JP2004232922A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004232922A
JP2004232922A JP2003020185A JP2003020185A JP2004232922A JP 2004232922 A JP2004232922 A JP 2004232922A JP 2003020185 A JP2003020185 A JP 2003020185A JP 2003020185 A JP2003020185 A JP 2003020185A JP 2004232922 A JP2004232922 A JP 2004232922A
Authority
JP
Japan
Prior art keywords
heat absorbing
heat
heat exchanger
absorbing pipes
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003020185A
Other languages
Japanese (ja)
Other versions
JP4143431B2 (en
Inventor
Kenji Nakamura
憲司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2003020185A priority Critical patent/JP4143431B2/en
Priority to KR10-2003-0086354A priority patent/KR100529788B1/en
Publication of JP2004232922A publication Critical patent/JP2004232922A/en
Application granted granted Critical
Publication of JP4143431B2 publication Critical patent/JP4143431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the size of a heat exchanger having a heat absorbing group formed of a plurality of heat absorbing pipes 13a to 13d absorbing the heat of burned exhaust gas from a gas burner and allowing heated fluid to flow therein stacked on each other in the crossed state and a casing 50 surrounding the heat absorbing pipe group. <P>SOLUTION: The crossed portions R of the heat absorbing pipes 13a to 13d are formed flat in the stacked direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本願発明は、水等の被加熱流体を加熱する為の熱交換器に関するもので、例えば、給湯機や風呂釜等の熱交換器として使用することができる。
【0002】
【従来の技術】
図8は、給湯機に組み込まれる従来の熱交換器、更に詳しくは、ガスバーナからの燃焼排気の顕熱以外に潜熱も吸収する形式の図9に示すコンデンシング給湯機の潜熱回収用の熱交換器(1)の要部の断面図である(特許文献1参照)。
このものでは、熱交換器(1)内には、被加熱流体たる水が流れる吸熱パイプ(13a)(13b)が配設されていると共に、これら吸熱パイプ(13a)(13b)は、表面積の拡大を図って熱効率を確保するために屈曲自在なコルゲート管で構成されている。
【0003】
一方の吸熱パイプ(13a)は、図8の紙面と平行な面(以下、「蛇行面」という。)内で蛇行するように曲成されており、これにより、円弧状の折返し部(R)(R)とその両端に続く直線部(S)(S)を備えた波形に形成されている。又、他方の吸熱パイプ(13b)も上記と同様な波形に曲成されている。
吸熱パイプ(13a)(13b)は、前記蛇行面に対して垂直な方向に重ね合わされていると共に、これら吸熱パイプ(13a)(13b)は、前記波形の波長方向に互いに半ピッチずれる態様で配設されている。
このものでは、吸熱パイプ(13a)(13b)を重ね合わせ状態に配設しているから、熱交換器(1)に於ける前記重ね合わせ方向の寸法をある程度小さくすることができる。
【0004】
【特許文献1】
特開2001−241873号公報(図1,図3)
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来のものでは、吸熱パイプ(13a)(13b)を単純に重ね合わせるだけであるから、熱交換器(1)を十分に小型化することができないという問題があった。
本願発明は、かかる点に鑑みて成されたもので、
『ガスバーナからの燃焼排気の熱を吸収し且つ内部に被加熱流体が流れる複数の吸熱パイプが交差する状態で重ねられた吸熱パイプ群と、
前記吸熱パイプ群を包囲するケーシングを具備する熱交換器』に於いて、既述従来のものに比べて一層小型化された熱交換器を提供することをその課題とする。
【0006】
【課題を解決するための手段】
[1項]
上記課題を解決するための本願発明の技術的手段は、
『前記各吸熱パイプにおける前記交差する部位が、前記重ねられる方向に扁平化されている』ことである。
上記技術的手段によれば、各吸熱パイプが扁平化された部位で重ね合わされるから、扁平化されていないものに比べて、吸熱パイプ群全体の前記重ね合わせ方向の寸法が一層小さくなり、その分、既述従来の熱交換器に比べて一層小型化が図れる。
【0007】
又、吸熱パイプと熱交換しない燃焼排気の量が少なくなって、熱効率が向上するという作用効果が生じる。即ち、各吸熱パイプが前記重ね合わせ方向に間隔を置いて配設されている場合には、前記燃焼排気が各吸熱パイプに接触することなく前記間隔部を素通りし、これにより、吸熱パイプと熱交換しない燃焼排気の量が増加する。これに対し、本願発明では、吸熱パイプ群の前記重ね合わせ部が扁平化されているから、既述従来のものに比べて各吸熱パイプが更に密に配設された状態になり、その分、該配設密度が低い従来のものに比べて吸熱パイプに接触することなく排出される無駄な燃焼排気の量が少なくなる。即ち、流動する燃焼排気が各吸熱パイプの裏側まで回り込み、これにより、熱効率が向上する。
