream side are connected via a communication pipe 68. For this reason, the temperature-reduced water accumulated in the lower part of the water cooling unit main body 64 is jetted again into the water cooling unit main body 64 from the water jetting device 66 of the water cooling unit 67 on the downstream side, and into the inside thereof. The temperature is reduced by contact with the provided refrigerant passage 65.
As described above, since the temperature of the water gradually decreases each time the water passes through each water cooling unit 67, the temperature is sufficiently lowered at the lower end side of the water cooling unit main body 64 of the water cooling unit 67 on the most downstream side. Water will accumulate. Then, the sufficiently cooled water is returned to the external device via the return pipe 61.
[0055]
As described above, the embodiments of the present invention have been described. However, the present invention is not limited to these embodiments, and can be changed without changing the gist of the invention. A case where the method and the apparatus for producing cold water of the present invention are configured by combining some or all of the forms and modifications is also included in the scope of the rights of the present invention. For example, in the first embodiment, the steam discharged from the cooling tower is compressed and heated to generate hot water, and the hot water and the hot water supplied to the cooling tower using the hot water as a heat source are heated. However, heating may be performed using another heat source such as an electric heater. Further, although a moisture absorbent type dryer is used for drying the air, a cooling type dryer which cools the air and condenses the contained water vapor to dry the air may be used. Further, high-temperature water to be supplied to the cooling tower is supplied into the cooling tower as fine water droplets by using a spray nozzle, but may be supplied into the cooling tower as fine water droplets by using ultrasonic vibration.
In the second embodiment, a plurality of cooling means are provided in series, but it is also possible to provide one cooling means.
[0056]
【The invention's effect】
In the method for producing cold water according to any one of claims 1 to 4, the cooling tower is maintained in a reduced pressure state, and the supplied high-temperature water is sequentially provided therebelow while being temporarily retained in each of the water receiving sections provided in multiple stages. The water receiving part is moved to the lower part of the cooling tower, and the water receiving part is provided with a water-absorbing member having air permeability. To remove the heat of vaporization by evaporating from the surface and lowering the temperature of the remaining water, so that the high-temperature water generated by cooling the external equipment can be efficiently and inexpensively cooled to cool the external equipment. It is possible to return.
[0057]
In particular, in the method for producing cold water according to claim 2, air flows in from the lower side of the cooling tower, passes through the cooling tower, and is discharged from the upper side of the cooling tower. Mixed into the cooling tower and discharged to the outside of the cooling tower, preventing the rise in water vapor pressure in the cooling tower and allowing the water to evaporate continuously even if the temperature of the water drops, and the temperature dropped. Cold water can be produced efficiently.
[0058]
In the method for producing cold water according to the third aspect, since the air flowing from the lower side of the cooling tower is heated and / or dried, the water vapor pressure of the air in the cooling tower is maintained at a low level, and , Water can be continuously evaporated, and cold water having a lowered temperature can be produced.
[0059]
In the method for producing cold water according to claim 4, since the high-temperature water generated by the external device is heated and supplied to the cooling tower, the temperature of the water is brought close to the boiling point of water in the cooling tower. Can be promoted, the cooling efficiency of water can be improved, and cold water with a lower temperature can be produced.
[0060]
The apparatus for producing cold water according to any one of claims 5 to 10, further comprising a steam discharge port at an upper portion, and a blowing means for introducing water supplied from the outside in a shower shape at an upper portion, and further comprising a treated and heated portion at a lower portion. A cooling tower provided with a drain port for discharging the lowered water to the outside, pressure reducing means connected to the steam discharge port to keep the inside of the cooling tower in a depressurized state, and water provided in multiple stages in the cooling tower and supplied. And a water-receiving part provided in each water-receiving part, and a part of the water remaining in each water-receiving part is sucked and evaporated to lower the temperature of the remaining water. The water-absorbing member provided with the above means that high-temperature water generated by cooling the external device can be efficiently and inexpensively cooled with a simple device configuration and returned to the external device as cold water.
[0061]
In particular, in the cold water producing apparatus according to claim 6, since a plurality of small holes for displacing the stagnant water downward are provided in each of the water receiving sections, the stagnant water in each of the water receiving sections is provided. It is possible to supply the cooled water to the lower water receiving section while cooling the flowing water.
