JP2004232573A - Electromagnetic pump for gas - Google Patents

Electromagnetic pump for gas Download PDF

Info

Publication number
JP2004232573A
JP2004232573A JP2003023242A JP2003023242A JP2004232573A JP 2004232573 A JP2004232573 A JP 2004232573A JP 2003023242 A JP2003023242 A JP 2003023242A JP 2003023242 A JP2003023242 A JP 2003023242A JP 2004232573 A JP2004232573 A JP 2004232573A
Authority
JP
Japan
Prior art keywords
electromagnetic
plunger
magnetic
pump
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003023242A
Other languages
Japanese (ja)
Other versions
JP4159374B2 (en
Inventor
Toru Kobayashi
亨 小林
Yasutsune Chiba
泰常 千葉
Kazuichi Tanabe
和市 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisan Industrial Co Ltd
Original Assignee
Taisan Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisan Industrial Co Ltd filed Critical Taisan Industrial Co Ltd
Priority to JP2003023242A priority Critical patent/JP4159374B2/en
Publication of JP2004232573A publication Critical patent/JP2004232573A/en
Application granted granted Critical
Publication of JP4159374B2 publication Critical patent/JP4159374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic pump for gas enhancing the magnetic efficiency, reducing the size of the pump further, while increasing durability and controlling discharge performance in accordance with the amount of electric power generated by a fuel cell, and improving the effect of noise prevention. <P>SOLUTION: An electromagnetic plunger 12 supported under pressure between return and auxiliary springs 14 and 15 slides and reciprocates within a stand column cylinder by intermittent magnetic attraction forces, and a portion between an end portion of the plunger 12 faced to an end surface of an annular magnetic pole 26 provided on the side of the return spring 14 serves as an upper attraction side with a magnetic clearance g and an end surface of the plunger on the other side serves as a pressurizing surface on a lower discharge side. Thus, the plunger 12 advances inside the pole 26 and overlaps with the pole 26 via a cylinder wall by solenoid magnetic attraction generated together with clearance attraction during a period of conduction in a pulse current cycle, and a leaky magnetic circuit is configured, and an annular plunger ring 13 made of fluororesin having an outer diameter larger than that of the plunger, is fitted in an annular groove cut in each end of the plunger while leaving the outer peripheral edge of an annular strip intact. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば近年盛んに実用化の研究が進められている燃料電池のうち、特に高分子固体電解質型燃料電池(PEFC)において、天然ガス、メタノール、ガソリン、プロパン、ブタンなどの成分中に水素を含んだ燃料を改質して水素に転換するときに、CO,NO,CO,HCが少量発生する。この一酸化炭素COは触媒と相性がよく、吸着して水素を阻害する。すなわち、燃料電池にこのガスが供給されると、このCOが電極に付着して電気を取り出すことを阻害するCO被毒を阻止するために水素発生器(改質器)の触媒部に空気を少量混入してCOを酸化し、CO(二酸化炭素)として除去する。この空気を供給するためおよび気体燃料、例えば都市ガスを燃料電池に給送するための電磁ポンプに関する。
【0002】
【従来の技術】
上記した燃料電池向けの気体用電磁ポンプとしては、本件特許出願人がさきに特願2000−325872号(特開2002−130122号公報および公開以前の手続補正書を含む)をもって提案した電磁コンプレッサの先行技術がある。
【0003】
しかして、その明細書にも記載されている通り、それ以前の在来公知の技術には種々問題点があった。そしてこの先行技術においてさえ、未だ以下詳述するような改善すべき課題が残されているのである。
【0004】
【発明が解決しようとする課題】
前記先行技術、すなわち特開2002−130122号に記載の電磁コンプレッサの明細書図1に開示(本件出願の図5に代えて提示)のものは、吐出圧力によって吐出負荷が加わると、電磁プランジャ112が上流の吸入側に偏位し、その下流側端部の加圧面と環状磁極126との間との磁気空隙gの増大による空隙磁気吸引力の低下と加圧作用時の抵抗となり、また電磁コイル110の軸心上の中央にある磁気中性点qと、電磁プランジャの磁気中心点uとの距離の減少、すなわちその行程長の減殺となる。さらに、この行程長の減少は後述するような要因もある。特に、空隙磁気吸引力は磁気空隙の距離の自乗に反比例するので、この場合には、損失が大きく、吐出圧力は低下する一方で磁気回路のリラクタンスが増し、消費電力とともに電磁コイル110の温度上昇値(deg)Kが増加する。
【0005】
さらに、前記電磁プランジャ112の行程長の減少の理由としては、その質量と加速度との積による慣性エネルギにも原因があり、質量が比較的大きく周波数が比較的大であると、電磁コイル110への断続パルス電流の導通時の加速度が大きく、非導通時に戻しばね114による復帰時充分に旧位置に戻る暇がなく、したがってその往復運動は単なる短振動となるか行程長の短縮となって吐出能力が低下する場合があり、或いはまた振動騒音の発生が大となることもある。
【0006】
そして、この種のポンプも、流量制御可能で一層の小形軽量、高性能、低騒音、低コストを要求されるものである。
【0007】
また、この電磁コンプレッサは特に気体用であるために、管柱シリンダ125とこの中を摺動往復する電磁プランジャ112に減磨用のプランジャリング113をその両端部位に嵌設してあるが、電磁プランジャ112を挟設圧支する戻しばね116と補助ばね115の両端のいずれにでも、ポンプの作動長期にわたる疲労により座屈すると、電磁プランジャ112が傾斜して摺動往復し、側圧により管柱シリンダ125も共に偏磨耗損傷して作動不具合を生じるので、前記ばね座の少なくともその一つを後述するような調心構造として前記ばねの座屈による弊害を阻止することが望ましい。
【0008】
また、このような損耗は、特にプランジャリングの磨耗が甚だしいので、なるべくその外径を電磁プランジャ112の強磁性体の外径部分よりも大にしたいが、磁器回路のリラクタンスの増大となるので限度がある。この点については、先行技術特開2002−130122号公報表1に記載され説明があるので、ここでは説明を省略する。
【0009】
なお、前述の各磁気吸引力による電磁プランジャを挟設圧支する前記両ばねの撓みとその反発力などの関係は本件出願人がかって特公昭57−12863号公報において述べているので、その説明も省略する。
【0010】
本発明においては、以上の先行従来技術における問題点および後記実施の形態の欄で詳述する諸問題、すなわち磁気効率を高め、ポンプの一層の小形経済化、耐久性の増大、吐出能力を燃料電池の発電量と対応して制御可能とし、さらに騒音防止の効果を高める課題を以下詳述する手段をもって解決するものである。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る気体用電磁ポンプは、電磁コイルに囲繞された管柱シリンダ内を、逆止弁機構を内蔵し、かつ戻しばねと補助ばねとの間に圧支された電磁プランジャが前記電磁コイルへ付勢する断続パルス電流により発生する断続磁気吸引力で摺動往復する容積形貫流ポンプであって、前記管柱シリンダの両端部位の前記戻しばねの側に環状磁極を、そして補助ばねの側に環状磁路をそれぞれ外嵌して備え、前記環状磁極の端面に対向した電磁プランジャの端部との間を磁気空隙を有する上流吸入側とし、反対側の電磁プランジャの端面を下流吐出側の加圧面とするポンプにおいて、前記パルス電流の周期中の導通期間に空隙磁気吸引力と共に発生するソレノイド磁気吸引力とにより電磁プランジャは環状磁極の内部に進入して管柱シリンダ壁を介して重なり、磁気回路を構成してあり、さらに電磁プランジャの両端部位にはそれぞれ環帯状の外周縁を残して穿設した環状溝に該電磁プランジャの外径を越える外径を有する弗素系合成樹脂をもってなる環状のプランジャリングをそれぞれ嵌着したことを特徴とする。
【0012】
しかして、前記電磁プランジャを圧支する2つのばねの少なくとも1方のばね座は調心構造としたことを特徴とする。
【0013】
また、前記電磁ポンプの吸入側に吸入口から管柱シリンダ内に連通する小径の通孔と、吸入口を覆う消音器を兼ねたフィルタを備えたことを特徴とする。
【0014】
さらに、前記電磁コイルへの付勢電流は直流断続パルス電流であり、その電圧、電流の周期、デューティ比のいずれかもしくはその複数を加減調整して、空気または気体燃料を燃料電池の出力に応じて可変制御することを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面により詳細に説明する。
【0016】
図1は、本発明の気体用電磁ポンプの1つの実施の形態を一部断面した縦断面図である。
【0017】
図1において、前記特許請求の範囲の請求項1〜2に記載したような構成を繰り返して説明することにはなるが、電磁ポンプ1の電磁コイル10に囲繞された、すなわち電磁コイル10の軸心縦貫孔に嵌設された管柱シリンダ25内を、吸入側逆止弁機構18を内蔵し、かつ戻しばね14と、補助ばね15との間に圧支された電磁プランジャ12が、前記電磁コイル10へ付勢する断続パルス電流により発生する断続磁気吸引力で摺動往復する容積形貫流ポンプの、前記管柱シリンダ25の両端部位の前記戻しばね14の側に環状磁極26を、そして補助ばね15の側に環状磁路27をそれぞれ外嵌させ、ポンプ静止時に、前記環状磁極26の端面と対向する電磁プランジャ12の端部との間に磁気空隙gを有する上流の吸入側とし、反対側の電磁プランジャ12の端面を下流吐出側で加圧面とするポンプにおいて、前記パルス電流の周期中の導通期間に空隙磁気吸引力と共に発生する、電磁コイル10の縦軸上の中心点にある磁気中性点qに電磁プランジャ12の磁気中心uが引かれるソレノイド磁気吸引力とによって、電磁プランジャ12が環状磁極26内部に進入して管柱シリンダ25の壁を介して重なり、漏洩磁気回路を構成するようにしてあり、この実施の形態にあっては、ポンプの静止時には、電磁プランジャ12の吸入側の端面と、環状磁路27の同じく吸入側端面および前記電磁コイル10の磁気中性点がその軸心直截同一平面上にある。
