JP2004232606A - ポンプ駆動装置及びポンプ駆動装置の制御方法 - Google Patents
ポンプ駆動装置及びポンプ駆動装置の制御方法 Download PDFInfo
- Publication number
- JP2004232606A JP2004232606A JP2003024812A JP2003024812A JP2004232606A JP 2004232606 A JP2004232606 A JP 2004232606A JP 2003024812 A JP2003024812 A JP 2003024812A JP 2003024812 A JP2003024812 A JP 2003024812A JP 2004232606 A JP2004232606 A JP 2004232606A
- Authority
- JP
- Japan
- Prior art keywords
- pump
- motor
- equation
- fluid
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Non-Positive-Displacement Pumps (AREA)
Abstract
【課題】配管系統の切り替えやバルブ開閉などに起因する流量変化によるポンプの圧力変動を抑えたポンプ駆動装置を提供する。
【解決手段】ポンプ駆動モータ6は、モータ電流Iとモータ回転数ωからポンプ室2を流れる流体の理論揚程Hthを(数1)に基づいて推測し、流体の流量の変動によるポンプ圧力の変動を抑えるよう制御可能なモータ制御回路7を備えている。
【選択図】 図1
【解決手段】ポンプ駆動モータ6は、モータ電流Iとモータ回転数ωからポンプ室2を流れる流体の理論揚程Hthを(数1)に基づいて推測し、流体の流量の変動によるポンプ圧力の変動を抑えるよう制御可能なモータ制御回路7を備えている。
【選択図】 図1
Description
【0001】
【発明の属する利用分野】
本発明は、例えば、床暖房、給湯器などに用いられるポンプ駆動装置に係り、詳しくはポンプ室に配置され流体を送り出す回転羽根を備えたポンプと該回転羽根の回転軸とロータの回転軸とが連繋してポンプを駆動するポンプ駆動モータとが組み付けられたポンプ駆動装置及びポンプ駆動装置の制御方法に関する。
【0002】
【従来の技術】
床暖房、給湯器などの電気製品には、流体を所定の圧力で送り出す遠心ポンプが用いられる。この遠心ポンプには、ポンプ室に流体を送り出す回転羽根を備えたポンプと該回転羽根を回転駆動するポンプ駆動モータとが組み付けられたポンプ駆動装置が開発されている。
【0003】
図6にポンプ駆動装置の一例を示す。ポンプ51は、流体が通過する配管52の一部に接続して設けられ、ポンプ室53に回転羽根54が回転可能に設けられている。回転羽根54の回転軸とロータの回転軸とが連繋しており、ポンプ51にポンプ駆動モータ(ブラシレスモータ)55が組み付けられている。ポンプ駆動モータ55は、安価なことからAC(交流)モータが用いられていたが、長時間運転を行うため省エネルギー化や効率の改善が図れ、更には制御性の点で優れているDC(直流)モータが用いられるようになってきた。
【0004】
直流モータは、制御性が良い反面、効率良く運転するためには流体の圧力を一定なるように制御したり、流量に応じてポンプ出力を変化させる必要があった。このため、流体の圧力を測定する圧力センサ57や流量を測定するための流量センサ58などが設けられている。指令電圧演算回路59は、例えば圧力指令値(電圧換算値)P0と圧力センサ57の検出値(電圧換算値)P1との差が零(P0−P1=0)となるように演算を行い、演算により得られた指令電圧をモータ制御回路60へ出力する。モータ制御回路60は、指令電圧と基準電圧との比較からモータ印加電圧を制御し、ポンプ駆動モータ55の回転数を可変制御している。
【0005】
【発明が解決しようとする課題】
上述したポンプ駆動装置を、例えば床暖房システムなどに適用する場合、ポンプ51に対して複数の可変バルブ部が並列に配管接続され、複数の配管系を切り替えて使用することが行われる。具体的には、可変バルブ部を部分的に開放して暖房するエリアを変化させることが行われる。このように配管系を切り替えた場合には、負荷系統数が変化するため1管路当たりを流れる流体の流量変化によるポンプの圧力変動が大きく、モータ回転数のみやモータを流れる電流値のみに基づく制御では、流体の圧力損失や消費電力が嵩みエネルギーの無駄が生じ易い。また、圧力センサ57や流量センサ58など比較的高価な部品が設けられているため製造コストが嵩む。
【0006】
本発明の目的は、上記従来技術の課題を解決し、配管系統の切り替えやバルブ開閉などに起因する流量変化によるポンプの圧力変動を抑え、省エネルギー化、小型化、低価格化を実現したポンプ駆動装置及びポンプ駆動装置の制御方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明は次の構成を備える。
ポンプ室に配置され流体を送り出す回転羽根を備えたポンプと該回転羽根の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが一体に組み付けられたポンプ駆動装置において、ポンプ駆動モータは、モータ電流Iとモータ回転数ωからポンプ室を流れる流体の理論揚程Hthを(数1)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御可能なモータ制御回路を備えていることを特徴とする。
また、(数1)のLω2=Mωと近似し、ポンプ室を流れる流体の理論揚程Hthを(数2)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御可能なモータ制御回路を備えていることを特徴とする。
また、モータ制御回路は、モータ電流値及びモータ回転数の検出により電圧換算値で(数1)若しくは(数2)にしたがって演算電圧値を算出する圧力演算回路と、該圧力演算回路により算出された演算電圧値と圧力指令電圧値との差を零とするように演算して得られたモータ指令電圧を出力する指令電圧演算回路とを備えていることを特徴とする。或いは、電流検出部から検出されたモータ電流Iと回転数検出部からの検出されたロータの実回転数に対応する回転周波数ωとを用いて(数1)若しくは(数2)にしたがって算出された理論揚程Hthと圧力指令に対応する揚程H0との差を零とするように演算して得られたモータ指令電圧を出力する制御部を備えていることを特徴とする。