[0062]
In the apparatus for producing cold water according to claim 7, since a plurality of steam passages for moving generated steam upward in the cooling tower are provided in each water receiving section, the steam generated on the lower side is supplied to the upper side. To prevent the water vapor from staying in the cooling tower, and the water can be continuously evaporated in the cooling tower to produce cold water having a lowered temperature.
[0063]
In the cold water producing apparatus according to the eighth aspect, since the air inlet for introducing air into the cooling tower is provided below the cooling tower, the water vapor pressure of the air in the cooling tower is maintained at a low level. As a result, water can be continuously evaporated in the cooling tower, and cold water having a lowered temperature can be produced.
[0064]
In the chilled water producing apparatus according to the ninth aspect, since the heater and / or the dryer is connected to the air inlet, the difference between the steam pressure of the air in the cooling tower and the saturated steam pressure can be kept large. The water can be evaporated continuously, making it possible to produce cold water with a reduced temperature.
[0065]
In the apparatus for producing cold water according to claim 10, since the heater for heating the high-temperature water supplied to the cooling tower is connected to the blowing means, the high-temperature water supplied to the cooling tower is heated. Then, the temperature of the water is brought close to the boiling point of the water in the cooling tower to promote the evaporation of the water, and the cooling efficiency of the water can be improved. As a result, it is possible to produce cold water having a lower temperature.
[0066]
In the apparatus for producing cold water according to claims 11 and 12, a steam generating section that stores and heats the heat medium and converts a part thereof into steam, the steam generated in the steam generating section flows in and is condensed. A cooling medium generating unit for evaporating the unit again to generate a heat medium having a lowered temperature, a water cooling unit for lowering the temperature of the water by exchanging heat with the heat medium having a lower temperature, and a heat exchange unit for the water cooling unit Cooling means provided with a heat medium recirculation pipe for returning the heated heat medium to the steam generation section, and suction for sucking and compressing the steam in the cold heat medium generation section to produce a high-temperature heat medium and supplying the heat medium to the steam generation section Compression means, the heating of the heat medium is performed by heat exchange with the heated medium supplied to the steam generating section, and the condensation of the steam is lowered after the heat exchange in the steam generating section. The heating medium is supplied to the cooling medium generator and heat exchange is performed. Therefore, it is possible to efficiently obtain the heat medium whose temperature has decreased and the heat medium whose temperature has increased, and furthermore, the heat medium can be circulated without being discharged to the outside, and can be used repeatedly. High-temperature water can be efficiently and inexpensively cooled and returned to external equipment as cold water.
[0067]
In particular, in the chilled water producing apparatus according to the twelfth aspect, when the number of cooling means is two or more, the heating of the heat medium stored in each steam generating section is performed by connecting the steam generating sections in series with the first heat medium communicating pipe. By passing the heat medium heated to a high temperature from the steam generation section provided on the upstream side to the steam generation section provided on the downstream side, and condensation of steam in the cooling medium generation section on the most downstream side. Is performed by supplying the heat medium whose temperature after the heat exchange is performed in the most downstream steam generating section to the cooling medium generating section and causing the heat medium to exchange heat. Condensation of the steam in each of the cooling medium generating units except for the cooling medium generating unit on the most downstream side is connected to the medium generating unit and the second heat medium communicating pipe in series, and the cooling medium generated by the cooling medium generating unit is one downstream of the cooling medium generating unit. This is done by mixing the vapor in the medium generator In addition, since the steam in the cooling medium generating section on the most upstream side is returned to the suction compression means, the temperature difference between the heat medium whose temperature has dropped and the water is kept large in each water cooling section to efficiently cool the water. And a large amount of water can be cooled.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an apparatus for producing cold water according to a first embodiment of the present invention.
FIG. 2 is an explanatory view of an apparatus for producing cold water according to a second embodiment of the present invention.
FIG. 3 is an explanatory view of an apparatus for producing cold water according to a third embodiment of the present invention.