【0018】
電磁プランジャ12の両端部位には、それぞれ環帯状の外周縁を残して穿設した環状溝に該電磁プランジャ12の外径を越える外径寸法を有する弗素系合成樹脂製の環状のプランジャリング13を埋め込み嵌着してある。このプランジャリング13の外径寸法に関しては後述する。
【0019】
電磁プランジャを有する電磁ポンプは、周知のように電磁コイル10へ付勢する断続パルス電流と戻しばね14の反発力とにより管柱シリンダ25内を往復作動する電磁プランジャ12および吸入、吐出し両逆止弁18,19の作用と相俟ってポンプ作用を営み、矢印aに示すように吸入継手20の吸入口21から吸入し、ポンプ内部を貫流して吐出継手23の吐出口24から矢印bに示すように流体を吐出するのである。
【0020】
本発明の特徴についてさらに詳細な説明をする前に、この発明の実施の形態における構成について補足する。
【0021】
管柱シリンダ25の吸入側端部の吸入継手20の電磁プランジャ12に面した軸心中央部位に突出した尖端部にこれに係止する凹部を有する戻しばね16と前記電磁プランジャ12の端部との間に戻しばね14を係設し、電磁プランジャ12の吐出側端部と、吐出継手23を収めた管柱シリンダ25の端部に備えた補助ばね座17との間に補助ばね15を係設して、双方向から等しい反発力で電磁プランジャ12を釣合い挟持圧設している。
【0022】
吐出継手23には、吐出逆止弁19を内臓している。
【0023】
電磁コイル10を捲装したボビン11の両端面には、それぞれ磁気鉄板31が環状磁極26、環状磁路7に外嵌した上、蓋設されていて、前記吸入継手20と吐出継手23の鍔部を介して外枠継鉄30により挟設、複数の螺子29により緊と固定される。環状磁極26と環状磁路27との間にスペースリング28が管柱シリンダ25に外嵌されている。
【0024】
ポンプ内側はOリングなどのパッキングで気密を保持している。
【0025】
前記環状磁極26、環状磁路27、磁気鉄板31、外枠継鉄30は磁気回路を構成する。
【0026】
外枠継鉄30は、例えば4個など複数の合成ゴム等からなる防振部材33を介して取付ステー32に固定される。
【0027】
図1に示す本発明の実施の形態の電磁ポンプは吸入側にフィルタを備えていないから、このままでは都市ガスなどの気体用であるが、空気用とする場合は、例えば図2に示すような吸入側に網やスポンジ状もしくはフェルトなどのフィルタエレメント39を内装した吸入側部材36を吸入口37に設ける。このような気体用電磁ポンプは作動中に逆止弁の開閉時の弁座に当接音が発生するので吸入口37からポンプの作動室、すなわち管柱シリンダ25内に連通する通孔38の内径を小にして絞込み、電磁プランジャ12の行程時の慣性によるオーバーシュートを緩衝すると共に、前記弁と開閉当接音を抑制する所謂サイレンサを兼ねた防塵フィルタを備える。吐出側は、配管が接続されるので、騒音は抑制される。
【0028】
図1の場合の吸入継手20における吸入口21から管柱シリンダ25内に連通する小径の通孔22も上記の理由による。
【0029】
なお、図3は、外気に通じる複数のマド42を通り、フィルタの材質は消音効果を兼ねた高密度のスポンジの一種のモルトプレン、網、フェルトなどからなるフィルタエレメント41を内臓し接続用接手43を備えた、フィルタ兼用のサイレンサ40で、図1の吸入継手20に接続させて利用するものである。図2の数字の符号は図1に説明したものと名称は同様である。
【0030】
さきにも述べたように、この種類の電磁ポンプ、特に燃料電池用の気体ポンプは、前記先行技術の特開2002−130122号公報に開示されたものよりさらに小形、軽量で効率良く高性能、低騒音、低コストで耐久性を要求されている。これは、燃料電池の用途が種々小形の機器に至るまでその利用を多岐にわたって検討されているからであろう。
【0031】
前述したが、この先行技術のものを図5によってさらに説明する。図における数字の符号から100を差し引いたものが図1、図2の部品の名称と同様である。
【0032】
そこで、先ずこの先行技術のものを図5により、その作動などにおける相違点について本発明の図1、図2のものと対比説明する。
【0033】
以下、本発明の気体用の電磁ポンプの図1に示すものを(A)とし、先行技術の同じく図5に示すものを(B)と称す。
【0034】
図5に示す(B)にも、図1、図2にそれぞれ示す(A)と同様に合成ゴム、弾性発条などからなる防振部材を介して取付ステーを設けているからその取付容積はさらに大きくなる。
【0035】
図5において、電磁コイル110に断続パルス電流を付勢すると、周期中の導通期間には、それによって発生する空隙磁気吸引力により環状磁極126間の磁気空隙gを埋め、そして電磁コイル110の磁気中性点qに電磁プランジャ112の磁気中心uが吸引されるように電磁プランジャ112は環状磁極126の内部に進入する吐出行程となり、周期中の非導通期間には、磁気吸引力は断たれて戻しばね114の反発力で静止時の位置へ戻るべく復行程となり、吸入作用が行われて、この繰り返しにより矢印aのように吸入継手120の吸入口121から流体はポンプ内部を縦貫して吐出継手123の吐出口124から矢印bのように吐出される。この吐出行程において、流体圧力が電磁プランジャが112の加圧面への負荷抵抗となり、環状磁極126との磁気空隙gを狭めるのに妨げとなり、空隙磁気吸引力と同時に前記ソレノイド磁気吸引力を有効に利用することができない。すなわち、前記磁気空隙gを狭めるのにこれを吐出圧力が妨げる結果となり、その圧力が高いほど電磁プランジャの行程長は短縮される。すなわち、吐出流量の減少となる。これは、特に磁気吸引力が空隙の距離の自乗に反比例するからであり、しかも電磁コイル110に流れる電流値も大きく、したがってその磁気飽和時の温度上昇値Kも増加する。
【0036】
これに対して、本発明の図1、図2に示す構成では、電磁プランジャ12と環状磁極26との磁気空隙gが吐出行程時の負荷圧力に対応する作動が全く反対で、吐出圧力によって磁気空隙gを狭めてその吸引力を充分に利用できるから効果的である。
【0037】
因みに、電磁プランジャ112の往復作動時には、ポンプ始動初期および流体の圧力が高まらないうちには、電磁プランジャ112の質量が大きいほどこれと加速度の積による慣性により往復行程が伸長して静止時の前記両ばね114,115による釣合い位置を越えて所謂オーバーシュートするスプリングハンマー作用が大きく、振動騒音発生が甚だしくなることが多い。また、電磁コイル110ヘ付勢する断続パルス電流の所定帯域を越える周波数になると、周期中の非導通期間に戻しばね114の反発力で電磁プランジャ112は流動抵抗なども加わって復行程を行ういとまがなく、その往復行程長が短縮制限され、極端な場合単なる微振動かまたは静止状態に至ることは、周知である。
【0038】
そしてポンプ作動中経時的に疲労などによってばね座部分の座屈を生じたときに、電磁プランジャ112が管柱シリンダ125内を作動中に、側圧で互いに偏磨耗して損傷することがあり、摺動往復作用時に潤滑減摩作用をなすプランジャリング113も摩滅するおそれがある。
【0039】
本発明の前記(A)の気体電磁ポンプは、前述の従来技術前記(B)の電磁コンプレッサ、すなわち気体用電磁ポンプの改良に係り、その問題点を解決したものである。
【0040】
なお上記小形の燃料電池に利用される気体用電磁ポンプの吐出能力は 9.8 KPa(0.1 kgf/cm) の吐出圧力で、吐出流量約1500ml/min程度を要望されるようになり、燃料電池からの電力で稼動させ、時としては小乾電池での利用も考えられるので、消費電力、一層の小形軽量化が要求されている。
【0041】
以上の問題点を解決しかつ市場の要望に対応して、本発明の気体用電磁ポンプ(以下単に電磁ポンプと称す)は、さきにも述べたが、次のようにそれぞれ課題を解決したものである。以下、図1、図2によってこれを説明する。
(イ)電磁コイル10に断続パルス電流を付勢し、その周期中の導通期間には、前記磁気吸引力によって電磁プランジャ12は磁気空隙gを埋めるべく、環状磁極26内部に進入し、流体は吸入口21から電磁プランジャ12に内蔵した吸入弁18を経て管柱シリンダ25内の補助ばね15側に流入して吸入行程となる。この際、戻しばね14は圧縮され、その撓みに比例して反発力を増し、前記パルス電流の非導通期間に電磁プランジャ12をその静止位置方向へ戻す吐出行程時の原動力となる。この吸入行程時には、補助ばね15は伸長し、吐出行程にはもとに戻ろうとして、但し前記したように電磁プランジャ12の質量と加速度による慣性エネルギによってその撓み量を増し、これが再導通時に反発力として加わり、流体の流動および圧力抵抗が小さいほどその影響力が大きく、電磁プランジャ12の吸入および吐出行程共にスプリングハンマ作用が加味される。
【0042】
そしてこのパルス電流の非導通期間に戻しばね14による吐出行程は吐出側の流体の圧力が増大するほど負荷抵抗となって、電磁プランジャ12は前記磁気空隙gを縮めるので磁気吸引力が強くなり、すなわちリラクタンスが小となり、換言すればパーミアンスが大となって磁力発生の効率が大きいので、必要とする磁気吸引力に対する消費電力も少なく、電磁コイル10の温度上昇も低くなり、電磁コイル10、電磁コイル12など電磁ポンプ自体を小形軽量化可能となる。
【0043】
また、従来技術を含む前記先行技術(B)のものは、本発明の(A)とは反対に電磁コイル110へ断続パルス電流を付勢してその周期中の導通期間に磁気吸引力で電磁プランジャ112を吐出行程させ、非導通期間に復帰吸入行程を行うので、磁気吸引力を発生する吐出行程時に、流体の流動圧力による負荷抵抗の大なるときに磁気空隙gを埋めるのに抵抗があって、それにより磁力を減少させる方向に働かせる損失を招いている。
【0044】
つぎに、本発明の実施の形態において、磁気吸引力により電磁プランジャ12が環状磁極26内部に進入して管柱シリンダ25の壁を介して重なり、漏洩磁気回路を構成することに関しては、前記先行技術(B)の特許出願明細書にも記載してあるので、その説明は省略する。
(ロ)また、電磁プランジャ12の両端部位に環帯状の外周縁を残して穿設した環状溝に該電磁プランジャ12の外径を越える外径寸法を有する弗素系合成樹脂製の環状のプランジャリング13を埋め込み嵌着した点について、前記先行技術(B)の公開特許公報の明細書
【0037〜39】項に図2と表1をもって電磁プランジャ12の外径dとプランジャリング13の外径との差が、すなわちこの両者の外径の差の 1/2 を表すプランジャリング13の側面の出張り代、すなわち潤滑減摩部材の磨耗代が多いほど、ポンプの吐出圧力が低く、しかも電磁コイル10に流れる電流値が増加し、このことがその温度上昇を招き、しかも磁気発生に損失があることを説明している。
【0045】
しかるに、本発明の実施の形態(A)の場合には、空隙磁気吸引力を前記したように有効に利用しているために、後述する図6(a)にEをもって表すようにはるかに大きい寸法とすることができて、しかも吐出性能は所望値を満足する一方、電磁プランジャ12の前記側圧による偏磨耗に対して耐久力を増すものとしている。
(ハ)しかも、前記したように、吸入継手20の電磁プランジャ12に面した軸心中央部位に突出した尖端部にこれに係止する凹部を有する戻しばね座16と電磁プランジャ12の端部との間に戻しばね14を係設するなど少なくとも一方のばね座を調心構造としてばねの疲労など座屈による電磁プランジャ12、管柱シリンダ25等の摺動部の側圧に起因する損耗の防止に役立てている。
(ニ)電磁ポンプの吸入口側に消音器を兼ねたフィルタ39、40を付したことは前述の通りである。
(ホ)電磁コイル10への付勢パルス電流の周期、デューティ比などを変換して吐出能力を制御することは、以下各表を掲示して説明する通りであり、
また本発明の小型軽量化、吐出性能の向上等も以下同様に掲示した各表により説明する通りである。
【0046】
上述のように、本発明の電磁ポンプ(A)が従来技術による(B)よりも小形軽量化と吐出性能の向上したことを、以下図6および各表によって説明する。
【0047】
図6(a)は電磁プランジャ12、112におけるその外径Dと長さFのそれぞれ寸法で、プランジャリング13、113の外径側面の出張り代、すなわち前記両者の半径の差Eであり、
図6(b)は管柱シリンダ25、125のそれぞれの長さL、
図6(c)環状磁極26、126のそれぞれの長さJ、
図6(d)はスペースリング28、128のそれぞれの長さS、
図6(e)は環状磁極27、127のそれぞれの長さK、
図6(f)は電磁コイル10、110のそれぞれの長さM、
図6(g)は電磁ポンプ(B)の長さ寸法H
図6(h)は電磁ポンプ(A)の長さ寸法H である。
【0048】
この(A)、(B)両者の上記各部材の寸法表において、その寸法差の示すように、(A)は(B)よりも小型軽量化され、この両者のプランジャリング13、113の外径と管柱シリンダ25、125の内径は同寸法であるが、電磁ポンプ(A)と(B)の重量はそれぞれ450gr、600grで重量比は3:4に軽量化され、長さも約17%縮小した。
【0049】
このように小形軽量化したにもかかわらず、ポンプの吐出性能はつぎの表1に示すように向上し、磁気吸引力がより有効に利用されていることが判る。
【0050】
【表1】