【0008】
また、ポンプ室に配置され流体を送り出す回転羽根を備えたポンプと該回転羽根の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが組み付けられたポンプ駆動装置の制御方法において、モータ電流Iとモータ回転数ωを検出し、ポンプ室を流れる流体の理論揚程Hthを(数1)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御することを特徴とする。
また、(数1)のLω2=Mωと近似し、ポンプ室を流れる流体の理論揚程Hthを(数2)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御することを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の好適な実施の形態について添付図面と共に詳述する。
本実施例のポンプ駆動装置は、ポンプ室に回転羽根(ターボファン)が設けられた遠心式ポンプを用いたポンプ駆動装置について説明するものとする。
図1乃至図3はポンプ駆動装置の構成を示す回路図、図4はポンプの理論揚程を導出するための原理図、図5は流体の圧力と流量、消費電力と流量との関係を示すグラフ図である。
【0010】
先ず、図1及び図2を参照してポンプ駆動装置の概略構成について説明する。
1はポンプであり、ポンプ室2より流体を送り出す回転羽根(ターボファン)3を備えている。ポンプ1は、流体を圧送りする配管4の一部に接続されている。配管4は、ポンプ1に対して直列に接続される場合、並列に接続される場合の何れも含まれる。配管4の一部にはバルブ部5が設けられており、バルブ部5を開閉することにより、配管4を流れる流体の流量を調整したり、配管系を選択することができるようになっている。
【0011】
ポンプ1にはポンプ駆動モータ(直流ブラシレスモータ)6が一体に組み付けられている。ポンプ駆動モータ6は、ロータの回転軸が回転羽根3の回転軸と連繋してポンプ1を駆動するようになっている。本実施例ではポンプ駆動モータ6として三相のブラシレスモータ(例えばアウターロータ型モータ)が用いられる。
ポンプ駆動モータ6は、モータ電流Iとモータ回転数ωからポンプ室2を流れる流体の理論揚程Hthを(数1)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御可能なモータ制御回路7を備えている。
(数1)
Hth=Lω2−JI(L、J;回転羽根固有の定数)
【0012】
また、モータ制御回路7は、回転数の変化が少ない領域では(数1)のω2=Mωと近似し、ポンプ室2を流れる流体の理論揚程Hthを(数2)に基づいて推測し流体の流量の変動によりポンプ圧力の変動を抑えるよう制御するようになっている。
(数2)
Hth=Mω−JI(M、J;回転羽根固有の定数)
上述した数1及び数2は、モータ回転数と流量との相関関係は、直流モータの電動機軸トルクと電動機電流(モータ電流)は比例関係にあり、ポンプの搬送流量が増減すると軸トルクが増減することから、ポンプ1の搬送流量の増減はモータ電流より推測できる関係を前提として成り立つ。
【0013】
ここで、モータ制御回路7の構成について説明する。図1及び図2において、電流検出部である電流検出回路8は回路を流れるモータ電流値を検出し、電圧換算値が圧力演算回路9に入力される。また、圧力演算回路9には、回転数検出部である回転数検出回路10から実回転数に対応する実回転電圧値が入力される。圧力演算回路9は、入力されたモータ電流Iとモータ回転数ω(電圧換算値)から(数1)若しくは(数2)にしたがった演算を行って理論揚程Hth(演算電圧値)を算出する。次いで指令電圧演算回路11は圧力演算回路9で算出された演算電圧値Hthと、圧力指令値H0との差を零とするように演算して得られたモータ指令電圧をモータ制御回路7へ出力する。
尚、ポンプ駆動モータ6の回転数は、ロータマグネットの磁極位置を対応する磁極検出素子(ホール素子)などの回転数検出器12で検出される。この回転数検出器12で検出された三相分の検出信号を合成器(FG)13で合成し、合成信号を回転数検出回路10でF−V変換して実回転数ωに対応する実回転電圧値に換算される。
【0014】
モータ制御回路7は、指令電圧演算回路11より入力された指令電圧と、三角波発信回路14で生成した電圧とをコンパレータ15により比較してPWM制御信号(パルス幅変調信号)を生成し、モータ印加電圧を制御する。三相分配回路16は回転数検出器12で検出されたポンプ駆動モータ6のロータ回転位置に応じて、トランジスタQ1〜Q6をON/OFFし、ステータコイル6aに交番磁界を発生させるように通電電流を切り換え制御する。過電流検出器17はポンプ駆動モータ6に流れる過電流を検出すると、トランジスタQ1〜Q6をOFFして保護するようになっている。
【0015】
図3はモータ制御回路の他例を示す。本実施例は、圧力演算回路9や指令電圧演算回路11の替わりに制御部としてCPU(中央演算処理装置)18やデジタルアナログ変換回路(DAコンバータ(DAC))19が設けられている。電流検出回路8で検出されたモータ電流Iは、ADコンバータ(ADC)でアナログ信号からデジタル信号に変換されてCPU18に入力される。また、回転数検出器12で検出されたロータの磁極位置に基づいて、回転数検出回路10においてモータ回転数ωが周波数カウンタによりカウントされ、カウント値(デジタル信号)がCPU18に入力される。
【0016】
CPU18は、モータ電流Iとモータ回転数ωとを用いて(数1)若しくは(数2)にしたがって算出された理論揚程Hthと圧力指令に対応する揚程H0との差を零とするように演算を行う。この演算の結果得られたデジタル信号であるモータ指令電圧に基づいてDAコンバータ19によりモータ指令電圧をアナログ信号に変換してモータ制御回路7へ出力する。モータ制御回路7は、入力された指令電圧と三角波発信回路14で生成した電圧とをコンパレータ15により比較してPWM制御信号(パルス幅変調信号)を生成し、モータ印加電圧を制御する。
【0017】
