JP3765720B2 - Electromagnetic compressor for air supply - Google Patents

Electromagnetic compressor for air supply Download PDF

Info

Publication number
JP3765720B2
JP3765720B2 JP2000325872A JP2000325872A JP3765720B2 JP 3765720 B2 JP3765720 B2 JP 3765720B2 JP 2000325872 A JP2000325872 A JP 2000325872A JP 2000325872 A JP2000325872 A JP 2000325872A JP 3765720 B2 JP3765720 B2 JP 3765720B2
Authority
JP
Japan
Prior art keywords
electromagnetic
valve
discharge
spring
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000325872A
Other languages
Japanese (ja)
Other versions
JP2002130122A (en
Inventor
亨 小林
泰常 千葉
陵 小林
和市 田辺
Original Assignee
太産工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太産工業株式会社 filed Critical 太産工業株式会社
Priority to JP2000325872A priority Critical patent/JP3765720B2/en
Publication of JP2002130122A publication Critical patent/JP2002130122A/en
Application granted granted Critical
Publication of JP3765720B2 publication Critical patent/JP3765720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば近年盛んに実用化の研究が進められている燃料電池のうち、特に高分子固体電解質型燃料電池(PEFC)において、天然ガス、メタノール、ガソリン、プロパン、ブタンなどの成分中に水素を含んだ燃料を改質して水素に転換するときに、CO2,NOX , CO,HCが少量発生する。この一酸化炭素COは触媒と相性がよく、吸着して水素を阻害する。すなわち、燃料電池にこのガスが供給されると、このCOが電極に付着して電気を取り出すことを阻害するCO被毒を阻止するために水素発生器(改質器)の触媒部に空気を少量混入してCOを酸化し、CO2 (二酸化炭素)として除去する。この空気を供給するための電磁コンプレッサに関するものである。
【0002】
【従来の技術】
上記した燃料電池の研究は各方面で鋭意実施されているが、未だ段階途上のものが多く、これに用いられる空気供給用の送風機にも例えばダイヤフラムポンプがある。これは、ダイヤフラムを永久磁石およびもしくは強磁性体の可動体と連結して、この可動体を電磁回路に通電して作動させ、ダイヤフラムの伸縮による容積変化で空気流体の吸入吐出をして、ポンプ作用を行なうように構成されたものである。この種のダイヤフラムポンプは通常商用交流電源で作動するものが多い。
【0003】
また、ダイヤフラムに代えて、ベローズを用いたものがある。
【0004】
そして、実公平4−42536号公報に、前記ダイヤフラムポンプの従来技術として特開昭63−65182号公報、同63−176680号公報、同63−227978号公報が例示され、これらの問題点について説明があり、ついでマグネットを備えた電磁ピストンポンプの技術が提案されている。