Figure 2004232573
但し、電磁コイル10への付勢電流はDC24V、周波数25Hz、周期中の導通期間 on time8mSec、吐出圧力 9.8 KPa で電流値260mA, 消費電力6.24w,温度上昇値 deg 33 K 、騒音は水平1mの距離で測定して、吸入側にサイレンサ、フィルタを付設しない場合は49 dB/A Scale で、これらを付設したときは47dB/A で、吸入継手に配管を接続すると 44 dB/A に低下した。
【0051】
これに対して、従来技術の(B)のものは、DC24V,20Hz,on time 12mSecで、吐出圧力0KPa, 9.8 KPaのときそれぞれ吐出流量1500mlおよび1200mlで、吐出圧力 9.8 KPa のときに、電流値263mA、6.3 W で効率が低下している。そしてDC24V,25Hz、on time 12mSecで吐出圧力9.81KPaのとき吐出流量は2000mlに増大したが、電流値410mAで消費電力 9.84 W 、温度上昇はdeg 40K であったことは前記特開2002−130122号公報に記載されている通りで、しかも前述の(A)同様の条件でいずれも55dB/Aを超え、この騒音大では問題となり利用し難い。
【0052】
これは電磁プランジャ112の質量の比較的大きいことによる慣性エネルギの増大等前述した理由によることや往復作動の振動の乱調によるものと思料する。そして付勢電流の周波数をさらに高めると、これも前述した理由により電磁プランジャ112の往復行程長が反対に縮小して吐出能力を損ねる欠点が生じる。
【0053】
本発明の(A)の電磁ポンプは電磁プランジャ12の長さが短く、したがって質量も比較的小であるので、慣性エネルギも小であり、周波数を限定帯域内で高めても振動騒音が低く、吐出流量はこのように増大させることができて効率が高い。
【0054】
このように本発明の(A)の電磁ポンプは従来技術、すなわち前記先行技術の(B)の電磁ポンプよりも優れている。
【0055】
上記騒音測定は無響室ではなく、実態に即して敢えて住居地域のRC構造の建物屋内で夜間に測定した暗騒音は33dB/A Scaleであった。
【0056】
また、電磁コイルの温度上昇値 deg Kは電気抵抗法により、上記パルス電流を通電してポンプを連続運転し、電磁コイルは磁気飽和してから測定した。
【0057】
(A)の電磁コイルへの付勢断続パルス電流をDC24V,周波数25Hz,周期中の通電期間、すなわち on time を8mSecで空気の吐出圧力を 9.8 KPa, 吐出流量1500ml/minのものを周期のみ変換したときの吐出圧力、流量および消費電力を表2に示す。
【0058】
on time は8mSecであるから、周期中の導通期間の比、すなわちデューティ比はもちろん変わる。また、同一周波数でon time を変換しても同様である。
【0059】
【表2】
Figure 2004232573
また、この電磁ポンプ(A)の吐出圧力−吐出流量特性が表1に掲示してあるが、吐出圧力が大になると吐出流量は小になることは、さきにも述べた通り吐出圧力がポンプの作動の負荷抵抗になり、2つのばねの間に圧支された電磁プランジャは所謂フリーピストンであるから、負荷抵抗の大小によってその行程長が伸縮変化して、そのために吐出流量も変動するのである。このとき、本発明(A)の電磁ポンプは該負荷抵抗によって、吐出圧力の大きいほど電磁プランジャが吸入側にある環状磁極側に近接して磁気空隙を埋め狭めて往復動していることを表3によって説明する。電磁プランジャがその往復作動中に環状磁極の方へ磁気吸引力によってその静止の位置から吸入行程時に移動する距離と、磁気吸引力の消滅時に戻しばねの反発力で静止の位置方向へ戻る吐出行程時長を慣性エネルギによりオーバーシュートする価を含めてその長さを測定したものである。前記両者の距離の和が電磁プランジャの往復時の行程長になる。吐出圧力が大きいときほど、電磁プランジャは環状磁極方向への移動量が伸長し、戻しばねの撓み量も大きく、したがってその反発力が大きくなるが、前記負荷抵抗により減殺されて復行程、すなわち吐出行程時における移動量は減縮してその往復行程の上死点と下死点との距離、すなわち往復行程長は、吐出圧力が0のときのみ、復行程時に前記オーバーシュート現象があり、圧力が上がるほど負荷抵抗のために復行程の吐出行程時はオーバーシュートが皆無でしかも短縮して静止の位置まで戻らず、したがって全体的に往復行程長は縮小している。
【0060】
表3における、本発明の電磁ポンプ(A)の電磁コイルへの付勢電流はDC24V,25Hz,on time 8m/Sec に設定してあるものを圧力計と調整器により吐出圧力を変換してそれぞれの行程長を測定したものである。
【0061】
なお、この電磁プランジャの往復作動位置はその静止位置からそれぞれその行程長の上、下死点間の距離をストロボスコープで測定したもので、
電磁プランジャ12に嵌めこんだ三叉の取付脚を有する針状の指示桿を戻しばね座16と吸入継手20の軸心に穿孔した孔を設けて、これに挿入遊嵌させて吸入口21から露呈させ、その尖端に指示標識を設けて、実施の形態とは若干相違があるが、大同小異でこの相違点により往復作動に対する影響は極めて微小で問題とすることは無い。
【0062】
【表3】
Figure 2004232573
この場合、吐出圧力がその設定標準値を超えると、吸入および吐出逆止弁の作動と吐出圧力や弁ばねの荷重により作動時差などで阻害されるか、または漏洩によることが考えられ、プランジャの行程長に比して吐出量が著しく低下している。
【0063】
電磁プランジャの吸入側への行程の移動距離が吐出圧力の上昇につれて定まっているのは上死点で、戻しばねは全圧縮されていないが、吐出圧力すなわち負荷抵抗に対応する戻しばねの反発力を得るためにこれを撓ませる電磁プランジャの吸入行程時の磁気吸引力を発生させる磁束の通過に充分な磁気回路を前記磁気空隙を埋めて構成し遂げたことにより磁気的に飽和の状態にあるか、または電磁プランジャの磁気中心が電磁コイルの磁気中性点を過ぎてソレノイド磁気吸引力が方向を反転するに至るものかと考えられる。
【0064】
つぎに、電磁コイルの温度上昇に関して、その放熱方法としては、図4に示すような吸入および吐出接手51,53を熱伝導性のよい軽合金製としてこれに複数の輪状の放熱フィン58もしくは縦状に複数の放熱フィンを設けて放熱面を拡大する方法がある。もしくは、電磁ポンプ3全体を函で覆いこれに前記同様複数の放熱用フィンを設けると、放熱冷却と防音を兼ねたものとなることも当然である。
【0065】
なお、この電磁ポンプ3は電磁コイル10を帽状の外函継鉄54で覆い防滴を兼ねている。電磁コイル10のボビン11の両端面に備えた磁気鉄板31と前記外函継鉄54とを介して外函継鉄30に挟設され、複数の螺子29,59によって螺締結されている。その他は図1、図2の電磁ポンプ1と同様である。
【0066】
【発明の効果】
本発明は、上記のような構成により、その特許出願明細書に記載したように、従来技術、先行技術の問題点を、前記(イ)、(ロ)、(ハ)、(ニ)、(ホ)各項に記述した通りの解決する手段を講じている。その成果は同様明細書に記載の通り特に燃料電池における前記した用途の空気および気体燃料用の電磁ポンプとして次のようにまとめられる。本発明では、請求項1の特徴事項に記載のように、パルス電流の周期中の導通期間に空隙磁気吸引力と共に発生するソレノイド磁気吸引力とにより電磁プランジャは環状磁極の内部に進入して管柱シリンダ壁を介して重なり、漏洩磁気回路を構成してある。このことから明らかなように、パルス電流の非導通期間には、戻しばねにより吐出行程が行われ、そのとき吐出側の流体の圧力が増大するほど負荷抵抗となって、電磁プランジャが磁気空隙gを縮めるので磁気吸引力が強くなり、磁力発生の効率が大きいので、必要とする磁気吸引力に対する消費電力も少なく、電磁コイル、電磁プランジャなど電磁ポンプ自体を小形軽量化することができ、経済性を高めると共に、それにもかかわらず電力に比してポンプの吐出性能も高められる。さらに、請求項1に記載の特徴事項のプランジャリングに関しては、本発明では、前述したように空隙磁気吸引力を有効に利用しているので、電磁プランジャの外径より出っ張るプランジャリングの側面の出張り代が前述した(B)の先行技術に比較してはるかに大きい寸法とすることが可能になり、電磁プランジャの側圧による偏磨耗に対して耐久性を増大させることができる。また、請求項2に記載のように、電磁プランジャを圧支する2つのばねの少なくとも一方のばね座を調心構造としたので、ばねの疲労などの座屈による電磁プランジャ、管柱シリンダなどの摺動部の側圧に起因する損耗を防止することができる。さらに、本発明では、請求項3に記載の、電磁ポンプの吸入側に備えた消音器を兼ねたフィルタが、ポンプ作動時の振動騒音を抑制すると共に防塵手段ともなる。さらに、本発明では、請求項4に記載のように、電磁コイルへの付勢パルス電流の周期、デューティ比などを変換してポンプの吐出能力を燃料電池の出力に対して可変制御することもできる。
【図面の簡単な説明】
【図1】本発明による気体用電磁ポンプの1つの実施の形態の一部断面して示す縦断説明図である。
【図2】本発明の気体用電磁ポンプの他の実施の形態の一部断面を示す縦断説明図である。
【図3】本発明の気体用電磁ポンプに付設するサイレンサフィルタの概観説明図である。
【図4】本発明の気体用電磁ポンプのさらに他の実施の形態の一部断面を示す縦断説明図である。
【図5】従来公知の先行技術による電磁コンプレッサの一部断面を示す縦断説明図である。
【図6】本発明の実施の形態の気体用電磁ポンプと従来公知の先行技術による電磁コンプレッサの部品および全長の比較寸法を示す寸法表を添付した説明図である。
【符号の説明】
1,2,3 気体用電磁ポンプ
10、110 電磁コイル
12,112 電磁プランジャ
13、113 プランジャリング
14,114 戻しばね
15,115 補助ばね
16,116 戻しばね座
18,118 吸入弁
19,119 吐出弁
20,120 吸入継手
23,123 吐出継手
25,125 管柱シリンダ
26,126 環状磁極
27,127 環状磁路
39,41 フィルタ
40 サイレンサフィルタ
101 電磁コンプレッサ
g 磁気空隙[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, a polymer solid electrolyte fuel cell (PEFC) among fuel cells which have been actively researched for practical use in recent years, in a component such as natural gas, methanol, gasoline, propane, and butane. When reforming a fuel containing hydrogen to convert it to hydrogen, CO2 2 , NO X , CO and HC are generated in small amounts. This carbon monoxide CO is compatible with the catalyst, and adsorbs and inhibits hydrogen. In other words, when this gas is supplied to the fuel cell, air is supplied to the catalyst section of the hydrogen generator (reformer) in order to prevent CO poisoning that prevents the CO from adhering to the electrodes and taking out electricity. A small amount is mixed to oxidize CO, 2 (Carbon dioxide). The present invention relates to an electromagnetic pump for supplying the air and for supplying a gaseous fuel such as city gas to a fuel cell.
[0002]
[Prior art]
As the above-mentioned electromagnetic pump for gas for a fuel cell, an electromagnetic compressor proposed by the present applicant in Japanese Patent Application No. 2000-325872 (including Japanese Patent Application Laid-Open No. 2002-130122 and a procedure amendment before publication) has been proposed. There is prior art.
[0003]
However, as described in the specification, there have been various problems with the conventionally known techniques before that. And even in this prior art, there are still problems to be improved as described in detail below.
[0004]
[Problems to be solved by the invention]
The prior art, that is, the electromagnetic compressor disclosed in Japanese Patent Application Laid-Open No. 2002-130122, which is disclosed in the specification of FIG. 1 (presented instead of FIG. 5 of the present application), when the discharge pressure is applied to the electromagnetic plunger 112. Is deviated to the upstream suction side, and the gap magnetic attraction force decreases due to an increase in the magnetic gap g between the pressurizing surface at the downstream end thereof and the annular magnetic pole 126, and the resistance at the time of pressurizing action is reduced. The distance between the magnetic neutral point q at the center on the axis of the coil 110 and the magnetic center point u of the electromagnetic plunger is reduced, that is, the stroke length is reduced. Further, the decrease in the stroke length has factors as described later. In particular, since the magnetic attraction of the air gap is inversely proportional to the square of the distance of the magnetic air gap, in this case, the loss is large, the discharge pressure decreases, the reluctance of the magnetic circuit increases, and the temperature of the electromagnetic coil 110 increases with power consumption. The value (deg) K increases.
[0005]
Further, the reason why the stroke length of the electromagnetic plunger 112 is reduced is also due to inertial energy due to the product of the mass and the acceleration. If the mass is relatively large and the frequency is relatively large, the electromagnetic coil 110 When the intermittent pulse current is turned on, the acceleration is large, and when it is not turned on, there is no time to return to the old position when returning by the return spring 114. Therefore, the reciprocating motion is simply a short vibration or the stroke length is shortened and the discharge is performed. The capacity may be reduced, or the generation of vibration noise may be large.
[0006]
This type of pump is also required to be able to control the flow rate, and to be smaller and lighter, have higher performance, lower noise, and lower cost.
[0007]
In addition, since this electromagnetic compressor is particularly for gas, a plunger ring 113 for abrasion is fitted to both ends of a cylindrical cylinder 125 and an electromagnetic plunger 112 that slides back and forth therein. When both ends of the return spring 116 and the auxiliary spring 115 that sandwich and support the plunger 112 buckle due to fatigue over a long period of operation of the pump, the electromagnetic plunger 112 inclines and slides back and forth, and the tube cylinder is caused by side pressure. Since both of the spring seats 125 are damaged by uneven wear and cause malfunctions, it is desirable that at least one of the spring seats is provided with a centering structure as described later to prevent the adverse effects caused by the buckling of the springs.
[0008]
In addition, since such wear is particularly severe in wear of the plunger ring, it is desirable to make the outer diameter larger than the outer diameter portion of the ferromagnetic material of the electromagnetic plunger 112 as much as possible. There is. This point is described in Table 1 of Japanese Patent Application Laid-Open No. 2002-130122, and the description thereof is omitted.
[0009]
The relationship between the deflection of the two springs that sandwich and press the electromagnetic plunger due to each magnetic attraction force and the repulsion force thereof has been described by the present applicant in Japanese Patent Publication No. 57-12863. Is also omitted.
[0010]
In the present invention, the problems in the prior art described above and the problems described in detail in the following embodiments, that is, the magnetic efficiency is increased, the pump is further reduced in size, the durability is increased, and the discharge capacity is reduced. An object of the present invention is to solve the problem of making controllable in accordance with the amount of power generated by a battery and further improving the effect of noise prevention by means described in detail below.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a gas electromagnetic pump according to the present invention has a built-in check valve mechanism inside a tube cylinder surrounded by an electromagnetic coil, and has a pressure support between a return spring and an auxiliary spring. A reciprocating magnetic attraction force generated by an intermittent pulse current that urges the electromagnetic coil, wherein the reciprocating electromagnetic plunger slides and reciprocates. A magnetic pole, and an annular magnetic path externally fitted to the side of the auxiliary spring. An upstream suction side having a magnetic gap is provided between the magnetic pole and an end of the electromagnetic plunger opposed to the end face of the annular magnetic pole. In a pump in which the end face of the plunger is a pressurizing surface on the downstream discharge side, an electromagnetic plunger is formed in the annular magnetic pole by a solenoid magnetic attractive force generated together with an air gap magnetic attractive force during a conduction period in the cycle of the pulse current. Into an annular groove formed at the both ends of the electromagnetic plunger while leaving an annular outer peripheral edge at each end of the electromagnetic plunger. Annular plunger rings made of a fluorine-based synthetic resin having an outer diameter exceeding 0.1 mm.