【0008】
[2項]
前記1項に於いて、
『前記各吸熱パイプは、一つの蛇行面内で波形に蛇行する形状を有しており、
前記各吸熱パイプは前記蛇行面に対して垂直な方向に順次重ねられていると共に、重ね合わせ方向に隣接する吸熱パイプ相互が前記波形の波長方向にずれている』ものでは、各吸熱パイプが波形に蛇行しているから直線パイプに比べて長くなり、その分、熱効率が向上する。
【0009】
[3項]
前記2項に於いて、
『前記各吸熱パイプは、互いに同一の波形に曲成されたコルゲート管から構成されていると共に、円弧状折返し部と該円弧状折返し部の端部に続く直線部が交互に繰り返して連続する波形に曲成されており、
前記扁平化された部位は、前記円弧状折返し部である』ものでは、各吸熱パイプが同一形状に形成されているから、異なる形状の吸熱パイプを製作する場合に比べて製造効率の向上と、部品の共通化を図ることができる。
【0010】
[4項]
前記3項に於いて、
『前記各円弧状折返し部は前記ケーシング内に位置しており、
前記各円弧状折返し部の外周に対して前記ケーシングの内側壁が圧接されている』ものでは、円弧状折返し部がケーシングの内側壁に圧接されて安定する。従って、被加熱流体が急激に停止する際のウォータハンマー現象に起因する各吸熱パイプの振動音を抑制することができる。
【0011】
[5項]
前記1項から4項に於いて、
『前記各吸熱パイプは、前記交差する部位に於いて相互に固定されている』ものでは、前記固定によって吸熱パイプ相互の位置ずれを防止することができ、各吸熱パイプの間隔を長期に亘って適正間隔に維持できるから、経年的な熱効率低下を防止することができる。
【0012】
【発明の効果】
本願発明は、上記構成であるから次の特有の効果を有する。
既述従来のものに比べて吸熱パイプ群全体の重ね合わせ方向の寸法が一層小さくなるから、熱交換器が一層小型化できる。
又、既述したように、燃焼排気が排気流に対する各吸熱パイプの裏側まで回り込み易くなり、これにより、吸熱パイプと接触することなく排出される燃焼排気の量が少なくなるから、その分、熱効率が向上する。
【0013】
3項のものでは、各吸熱パイプが同一形状に形成されているから、部品の共通化が図れる。
【0014】
4項のものでは、被加熱流体が急激に停止する際のウォータハンマー現象に起因する各吸熱パイプの振動音を抑制することができる。
【0015】
5項のものでは、各吸熱パイプの間隔を長期に亘って適正間隔に維持できるから、経年的な熱効率低下を防止することができる。
【0016】
【発明の実施の形態】
次に、上記した本願発明の実施の形態を図面に従って詳述する。
図1は、本願発明の実施の形態に係る熱交換器を適用したコンデンシング給湯機の縦断面図である。
このコンデンシング給湯機では、本体ケース(H)内に設けられた給気ファン(F)の上方に連設された燃焼箱(C)にはガスバーナ(B)が収納されていると共に、前記燃焼箱(C)の上方にはガスバーナ(B)の燃焼排気から顕熱を吸収する主熱交換器(2)が連設されており、該主熱交換器(2)には上記顕熱を吸収する為の吸熱パイプ(21)が配設されている。尚、前記吸熱パイプ(21)は、図1の紙面に対して前後に往復するように蛇行する一本の銅パイプで構成されており、その下流端(22)から加熱昇温された温水が流出するようになっている。
【0017】
本願発明の対象たる熱交換器は、ガスバーナ(B)の燃焼排気から潜熱を回収する為の副熱交換器(5)として実施されている。
以下、副熱交換器(5)の構造について更に詳述する。
【0018】
[全体構造]
図1,2に示すように、副熱交換器(5)は、被加熱流体たる水道水が流れ且つガスバーナの燃焼排気から潜熱を吸収する吸熱パイプ(13a)〜(13d)と、これらを装着する為のケーシング(50)を備えている。
【0019】
[ケーシング(50)]
前記ケーシング(50)は、全体として矩形箱状に形成されている。そのため、ケーシング(50)は、矩形枠状に組み立てられる前後板(53)(54)及び側板(51)(52)と、該側板(51)(52)等によって組み立てられた上方開放の矩形枠の頂部を閉塞する天板(55)とを具備している。
【0020】
ケーシング(50)内には、吸熱パイプ(13a)〜(13d)の上方に配設された排気案内板(56)と、吸熱パイプ(13a)〜(13d)から滴下するドレンを受けるドレンガイド(57)とが設けられている。このドレンガイド(57)は、燃焼排気流の下流側に向けて低くなるように傾斜していると共に、該傾斜部の最下部にはドレン集合部(58)が凹設されており、該ドレン集合部(58)に集められた強酸性のドレンは、排液管(59)を通過して図示しない中和装置に流入し、該中和装置で中和された後に下水に排出されるようになっている。
【0021】
排気案内板(56)は吸熱パイプ(13a)〜(13d)の配設域に沿って燃焼排気が流れるように、下流側に向けて傾斜していると共に、下流端は下方に屈曲されて垂下壁(560)となっており、該垂下壁(560)の下方が熱交換室(12)からの排気口(561)となっている。又、ケーシング(50)を構成する前板(53)の上部には、燃焼排気を機外に排出する為の排気トップ(41)が配設されている。
【0022】
[吸熱パイプ(13a)〜(13d)]
上記ドレンガイド(57)と排気案内板(56)の上下間に形成された熱交換室(12)に位置する吸熱パイプ(13a)〜(13d)は、夫々同一の波形に曲成されている。
図3に示すように、吸熱パイプ(13a)〜(13d)は、ステンレス又はチタンから成るコルゲート管(円弧状の谷部と山部が軸線方向に交互に連続する外面形状を有する管)を一つの平面(蛇行面)内で波形に曲成したものであり、容易に変形しないように比較的大きな剛性を有している。
【0023】
又、吸熱パイプ(13a)〜(13d)は、蛇行方向の中央に位置する折返し部(R)と、その両端から各別に延長する二本の直線部(S)(S)と、該直線部(S)(S)に一端が連結一体化された二つの折返し部(R)(R)と、該折返し部(R)(R)の他端から各別に延長する両サイドの直線部(S)(S)を具備しており、本実施の形態では、上記各折返し部(R)が半円弧状に形成されている。これにより、吸熱パイプ(13a)〜(13d)は、折返し部(R)と該折返し部(R)の端部に続く直線部(S)が一つの平面たる蛇行面内で繰り返して連続する波形に形成されている。
【0024】