[Explanation of symbols]
10: Cold water production apparatus, 11: Cooling tower, 12: Suction / compression pump, 13: Water receiving unit, 14: Cotton fabric, 15: Water vapor outlet, 16: Discharge pump, 17: Spray nozzle, 18: Air inlet , 19: drain port, 20: steam discharge pipe, 21: vacuum pump, 22: exhaust pipe, 23: throttle valve, 24: heat exchanger, 25: pipe, 26: blower, 27: pipe, 28: hygroscopic type Dryer, 29: bottom plate, 30: water vapor passage, 31: small hole, 32: weir, 33: locking member, 34: retained water, 35: stored water, 36: circulation pump, 37: spray nozzle, 37a: Injection port, 38: Cold water production device, 39: Steam generation unit, 40: Cold / heat medium generation unit, 41: Water cooling unit, 42: Heat medium recirculation pipe, 43: Cooling means, 44: Suction compression means, 45: Steam Recovery pipe, 46: vacuum pump, 47: exhaust pipe, 48: throttle Valve, 49: hot water tank, 50: hot water supply pipe, 51: heating heater, 52: steam generator main body, 53: heating heat exchanger, 54: steam pipe, 55: first heat medium communication pipe, 56: cooling medium generating unit main body, 57: cooling medium discharge pipe, 58: return pipe, 59: second heat medium communication pipe, 60: going pipe, 61: return pipe, 62: communication pipe, 63: cold water Manufacturing apparatus, 64: water cooling unit main body, 65: refrigerant passage, 66: water jetting device, 67: water cooling unit, 68: communication pipe, 69: steam pipe

Claims (12)

外部機器によって発生した温度の高い水を冷却塔の上側から供給し下方に落下させながら該水の温度を下げ、降温された水を該冷却塔の下部から排出する冷水の製造方法であって、
前記冷却塔を減圧状態に保持し、供給された前記温度の高い水は多段にわたって設けられた各受水部で一旦滞留されながら順次その下方に設けられた受水部に移されて前記冷却塔の下部まで移動され、しかも、該各受水部には通気性を備えた吸水性部材が設けられ、滞留している水の一部を該吸水性部材内に拡散させてその表面から蒸発させることにより気化熱を奪って、残りの水の温度を下げることを特徴とする冷水の製造方法。
A method for producing cold water, in which high-temperature water generated by an external device is supplied from the upper side of the cooling tower and lowered while being dropped downward, and the cooled water is discharged from the lower part of the cooling tower,
The cooling tower is kept in a reduced pressure state, and the supplied high-temperature water is temporarily retained in each of the water receiving sections provided in multiple stages, and is sequentially transferred to the water receiving section provided thereunder, and the cooling tower is provided. And a water-absorbing member having air permeability is provided in each of the water-receiving portions, and a part of the staying water is diffused into the water-absorbing member to evaporate from its surface. A method for producing cold water, wherein the temperature of remaining water is lowered by removing heat of vaporization.
請求項1記載の冷水の製造方法において、前記冷却塔の下側からは空気を流入させ、該冷却塔内を通過させて該冷却塔の上側から排出することを特徴とする冷水の製造方法。2. The method for producing cold water according to claim 1, wherein air flows in from below the cooling tower, passes through the cooling tower, and is discharged from above the cooling tower. 請求項2記載の冷水の製造方法において、前記冷却塔の下側から流入させる空気は加熱及び/又は乾燥されていることを特徴とする冷水の製造方法。3. The method for producing cold water according to claim 2, wherein the air introduced from below the cooling tower is heated and / or dried. 請求項1〜3のいずれか1項に記載の冷水の製造方法において、前記外部機器によって発生した温度の高い水は、加熱されて前記冷却塔に供給されることを特徴とする冷水の製造方法。The method for producing cold water according to any one of claims 1 to 3, wherein the high-temperature water generated by the external device is heated and supplied to the cooling tower. . 外部機器によって発生する温度の高い水を冷却して該外部機器に戻すための冷水の製造装置であって、
上部に水蒸気排出口を備えると共に上側位置には外部から供給される前記水をシャワー状に入れる吹き込み手段を備え、更に下部には処理されて温度の下がった水を外部に排出する排水口を設けた冷却塔と、
前記水蒸気排出口に連結され前記冷却塔内を減圧状態に保持する減圧手段と、
前記冷却塔内に多段に設けられて供給された水を滞留しながら順次下方に移動させる受水部と、
前記各受水部に設けられ、該各受水部に滞留されている水の一部を吸引し蒸発させて残りの水の温度を下げる通気性を備えた吸水性部材とを有することを特徴とする冷水の製造装置。
An apparatus for producing cold water for cooling high-temperature water generated by an external device and returning the water to the external device,
An upper portion is provided with a steam outlet, and an upper portion is provided with blowing means for introducing the water supplied from the outside in a shower shape, and a lower portion is provided with a drain port for discharging treated and cooled water to the outside. Cooling tower and
Decompression means connected to the water vapor outlet to maintain the inside of the cooling tower in a decompressed state,
A water receiving unit that sequentially moves downward while retaining the supplied water provided in multiple stages in the cooling tower,
A water-absorbing member provided in each of the water-receiving sections and having a gas-permeability for lowering the temperature of the remaining water by sucking and evaporating a part of the water retained in each of the water-receiving sections. Cold water production equipment.