[0012]
Thus, at least one of the two springs for supporting the electromagnetic plunger has a centering structure.
[0013]
The electromagnetic pump is provided with a small-diameter through-hole communicating from the suction port to the inside of the tube cylinder on the suction side of the electromagnetic pump, and a filter also serving as a muffler covering the suction port.
[0014]
Further, the energizing current to the electromagnetic coil is a DC intermittent pulse current, and one or more of its voltage, current cycle, and duty ratio are adjusted to adjust the air or gaseous fuel in accordance with the output of the fuel cell. Variable control.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is a longitudinal cross-sectional view partially showing one embodiment of a gas electromagnetic pump according to the present invention.
[0017]
In FIG. 1, the configuration as described in claims 1 to 2 of the claims will be repeatedly described, but the configuration is such that the electromagnetic pump 10 is surrounded by the electromagnetic coil 10, that is, the shaft of the electromagnetic coil 10. An electromagnetic plunger 12 having a suction-side check valve mechanism 18 built therein and pressed between a return spring 14 and an auxiliary spring 15 is provided inside the tube cylinder 25 fitted in the longitudinal through hole. An annular magnetic pole 26 is provided at both ends of the tube cylinder 25 on the side of the return spring 14, and an auxiliary magnetic pole is provided for the positive displacement type flow-through pump which slides and reciprocates by an intermittent magnetic attraction force generated by an intermittent pulse current applied to the coil 10. An annular magnetic path 27 is externally fitted on the side of the spring 15, and when the pump is stationary, the upstream suction side has a magnetic air gap g between the end face of the annular magnetic pole 26 and the end of the electromagnetic plunger 12 opposed thereto. ~ side In a pump in which the end face of the electromagnetic plunger 12 has a pressurizing surface on the downstream discharge side, a magnetic neutral at the center point on the vertical axis of the electromagnetic coil 10 which is generated together with the air gap magnetic attractive force during the conduction period of the pulse current. The electromagnetic plunger 12 enters the annular magnetic pole 26 and overlaps via the wall of the tube cylinder 25 due to the solenoid magnetic attraction force at which the magnetic center u of the electromagnetic plunger 12 is pulled to the point q so that a leakage magnetic circuit is formed. In this embodiment, when the pump is at rest, the suction-side end face of the electromagnetic plunger 12, the suction-side end face of the annular magnetic path 27 and the magnetic neutral point of the electromagnetic coil 10 are positioned on the axis. They are directly on the same plane.
[0018]
At both end portions of the electromagnetic plunger 12, annular plunger rings 13 made of a fluorine-based synthetic resin having an outer diameter exceeding the outer diameter of the electromagnetic plunger 12 are formed in annular grooves formed by leaving an outer peripheral edge of an annular band. Embedded fitting. The outer diameter of the plunger ring 13 will be described later.
[0019]
As is well known, the electromagnetic pump having the electromagnetic plunger includes an electromagnetic plunger 12 that reciprocates in a tube cylinder 25 by an intermittent pulse current that urges the electromagnetic coil 10 and a repulsive force of a return spring 14, and suction and discharge. Together with the operation of the stop valves 18 and 19, the pump operates as a pump, sucks in from the suction port 21 of the suction joint 20 as shown by the arrow a, flows through the inside of the pump, and flows from the discharge port 24 of the discharge joint 23 to the arrow b. The fluid is discharged as shown in FIG.
[0020]
Before giving a more detailed description of the features of the present invention, a supplementary description will be given of the configuration in the embodiment of the present invention.
[0021]
A return spring 16 having a concave portion which is engaged with a sharp end protruding from the center of the axial center of the suction joint 20 facing the electromagnetic plunger 12 at the suction side end of the tube cylinder 25, and an end of the electromagnetic plunger 12. The auxiliary spring 15 is engaged between the discharge side end of the electromagnetic plunger 12 and the auxiliary spring seat 17 provided at the end of the tube cylinder 25 containing the discharge joint 23. The electromagnetic plunger 12 is equilibrated and pinched with equal repulsive force from both directions.
[0022]
The discharge joint 23 has a built-in discharge check valve 19.
[0023]
On both end surfaces of the bobbin 11 on which the electromagnetic coil 10 is wound, a magnetic iron plate 31 is fitted over the annular magnetic pole 26 and the annular magnetic path 7 and is provided with a lid. The flanges of the suction joint 20 and the discharge joint 23 are provided. It is sandwiched by the outer frame yoke 30 through the portion, and is tightly fixed by the plurality of screws 29. A space ring 28 is externally fitted to the tube cylinder 25 between the annular magnetic pole 26 and the annular magnetic path 27.
[0024]
The inside of the pump is kept airtight by packing such as an O-ring.
[0025]
The annular magnetic pole 26, the annular magnetic path 27, the magnetic iron plate 31, and the outer frame yoke 30 constitute a magnetic circuit.
[0026]
The outer frame yoke 30 is fixed to the mounting stay 32 via a vibration isolating member 33 made of a plurality of synthetic rubbers such as four.
[0027]
Since the electromagnetic pump according to the embodiment of the present invention shown in FIG. 1 does not have a filter on the suction side, it is used for gas such as city gas as it is, but when used for air, for example, as shown in FIG. A suction side member 36 provided with a filter element 39 such as a net, a sponge or a felt is provided on the suction side on the suction side. In such a gas electromagnetic pump, a contact sound is generated in the valve seat when the check valve is opened and closed during operation. Therefore, a through hole 38 communicating from the suction port 37 to the working chamber of the pump, that is, the inside of the tube cylinder 25 is formed. It is provided with a dustproof filter that doubles as a so-called silencer that narrows down the inner diameter and buffers overshoot due to inertia during the stroke of the electromagnetic plunger 12 and suppresses the valve and the opening / closing contact sound. Since a pipe is connected to the discharge side, noise is suppressed.
[0028]
The small-diameter through hole 22 communicating from the suction port 21 of the suction joint 20 in the case of FIG.
[0029]
In FIG. 3, the filter element 41 made of a kind of high-density sponge, such as malt prene, a net, and felt, which also has a silencing effect, is built in and passes through a plurality of mados 42 communicating with the outside air. This is a silencer 40 that also serves as a filter and is used by being connected to the suction joint 20 of FIG. 2 have the same names as those described in FIG.
[0030]
As mentioned earlier, this type of electromagnetic pump, especially a gas pump for a fuel cell, is smaller, lighter, more efficient and more efficient than that disclosed in the prior art JP-A-2002-130122. Low noise, low cost and durability are required. This may be because the use of fuel cells has been studied in a wide variety of applications, ranging from various small devices.
[0031]
As described above, this prior art is further described with reference to FIG. The numbers obtained by subtracting 100 from the reference numerals in the figures are the same as the names of the parts in FIGS.
[0032]
Therefore, first, the prior art will be described with reference to FIG. 5 with respect to differences in its operation and the like from those of FIGS. 1 and 2 of the present invention.
[0033]
Hereinafter, the electromagnetic pump for gas of the present invention shown in FIG. 1 will be referred to as (A), and that of the prior art shown in FIG. 5 will be referred to as (B).
[0034]
In FIG. 5B, as in FIGS. 1A and 2A, a mounting stay is provided via a vibration isolating member made of synthetic rubber, elastic spring, or the like, so that the mounting volume is further increased. growing.
[0035]
In FIG. 5, when an intermittent pulse current is applied to the electromagnetic coil 110, the magnetic gap g between the annular magnetic poles 126 is filled by the gap magnetic attractive force generated during the conduction period in the cycle, and the magnetic force of the electromagnetic coil 110 is reduced. The electromagnetic plunger 112 enters a discharge stroke in which the magnetic center u of the electromagnetic plunger 112 is attracted to the neutral point q, and enters the inside of the annular magnetic pole 126. During the non-conduction period in the cycle, the magnetic attractive force is cut off. The rebound force of the return spring 114 causes a return stroke to return to the position at rest, and a suction operation is performed. By this repetition, fluid flows vertically through the inside of the pump from the suction port 121 of the suction joint 120 as shown by an arrow a and is discharged. The fluid is discharged from the discharge port 124 of the joint 123 as shown by the arrow b. In this discharge stroke, the fluid pressure causes the electromagnetic plunger to become a load resistance on the pressurized surface of the 112, hindering the narrowing of the magnetic gap g with the annular magnetic pole 126, and effectively using the solenoid magnetic attraction force simultaneously with the gap magnetic attraction force. Not available. That is, the discharge pressure hinders the narrowing of the magnetic gap g, and the higher the pressure, the shorter the stroke length of the electromagnetic plunger. That is, the discharge flow rate decreases. This is because the magnetic attraction force is inversely proportional to the square of the gap distance, and the current value flowing through the electromagnetic coil 110 is also large, so that the temperature rise value K at the time of magnetic saturation also increases.
[0036]
On the other hand, in the configuration shown in FIGS. 1 and 2 of the present invention, the magnetic gap g between the electromagnetic plunger 12 and the annular magnetic pole 26 is completely opposite to the operation corresponding to the load pressure during the discharge stroke. This is effective because the suction force can be sufficiently utilized by narrowing the gap g.
[0037]