吸熱パイプ(13a)〜(13d)の各折返し部(R)は、図5に示すように、円形パイプを前記蛇行面に対して垂直な方向に扁平化した小判型の断面形状を有している。尚、同図は吸熱パイプ(13a)の谷部を切断した形状を示している。一方、吸熱パイプ(13a)の各直線部(S)の谷部を横断した断面形状は、図4に示す如く円形になっている。
図1,図2に示すように、吸熱パイプ(13a)〜(13d)は前記蛇行面に垂直な方向に重ねられていると共に、吸熱パイプ(13a)〜(13d)のうち、重ね合わされる吸熱パイプ相互は屈曲する波形の波長方向に半ピッチだけずれている。即ち、図1に於いて、上から二番目と最下位の吸熱パイプ(13b)(13d)に対してこれらに隣接する吸熱パイプ(13a)(13c)は排気流の下流方向に半ピッチずれた部位に設けられている。
【0025】
又、各吸熱パイプ(13a)〜(13d)は、扁平に加工された折返し部(R)(R)部分で重ね合わされていると共に、図1,図2に示すように、吸熱パイプ(13a)〜(13d)同士の重ね合わせ部分(平面視に於ける交差部)が、重ね合わせ方向に4本まとめて結束金具(16)(16)によって固定されている。これにより、吸熱パイプ(13a)〜(13d)の間隔を長期に亘って適正間隔に維持し、経年的な熱効率低下が防止できるようにしている。
【0026】
又、吸熱パイプ(13a)〜(13d)の折返し部(R)(R)の外周にはケーシング(50)の内側壁たる側板(51)(52)が圧接されており、これにより、後述するウォータハンマー現象で吸熱パイプ(13a)〜(13d)が振動するのを抑制している。
【0027】
更に、吸熱パイプ(13a)〜(13d)の両端部は、副熱交換器(5)を構成するケーシング(50)の側板(52)を外方に貫通していると共に、吸熱パイプ(13a)〜(13d)の前記貫通した一方の端部相互は、図2,図6に現れるように、流入側ヘッダ(31)で連結されていると共に、該流入側ヘッダ(31)には水道配管に繋がる給水管(33)が接続されている。一方、吸熱パイプ(13a)〜(13d)の他端相互は流出側ヘッダ(32)で連結されていると共に、該流出側ヘッダ(32)には主熱交換器(2)の吸熱パイプ(21)の上流端に繋がる連結パイプ(34)が接続されている。このように、吸熱パイプ(13a)〜(13d)は、その両端が流入側ヘッダ(31)と流出側ヘッダ(32)で連結されて全体として並列接続された状態になっており、これにより、吸熱パイプ(13a)〜(13d)が直列接続された場合に比べて通水抵抗の軽減が図られている。
【0028】
[各部の機能等の説明]
このものでは、主熱交換器(2)を構成する吸熱パイプ(21)の下流側に給湯蛇口(K)を配管接続して使用する。
給湯蛇口(K)の開放によって上記吸熱パイプ(21)等が通水状態になると、これを検知する図示しない水量センサの信号で給気ファン(F)が回転すると共にガスバーナ(B)が燃焼し始める。
すると、給水管(33)から供給される被加熱流体たる水道水は、流入側ヘッダ(31)→吸熱パイプ(13a)〜(13d)→流出側ヘッダ(32)→連結パイプ(34)→吸熱パイプ(21)→給湯蛇口(K)と繋がる経路で流動する。
【0029】
一方、ガスバーナ(B)からの燃焼排気は主熱交換器(2)の吸熱パイプ(21)の配設部→副熱交換器(5)の吸熱パイプ(13a)〜(13d)の配設部→排気口(561)→排気トップ(41)と繋がる経路で流れる。このとき、前記燃焼排気の顕熱は主熱交換器(2)の吸熱パイプ(21)部分を流れる水に吸収される一方、該吸熱によって温度低下した燃焼排気の潜熱は副熱交換器(5)の吸熱パイプ(13a)〜(13d)部分を流れる水に吸収される。そして、これらの吸熱作用によって加熱生成された温水が給湯蛇口(K)に供給される。
【0030】
一方、前記燃焼排気からの潜熱吸収によって副熱交換器(5)部分で生成されたドレンはドレンガイド(57)上に滴下してドレン集合部(58)から排液管(59)を介して図示しない中和装置に導かれる。
このものでは、各吸熱パイプ(13a)〜(13d)を扁平にした折返し部(R)で重ね合わせているから、扁平化されていないものに比べて、吸熱パイプ群全体に於ける前記重ね合わせ方向の寸法が小さくなり、副熱交換器(5)を小型化することができる。
【0031】
又、各吸熱パイプ(13a)〜(13d)を扁平化した折返し部(R)で重ね合わせているから、図7に示すように、吸熱パイプ(13b)(13d)の直線部(S)の中心軸と、これに重ね合わされる吸熱パイプ(13a)(13c)の直線部(S)の中心軸の重ね合わせ方向の距離が小さくなる。即ち、前記吸熱パイプ(13a)〜(13d)群を排気流の方向へ投影した場合には、吸熱パイプ(13b)(13d)に於ける直線部(S)と吸熱パイプ(13a)(13c)に於ける直線部(S)とが完全に重なった状態になる。従って、各吸熱パイプ(13a)〜(13d)が密に配設された状態になり、その分、該配設密度が低い場合に比べて吸熱パイプ(13a)〜(13d)に接触することなく排出される無駄な燃焼排気の量が少なくなる。即ち、流動する燃焼排気が各吸熱パイプ(13a)〜(13d)の裏側まで回り込み、これにより、熱効率が向上する。
【0032】
尚、上記実施の形態では、コンデンシング給湯機の副熱交換器(5)として本願発明を適用する場合を例示的に説明したが、ガスバーナ(B)の燃焼排気の顕熱を吸収する主熱交換器(2)に本願発明を適用してもよい。又、浴槽内と風呂釜とを循環する追焚き回路の風呂釜内の熱交換器に本願発明を適用してもよく、本願発明は被加熱流体が流れる種々の熱交換器に適用することができる。
【図面の簡単な説明】
【図1】本願発明の実施の形態に係る熱交換器を適用した給湯機の縦断面図
【図2】副熱交換器(5)の横断面図
【図3】吸熱パイプ(13a)の斜視図
【図4】図3に於けるIV−IV線断面図
【図5】図3に於けるV−V線断面図
【図6】副熱交換器(5)の背面図
【図7】各吸熱パイプ(13a)〜(13d)の配置関係の説明図
【図8】従来例の説明図
【図9】従来例の説明図
【符号の説明】
(13a)〜(13d)・・・吸熱パイプ
(2)・・・主熱交換器
(5)・・・副熱交換器
(50)・・・ケーシング
(B)・・・ガスバーナ
(R)・・・折返し部
(S)・・・直線部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger for heating a fluid to be heated, such as water, and can be used as, for example, a heat exchanger for a water heater or a bath pot.