請求項5記載の冷水の製造装置において、前記各受水部には滞留している水を下方に移す複数の小孔が散在して設けられていることを特徴とする冷水の製造装置。6. The cold water producing apparatus according to claim 5, wherein a plurality of small holes for transferring the staying water downward are scatteredly provided in each of said water receiving portions. 請求項5及び6のいずれか1項に記載の冷水の製造装置において、前記各受水部には発生した水蒸気を前記冷却塔内で上側に移動させる複数の水蒸気通過口が設けられていることを特徴とする冷水の製造装置。The apparatus for producing cold water according to any one of claims 5 and 6, wherein each of the water receiving sections is provided with a plurality of water vapor passages for moving generated water vapor upward in the cooling tower. An apparatus for producing cold water. 請求項5〜7のいずれか1項に記載の冷水の製造装置において、前記冷却塔の下側には該冷却塔内に空気を流入させる空気流入口が設けられていることを特徴とする冷水の製造装置。The cold water producing apparatus according to any one of claims 5 to 7, wherein an air inlet for introducing air into the cooling tower is provided below the cooling tower. Manufacturing equipment. 請求項8記載の冷水の製造装置において、前記空気流入口には加熱器及び/又は乾燥器が接続されていることを特徴とする冷水の製造装置。9. The apparatus for producing cold water according to claim 8, wherein a heater and / or a dryer is connected to the air inlet. 請求項5〜9のいずれか1項に記載の冷水の製造装置において、前記吹き込み手段には、前記冷却塔に供給する温度の高い水を加熱する加熱器が接続されていることを特徴とする冷水の製造装置。The apparatus for producing cold water according to any one of claims 5 to 9, wherein a heater for heating high-temperature water supplied to the cooling tower is connected to the blowing means. Cold water production equipment. 外部機器によって発生する温度の高い水を冷却して該外部機器に戻すための冷水の製造装置であって、
熱媒体を貯留し加熱してその一部を蒸気にする蒸気発生部、前記蒸気発生部で生成した前記蒸気を流入させて凝縮させ、更にその一部を再度蒸発させて温度の下がった熱媒体を生成する冷熱媒体生成部、前記温度の下がった熱媒体と前記水とを熱交換させて該水の温度を下げる水冷却部、及び前記水冷却部で熱交換された後の熱媒体を前記蒸気発生部に戻す熱媒体還流管とを備えた冷却手段と、
前記冷熱媒体生成部内の蒸気を吸引し圧縮して高温化した熱媒体にして前記蒸気発生部に供給する吸引圧縮手段とを有し、
前記熱媒体の加熱は前記蒸気発生部に供給された前記高温化した熱媒体との間の熱交換により行ない、前記蒸気の凝縮は前記蒸気発生部で熱交換した後の温度の下がった熱媒体を前記冷熱媒体生成部に供給し熱交換させることにより行うことを特徴とする冷水の製造装置。
An apparatus for producing cold water for cooling high-temperature water generated by an external device and returning the water to the external device,
A steam generating section that stores and heats a heat medium and turns a part of the heat medium into steam, the heat medium generated by the steam generating section is caused to flow in, condensed, and a part thereof is again evaporated to lower the temperature of the heat medium A cooling medium generating unit that generates heat, a water cooling unit that lowers the temperature of the water by heat-exchanging the heat medium with the lowered temperature with the water, and a heat medium after the heat exchange in the water cooling unit. Cooling means comprising a heat medium recirculation pipe returning to the steam generating section,
Suction suction means for sucking and compressing the steam in the cooling medium generating unit to supply the steam generating unit as a heat medium heated to a high temperature,
The heating of the heat medium is performed by heat exchange between the heat medium and the high-temperature heat medium supplied to the steam generation unit, and the condensation of the steam is performed by the heat medium whose temperature has been reduced after the heat exchange in the steam generation unit. And supplying heat to the cooling medium generating unit to cause heat exchange.