【0005】
さらに、特開昭48−33411号公報に開示された電磁プランジャポンプの1つである往復動コンプレッサが提案されている。
【0006】
【発明が解決しようとする課題】
前記ダイヤフラムによるエアポンプでは、前述した従来技術の実公平4−42536号公報にも記載されているように、可動体が往復動動作のたびに、ダイヤフラムが撓むが、このダイヤフラムは可撓性を有する合成ゴム等の材料により形成されていて、破損しやすく耐久性がないのでメンテナンスが面倒である。この破損を防止するために、ダイヤフラムを耐久性の高いものにすると、所望の圧力、流量が期待できない上、高価となり、さらにダイヤフラムの支持部の構造が複雑となり、生産性が低下する。また、可動体をダイヤフラム自身で支持しているので、ダイヤフラムの撓みにより可動体が作動中にコア等に接触するおそれがあり、そのときは騒音を発したり、ポンプが破損するなどの多くの問題点が述べられている。
【0007】
何れにしても、このダイヤフラムポンプの駆動電源はほとんどすべてが商用交流電源をそのまま利用するもので、空気吐出流量の可変が困難でかつ吐出圧力にも限界があり、これらの制御にも問題がある。
【0008】
実公平4−42536号公報で提案された従来技術の電磁式フリーピストンポンプは、流体が気体の圧縮または真空ポンプとして適用されるものとして記述されている。
【0009】
その構成は、電磁円筒コイルの軸心縦貫孔に低炭素鋼等の磁性体で形成されたステートコアを配置し、その内側に内設した極めて薄肉の軸受の内部に摺動往復自在にピストンを左右からのスプリングによって圧支させている。このピストンは左右対称的にピストンヘッドと永久磁石を備え、そして左右の永久磁石相互間が中空状態に連結され、このピストンは樹脂、カーボン、アルミニュウム等の非磁性材料で形成された筒状のピストン本体を中央部に有し、該ピストンの両端部に固定された前後一対のフロントマグネットヨーク、永久磁石、すなわちマグネットおよびリアマグネットヨークとにより構成され、フロントマグネットヨークがピストンヘッドを構成していると説明されている。
【0010】
このピストン組立体に、さらに前記コイルの内周部に、前記ピストンを中立位置に復帰させる前記スプリングを左右対称的に備え、また該コイル内周部の中央部と前記軸受との間に前記ステートコアが配設されている。
【0011】
そして前記コイルに交流電流を付勢すると、ステートコアに磁束が通過する磁気回路が形成され、円筒コイルの両端部に位置する端部(符号LおよびRで示される部分)と、ステートコアの両端部との間には磁性材料が配置されていないので、洩れ磁束が生じ、前記端部LおよびRならびにステートコアの両端には、交互にSおよびNの磁極が発生して、交流の一方の半波でマグネットの磁気作用でピストンは左側に摺動し、次に他方の半波で、前記各部分の磁極が反転するので、ピストンは右に摺動し、ここに一往復し、これを繰り返してポンプ作用を行なうもので、その往復作動に関しては、周知の電磁プランジャポンプと何ら相違はないものである。
【0012】
次に、特開昭48−33411号公報に開示の従来技術は、コイルにダイオードのような整流器を介して交流電源から付勢された電流により固定磁気回路に発生した断続磁力と弾性戻し装置、すなわちばねの反発力でシリンダ内を往復運動するピストンを有する往復動コンプレッサで、要するに電磁プランジャポンプである。
【0013】
そして、その要旨とする処は、ピストンがその圧縮ストロークの間に排出口通路の開口を閉鎖したときに、圧縮チャンバーにガスで満たされたエネルギー吸収を得るようにして、ストローク終端の衝撃を緩和するクッション作用を行なわせ、衝突の危険を阻止すると共に、作動条件として電流を減少させる効果、すなわち運動系の運動の位相は磁気巻線に加わる電圧に応じて前進し、これにより通電流を除き、モータの出力係数を改善するものであるとし、発明の主眼としたものである。