[0002]
[Prior art]
FIG. 8 shows a conventional heat exchanger incorporated in a water heater, and more specifically, a heat exchanger for recovering latent heat of a condensing water heater shown in FIG. 9 which absorbs latent heat in addition to sensible heat of combustion exhaust gas from a gas burner. It is sectional drawing of the principal part of container (1) (refer patent document 1).
In this device, heat-absorbing pipes (13a) and (13b) through which water as a fluid to be heated flows are disposed in the heat exchanger (1), and the heat-absorbing pipes (13a) and (13b) have a surface area. It is made of a flexible corrugated tube to enlarge and secure thermal efficiency.
[0003]
One of the heat absorbing pipes (13a) is bent so as to meander in a plane parallel to the plane of the paper of FIG. 8 (hereinafter, referred to as a "meandering surface"), thereby forming an arc-shaped folded portion (R). (R) and a linear portion (S) following both ends thereof. The other heat absorbing pipe (13b) is also bent in the same waveform as described above.
The heat absorbing pipes (13a) and (13b) are overlapped in a direction perpendicular to the meandering surface, and the heat absorbing pipes (13a) and (13b) are arranged so as to be shifted from each other by a half pitch in the wavelength direction of the waveform. Is established.
In this device, since the heat absorbing pipes (13a) and (13b) are arranged in an overlapping state, the dimension of the heat exchanger (1) in the overlapping direction can be reduced to some extent.
[0004]
[Patent Document 1]
JP 2001-241873 A (FIGS. 1 and 3)
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned conventional device, there is a problem that the heat exchanger (1) cannot be sufficiently reduced in size because the heat absorbing pipes (13a) and (13b) are simply overlapped.
The present invention has been made in view of such a point,
`` A group of heat absorbing pipes stacked in a state where a plurality of heat absorbing pipes that absorb the heat of the combustion exhaust gas from the gas burner and through which the fluid to be heated flows intersect,
It is an object of the present invention to provide a heat exchanger having a casing that surrounds the heat absorbing pipe group, and providing a heat exchanger that is more compact than the above-described conventional one.
[0006]
[Means for Solving the Problems]
[1]
The technical means of the present invention for solving the above problems is as follows:
"The intersecting portions in each of the heat absorbing pipes are flattened in the overlapping direction".
According to the above technical means, since the heat absorbing pipes are superimposed at the flattened portion, the size of the heat absorbing pipe group as a whole in the superimposing direction is further reduced as compared with the non-flattened one, For this reason, the size can be further reduced as compared with the above-described conventional heat exchanger.
[0007]
In addition, the amount of combustion exhaust gas that does not exchange heat with the endothermic pipe is reduced, and the effect of improving thermal efficiency is produced. That is, when the heat absorbing pipes are arranged at intervals in the overlapping direction, the combustion exhaust gas passes through the space without contacting the heat absorbing pipes, whereby the heat absorbing pipe and the heat The amount of combustion exhaust that is not replaced increases. On the other hand, in the present invention, since the overlapping portion of the heat absorbing pipe group is flattened, the heat absorbing pipes are more densely arranged than the above-described conventional one, and accordingly, The amount of waste combustion exhaust discharged without contacting the heat absorbing pipe is reduced as compared with the conventional one having a lower arrangement density. That is, the flowing combustion exhaust wraps around to the back side of each heat absorbing pipe, thereby improving thermal efficiency.
[0008]
[2]
In the above item 1,
`` Each heat absorbing pipe has a shape meandering in a waveform in one meandering plane,
The heat absorbing pipes are sequentially stacked in a direction perpendicular to the meandering surface, and the heat absorbing pipes adjacent to each other in the overlapping direction are displaced in the wavelength direction of the waveform. Because it is meandering, it is longer than a straight pipe, and the thermal efficiency is improved accordingly.
[0009]
[3]
In the above paragraph 2,
"The heat-absorbing pipes are formed of corrugated pipes bent in the same waveform, and the arc-shaped folded portion and the straight portion following the end of the arc-shaped folded portion are alternately and repeatedly repeated. It is composed in
The flattened portion is the arc-shaped folded portion '', in which the heat absorbing pipes are formed in the same shape, so that the manufacturing efficiency is improved as compared with the case where heat absorbing pipes of different shapes are manufactured, Parts can be shared.
[0010]
[Item 4]
In the above item 3,
`` Each arc-shaped folded portion is located in the casing,
In the case where the inner wall of the casing is pressed against the outer circumference of each of the arc-shaped folded portions, the arc-shaped folded portion is stably pressed against the inner wall of the casing. Therefore, it is possible to suppress the vibration sound of each heat absorbing pipe caused by the water hammer phenomenon when the fluid to be heated suddenly stops.