ここで、図4に示すポンプの理論揚程を導出するための原理図を参照して上述した理論揚程Hthに近似できる根拠について説明する。一般に、遠心ポンプの理論揚程Hthは、以下のように与えられる。
図4において流体が回転羽根3の入口(半径r1)から出口(半径r2)へ移動する間に流体に作用したトルクTは、流体の密度ρ、流量Q、羽根入口の流入角度α1、羽根出口の流出角度α2、羽根入口の絶対速度v1、羽根出口の絶対速度v2、羽根入口の周速度u1、羽根出口の周速度u2、羽根入口の相対速度w1、羽根出口の相対速度w2、羽根出口のメリディアン速度v2mをとすると、
T=ρQ(v2r2COSα2−v1r1COSα1)
ポンプの動力P[N・m/s]は、
流体を流量Q[m3/s]で全揚程をh[m]だけ上げるのに必要な動力はρQghであるから、
Hth=(u2v2COSα2−u1v1COSα1)/g…(1)
流体の予旋回が無いとした場合にα1=90度でありCOSα1=0となるため、(1)式は、図4の速度三角形、羽根出口の面積A2=Q/v2mを考慮すると、
(2)式によれば、流体が搬送される圧力は、羽根出口角β2に対し−cotβ2の傾きで流量Qに比例して下がることが分かる。
【0018】
回転羽根3を通過する流体に回転羽根3が与える力のモーメントの合計は、回転羽根3を外力で回すトルクTに等しく、流体の比重をγとすると、
T=γQ(v2r2COSα2−v1r1COSα1)/g…(3)
流体の予旋回が無いとした場合にα1=90度でありCOSα1=0となるため、(3)式は
T=γQv2r2COSα2/g…(4)
直流モータの場合は、トルクTとモータ電流Iとの間には、
T=KTI…(5)
(KT;トルク定数、I;モータ電流)
(5)式を(4)式に代入して整理すると、
Q=KTIg/γv2r2COSα2…(6)
ここで、v2COSα2は図4の速度三角形の関係から
よって、
(7)式を(6)式に代入して、流量Qを求めると、
Q=KTIg(1+tanα2/tanβ2)/γωr2 2…(8)
(8)式を(2)式に代入すると、
Hth=r2 2ω2/g−KTcotβ2(1+tanα2/tanβ2)I/A2γr2…(9)
【0019】
羽根出口の流出角度α2は流量及び圧力により変化するが、ポンプ1の比速度によっておよそ決まってしまうためtanα2は代表値を定数と扱っても問題はない。したがって、(9)式の第2項は定数となり、
J=KTcotβ2(1+tanα2/tanβ2)/A2γr2…(10)
J;定数
とおける。
【0020】
また、(9)式の第1項も、
L=r2 2/g…(11)
L;定数
とおける。
【0021】
よって、理論揚程Hthは、モータ回転数ωとモータ電流Iの関数として次式のように近似できる。
Hth=Lω2−JI…(12)
これは(数1)と一致している。モータ回転数とモータ電流を知ることで揚程Hを推測できることが分かる。
また、回転数の二乗(ω2)は回転数の変化が少ない領域では、Lω2=Mω(M;定数)とおいても実用上差し支えない。この場合
Hth=Mω−JI…(13)
と近似でき、(数2)と一致している。
【0022】
次に、図5を参照して、ポンプ1を流れる流体の圧力と流量及び消費電力と流量との関係を示す。図5において曲線Aは何らポンプ1の回転動作を制御しない場合の圧力P−流量Q特性を示す。流量Qが増えるにしたがってポンプ内で圧力損失が大きくなったり、モータ負荷が増えてモータ回転数が減少するなどの様々な要因でポンプ圧力が減少する。
これに対し曲線Bは、本発明に係るモータ回転数とモータ電流を検出しつつモータ回転数ωを可変制御した場合の圧力P−流量Q特性を示す。前述した(数2)により流体の圧力を推測してモータの回転数を補正することにより、配管系統の切り替えやバルブ開閉などに起因する流量変化によるポンプの圧力変動を略一定に抑え、圧力損失を少なくすることができる。
【0023】
図5で破線Cはポンプ1の回転動作を制御しない場合の入力電力W−流量Q特性を示す。ポンプの回転動作を何ら制御しない場合には、流量Qが少なくなればなるほど、無駄な電力消費が発生する。これに対し破線Dは本発明に係るモータ電流Iとモータ回転数ωとを検出し(数2)に基づいてモータ回転数ωを可変制御した場合の入力電力W−流量Q特性を示す。本発明に係る駆動制御を行えば、ポンプ1を流れる流体の流量Qが多くなれば、モータ回転数ωを増やすように制御し、ポンプ1を流れる流体の流量Qが少なくなれば、モータ回転数ωを減じるように制御するので、無駄な電力消費を抑えることができ省エネルギー化を図ることができる。
また、モータ制御回路7に、圧力センサや流量センサなどの比較的高価な部品は不要であり、ポンプ駆動モータ6のモータ制御回路7の内部だけでポンプ1の流量に応じた圧力制御が行え、ポンプ駆動装置全体をコンパクトに設計できる。また、ポンプ1に接続する配管4の接続形態は直列や並列を問わず、バルブ部5の開閉状態やバルブ部5の数も問わないため、汎用性の高いポンプ駆動装置を提供できる。
【0024】
以上、本発明の好適な実施例について述べてきたが、上述した実施例に限定されるのものではなく、例えば、遠心式ポンプに用いられる直流モータは、アウターロータ型でもインナーロータ型のいずれでも良い等、法の精神を逸脱しない範囲で多くの改変を施し得るのはもちろんである。
【0025】
【発明の効果】
本発明に係るポンプ駆動装置及びポンプ駆動装置の制御方法によれば、ポンプ駆動モータは、モータ電流Iとモータ回転数ωからポンプ室を流れる流体の理論揚程Hthを(数1)若しくは(数2)に基づいて推測し、流体の流量の変動によるポンプ圧力の変動を抑えるよう制御可能なモータ制御回路を備えているので、流量の変化により(数1)若しくは(数2)により流体の圧力変動を推測してモータの回転数を補正することにより、配管系統の切り替えやバルブ開閉などに起因する流量変化によるポンプの圧力変動を略一定に抑え、圧力損失を少なくすることができる。
また、ポンプを流れる流体の流量が多くなれば、モータ回転数を増やすように制御しポンプを流れる流体の流量が少なくなれば、モータ回転数を減じるように制御するので、無駄な電力消費を抑えることができ省エネルギー化を図ることができる。
また、モータ制御回路に圧力センサや流量センサなどの比較的高価な部品は不要であり、モータ制御回路内部だけでポンプの流量に応じた圧力制御が行え、ポンプ駆動装置全体をコンパクトに設計できる。
更には、ポンプに接続する配管の接続形態は直列や並列を問わず、バルブ部の開閉状態やバルブ部の数も問わないため、汎用性の高いポンプ駆動装置を提供できる。