請求項11記載の冷水の製造装置において、前記冷却手段が2以上の場合、前記各蒸気発生部に貯留された前記熱媒体の加熱は、前記各蒸気発生部を第1の熱媒体連通管で直列に連通し前記高温化させた熱媒体を前記水の流れる上流側に設けた前記蒸気発生部から下流側に設けた前記蒸気発生部に向けて通過させることにより行ない、また、最下流側の前記冷熱媒体生成部内の蒸気の凝縮は最下流側の前記蒸気発生部で熱交換した後の温度の下がった熱媒体を前記冷熱媒体生成部に供給し熱交換させることにより行ない、更に、前記各冷熱媒体生成部をその1つ下流側の前記冷熱媒体生成部と第2の熱媒体連通管で直列に連通し、該最下流側の前記冷熱媒体生成部を除く前記各冷熱媒体生成部内の蒸気の凝縮は前記各冷熱媒体生成部にその1つ下流側の前記冷熱媒体生成部内の蒸気を流入させて混合することにより行ない、しかも、最上流側の前記冷熱媒体生成部内の蒸気を前記吸引圧縮手段に戻すことを特徴とする冷水の製造装置。The apparatus for producing cold water according to claim 11, wherein when the number of the cooling units is two or more, the heating of the heat medium stored in each of the steam generating units is performed by connecting the steam generating units to a first heat medium communicating pipe. It is performed by passing the heat medium heated at a high temperature from the steam generating section provided on the upstream side to the steam generating section provided on the downstream side, and communicating with the steam at the most downstream side. Condensation of the steam in the cooling medium generating unit is performed by supplying the cooling medium generating unit with a heat medium whose temperature has been lowered after heat exchange in the steam generating unit on the most downstream side and performing heat exchange. The cooling medium generating section communicates in series with the cooling medium generating section on one downstream side by a second heat medium communication pipe, and the steam in each cooling medium generating section excluding the cooling medium generating section on the most downstream side. Is condensed in each of the cooling medium generators. Allowed to flow into the cold medium vapor in the generator of the downstream performed by mixing, addition, cold water manufacturing apparatus and returning the steam in the chilling medium generating unit on the most upstream side to the suction compression means.
JP2003020477A 2003-01-29 2003-01-29 Method and device for manufacturing cool water Pending JP2004232925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020477A JP2004232925A (en) 2003-01-29 2003-01-29 Method and device for manufacturing cool water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020477A JP2004232925A (en) 2003-01-29 2003-01-29 Method and device for manufacturing cool water

Publications (1)

Publication Number Publication Date
JP2004232925A true JP2004232925A (en) 2004-08-19

Family

ID=32950101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020477A Pending JP2004232925A (en) 2003-01-29 2003-01-29 Method and device for manufacturing cool water

Country Status (1)

Country Link
JP (1) JP2004232925A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759036B1 (en) 2006-04-10 2007-09-17 한국식품연구원 Method and apparatus for manufacturing low-temperature cooling water
JP2008292106A (en) * 2007-05-28 2008-12-04 Takasago Thermal Eng Co Ltd Cooling tower system
JP2011007431A (en) * 2009-06-26 2011-01-13 Cool Frames Kk Cooling device
CN102116583A (en) * 2011-01-26 2011-07-06 吴增伟 Vulcanizing dead steam waste heat recovery device
KR101065221B1 (en) 2006-01-13 2011-09-19 히라노 마사카쯔 Water treatment apparatus and power generator using the same
JP2012519824A (en) * 2009-03-03 2012-08-30 マンターズ コーポレイション Direct forced draft cooler / cooling tower and liquid collector therefor
JP2012193955A (en) * 2012-07-12 2012-10-11 Takasago Thermal Eng Co Ltd Cooling water supply system and flow control system
KR20160046564A (en) * 2014-10-21 2016-04-29 한국공항공사 Cooling Tower