【0014】
このような電磁プランジャポンプでは、軸受と称しているシリンダ内を摺動往復するピストンはその外周に減摩剤をもって表面処理することが一般的である。圧送する流体が燃料油、水等の液体の場合は、これらの液体による潤滑作用があるが、それでもピストンの外周表面を窒化硬化処理および例えば二硫化モリブデンなどの減摩剤の塗布焼付処理もしくは弗素樹脂のコーテイングをして表面を保護している。一般に、液体用の電磁プランジャポンプは実際にピストンの行程長が短く、ほとんどが2〜3mm程度である。しかし、気体用例えば空気用のコンプレッサの場合は、圧縮比が大きく、非圧縮性の液体の場合に比較してピストンの行程長は後述するように数倍に伸長するので、磨耗の度合いも大きくなる。
【0015】
ピストンとシリンダ間の嵌合は、如何なるハメアイにあっても、互いの円筒嵌合面が真円度、真直度何れも完全である部品は実際には存在せず、オス、メスのプラグゲージおよびリングゲージのような精度の高いものは甚だ高価になるので、経済的に求めがたい。さらに、ピストンを圧支する圧縮コイルスプリングでもその座は軸心に対して完全に直角ではなく、極めて厳しい公差があるにしても実際的には座屈がある。したがって、これらの理由でピストンはその摺動面に全面を減摩コーテイングしてあっても、摺動往復時に片アタリして偏磨耗を生じ、コーテング剤も剥離し、摺動減摩抵抗を増大し、ポンプの吐出能力を減殺し、かつ破損するおそれは前述した理由により気体用ポンプの場合は、さらに大きい。
【0016】
この問題解決については、前述した従来技術では一切触れていない。
【0017】
本発明においては、敍上の従来技術における問題点および後記実施の形態の欄で詳述する諸問題、すなわち磁気回路の磁気効率を高め、ポンプの小形経済化、耐久性の増大、吐出圧力流量を燃料電池の発電量に対応して制御可能とし、さらに騒音防止の効果を高める課題を次に述べる手段をもって解決したものである。
【0018】
【課題を解決するための手段】
上記の課題を解決するために、例えば高分子固体電解質型燃料電池の改質器への空気供給用電磁コンプレッサは、
弁ばねをもって弁体を弁座に押着閉塞する逆止弁機構を内蔵しかつ上下2つのばねの間に圧支された電磁プランジャが、電磁コイルの軸線縦貫孔に挿嵌された管柱シリンダ内を、前記電磁コイルへ断続パルス電流を付勢して発生し断続する磁気吸引力によって摺動往復自在に作動する容積形貫流ポンプであって、前記電磁コイルの軸心上の要部および端部位に位置しかつ前記管柱シリンダにそれぞれ外嵌された環状磁極ならびに環状磁路を備え、前記環状磁極の端面に対向する前記電磁プランジャの端部との間に、静止時に磁気空隙を有する容積形貫流ポンプにおいて、前記電磁プランジャの両端にそれぞれ環状帯状の外周縁を残して穿設した環状溝に、弗素樹脂をもってなるピストンリング状のプランジャリングをそれぞれ嵌設し、前記電磁プランジャの環状溝を穿設する際に、その両端に残した環状帯の外周縁の幅のうち、前記環状磁極に対向する端部の側の前記幅の値は、前記電磁プランジャの往衝程において、その先端部が往衝程時の上死点まで前記環状磁極の内側に進入して環状磁極と長手軸方向で重なる最大値と同等に定めたことを特徴とする。
【0020】
さらに、前記電磁プランジャに内蔵する逆止弁機構を吸入弁とし、これと同一方向性をもって作動し、かつポンプの吐出継手に内設の弁ばねで吐出弁体を吐出弁座に押圧閉止するものを吐出弁機構とする場合に、前記吸入弁の弁ばねが吸入弁体を吸入弁座に押着して閉止しようとするばね荷重は、辛うじて閉止可能とする程度として、この荷重に比較して前記吐出弁体を吐出弁座に押圧閉塞する弁ばねのばね荷重はそれの10〜20倍であり、その閉止圧力はポンプの所定吐出圧力の40%以内とするように該それぞれの弁ばねのばね荷重を設定したことを特徴とする。
【0022】