【図面の簡単な説明】
【図1】ポンプ駆動装置の構成を示す回路図である。
【図2】ポンプ駆動装置の構成を示す回路図である。
【図3】他例に係るポンプ駆動装置の構成を示す回路図である。
【図4】ポンプの理論揚程を導出するための原理図である。
【図5】流体の圧力と流量、消費電力と流量との関係を示すグラフ図である。
【図6】従来のポンプ駆動装置の構成を示す回路図である。
【符号の説明】
1 ポンプ
2 ポンプ室
3 回転羽根
4 配管
5 バルブ部
6 ポンプ駆動モータ
7 電流検出器
8 電流検出回路
9 圧力演算回路
10 回転数検出回路
11 指令電圧演算回路
12 回転数検出器
13 合成器
14 三角波発信回路
15 コンパレータ
16 三相分配回路
17 過電流検出器
18 CPU
19 デジタルアナログ変換回路
【発明の属する利用分野】
本発明は、例えば、床暖房、給湯器などに用いられるポンプ駆動装置に係り、詳しくはポンプ室に配置され流体を送り出す回転羽根を備えたポンプと該回転羽根の回転軸とロータの回転軸とが連繋してポンプを駆動するポンプ駆動モータとが組み付けられたポンプ駆動装置及びポンプ駆動装置の制御方法に関する。
【0002】
【従来の技術】
床暖房、給湯器などの電気製品には、流体を所定の圧力で送り出す遠心ポンプが用いられる。この遠心ポンプには、ポンプ室に流体を送り出す回転羽根を備えたポンプと該回転羽根を回転駆動するポンプ駆動モータとが組み付けられたポンプ駆動装置が開発されている。
【0003】
図6にポンプ駆動装置の一例を示す。ポンプ51は、流体が通過する配管52の一部に接続して設けられ、ポンプ室53に回転羽根54が回転可能に設けられている。回転羽根54の回転軸とロータの回転軸とが連繋しており、ポンプ51にポンプ駆動モータ(ブラシレスモータ)55が組み付けられている。ポンプ駆動モータ55は、安価なことからAC(交流)モータが用いられていたが、長時間運転を行うため省エネルギー化や効率の改善が図れ、更には制御性の点で優れているDC(直流)モータが用いられるようになってきた。
【0004】
直流モータは、制御性が良い反面、効率良く運転するためには流体の圧力を一定なるように制御したり、流量に応じてポンプ出力を変化させる必要があった。このため、流体の圧力を測定する圧力センサ57や流量を測定するための流量センサ58などが設けられている。指令電圧演算回路59は、例えば圧力指令値(電圧換算値)P0と圧力センサ57の検出値(電圧換算値)P1との差が零(P0−P1=0)となるように演算を行い、演算により得られた指令電圧をモータ制御回路60へ出力する。モータ制御回路60は、指令電圧と基準電圧との比較からモータ印加電圧を制御し、ポンプ駆動モータ55の回転数を可変制御している。
【0005】
【発明が解決しようとする課題】
上述したポンプ駆動装置を、例えば床暖房システムなどに適用する場合、ポンプ51に対して複数の可変バルブ部が並列に配管接続され、複数の配管系を切り替えて使用することが行われる。具体的には、可変バルブ部を部分的に開放して暖房するエリアを変化させることが行われる。このように配管系を切り替えた場合には、負荷系統数が変化するため1管路当たりを流れる流体の流量変化によるポンプの圧力変動が大きく、モータ回転数のみやモータを流れる電流値のみに基づく制御では、流体の圧力損失や消費電力が嵩みエネルギーの無駄が生じ易い。また、圧力センサ57や流量センサ58など比較的高価な部品が設けられているため製造コストが嵩む。
【0006】
本発明の目的は、上記従来技術の課題を解決し、配管系統の切り替えやバルブ開閉などに起因する流量変化によるポンプの圧力変動を抑え、省エネルギー化、小型化、低価格化を実現したポンプ駆動装置及びポンプ駆動装置の制御方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明は次の構成を備える。
ポンプ室に配置され流体を送り出す回転羽根を備えたポンプと該回転羽根の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが一体に組み付けられたポンプ駆動装置において、ポンプ駆動モータは、モータ電流Iとモータ回転数ωからポンプ室を流れる流体の理論揚程Hthを(数1)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御可能なモータ制御回路を備えていることを特徴とする。
また、(数1)のLω2=Mωと近似し、ポンプ室を流れる流体の理論揚程Hthを(数2)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御可能なモータ制御回路を備えていることを特徴とする。
また、モータ制御回路は、モータ電流値及びモータ回転数の検出により電圧換算値で(数1)若しくは(数2)にしたがって演算電圧値を算出する圧力演算回路と、該圧力演算回路により算出された演算電圧値と圧力指令電圧値との差を零とするように演算して得られたモータ指令電圧を出力する指令電圧演算回路とを備えていることを特徴とする。或いは、電流検出部から検出されたモータ電流Iと回転数検出部からの検出されたロータの実回転数に対応する回転周波数ωとを用いて(数1)若しくは(数2)にしたがって算出された理論揚程Hthと圧力指令に対応する揚程H0との差を零とするように演算して得られたモータ指令電圧を出力する制御部を備えていることを特徴とする。
【0008】
また、ポンプ室に配置され流体を送り出す回転羽根を備えたポンプと該回転羽根の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが組み付けられたポンプ駆動装置の制御方法において、モータ電流Iとモータ回転数ωを検出し、ポンプ室を流れる流体の理論揚程Hthを(数1)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御することを特徴とする。
また、(数1)のLω2=Mωと近似し、ポンプ室を流れる流体の理論揚程Hthを(数2)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御することを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の好適な実施の形態について添付図面と共に詳述する。