[0011]
[5]
In the above items 1 to 4,
In the "the heat absorbing pipes are fixed to each other at the intersecting portion", the fixing can prevent the heat absorbing pipes from being displaced from each other, and the interval between the heat absorbing pipes can be increased over a long period of time. Since it can be maintained at an appropriate interval, it is possible to prevent a decrease in thermal efficiency over time.
[0012]
【The invention's effect】
The invention of the present application has the following specific effects because of the above configuration.
Since the size of the entire heat absorbing pipe group in the overlapping direction is smaller than that of the conventional one, the heat exchanger can be further downsized.
Further, as described above, the combustion exhaust gas easily flows to the back side of each heat absorbing pipe with respect to the exhaust gas flow, thereby reducing the amount of the combustion exhaust gas discharged without coming into contact with the heat absorbing pipe. Is improved.
[0013]
In the case of the third item, since the heat absorbing pipes are formed in the same shape, parts can be shared.
[0014]
According to the fourth aspect, it is possible to suppress the vibration noise of each heat absorbing pipe caused by the water hammer phenomenon when the fluid to be heated suddenly stops.
[0015]
In the case of the fifth item, since the intervals between the heat absorbing pipes can be maintained at appropriate intervals over a long period of time, it is possible to prevent a decrease in thermal efficiency over time.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the above-described embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a condensing water heater to which a heat exchanger according to an embodiment of the present invention is applied.
In this condensing water heater, a gas burner (B) is housed in a combustion box (C) connected above an air supply fan (F) provided in a main body case (H). A main heat exchanger (2) for absorbing sensible heat from the combustion exhaust gas of the gas burner (B) is connected above the box (C), and the main heat exchanger (2) absorbs the sensible heat. A heat absorbing pipe (21) is provided. The heat absorbing pipe (21) is composed of a single copper pipe meandering back and forth with respect to the paper surface of FIG. 1, and hot water heated and heated from a downstream end (22) thereof. It is spilled.
[0017]
The heat exchanger to which the present invention is applied is implemented as a sub heat exchanger (5) for recovering latent heat from the combustion exhaust gas of the gas burner (B).
Hereinafter, the structure of the sub heat exchanger (5) will be described in more detail.
[0018]
[Overall structure]
As shown in FIGS. 1 and 2, the auxiliary heat exchanger (5) is provided with heat absorbing pipes (13a) to (13d) through which tap water as a fluid to be heated flows and absorbs latent heat from the combustion exhaust gas of the gas burner. And a casing (50) for carrying out.
[0019]
[Casing (50)]
The casing (50) is formed in a rectangular box shape as a whole. Therefore, the casing (50) is composed of the front and rear plates (53) and (54) and the side plates (51) and (52) assembled in a rectangular frame shape, and the upper open rectangular frame assembled by the side plates (51) and (52). And a top plate (55) for closing the top of the top plate.
[0020]
In the casing (50), an exhaust guide plate (56) disposed above the heat absorbing pipes (13a) to (13d), and a drain guide for receiving drain dripped from the heat absorbing pipes (13a) to (13d) ( 57) are provided. The drain guide (57) is inclined so as to become lower toward the downstream side of the combustion exhaust gas flow, and a drain collecting part (58) is recessed at the lowermost part of the inclined part. The strongly acidic drain collected in the collecting part (58) passes through a drain pipe (59), flows into a neutralization device (not shown), is neutralized by the neutralization device, and is then discharged to sewage. It has become.
[0021]
The exhaust guide plate (56) is inclined toward the downstream side so that the combustion exhaust gas flows along the area where the heat absorbing pipes (13a) to (13d) are provided, and the downstream end is bent downward and hangs down. It forms a wall (560), and below the hanging wall (560) is an exhaust port (561) from the heat exchange chamber (12). An exhaust top (41) for discharging combustion exhaust to the outside of the machine is disposed above the front plate (53) constituting the casing (50).
[0022]
[Heat absorbing pipes (13a) to (13d)]
The heat absorbing pipes (13a) to (13d) located in the heat exchange chamber (12) formed between the drain guide (57) and the exhaust guide plate (56) are bent in the same waveform. .
As shown in FIG. 3, the heat-absorbing pipes (13 a) to (13 d) are one of corrugated pipes (tubes having an outer surface shape in which arc-shaped valleys and peaks are alternately continuous in the axial direction) made of stainless steel or titanium. It is curved in two planes (meandering surface) and has relatively large rigidity so that it is not easily deformed.
[0023]
The heat-absorbing pipes (13a) to (13d) include a folded portion (R) located at the center in the meandering direction, two straight portions (S) and (S) extending separately from both ends thereof, and the straight portion. (S) Two folded portions (R) and (R) having one end connected and integrated with (S), and straight portions (S) on both sides extending separately from the other ends of the folded portions (R) and (R). ) (S), and in the present embodiment, each of the folded portions (R) is formed in a semicircular arc shape. As a result, the heat absorbing pipes (13a) to (13d) have a folded portion (R) and a straight portion (S) following the end of the folded portion (R), which is a continuous waveform that is repeated within a meandering plane as one plane. Is formed.
[0024]
As shown in FIG. 5, each folded portion (R) of the heat absorbing pipes (13a) to (13d) has an oval cross-sectional shape obtained by flattening a circular pipe in a direction perpendicular to the meandering surface. I have. The figure shows a shape obtained by cutting a valley of the heat absorbing pipe (13a). On the other hand, the cross-sectional shape of each of the straight portions (S) of the heat absorbing pipe (13a) crossing the valley portion is circular as shown in FIG.
As shown in FIGS. 1 and 2, the heat absorbing pipes (13a) to (13d) are stacked in a direction perpendicular to the meandering surface, and among the heat absorbing pipes (13a) to (13d), The pipes are shifted from each other by a half pitch in the wavelength direction of the bent waveform. That is, in FIG. 1, the heat absorbing pipes (13a) and (13c) adjacent to the second and lowest heat absorbing pipes (13b) and (13d) are shifted by a half pitch in the downstream direction of the exhaust gas flow. It is provided in the part.