また、さらに、前記電磁コイルの軸心縦貫孔に挿嵌され、その両端部位に、一方には吸入継手を、他方には吐出継手を接続した管柱シリンダ内に、摺動往復自在に嵌装され、かつそれぞれ同一方向性をもって機能する逆止弁機構を内蔵する第一電磁プランジャと第二電磁プランジャとがその間に戻し部材を介してタンデムに配設され、前記吸入継手と吐出継手のそれぞれ要部との間に、下ばねと上ばねの2つのばねとによって釣合い圧支されていることを特徴とする。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面により詳細に説明する。
【0024】
図1は、本発明の電磁コンプレッサの1つの実施の形態を一部断面して示した縦断面図である。
【0025】
図2は、図1の要部の拡大縦断面説明図である。以上の図において、ボビン11に捲装した電磁コイル10の軸心縦貫孔に挿嵌された管柱シリンダ25内を弁ばね22により吸入弁体23を吸入弁座24に押着閉塞する逆止弁機構、すなわちこの実施の形態では、吸入弁21を内蔵し、上ばね14と下ばね15との間に圧支された電磁プランジャ12が前記電磁コイル10へ図示しない駆動電源回路から断続パルス電流を付勢し発生する断続磁気吸引力によって摺動往復自在に作動する容積形貫流ポンプであって、前記電磁コイル10の軸心上の要部、すなわちこの実施の形態では、その一端部位および他端部位にあって、前記管柱シリンダ25にそれぞれ外嵌させた環状磁極26ならびに環状磁路27とを備え、この環状磁極26の下端面に対向する前記電磁プランジャ12の端部との間に、その静止時にgなる磁気空隙を有すると共に、この電磁プランジャ12の両端に、それぞれ環状帯の幅の寸法kなる外周縁を残して穿設した環状溝に、例えば商品名テフロンをもって代表されるような弗素樹脂をもってなる、いわゆるピストンリング状のプランジャリング13をそれぞれ、例えば樹脂成型するなどの方法により嵌設する。
【0026】
前記電磁プランジャ12の環状溝を穿設する際に、その両端に残した環状帯の幅のうち、前記環状磁極26に臨み、これに対向する端部側の幅のKの値は、該電磁プランジャ12の往衝程、すなわち電磁コイル10に断続パルス電流を付勢したときに、電磁プランジャ12が環状磁極26の側に移動する衝程において、その先端部が往衝程時の上死点まで前記環状磁極26の内側に進入して環状磁極と長手軸方向で重なる最大値と同等に定めたものである。
【0027】
本発明の電磁コンプレッサも電磁プランジャポンプであり、所要の気体吐出量と吐出圧力を得るために、シリンダの内径すなわちプランジャの直径ならびにその衝程長、衝程数および推力とによって定まる圧力排出量を求めなければならない。そのために、ポンプの出力を得るアンペアターンを電磁コイルの捲線数と付勢すべき電流値を定める。
【0028】
電磁コイルへの付勢電流は、商用交流電源を変圧させ、またはこれを整流して抵抗器により降圧し、もしくは自動車両などのバッテリからの例えば直流24Vを発振器を介して得る断続パルス電流である。
【0029】
この断続パルス電流の周期中の非導通時の磁力の消滅により電磁プランジャを静止時の旧位置に戻すための戻しばね、すなわちこの実施の形態における上ばね14は、周期中の非導通時に速やかに電磁プランジャを戻すためには、比較的反発力の強いことが必要であるが、強きに過ぎると、磁力に抗する力が大きく、電磁プランジャの作動に対する抵抗力が増し、ポンプの効率を下げる。それ故、可能な限り弱い反発力のばねが望ましい。
【0030】
さらに、電磁コンプレッサは気体を吸入吐出するものである故、水や油などの液体ポンプとして用いる場合に比較して、電磁コイルの発熱量を吸収排出する能力が低い故、そこに流れる電流値も少ない方が電磁コイルの温度上昇を防ぐのに都合がよく、そのためにも前記した戻しばねの反発力が小で電磁プランジャの作動抵抗を減らすことが必要である。
【0031】