本実施例のポンプ駆動装置は、ポンプ室に回転羽根(ターボファン)が設けられた遠心式ポンプを用いたポンプ駆動装置について説明するものとする。
図1乃至図3はポンプ駆動装置の構成を示す回路図、図4はポンプの理論揚程を導出するための原理図、図5は流体の圧力と流量、消費電力と流量との関係を示すグラフ図である。
【0010】
先ず、図1及び図2を参照してポンプ駆動装置の概略構成について説明する。
1はポンプであり、ポンプ室2より流体を送り出す回転羽根(ターボファン)3を備えている。ポンプ1は、流体を圧送りする配管4の一部に接続されている。配管4は、ポンプ1に対して直列に接続される場合、並列に接続される場合の何れも含まれる。配管4の一部にはバルブ部5が設けられており、バルブ部5を開閉することにより、配管4を流れる流体の流量を調整したり、配管系を選択することができるようになっている。
【0011】
ポンプ1にはポンプ駆動モータ(直流ブラシレスモータ)6が一体に組み付けられている。ポンプ駆動モータ6は、ロータの回転軸が回転羽根3の回転軸と連繋してポンプ1を駆動するようになっている。本実施例ではポンプ駆動モータ6として三相のブラシレスモータ(例えばアウターロータ型モータ)が用いられる。
ポンプ駆動モータ6は、モータ電流Iとモータ回転数ωからポンプ室2を流れる流体の理論揚程Hthを(数1)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御可能なモータ制御回路7を備えている。
(数1)
Hth=Lω2−JI(L、J;回転羽根固有の定数)
【0012】
また、モータ制御回路7は、回転数の変化が少ない領域では(数1)のω2=Mωと近似し、ポンプ室2を流れる流体の理論揚程Hthを(数2)に基づいて推測し流体の流量の変動によりポンプ圧力の変動を抑えるよう制御するようになっている。
(数2)
Hth=Mω−JI(M、J;回転羽根固有の定数)
上述した数1及び数2は、モータ回転数と流量との相関関係は、直流モータの電動機軸トルクと電動機電流(モータ電流)は比例関係にあり、ポンプの搬送流量が増減すると軸トルクが増減することから、ポンプ1の搬送流量の増減はモータ電流より推測できる関係を前提として成り立つ。
【0013】
ここで、モータ制御回路7の構成について説明する。図1及び図2において、電流検出部である電流検出回路8は回路を流れるモータ電流値を検出し、電圧換算値が圧力演算回路9に入力される。また、圧力演算回路9には、回転数検出部である回転数検出回路10から実回転数に対応する実回転電圧値が入力される。圧力演算回路9は、入力されたモータ電流Iとモータ回転数ω(電圧換算値)から(数1)若しくは(数2)にしたがった演算を行って理論揚程Hth(演算電圧値)を算出する。次いで指令電圧演算回路11は圧力演算回路9で算出された演算電圧値Hthと、圧力指令値H0との差を零とするように演算して得られたモータ指令電圧をモータ制御回路7へ出力する。
尚、ポンプ駆動モータ6の回転数は、ロータマグネットの磁極位置を対応する磁極検出素子(ホール素子)などの回転数検出器12で検出される。この回転数検出器12で検出された三相分の検出信号を合成器(FG)13で合成し、合成信号を回転数検出回路10でF−V変換して実回転数ωに対応する実回転電圧値に換算される。
【0014】
モータ制御回路7は、指令電圧演算回路11より入力された指令電圧と、三角波発信回路14で生成した電圧とをコンパレータ15により比較してPWM制御信号(パルス幅変調信号)を生成し、モータ印加電圧を制御する。三相分配回路16は回転数検出器12で検出されたポンプ駆動モータ6のロータ回転位置に応じて、トランジスタQ1〜Q6をON/OFFし、ステータコイル6aに交番磁界を発生させるように通電電流を切り換え制御する。過電流検出器17はポンプ駆動モータ6に流れる過電流を検出すると、トランジスタQ1〜Q6をOFFして保護するようになっている。
【0015】
図3はモータ制御回路の他例を示す。本実施例は、圧力演算回路9や指令電圧演算回路11の替わりに制御部としてCPU(中央演算処理装置)18やデジタルアナログ変換回路(DAコンバータ(DAC))19が設けられている。電流検出回路8で検出されたモータ電流Iは、ADコンバータ(ADC)でアナログ信号からデジタル信号に変換されてCPU18に入力される。また、回転数検出器12で検出されたロータの磁極位置に基づいて、回転数検出回路10においてモータ回転数ωが周波数カウンタによりカウントされ、カウント値(デジタル信号)がCPU18に入力される。
【0016】
CPU18は、モータ電流Iとモータ回転数ωとを用いて(数1)若しくは(数2)にしたがって算出された理論揚程Hthと圧力指令に対応する揚程H0との差を零とするように演算を行う。この演算の結果得られたデジタル信号であるモータ指令電圧に基づいてDAコンバータ19によりモータ指令電圧をアナログ信号に変換してモータ制御回路7へ出力する。モータ制御回路7は、入力された指令電圧と三角波発信回路14で生成した電圧とをコンパレータ15により比較してPWM制御信号(パルス幅変調信号)を生成し、モータ印加電圧を制御する。
【0017】
ここで、図4に示すポンプの理論揚程を導出するための原理図を参照して上述した理論揚程Hthに近似できる根拠について説明する。一般に、遠心ポンプの理論揚程Hthは、以下のように与えられる。
図4において流体が回転羽根3の入口(半径r1)から出口(半径r2)へ移動する間に流体に作用したトルクTは、流体の密度ρ、流量Q、羽根入口の流入角度α1、羽根出口の流出角度α2、羽根入口の絶対速度v1、羽根出口の絶対速度v2、羽根入口の周速度u1、羽根出口の周速度u2、羽根入口の相対速度w1、羽根出口の相対速度w2、羽根出口のメリディアン速度v2mをとすると、
T=ρQ(v2r2COSα2−v1r1COSα1)
ポンプの動力P[N・m/s]は、
流体を流量Q[m3/s]で全揚程をh[m]だけ上げるのに必要な動力はρQghであるから、
Hth=(u2v2COSα2−u1v1COSα1)/g…(1)
流体の予旋回が無いとした場合にα1=90度でありCOSα1=0となるため、(1)式は、図4の速度三角形、羽根出口の面積A2=Q/v2mを考慮すると、
(2)式によれば、流体が搬送される圧力は、羽根出口角β2に対し−cotβ2の傾きで流量Qに比例して下がることが分かる。