By the way, during the reciprocating operation of the electromagnetic plunger 112, before the pump is started and before the pressure of the fluid increases, the larger the mass of the electromagnetic plunger 112, the more the reciprocating stroke is extended by inertia due to the product of this and the acceleration, and the above-described stationary state. The spring hammer effect of so-called overshoot beyond the balance position by the two springs 114 and 115 is large, and the generation of vibration noise often becomes severe. Also, when the frequency exceeds a predetermined band of the intermittent pulse current energized to the electromagnetic coil 110, the electromagnetic plunger 112 is subjected to a rebound by the repulsive force of the return spring 114 during the non-conduction period in the cycle due to the addition of flow resistance and the like. It is well known that the length of the reciprocating stroke is shortened and limited, and in extreme cases, it may be a mere micro-vibration or a stationary state.
[0038]
When the spring plunger buckles due to fatigue or the like over time during the operation of the pump, the electromagnetic plunger 112 may be damaged due to partial wear due to lateral pressure while the inside of the tube cylinder 125 is operating. The plunger ring 113 which performs lubrication and anti-friction during the dynamic reciprocating action may also be worn out.
[0039]
The gas electromagnetic pump of (A) of the present invention relates to the improvement of the electromagnetic compressor of the prior art (B), that is, the gas electromagnetic pump, and solves the problem.
[0040]
The discharge capacity of the gas electromagnetic pump used in the small fuel cell is 9.8 KPa (0.1 kgf / cm). 2 ), A discharge flow rate of about 1500 ml / min is demanded, and it is operated with electric power from a fuel cell, and in some cases, a small dry cell can be used. Is required.
[0041]
In order to solve the above problems and respond to the demands of the market, the electromagnetic pump for gas of the present invention (hereinafter simply referred to as an electromagnetic pump), which has been described earlier, has solved the respective problems as follows. It is. Hereinafter, this will be described with reference to FIGS.
(A) An intermittent pulse current is applied to the electromagnetic coil 10, and during the conduction period during the period, the electromagnetic plunger 12 enters the inside of the annular magnetic pole 26 to fill the magnetic gap g by the magnetic attraction force, and the fluid is The gas flows from the suction port 21 through the suction valve 18 incorporated in the electromagnetic plunger 12 to the auxiliary spring 15 side in the tube cylinder 25 to form a suction stroke. At this time, the return spring 14 is compressed, and the repulsive force increases in proportion to the bending thereof, and becomes a driving force during the discharge stroke of returning the electromagnetic plunger 12 toward the stationary position during the non-conduction period of the pulse current. During the suction stroke, the auxiliary spring 15 extends and attempts to return to the discharge stroke. However, as described above, the amount of bending of the electromagnetic plunger 12 is increased by the inertia energy due to the mass and acceleration of the electromagnetic plunger 12, which rebounds when re-conducting. The influence is greater as the flow and pressure resistance of the fluid are smaller, and the spring hammer action is added to both the suction and discharge strokes of the electromagnetic plunger 12.
[0042]
During the non-conducting period of the pulse current, the discharge stroke of the return spring 14 becomes a load resistance as the pressure of the fluid on the discharge side increases, and the electromagnetic plunger 12 reduces the magnetic gap g, so that the magnetic attraction force increases. That is, since the reluctance is small, in other words, the permeance is large and the efficiency of magnetic force generation is large, the power consumption for the required magnetic attraction force is small, the temperature rise of the electromagnetic coil 10 is low, and the electromagnetic coil 10 The electromagnetic pump itself such as the coil 12 can be reduced in size and weight.
[0043]
In the prior art (B) including the prior art, contrary to (A) of the present invention, an intermittent pulse current is energized to the electromagnetic coil 110 and the electromagnetic force is applied by magnetic attraction during the conduction period in the cycle. Since the plunger 112 is caused to perform the discharge stroke, and the return suction stroke is performed during the non-conduction period, there is no resistance to fill the magnetic gap g when the load resistance due to the fluid flow pressure increases during the discharge stroke in which the magnetic attraction force is generated. As a result, it causes a loss of working in the direction of decreasing the magnetic force.
[0044]
Next, in the embodiment of the present invention, with respect to the fact that the electromagnetic plunger 12 enters the inside of the annular magnetic pole 26 by the magnetic attraction and overlaps via the wall of the tube cylinder 25 to form a leakage magnetic circuit, Since it is also described in the patent application specification of the technology (B), its description is omitted.
(B) An annular plunger made of a fluorine-based synthetic resin having an outer diameter exceeding the outer diameter of the electromagnetic plunger 12 in an annular groove formed by leaving an annular outer peripheral edge at both end portions of the electromagnetic plunger 12. 13 is described in the specification of the above-mentioned prior art (B).
Referring to FIG. 2 and Table 1, the difference between the outer diameter d of the electromagnetic plunger 12 and the outer diameter of the plunger ring 13, that is, 1/2 of the difference between the outer diameters of the two, is shown in FIG. The more the side projection, that is, the wear allowance of the lubricating and lubricating member, the lower the pump discharge pressure and the more the current flowing through the electromagnetic coil 10, which causes an increase in the temperature and the generation of magnetism. Explain that there is a loss.
[0045]
However, in the case of the embodiment (A) of the present invention, since the magnetic attraction of the air gap is effectively used as described above, it is much larger as indicated by E in FIG. The electromagnetic plunger 12 can be dimensioned and the discharge performance satisfies a desired value, while increasing the durability against uneven wear of the electromagnetic plunger 12 due to the lateral pressure.
(C) Further, as described above, the return spring seat 16 and the end of the electromagnetic plunger 12 having the concave portion which is engaged with the sharp end protruding from the central portion of the axial center of the suction joint 20 facing the electromagnetic plunger 12 are provided. At least one of the spring seats is provided with an aligning structure, for example, by interposing a return spring 14 between the electromagnetic plunger 12 and the spring to prevent wear caused by buckling due to lateral pressure of the sliding portion such as the plunger 12 and the tube cylinder 25 due to buckling. Useful.
(D) As described above, the filters 39 and 40 serving also as silencers are provided on the suction port side of the electromagnetic pump.
(E) Converting the period, duty ratio, and the like of the energizing pulse current to the electromagnetic coil 10 to control the discharge performance is as described in the following tables.
The reduction in size and weight of the present invention, the improvement in the discharge performance, and the like are as described in the following tables.
[0046]
As described above, the fact that the electromagnetic pump (A) of the present invention is smaller and lighter than the conventional technology (B) and has improved discharge performance will be described below with reference to FIG. 6 and each table.
[0047]
FIG. 6A shows the dimensions of the outer diameter D and the length F of the electromagnetic plungers 12 and 112, respectively, and the protrusion allowance of the outer diameter side surfaces of the plunger rings 13 and 113, that is, the difference E between the two radii.
FIG. 6B shows the length L of each of the tube cylinders 25 and 125,
FIG. 6C shows the length J of each of the annular magnetic poles 26 and 126,
FIG. 6D shows the length S of each of the space rings 28 and 128,
FIG. 6E shows the length K of each of the annular magnetic poles 27 and 127,
FIG. 6F shows the length M of each of the electromagnetic coils 10 and 110,
FIG. 6G shows the length H of the electromagnetic pump (B). 2 ,
FIG. 6H shows the length H of the electromagnetic pump (A). 1 It is.
[0048]
(A) and (B) In the dimensional table of each of the above members, (A) is smaller and lighter than (B) as shown by the dimensional difference. The diameter and the inner diameter of the tube cylinders 25 and 125 are the same, but the weights of the electromagnetic pumps (A) and (B) are 450 gr and 600 gr, respectively, and the weight ratio is reduced to 3: 4, and the length is also about 17%. Shrank.
[0049]
In spite of the small size and light weight, the discharge performance of the pump is improved as shown in Table 1 below, and it can be seen that the magnetic attraction force is more effectively used.
[0050]
[Table 1]
Figure 2004232573
However, the energizing current to the electromagnetic coil 10 is DC 24 V, frequency 25 Hz, conduction time during the cycle on time 8 mSec, discharge pressure 9.8 KPa, current value 260 mA, power consumption 6.24 w, temperature rise value deg 33 K, noise is Measured at a distance of 1 m horizontally, it was 49 dB / A Scale when no silencer and filter were attached on the suction side, 47 dB / A when these were attached, and 44 dB / A when pipes were connected to the suction joint. Dropped.
[0051]
On the other hand, in the case of the prior art (B), DC 24 V, 20 Hz, on time 12 mSec, discharge pressures of 0 KPa and 9.8 KPa, discharge flow rates of 1500 ml and 1200 ml, respectively, and discharge pressure of 9.8 KPa In addition, the efficiency is reduced at a current value of 263 mA and 6.3 W. The discharge flow rate increased to 2000 ml when the discharge pressure was 9.81 KPa at DC 24 V, 25 Hz, on time 12 mSec, but the current consumption was 410 mA, the power consumption was 9.84 W, and the temperature rise was deg 40K. As described in JP-A-130122, and under the same conditions as the above (A), all of them exceed 55 dB / A.
[0052]
This is considered to be due to the above-mentioned reason such as an increase in inertia energy due to the relatively large mass of the electromagnetic plunger 112 and to the turbulence of the vibration of the reciprocating operation. If the frequency of the energizing current is further increased, the length of the reciprocating stroke of the electromagnetic plunger 112 is also reduced due to the above-mentioned reason, and the discharge capability is impaired.
[0053]