そして電磁プランジャと管柱シリンダの間の摺動摩擦抵抗によっても、および吐出圧力の上昇と共に流体の流動抵抗が増し、この電磁コンプレッサもいわゆるフリーピストン電磁ポンプであるから、電磁プランジャは磁気空隙を埋める方向に近づいて、しかもその衝程長を減縮して作動するものであることは周知である。以上の電磁プランジャ12の作動について、さらに詳述する前に、まずこの実施の形態全体の構成について、周知されているものではあるが、一応その概要を述べる。
【0032】
前記管柱シリンダ25の図において、上端部に上ばね座28を嵌設して、さらに吐出弁座20と弁ばね18に付勢された吐出弁体19とが係合して吐出弁座20を押圧閉塞した吐出弁機構17と共に、管柱シリンダ25の端部に外嵌する吐出口38を有する吐出継手39に内装されている。
【0033】
この管柱シリンダ25の図において、下端部には吸入フィルタ37を吸入口36側に備えた吸入継手35が外嵌接続されて、その内部に備えた下ばね座29と電磁プランジャ12との間に下ばね15が設けられ、前記上ばね座28と電磁プランジャ12との間に設けた上ばね14とによって電磁プランジャ12は圧支される。
【0034】
前記した管柱シリンダ25とこれに外嵌する環状磁極26ならびに環状磁路27、さらにこれに外嵌する上下の磁気鉄板32とそれぞれの緩衝パッキング31とは電磁コイル10のボビン11を中にして、前記吐出継手39と吸入継手35とにそれぞれ外嵌し磁気回路をなす外枠継鉄30と下板33とが複数の小ねじ34をもってきつく螺締結されることにより挟設固着している。
【0035】
該外枠継鉄30、下板33、磁気鉄板32および環状磁極26、環状磁路27、さらに電磁プランジャ12はいずれも強磁性体をもってなり、磁気回路を構成している。
【0036】
管柱シリンダ25は非磁性体の不銹鋼または銅合金などをもってなり、その内面は鏡面同等またはこれに近い表面アラサに仕上げられて、これと滑嵌合するハメアイの電磁プランジャ12とのそれぞれの寸法精度、表面アラサは相応に規制されている。
【0037】
図1、図2の実施の形態の電磁コンプレッサは小形の燃料電池の空気供給用向けのものであり、管柱シリンダ25と電磁プランジャの嵌合は例えば直径d=16mmを基準としたものの場合、環状磁極26の内径と電磁プランジャ12の先端部の外径との隙間jは管柱シリンダ25の肉厚寸法 0.5mmを差し引いてそれぞれ次に示す場合に、電磁コンプレッサの吐出最大圧力(吐出量0)以下と電磁コイル10に流れる電流値mAは表1に示す通りであった。
【0038】
【表1】

Figure 0003765720
但し、電磁コイル10への付勢電流は直流24V、周波数20Hz 、周期中の導通期間12m Sec である。
【0039】
表1に示すように、前記間隙jが大なるほど吐出最大圧力は低下し、電磁コイルへの付勢電流値は反対に増加する。これは、磁気回路の抵抗が増大するからである。
【0040】
さらに、この磁気回路の抵抗の問題について前記した電磁プランジャ12のプランジャリング13を嵌設する環状溝を穿設する際に、kの幅の環状帯を残す理由を表2をもって説明する。
【0041】
表2の場合に、電磁コイル10に表1の場合と同様に、直流電流24V、周波数20、周期50m Sec 中の導通期間12m Sec の断続パルス電流を付勢した。この電流を用いたのは、小形燃料電池(例えば1〜2kw級)用として圧力9.81KPa,吐出流量約1200 ml/min 程度の電磁コンプレッサに適応したものを設計および実験の結果選んだからである。前記導通期間は、小形燃料電池であるから消費電力をきわめて少なくするために、その値を大きくしたくないもので、これを一応一定にして実験を進めたものである。そして、吐出圧力PKPa 、吐出流量Qml/minおよび磁気空隙 g=3mm(静止時)、電磁プランジャ12の頂部の往衝程時の上死点までの移動距離e mm 、同じく復衝程時に静止時の位置を超えて下死点まで復帰し、さらに慣性で偏位する距離e+f = S mm の復衝程が電磁コンプレッサの往復衝程長である。また、e−g mm は電磁プランジャ12の先端部が環状磁極26内に突入する距離である。