【0018】
回転羽根3を通過する流体に回転羽根3が与える力のモーメントの合計は、回転羽根3を外力で回すトルクTに等しく、流体の比重をγとすると、
T=γQ(v2r2COSα2−v1r1COSα1)/g…(3)
流体の予旋回が無いとした場合にα1=90度でありCOSα1=0となるため、(3)式は
T=γQv2r2COSα2/g…(4)
直流モータの場合は、トルクTとモータ電流Iとの間には、
T=KTI…(5)
(KT;トルク定数、I;モータ電流)
(5)式を(4)式に代入して整理すると、
Q=KTIg/γv2r2COSα2…(6)
ここで、v2COSα2は図4の速度三角形の関係から
よって、
(7)式を(6)式に代入して、流量Qを求めると、
Q=KTIg(1+tanα2/tanβ2)/γωr2 2…(8)
(8)式を(2)式に代入すると、
Hth=r2 2ω2/g−KTcotβ2(1+tanα2/tanβ2)I/A2γr2…(9)
【0019】
羽根出口の流出角度α2は流量及び圧力により変化するが、ポンプ1の比速度によっておよそ決まってしまうためtanα2は代表値を定数と扱っても問題はない。したがって、(9)式の第2項は定数となり、
J=KTcotβ2(1+tanα2/tanβ2)/A2γr2…(10)
J;定数
とおける。
【0020】
また、(9)式の第1項も、
L=r2 2/g…(11)
L;定数
とおける。
【0021】
よって、理論揚程Hthは、モータ回転数ωとモータ電流Iの関数として次式のように近似できる。
Hth=Lω2−JI…(12)
これは(数1)と一致している。モータ回転数とモータ電流を知ることで揚程Hを推測できることが分かる。
また、回転数の二乗(ω2)は回転数の変化が少ない領域では、Lω2=Mω(M;定数)とおいても実用上差し支えない。この場合
Hth=Mω−JI…(13)
と近似でき、(数2)と一致している。
【0022】
次に、図5を参照して、ポンプ1を流れる流体の圧力と流量及び消費電力と流量との関係を示す。図5において曲線Aは何らポンプ1の回転動作を制御しない場合の圧力P−流量Q特性を示す。流量Qが増えるにしたがってポンプ内で圧力損失が大きくなったり、モータ負荷が増えてモータ回転数が減少するなどの様々な要因でポンプ圧力が減少する。
これに対し曲線Bは、本発明に係るモータ回転数とモータ電流を検出しつつモータ回転数ωを可変制御した場合の圧力P−流量Q特性を示す。前述した(数2)により流体の圧力を推測してモータの回転数を補正することにより、配管系統の切り替えやバルブ開閉などに起因する流量変化によるポンプの圧力変動を略一定に抑え、圧力損失を少なくすることができる。
【0023】
図5で破線Cはポンプ1の回転動作を制御しない場合の入力電力W−流量Q特性を示す。ポンプの回転動作を何ら制御しない場合には、流量Qが少なくなればなるほど、無駄な電力消費が発生する。これに対し破線Dは本発明に係るモータ電流Iとモータ回転数ωとを検出し(数2)に基づいてモータ回転数ωを可変制御した場合の入力電力W−流量Q特性を示す。本発明に係る駆動制御を行えば、ポンプ1を流れる流体の流量Qが多くなれば、モータ回転数ωを増やすように制御し、ポンプ1を流れる流体の流量Qが少なくなれば、モータ回転数ωを減じるように制御するので、無駄な電力消費を抑えることができ省エネルギー化を図ることができる。
また、モータ制御回路7に、圧力センサや流量センサなどの比較的高価な部品は不要であり、ポンプ駆動モータ6のモータ制御回路7の内部だけでポンプ1の流量に応じた圧力制御が行え、ポンプ駆動装置全体をコンパクトに設計できる。また、ポンプ1に接続する配管4の接続形態は直列や並列を問わず、バルブ部5の開閉状態やバルブ部5の数も問わないため、汎用性の高いポンプ駆動装置を提供できる。
【0024】
以上、本発明の好適な実施例について述べてきたが、上述した実施例に限定されるのものではなく、例えば、遠心式ポンプに用いられる直流モータは、アウターロータ型でもインナーロータ型のいずれでも良い等、法の精神を逸脱しない範囲で多くの改変を施し得るのはもちろんである。
【0025】
【発明の効果】
本発明に係るポンプ駆動装置及びポンプ駆動装置の制御方法によれば、ポンプ駆動モータは、モータ電流Iとモータ回転数ωからポンプ室を流れる流体の理論揚程Hthを(数1)若しくは(数2)に基づいて推測し、流体の流量の変動によるポンプ圧力の変動を抑えるよう制御可能なモータ制御回路を備えているので、流量の変化により(数1)若しくは(数2)により流体の圧力変動を推測してモータの回転数を補正することにより、配管系統の切り替えやバルブ開閉などに起因する流量変化によるポンプの圧力変動を略一定に抑え、圧力損失を少なくすることができる。
また、ポンプを流れる流体の流量が多くなれば、モータ回転数を増やすように制御しポンプを流れる流体の流量が少なくなれば、モータ回転数を減じるように制御するので、無駄な電力消費を抑えることができ省エネルギー化を図ることができる。
また、モータ制御回路に圧力センサや流量センサなどの比較的高価な部品は不要であり、モータ制御回路内部だけでポンプの流量に応じた圧力制御が行え、ポンプ駆動装置全体をコンパクトに設計できる。
更には、ポンプに接続する配管の接続形態は直列や並列を問わず、バルブ部の開閉状態やバルブ部の数も問わないため、汎用性の高いポンプ駆動装置を提供できる。
【図面の簡単な説明】
【図1】ポンプ駆動装置の構成を示す回路図である。
【図2】ポンプ駆動装置の構成を示す回路図である。
【図3】他例に係るポンプ駆動装置の構成を示す回路図である。
【図4】ポンプの理論揚程を導出するための原理図である。
【図5】流体の圧力と流量、消費電力と流量との関係を示すグラフ図である。
【図6】従来のポンプ駆動装置の構成を示す回路図である。
【符号の説明】
1 ポンプ
2 ポンプ室
3 回転羽根
4 配管
5 バルブ部
6 ポンプ駆動モータ
7 電流検出器
8 電流検出回路
9 圧力演算回路
10 回転数検出回路
11 指令電圧演算回路
12 回転数検出器
13 合成器
14 三角波発信回路
15 コンパレータ
16 三相分配回路
17 過電流検出器
18 CPU
19 デジタルアナログ変換回路
Claims (6)
- ポンプ室に配置され流体を送り出す回転羽根を備えたポンプと該回転羽根の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが組み付けられたポンプ駆動装置において、