The electromagnetic pump of (A) of the present invention has a small length of the electromagnetic plunger 12 and therefore a relatively small mass, so that the inertial energy is small and the vibration noise is low even if the frequency is increased within a limited band. The discharge flow rate can be increased in this way, and the efficiency is high.
[0054]
Thus, the electromagnetic pump of (A) of the present invention is superior to the prior art, that is, the electromagnetic pump of (B) of the prior art.
[0055]
The noise measurement was not an anechoic room, but the background noise measured at night in an RC structure building in a residential area was 33 dB / A Scale according to the actual situation.
[0056]
Further, the temperature rise value deg K of the electromagnetic coil was measured after the above-described pulse current was applied to continuously operate the pump by the electric resistance method and the electromagnetic coil was magnetically saturated.
[0057]
(A) is an energizing intermittent pulse current to the electromagnetic coil of 24 VDC, a frequency of 25 Hz, an energizing period during the cycle, that is, an on time of 8 mSec, an air discharge pressure of 9.8 KPa, and a discharge flow rate of 1500 ml / min. Table 2 shows the discharge pressure, flow rate, and power consumption when only the conversion is performed.
[0058]
Since on time is 8 mSec, the ratio of the conduction period in the cycle, that is, the duty ratio, of course, changes. The same is true even if on time is converted at the same frequency.
[0059]
[Table 2]
Figure 2004232573
The discharge pressure-discharge flow characteristics of the electromagnetic pump (A) are shown in Table 1. The discharge flow decreases as the discharge pressure increases. Since the electromagnetic plunger pressed between the two springs is a so-called free piston, the stroke length changes depending on the magnitude of the load resistance, and the discharge flow rate also fluctuates. is there. At this time, the electromagnetic pump of the present invention (A) indicates that the larger the discharge pressure, the closer the electromagnetic plunger reciprocates by filling the magnetic gap and narrowing the magnetic gap as the discharge pressure increases due to the load resistance. 3 will be described. The distance that the electromagnetic plunger moves from its stationary position toward the annular magnetic pole during its reciprocating operation by the magnetic attraction during the suction stroke, and the discharge stroke that returns to the stationary position due to the repulsive force of the return spring when the magnetic attraction disappears. The time length was measured including the value of overshooting the time length due to inertial energy. The sum of the distance between the two becomes the stroke length when the electromagnetic plunger reciprocates. As the discharge pressure increases, the amount of movement of the electromagnetic plunger in the direction of the annular magnetic pole increases, and the amount of deflection of the return spring also increases.Therefore, the repulsive force increases, but the return stroke is reduced by the load resistance, that is, the discharge stroke. The amount of movement during the stroke is reduced, and the distance between the top dead center and the bottom dead center of the reciprocating stroke, that is, the reciprocating stroke length is only when the discharge pressure is 0, and the overshoot phenomenon occurs during the return stroke, and the pressure increases. As the load rises, there is no overshoot during the return stroke due to the load resistance, and the overshoot is reduced and does not return to the stationary position, so that the reciprocating stroke length is reduced as a whole.
[0060]
In Table 3, the energizing current to the electromagnetic coil of the electromagnetic pump (A) of the present invention was set to DC 24 V, 25 Hz, on time 8 m / Sec, and the discharge pressure was converted by a pressure gauge and a regulator to change the discharge pressure. Is a measurement of the stroke length.
[0061]
The reciprocating operation position of this electromagnetic plunger is obtained by measuring the distance between the rest position and the top and bottom dead centers with a stroboscope, respectively.
A needle-shaped indicator rod having a three-pronged mounting leg fitted into the electromagnetic plunger 12 is provided with a hole perforated in the axis of the return spring seat 16 and the suction joint 20, and is loosely inserted into the hole to be exposed from the suction port 21. Although the indicator is provided at the tip thereof, there is a slight difference from the embodiment, but due to the difference between the two, the influence on the reciprocating operation is extremely small and does not matter.
[0062]
[Table 3]
Figure 2004232573
In this case, if the discharge pressure exceeds the set standard value, the operation of the suction and discharge check valves and the discharge pressure or the load of the valve spring may be disturbed by an operation time difference, or may be caused by leakage. The discharge amount is significantly lower than the stroke length.
[0063]
It is the top dead center that the travel distance of the stroke of the electromagnetic plunger to the suction side is increased as the discharge pressure increases, and the return spring is not fully compressed, but the repulsive force of the return spring corresponding to the discharge pressure, that is, the load resistance. The magnetic gap is filled with a magnetic circuit sufficient to generate a magnetic attraction force during the suction stroke of the electromagnetic plunger to deflect the magnetic plunger so as to achieve magnetic saturation. Alternatively, it is considered that the magnetic center of the electromagnetic plunger passes the magnetic neutral point of the electromagnetic coil and the solenoid magnetic attraction force reverses the direction.
[0064]
Next, with respect to the temperature rise of the electromagnetic coil, as a heat radiation method, the suction and discharge joints 51 and 53 as shown in FIG. There is a method of enlarging a heat radiation surface by providing a plurality of heat radiation fins in a shape. Alternatively, if the entire electromagnetic pump 3 is covered with a box and a plurality of heat dissipating fins are provided thereon as in the above case, it is natural that the heat dissipating cooling and soundproofing can be achieved.
[0065]
The electromagnetic pump 3 also functions as drip-proof by covering the electromagnetic coil 10 with a cap-shaped outer box yoke 54. The electromagnetic coil 10 is sandwiched between the outer box yoke 30 via the magnetic iron plate 31 provided on both end surfaces of the bobbin 11 and the outer box yoke 54, and is screwed together with a plurality of screws 29 and 59. Others are the same as those of the electromagnetic pump 1 of FIGS.
[0066]
【The invention's effect】
According to the present invention, as described in the specification of the patent application, the problems of the prior art and the prior art can be solved by the above-described configurations by using the above-mentioned (a), (b), (c), (d), (d). E) Measures are taken as described in each section. The results are also summarized below as electromagnetic pumps for air and gaseous fuels for the aforementioned applications, especially in fuel cells, as described in the specification. According to the present invention, the electromagnetic plunger enters the inside of the annular magnetic pole by the solenoid magnetic attraction generated together with the air gap magnetic attraction during the conduction period during the period of the pulse current. They overlap via the pillar cylinder wall to form a leakage magnetic circuit. As is apparent from this, during the non-conduction period of the pulse current, the discharge stroke is performed by the return spring. At that time, the load resistance increases as the pressure of the fluid on the discharge side increases, and the electromagnetic plunger is moved to the magnetic gap g. The power of the required magnetic attraction force is small, and the electromagnetic pump itself, such as an electromagnetic coil and a plunger, can be reduced in size and weight. And, nevertheless, the pumping performance of the pump is also increased compared to the electric power. Further, with regard to the plunger of the feature described in claim 1, in the present invention, since the magnetic attraction of the air gap is effectively used as described above, the side of the plunger projecting from the outer diameter of the electromagnetic plunger. The allowance can be made much larger than the prior art of (B) described above, and the durability against uneven wear due to the side pressure of the electromagnetic plunger can be increased. Further, since at least one of the two springs for supporting the electromagnetic plunger has an aligning structure, the electromagnetic plunger, tube cylinder, or the like due to buckling such as fatigue of the spring is provided. Wear due to the side pressure of the sliding portion can be prevented. Furthermore, in the present invention, the filter according to the third aspect, which also functions as a muffler provided on the suction side of the electromagnetic pump, suppresses vibration noise at the time of operation of the pump and also serves as dustproof means. Further, in the present invention, the discharge capacity of the pump may be variably controlled with respect to the output of the fuel cell by converting the cycle, duty ratio, and the like of the energizing pulse current to the electromagnetic coil. it can.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a partial cross section of one embodiment of a gas electromagnetic pump according to the present invention.
FIG. 2 is a longitudinal sectional view showing a partial cross section of another embodiment of the gas electromagnetic pump of the present invention.
FIG. 3 is a schematic explanatory view of a silencer filter attached to the gas electromagnetic pump of the present invention.
FIG. 4 is a longitudinal sectional view showing a partial cross section of still another embodiment of the gas electromagnetic pump of the present invention.
FIG. 5 is a longitudinal sectional view showing a partial cross section of a conventionally known electromagnetic compressor according to the prior art.
FIG. 6 is an explanatory diagram attached with a dimension table showing comparative dimensions of parts of the electromagnetic pump for gas of the embodiment of the present invention and a conventionally known electromagnetic compressor according to the prior art and a total length.
[Explanation of symbols]
1,2,3 Gas electromagnetic pump
10,110 electromagnetic coil
12,112 Electromagnetic plunger
13,113 Plunger
14,114 Return spring
15,115 Auxiliary spring
16,116 Return spring seat
18,118 Suction valve
19,119 Discharge valve
20,120 Suction joint
23,123 Discharge fitting
25,125 tube cylinder
26,126 annular magnetic pole
27,127 annular magnetic path
39, 41 filters
40 Silencer filter
101 Electromagnetic compressor
g Magnetic air gap