[0025]
Each of the heat absorbing pipes (13a) to (13d) is overlapped at a flattened folded portion (R) (R), and as shown in FIGS. 1 and 2, the heat absorbing pipe (13a) The overlapping portions (intersecting portions in plan view) of (13d) to (13d) are fixed together by binding metal fittings (16) (16) in the overlapping direction. Thereby, the interval between the heat absorbing pipes (13a) to (13d) is maintained at an appropriate interval over a long period of time, so that a decrease in thermal efficiency over time can be prevented.
[0026]
Also, side plates (51) and (52) serving as inner walls of the casing (50) are pressed against the outer periphery of the folded portions (R) and (R) of the heat absorbing pipes (13a) to (13d). Vibration of the heat absorbing pipes (13a) to (13d) due to the water hammer phenomenon is suppressed.
[0027]
Further, both ends of the heat absorbing pipes (13a) to (13d) penetrate outwardly through the side plate (52) of the casing (50) constituting the sub heat exchanger (5), and the heat absorbing pipes (13a). As shown in FIG. 2 and FIG. 6, the one end of each of the through holes (13d) is connected to an inflow header (31), and the inflow header (31) is connected to a water pipe. The connecting water supply pipe (33) is connected. On the other hand, the other ends of the heat absorbing pipes (13a) to (13d) are connected to each other by an outlet header (32), and the outlet header (32) is connected to the heat absorbing pipe (21) of the main heat exchanger (2). ) Is connected to a connection pipe (34) connected to the upstream end. As described above, the heat absorbing pipes (13a) to (13d) are connected at the both ends thereof by the inflow side header (31) and the outflow side header (32) and are connected in parallel as a whole. The flow resistance is reduced as compared with the case where the heat absorbing pipes (13a) to (13d) are connected in series.
[0028]
[Explanation of functions of each part]
In this apparatus, a hot water supply faucet (K) is connected downstream of a heat absorbing pipe (21) constituting a main heat exchanger (2).
When the heat absorbing pipe (21) and the like are brought into a water-flowing state by opening the hot water supply faucet (K), the air supply fan (F) rotates and the gas burner (B) burns in response to a signal from a water amount sensor (not shown) that detects this. start.
Then, the tap water as the fluid to be heated supplied from the water supply pipe (33) is supplied to the inflow side header (31) → heat absorption pipes (13a) to (13d) → outflow side header (32) → connection pipe (34) → heat absorption. Pipe (21) flows through a path connected to hot water tap (K).
[0029]
On the other hand, the combustion exhaust gas from the gas burner (B) receives the heat absorbing pipes (21) of the main heat exchanger (2) → the heat absorbing pipes (13a) to (13d) of the sub heat exchanger (5). → Exhaust port (561) → Flow through the path connected to the exhaust top (41). At this time, the sensible heat of the combustion exhaust gas is absorbed by the water flowing through the heat absorbing pipe (21) of the main heat exchanger (2), and the latent heat of the combustion exhaust gas whose temperature has been lowered by the heat absorption is converted into the sub heat exchanger (5). ) Is absorbed by the water flowing through the heat absorbing pipes (13a) to (13d). Then, the hot water heated and generated by these endothermic actions is supplied to the hot water supply faucet (K).
[0030]
On the other hand, the drain generated in the sub heat exchanger (5) by the latent heat absorption from the combustion exhaust is dropped on the drain guide (57) and is discharged from the drain collecting part (58) through the drain pipe (59). It is led to a neutralization device (not shown).
In this device, since the heat absorbing pipes (13a) to (13d) are overlapped at the flattened folded portion (R), the overlapping of the heat absorbing pipes in the entire heat absorbing pipe group is compared with that of the unheated pipe. The dimension in the direction is reduced, and the size of the sub heat exchanger (5) can be reduced.
[0031]
Further, since the heat absorbing pipes (13a) to (13d) are overlapped at the flattened folded portion (R), as shown in FIG. 7, the linear portions (S) of the heat absorbing pipes (13b) and (13d) are formed. The distance between the central axis and the central axis of the linear portion (S) of the heat absorbing pipes (13a) (13c) superimposed on the central axis in the superimposing direction is reduced. That is, when the group of the heat absorbing pipes (13a) to (13d) is projected in the direction of the exhaust flow, the straight portion (S) in the heat absorbing pipes (13b) and (13d) and the heat absorbing pipes (13a) and (13c). Is completely overlapped with the straight portion (S). Therefore, the heat absorbing pipes (13a) to (13d) are densely arranged, and the heat absorbing pipes (13a) to (13d) do not contact the heat absorbing pipes (13a) to (13d) as compared with the case where the disposing density is low. The amount of wasteful combustion exhaust discharged is reduced. In other words, the flowing combustion exhaust wraps around the heat absorbing pipes (13a) to (13d), thereby improving the thermal efficiency.
[0032]
In the above embodiment, the case where the present invention is applied as the sub heat exchanger (5) of the condensing water heater has been exemplified. However, the main heat absorbing the sensible heat of the combustion exhaust gas of the gas burner (B) has been described. The present invention may be applied to the exchanger (2). Further, the present invention may be applied to a heat exchanger in a bath kettle of a reheating circuit that circulates in a bathtub and a bath kettle, and the present invention may be applied to various heat exchangers in which a fluid to be heated flows. it can.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a water heater to which a heat exchanger according to an embodiment of the present invention is applied. FIG. 2 is a transverse sectional view of a sub heat exchanger (5). FIG. 3 is a perspective view of a heat absorbing pipe (13a). FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3 FIG. 5 is a sectional view taken along the line VV in FIG. 3 FIG. 6 is a rear view of the sub heat exchanger (5) FIG. FIG. 8 is an explanatory view of an arrangement relationship of heat absorbing pipes (13a) to (13d). FIG. 8 is an explanatory view of a conventional example. FIG. 9 is an explanatory view of a conventional example.