ポンプ駆動モータは、モータ電流Iとモータ回転数ωからポンプ室を流れる流体の理論揚程Hthを下記(数1)に基づいて推測し、流体の流量の変動によるポンプ圧力の変動を抑えるよう制御可能なモータ制御回路を備えていることを特徴とするポンプ駆動装置。
(数1)
Hth=Lω2−JI(L、J;回転羽根固有の定数) - 前記(数1)のLω2=Mωと近似し、ポンプ室を流れる流体の理論揚程Hthを下記(数2)に基づいて推測し、流体の流量の変動によるポンプ圧力の変動を抑えるよう制御可能なモータ制御回路を備えていることを特徴とする請求項1記載のポンプ駆動装置。
(数2)
Hth=Mω−JI(M、J;回転羽根固有の定数) - 前記モータ制御回路は、モータ電流値及びモータ回転数の検出により電圧換算値で(数1)若しくは(数2)にしたがって演算電圧値を算出する圧力演算回路と、該圧力演算回路により算出された演算電圧値と圧力指令電圧値との差を零とするように演算して得られたモータ指令電圧を出力する指令電圧演算回路とを備えていることを特徴とする請求項1又は2記載のポンプ駆動装置。
- 前記モータ制御回路は、電流検出部から検出されたモータ電流Iと回転数検出部からの検出されたロータの実回転数に対応する回転周波数ωとを用いて(数1)若しくは(数2)にしたがって算出された理論揚程Hthと圧力指令に対応する揚程H0との差を零とするように演算して得られたモータ指令電圧を出力する制御部を備えていることを特徴とする請求項1又は2記載のポンプ駆動装置。
- ポンプ室に配置され流体を送り出す回転羽根を備えたポンプと該回転羽根の回転軸とロータの回転軸とが連繋してポンプを駆動する直流モータとが組み付けられたポンプ駆動装置の制御方法において、
モータ電流Iとモータ回転数ωを検出し、ポンプ室を流れる流体の理論揚程Hthを下記(数1)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御することを特徴とするポンプ駆動装置の制御方法。
(数1)
Hth=Lω2−JI(L、J;回転羽根固有の定数) - 前記(数1)のLω2=Mωと近似し、ポンプ室を流れる流体の理論揚程Hthを下記(数2)に基づいて推測し、流体の流量の変動によりポンプ圧力の変動を抑えるよう制御することを特徴とする請求項5記載のポンプ駆動装置の制御方法。
(数2)
Hth=Mω−JI(M、J;回転羽根固有の定数)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003024812A JP2004232606A (ja) | 2003-01-31 | 2003-01-31 | ポンプ駆動装置及びポンプ駆動装置の制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003024812A JP2004232606A (ja) | 2003-01-31 | 2003-01-31 | ポンプ駆動装置及びポンプ駆動装置の制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004232606A true JP2004232606A (ja) | 2004-08-19 |
Family
ID=32953253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003024812A Pending JP2004232606A (ja) | 2003-01-31 | 2003-01-31 | ポンプ駆動装置及びポンプ駆動装置の制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004232606A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102410234A (zh) * | 2011-08-24 | 2012-04-11 | 上海交通大学 | 屏蔽式电机转子系统水力损耗测试平台及测试方法 |
KR101756409B1 (ko) * | 2016-04-18 | 2017-07-11 | 엘지전자 주식회사 | 배수펌프 구동장치, 및 이를 구비한 세탁물 처리기기 |
KR101756408B1 (ko) * | 2016-04-18 | 2017-07-11 | 엘지전자 주식회사 | 배수펌프 구동장치, 및 이를 구비한 세탁물 처리기기 |
JP2018206387A (ja) * | 2017-06-07 | 2018-12-27 | 株式会社堀場エステック | 流体制御装置、制御プログラム、及び、制御方法 |
WO2019194650A1 (ko) * | 2018-04-06 | 2019-10-10 | 엘지전자 주식회사 | 세탁물처리장치 및 제어방법 |
CN112350631A (zh) * | 2020-09-30 | 2021-02-09 | 无锡小天鹅电器有限公司 | 一种排水泵控制方法、装置、设备及存储介质 |
-
2003
- 2003-01-31 JP JP2003024812A patent/JP2004232606A/ja active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102410234A (zh) * | 2011-08-24 | 2012-04-11 | 上海交通大学 | 屏蔽式电机转子系统水力损耗测试平台及测试方法 |
CN102410234B (zh) * | 2011-08-24 | 2015-10-14 | 上海交通大学 | 屏蔽式电机转子系统水力损耗测试平台及测试方法 |
US11236460B2 (en) | 2016-04-18 | 2022-02-01 | Lg Electronics Inc. | Drain pump driving apparatus and laundry treatment machine including the same |
CN107304513B (zh) * | 2016-04-18 | 2020-03-27 | Lg电子株式会社 | 排水泵驱动装置及具有其的洗涤物处理装置 |