Claims (4)

電磁コイルに囲繞された管柱シリンダ内を、逆止弁機構を内蔵し、かつ戻しばねと補助ばねとの間に圧支された電磁プランジャが前記電磁コイルへ付勢する断続パルス電流により発生する断続磁気吸引力で摺動往復する容積形貫流ポンプであって、前記管柱シリンダの両端部位の前記戻しばねの側に環状磁極を、そして補助ばねの側に環状磁路をそれぞれ外嵌して備え、前記環状磁極の端面に対向した電磁プランジャの端部との間を磁気空隙を有する上流吸入側とし、反対側の電磁プランジャの端面を下流吐出側の加圧面とするポンプにおいて、前記パルス電流の周期中の導通期間に空隙磁気吸引力と共に発生するソレノイド磁気吸引力とにより電磁プランジャは環状磁極の内部に進入して管柱シリンダ壁を介して重なり、磁気回路を構成してあり、さらに電磁プランジャの両端部位にはそれぞれ環帯状の外周縁を残して穿設した環状溝に該電磁プランジャの外径を越える外径を有する弗素系合成樹脂をもってなる環状のプランジャリングをそれぞれ嵌着したことを特徴とする気体用の電磁ポンプ。The inside of a tube cylinder surrounded by an electromagnetic coil is generated by an intermittent pulse current that energizes the electromagnetic coil by an electromagnetic plunger that has a built-in check valve mechanism and is pressed between a return spring and an auxiliary spring. A displacement type flow-through pump that slides and reciprocates with intermittent magnetic attraction, wherein an annular magnetic pole is fitted on the return spring side of both ends of the tube cylinder, and an annular magnetic path is fitted on the auxiliary spring side. A pump provided with an upstream suction side having a magnetic gap between the end of the electromagnetic plunger opposed to the end face of the annular magnetic pole and an end face of the opposite electromagnetic plunger as a pressurized surface on the downstream discharge side. Due to the solenoid magnetic attraction generated along with the air gap magnetic attraction during the conduction period of the cycle, the electromagnetic plunger enters the inside of the annular magnetic pole and overlaps through the tube cylinder wall to form a magnetic circuit. Further, annular plunger rings made of a fluorine-based synthetic resin having an outer diameter exceeding the outer diameter of the electromagnetic plunger are respectively fitted into annular grooves formed at both end portions of the electromagnetic plunger while leaving an annular outer peripheral edge. An electromagnetic pump for gas that is worn. 前記電磁プランジャを圧支する2つのばねの少なくとも一方のばね座は調心構造としたことを特徴とする請求項1に記載の気体用の電磁ポンプ。2. The gas electromagnetic pump according to claim 1, wherein at least one of the two springs for supporting the electromagnetic plunger has a centering structure. 前記電磁ポンプの吸入側に吸入口に連通する小径の通孔とこれを覆う消音器を兼ねたフィルタを備えたことを特徴とする請求項1または2に記載の気体用の電磁ポンプ。3. The gas electromagnetic pump according to claim 1, further comprising a filter having a small-diameter through-hole communicating with the suction port and a silencer covering the small-diameter through-hole on the suction side of the electromagnetic pump. 前記電磁コイルへの付勢は直流断続パルス電流であり、その電圧、電流の周期、デューティ比のいずれかもしくはその複数を加減調整して空気または気体燃料の吐出量を燃料電池の出力に応じて可変制御することを特徴とする請求項1から3までのうちのいずれか1つに記載の気体用の電磁ポンプ。The energization to the electromagnetic coil is a DC intermittent pulse current, and the voltage, the cycle of the current, or one or more of the duty ratios are adjusted to adjust the discharge amount of air or gaseous fuel in accordance with the output of the fuel cell. The electromagnetic pump for gas according to any one of claims 1 to 3, wherein the electromagnetic pump is variably controlled.
JP2003023242A 2003-01-31 2003-01-31 Gas electromagnetic pump Expired - Lifetime JP4159374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023242A JP4159374B2 (en) 2003-01-31 2003-01-31 Gas electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023242A JP4159374B2 (en) 2003-01-31 2003-01-31 Gas electromagnetic pump