(13a) to (13d) ... heat absorbing pipe (2) ... main heat exchanger (5) ... sub heat exchanger (50) ... casing (B) ... gas burner (R) ..Folding part (S) ... Linear part

Claims (5)

ガスバーナからの燃焼排気の熱を吸収し且つ内部に被加熱流体が流れる複数の吸熱パイプが交差する状態で重ねられた吸熱パイプ群と、
前記吸熱パイプ群を包囲するケーシングを具備する熱交換器に於いて、
前記各吸熱パイプにおける前記交差する部位が、前記重ねられる方向に扁平化されている、熱交換器。
A group of heat absorbing pipes stacked in a state in which a plurality of heat absorbing pipes that absorb the heat of the combustion exhaust gas from the gas burner and through which the fluid to be heated flows intersect,
In a heat exchanger including a casing surrounding the heat absorbing pipe group,
The heat exchanger, wherein the intersecting portions in each of the heat absorbing pipes are flattened in the overlapping direction.
請求項1に記載の熱交換器に於いて、
前記各吸熱パイプは、一つの蛇行面内で波形に蛇行する形状を有しており、
前記各吸熱パイプは前記蛇行面に対して垂直な方向に順次重ねられていると共に、重ね合わせ方向に隣接する吸熱パイプ相互が前記波形の波長方向にずれている、熱交換器。
In the heat exchanger according to claim 1,
Each of the heat absorbing pipes has a shape meandering in a waveform within one meandering plane,
The heat exchanger, wherein the heat absorbing pipes are sequentially stacked in a direction perpendicular to the meandering surface, and adjacent heat absorbing pipes in the overlapping direction are shifted from each other in the wavelength direction of the waveform.
請求項2に記載の熱交換器に於いて、
前記各吸熱パイプは、互いに同一の波形に曲成されたコルゲート管から構成されていると共に、円弧状折返し部と該円弧状折返し部の端部に続く直線部が交互に繰り返して連続する波形に曲成されており、
前記扁平化された部位は、前記円弧状折返し部である、熱交換器。
In the heat exchanger according to claim 2,
Each of the heat absorbing pipes is formed of a corrugated pipe curved to have the same waveform as each other, and has a continuous waveform in which an arc-shaped folded portion and a linear portion following an end of the arc-shaped folded portion are alternately repeated. It is composed,
The heat exchanger, wherein the flattened portion is the arc-shaped folded portion.
請求項3に記載の熱交換器に於いて、
前記各円弧状折返し部は前記ケーシング内に位置しており、
前記各円弧状折返し部の外周に対して前記ケーシングの内側壁が圧接されている、熱交換器。
In the heat exchanger according to claim 3,
Each of the arc-shaped folded portions is located in the casing,
A heat exchanger, wherein an inner wall of the casing is pressed against an outer periphery of each of the arc-shaped folded portions.
請求項1から請求項4の何れかに記載の熱交換器に於いて、
前記各吸熱パイプは、前記交差する部位に於いて相互に固定されている、熱交換器。
In the heat exchanger according to any one of claims 1 to 4,
The heat exchanger, wherein the heat absorbing pipes are fixed to each other at the intersection.
JP2003020185A 2003-01-29 2003-01-29 Heat exchanger Expired - Lifetime JP4143431B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003020185A JP4143431B2 (en) 2003-01-29 2003-01-29 Heat exchanger
KR10-2003-0086354A KR100529788B1 (en) 2003-01-29 2003-12-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020185A JP4143431B2 (en) 2003-01-29 2003-01-29 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2004232922A true JP2004232922A (en) 2004-08-19
JP4143431B2 JP4143431B2 (en) 2008-09-03

Family

ID=32949887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020185A Expired - Lifetime JP4143431B2 (en) 2003-01-29 2003-01-29 Heat exchanger

Country Status (2)

Country Link
JP (1) JP4143431B2 (en)
KR (1) KR100529788B1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343090A (en) * 2005-05-10 2006-12-21 Rinnai Corp One-can type composite heat source machine
JP2007178012A (en) * 2005-12-27 2007-07-12 Rinnai Corp Double can type complex heat source machine
JP2007225262A (en) * 2006-02-27 2007-09-06 Hitachi Housetec Co Ltd Water heater
JP2008032369A (en) * 2006-08-01 2008-02-14 Rinnai Corp Latent heat recovery type heat exchanger
JP2010032200A (en) * 2008-06-25 2010-02-12 Noritz Corp Water heater
KR101053172B1 (en) 2011-01-31 2011-08-02 (주)바오텍 Heat exchanger and manufacturing method thereof
JP2012137253A (en) * 2010-12-27 2012-07-19 Rinnai Corp Latent heat exchanger and water heater
KR101211120B1 (en) * 2009-11-27 2012-12-11 대원열판(주) Plate channel type heat exchanger
CN103940258A (en) * 2013-01-17 2014-07-23 李华彬 Grading liquid temperature regulation system
US20180073810A1 (en) * 2015-08-10 2018-03-15 Indmar Products Company Inc. Marine Engine Heat Exchanger
US20190003739A1 (en) * 2017-06-30 2019-01-03 Purpose Co., Ltd. Heat exchanger tube, heat exchange unit, heat exchange apparatus, hot water supply system, and method of manufacturing heat exchanger tube
JP2021073429A (en) * 2021-02-05 2021-05-13 パーパス株式会社 Heat exchange unit, heat exchange device, and hot water supply system
JP2021165600A (en) * 2020-04-06 2021-10-14 株式会社ノーリツ Heat exchanger and water heating system with the same
KR20220161042A (en) * 2021-05-28 2022-12-06 주식회사 에스앤씨엔지니어링 Water cooling pad

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100534492B1 (en) * 2004-04-06 2005-12-07 주식회사 두발가스엔지니어링 Heat exchanger assembly for boiler