US10107001B2 (en) 2014-03-28 2018-10-23 Syntech Towers, L.L.C. CMU cooling tower and method of construction
US11609051B2 (en) 2020-04-13 2023-03-21 Harold D. Revocable Trust Apparatus for cooling liquid and collection assembly therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065221B1 (en) 2006-01-13 2011-09-19 히라노 마사카쯔 Water treatment apparatus and power generator using the same
KR100759036B1 (en) 2006-04-10 2007-09-17 한국식품연구원 Method and apparatus for manufacturing low-temperature cooling water
JP2008292106A (en) * 2007-05-28 2008-12-04 Takasago Thermal Eng Co Ltd Cooling tower system
US9562729B2 (en) 2009-03-03 2017-02-07 Munters Corporation Direct forced draft fluid cooler/cooling tower and liquid collector therefor
JP2012519824A (en) * 2009-03-03 2012-08-30 マンターズ コーポレイション Direct forced draft cooler / cooling tower and liquid collector therefor
US9644904B2 (en) 2009-03-03 2017-05-09 Syntech Towers, LLC Direct forced draft fluid cooler/cooling tower and liquid collector therefor
US9033318B2 (en) 2009-03-03 2015-05-19 Munters Corporation Direct forced draft fluid cooler/cooling tower and liquid collector therefor
JP2011007431A (en) * 2009-06-26 2011-01-13 Cool Frames Kk Cooling device
CN102116583A (en) * 2011-01-26 2011-07-06 吴增伟 Vulcanizing dead steam waste heat recovery device
JP2012193955A (en) * 2012-07-12 2012-10-11 Takasago Thermal Eng Co Ltd Cooling water supply system and flow control system
US10107001B2 (en) 2014-03-28 2018-10-23 Syntech Towers, L.L.C. CMU cooling tower and method of construction
KR20160046564A (en) * 2014-10-21 2016-04-29 한국공항공사 Cooling Tower
KR101716003B1 (en) * 2014-10-21 2017-03-13 한국공항공사 Cooling Tower
US11609051B2 (en) 2020-04-13 2023-03-21 Harold D. Revocable Trust Apparatus for cooling liquid and collection assembly therefor

Similar Documents

Publication Publication Date Title
KR101197283B1 (en) Apparatus for preventing white plume and cooling tower with the same
CA2629713C (en) Multi-stage hybrid evaporative cooling system
ES2734074T3 (en) Hybrid heat exchanger and its operating procedures
JP6910289B2 (en) Combination type convector
KR101250769B1 (en) Hybrid air conditioning system
JP6403703B2 (en) Method and apparatus for cooling and drying compressed air
CN103502760B (en) The evaporation-cooled device of cooling fluid and method
JP2008516187A (en) Falling film evaporator
JP2022009384A (en) Systems and methods for purging chiller system
JP2001227874A (en) System for dehumidifying air in enclosure
JP2004232925A (en) Method and device for manufacturing cool water
KR20130060694A (en) Cooling tower
JP2009292318A (en) Heat exchanger
KR101808167B1 (en) Refrigerating system with vacuum cooler
JP2008275288A (en) Evaporation type air conditioner
JP4426263B2 (en) Air conditioner
KR20030088106A (en) Drying machine using heat pump system
KR102054006B1 (en) system for exhaust flue gas condensation and multi-stage heat recovery
KR100775517B1 (en) Heat interchanging system for manufacturing equipment of semiconductor capable of removing moisture and fluorine in a coolant
JP2004053067A (en) Cooling method of warm water and its cooling device
JP3801232B2 (en) Intake air cooling system for gas turbine
KR102228774B1 (en) Air Conditioning Systems
JP2004076971A (en) Method and device for generating hot water and cooling water for use in drying device
KR101258455B1 (en) Heat exchanger having multi-row tube type panel, and air conditioning system using the same
KR100357140B1 (en) An air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A02