Publications (2)

Publication Number Publication Date
JP2004232573A true JP2004232573A (en) 2004-08-19
JP4159374B2 JP4159374B2 (en) 2008-10-01

Family

ID=32952091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023242A Expired - Lifetime JP4159374B2 (en) 2003-01-31 2003-01-31 Gas electromagnetic pump

Country Status (1)

Country Link
JP (1) JP4159374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823462A (en) * 2021-09-01 2021-12-21 杭州临安锦金线缆有限公司 Cable braiding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823462A (en) * 2021-09-01 2021-12-21 杭州临安锦金线缆有限公司 Cable braiding machine
CN113823462B (en) * 2021-09-01 2024-04-05 杭州临安锦金线缆有限公司 Cable braiding machine

Also Published As

Publication number Publication date
JP4159374B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US8272850B2 (en) Membrane pump
EP3128173B1 (en) Linear compressor
KR100608681B1 (en) Reciprocating compressor
KR100851369B1 (en) Linear compressor
CN100513781C (en) Structure for fixing motor stator of reciprocating compressor
WO2003085264A9 (en) Electromagnetic vibrating type diaphragm pump
EP2818714A2 (en) Linear compressor
CN101087956A (en) Compressor for a refrigeration device
KR20100112474A (en) Linear compressor
JP2004232573A (en) Electromagnetic pump for gas
JP3286808B2 (en) Electromagnetic pump
KR101384226B1 (en) Electromagnetic air compressor
JP3765720B2 (en) Electromagnetic compressor for air supply
JP4770424B2 (en) Diaphragm type pump
CN109356812A (en) A kind of refrigeration equipment and its compressor
JP2003274626A (en) Electromagnetic plunger pump for liquid fluid
JP3988249B2 (en) Electric compressor
JP4159413B2 (en) Low pressure electromagnetic compressor
JP2742897B2 (en) Electromagnetic pump
JP3759082B2 (en) Liquid supply device
CN218293854U (en) Vortex nitrogen compressor
JP2007278148A (en) Fixed volume type electromagnetic pump
JPH09158828A (en) Electromagnetic pump for refrigerant liquid
KR20100112480A (en) Discharge valve assembly for linear compressor
Lee et al. Miniature Oil-less Linear Compressor For Portable Oxygen Concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R150 Certificate of patent or registration of utility model

Ref document number: 4159374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term