NL1035755C2 (en) * 2008-07-25 2010-01-26 Gerke Houwer Heat-exchanger for exchanging heat between two media e.g. gas and liquid, has thin-walled tubes suspended in rack of suspension frame that is provided with hanging part, and harmonica-shaped folds formed along circumference of pipes
KR100975104B1 (en) * 2008-11-14 2010-08-11 롯데알미늄 주식회사 The case the condensing gas for boiler latent heat heat exchanger
RU2672988C2 (en) * 2015-02-24 2018-11-21 Общество с ограниченной ответственностью "НИУИФ-Инжиниринг"(ООО "НИУИФ-Инжиниринг") Shell and tube heat exchanger
CN112797623B (en) * 2020-12-31 2022-11-22 西安曲江新区圣元热力有限公司 Energy-saving, environment-friendly and safe gas boiler

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343090A (en) * 2005-05-10 2006-12-21 Rinnai Corp One-can type composite heat source machine
JP2007178012A (en) * 2005-12-27 2007-07-12 Rinnai Corp Double can type complex heat source machine
JP2007225262A (en) * 2006-02-27 2007-09-06 Hitachi Housetec Co Ltd Water heater
JP2008032369A (en) * 2006-08-01 2008-02-14 Rinnai Corp Latent heat recovery type heat exchanger
JP4719101B2 (en) * 2006-08-01 2011-07-06 リンナイ株式会社 Latent heat recovery type heat exchanger
JP2010032200A (en) * 2008-06-25 2010-02-12 Noritz Corp Water heater
KR101211120B1 (en) * 2009-11-27 2012-12-11 대원열판(주) Plate channel type heat exchanger
JP2012137253A (en) * 2010-12-27 2012-07-19 Rinnai Corp Latent heat exchanger and water heater
KR101053172B1 (en) 2011-01-31 2011-08-02 (주)바오텍 Heat exchanger and manufacturing method thereof
CN103940258A (en) * 2013-01-17 2014-07-23 李华彬 Grading liquid temperature regulation system
US20180073810A1 (en) * 2015-08-10 2018-03-15 Indmar Products Company Inc. Marine Engine Heat Exchanger
US10465989B2 (en) * 2015-08-10 2019-11-05 Indmar Products Company Inc. Marine engine heat exchanger
US20190003739A1 (en) * 2017-06-30 2019-01-03 Purpose Co., Ltd. Heat exchanger tube, heat exchange unit, heat exchange apparatus, hot water supply system, and method of manufacturing heat exchanger tube
JP2019011912A (en) * 2017-06-30 2019-01-24 パーパス株式会社 Heat exchange pipe, heat exchange unit, heat exchange device, hot water supply system and heat exchange pipe manufacturing method
US11168922B2 (en) 2017-06-30 2021-11-09 Purpose Co., Ltd. Heat exchanger tube, heat exchange unit, heat exchange apparatus, hot water supply system, and method of manufacturing heat exchanger tube
JP2021165600A (en) * 2020-04-06 2021-10-14 株式会社ノーリツ Heat exchanger and water heating system with the same
JP7470280B2 (en) 2020-04-06 2024-04-18 株式会社ノーリツ Heat exchanger and hot water device equipped with same
JP2021073429A (en) * 2021-02-05 2021-05-13 パーパス株式会社 Heat exchange unit, heat exchange device, and hot water supply system
JP7254372B2 (en) 2021-02-05 2023-04-10 パーパス株式会社 Heat exchange units, heat exchangers and hot water systems
KR20220161042A (en) * 2021-05-28 2022-12-06 주식회사 에스앤씨엔지니어링 Water cooling pad
KR102485175B1 (en) * 2021-05-28 2023-01-06 주식회사 에스앤씨엔지니어링 Water cooling pad

Also Published As

Publication number Publication date
KR20040069952A (en) 2004-08-06
JP4143431B2 (en) 2008-09-03
KR100529788B1 (en) 2005-11-21

Similar Documents

Publication Publication Date Title
JP2004232922A (en) Heat exchanger
WO2012090619A1 (en) Latent heat exchanger and hot water supply device
KR100570291B1 (en) Basic heat exchanger of boiler
JP5771519B2 (en) Latent heat exchanger and hot water supply device
KR101331825B1 (en) A heat exchanger for condensing boilers
WO2009078577A1 (en) Boiler for improving heat exchanging property
JP5467038B2 (en) Latent heat exchanger and hot water supply device
KR101031101B1 (en) separation type heat exchanger
JP5030981B2 (en) Heat exchanger
JP4180935B2 (en) Heat exchanger and hot water heater
RU93005179A (en) HEAT EXCHANGER FOR GAS BOILER
JP5207053B2 (en) Heat exchanger and water heater
JP5467037B2 (en) Latent heat exchanger and hot water supply device
JP4728056B2 (en) Hot water equipment
JP5234349B2 (en) Heat exchanger and water heater
JP2719171B2 (en) Heating facility with a hot water circuit for sanitary use
CN110243205A (en) A kind of heat exchanger assembly and wall-hung boiler
JP2009019859A (en) Heat exchanger and water heater
EP2133630A2 (en) Device for recovery of the fume heat and discharge of combustion fumes for a boiler
JP2006125811A (en) Instantaneous hot water heater
JP2004353964A (en) Latent heat recovery heat exchanger
KR100570292B1 (en) Pipe laying structure heat exchange pipe of boiler
KR20030082199A (en) Gas fired quick-heating water boiler having improved heat exchanging property
JP5234509B2 (en) Heat exchanger and water heater
JP2004347230A (en) Combustion chamber of gas boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4143431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term