WO2017183886A1 (ko) * | 2016-04-18 | 2017-10-26 | 엘지전자 주식회사 | 배수펌프 구동장치, 및 이를 구비한 세탁물 처리기기 |
WO2017183883A1 (ko) * | 2016-04-18 | 2017-10-26 | 엘지전자 주식회사 | 배수펌프 구동장치, 및 이를 구비한 세탁물 처리기기 |
CN107304513A (zh) * | 2016-04-18 | 2017-10-31 | Lg电子株式会社 | 排水泵驱动装置及具有其的洗涤物处理装置 |
US11566361B2 (en) | 2016-04-18 | 2023-01-31 | Lg Electronics Inc. | Drain pump driving apparatus and laundry treatment machine including the same |
KR101756409B1 (ko) * | 2016-04-18 | 2017-07-11 | 엘지전자 주식회사 | 배수펌프 구동장치, 및 이를 구비한 세탁물 처리기기 |
KR101756408B1 (ko) * | 2016-04-18 | 2017-07-11 | 엘지전자 주식회사 | 배수펌프 구동장치, 및 이를 구비한 세탁물 처리기기 |
US10711387B2 (en) | 2016-04-18 | 2020-07-14 | Lg Electronics Inc. | Drain pump driving apparatus and laundry treatment machine including the same |
JP2018206387A (ja) * | 2017-06-07 | 2018-12-27 | 株式会社堀場エステック | 流体制御装置、制御プログラム、及び、制御方法 |
WO2019194650A1 (ko) * | 2018-04-06 | 2019-10-10 | 엘지전자 주식회사 | 세탁물처리장치 및 제어방법 |
US11846060B2 (en) | 2018-04-06 | 2023-12-19 | Lg Electronics Inc. | Laundry treatment apparatus and control method thereof |
CN112350631A (zh) * | 2020-09-30 | 2021-02-09 | 无锡小天鹅电器有限公司 | 一种排水泵控制方法、装置、设备及存储介质 |
CN112350631B (zh) * | 2020-09-30 | 2022-05-13 | 无锡小天鹅电器有限公司 | 一种排水泵控制方法、装置、设备及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3738685B2 (ja) | インバータ装置および送風装置 | |
US9425720B2 (en) | Electric motor and motor control | |
US6624606B2 (en) | Drive control circuit for three-phase brushless motor, motor-driven blower and electric vacuum cleaner | |
FI75030B (fi) | Foerfarande att medelst en borstloes vaexelstroemsmotor driva pumphjulet i en vaetskepump samt vaetskepump foer att utoeva foerfarandet. | |
US20070017284A1 (en) | Cavitation detection device and method | |
US20080100255A1 (en) | Electronic start control device for a synchronous motor | |
CA2717416A1 (en) | Phase logic circuits for controlling motors | |
WO2014164042A2 (en) | Three phase brushless dc motor sensor-less control using sinusoidal drive method and apparatus | |
EP2828530B1 (en) | A determination method and a control method for a fluid displacement device, controller and system | |
JP2004232606A (ja) | ポンプ駆動装置及びポンプ駆動装置の制御方法 | |
JP2004360482A (ja) | ポンプ逆転水車型発電設備 | |
JP2008190401A (ja) | ポンプ | |
US11725654B2 (en) | Method for conveying a fluid through a screw pump, and screw pump | |
JPH0510273A (ja) | ポンプ装置の軽負荷及び過負荷運転防止装置 | |
JPH0510271A (ja) | ポンプ装置の軽負荷運転防止装置 | |
JP2004232607A (ja) | ポンプ駆動装置及びポンプ駆動装置の制御方法 | |
JP7076637B2 (ja) | モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ | |
JP2004360479A (ja) | ポンプ逆転水車型発電設備 | |
JP6040066B2 (ja) | ファンモータの駆動制御装置 | |
JP2011147306A (ja) | 電動機の制御回路、及びその制御回路を用いた空気調和機 | |
JP2001342966A (ja) | ポンプ制御装置 | |
WO2022137406A1 (ja) | 換気送風機 | |
JP6130785B2 (ja) | ポンプ装置 | |
JPH0510272A (ja) | ポンプ装置の過負荷運転防止装置 | |
US11621661B2 (en) | Motor control with reduced back current during braking |