【0042】
【表2】
Figure 0003765720
前記磁気空隙gを埋めて電磁プランジャ12が環状磁極26に近接する磁力の強さは、すなわち空隙引力は磁気空隙gの距離の自乗に反比例する。
【0043】
この磁気空隙gが0となったとき、そこには強磁性体同志の長手軸方向の重なりが必要であるから、仮に非磁性体の弗素樹脂のプランジャリング13が存在すると共に、これを嵌設する環状溝により磁気回路が狭小になり、レラクタンスが増大すれば当然電磁プランジャ12への磁気吸引力が減少する。これを防ぐために、少なくとも電磁プランジャ12の先端部が環状磁極26の内側に突入する最大値、すなわちこの実施の形態の場合には、前記e− g、すなわち例えば2mmの前記環状帯の外周縁の幅kを残して、そこから電磁プランジャ12のプランジャリング13を嵌設するための環状溝を穿設しなければならないのである。
【0044】
なお、電磁コイル10への付勢電流の電圧と周期中の導通期間(デューテイ比)は表1、表2共に同様で、吐出圧力を導通周波数20Hzのとき9.81KPa および14.71KPa に設定した場合に、周波数を変換したときの吐出圧力および流量を表3に示す。このとき、消費電力は6.3〜3W で周波数が高いほど、該電力量も大になっている( 電磁コイルの温度上昇は最大40K)。
【0045】
また吐出流量は、前記電磁プランジャ12の往復衝程長Sとその直径dおよび周波数、すなわちその衝程数とからの計算上ほぼ合致する。これによると、その容積的な効率はきわめて高い。しかして、この電磁コンプレッサ1のポンプ作用によって矢印aに示すように、吸入口36から入った流体はその内部を経て矢印bのように吐出口38から吐出する。
【0046】
【表3】
Figure 0003765720
図1、図2に示した本発明の実施の形態における構成部品の寸法、上下ばねなどのばね荷重、電磁コイルの捲線の線径および捲数と電磁コイルへ付勢する電流の周波数、周期中の導通期間、すなわちデューテイ比、電圧などはこの数値に限るものではなく、燃料電池の必要とする空気圧と空気量によって適宜設定し、さらに調整するものであることは論を俟たないことである。
【0047】
なお、電磁コイルに発生する電磁プランジャを吸引する磁力として、前記した空隙引力とソレノイド磁気吸引力および電磁プランジャを圧支する上下のばねによる合成ばねとしての撓みと荷重との関係、電磁プランジャの行程長等に関しては、本発明出願人がさきに提案した特公昭57−12863号公報においてその明細書および図面に詳細に説明されている通りであるから、その説明は省略する。
【0048】
なお、この実施の形態において、電磁コイル10への付勢断続パルス電流の周波数25Hzに上げ、その他は前記通りの場合には、吐出圧力9.81KPa で吐出流量は2000ml/min、電流値410mAに増大した。温度上昇は40K であった。
【0049】
つぎに、図3によって、前記実施の形態における吸入弁21と吐出弁17の両弁機構について説明する。
【0050】
まず、吐出弁17において、吐出弁座20に係着した吐出弁筒17′の内側頂部と吐出弁体19との間に介設された弁ばね18がこの吐出弁体19を前記吐出弁座20の開口端に押圧閉塞している。
【0051】
前記開口の直径をd1 とし、開口端部は中心径φから曲率半径rをもって描いた半円リング状の突堤をなして、これにその上部中心部に弁ばね18を嵌める円擣状小突起を備えた円盤状の吐出弁体19が係設される。
【0052】
吐出弁体19は弗素樹脂製、吐出弁座20も強化繊維と減磨剤を混合した特殊合成樹脂製で互いに耐磨耗性を備えているが、なお前記曲率半径rをなるべく大きな値として磨滅を予防している。
【0053】
吸入弁21も弁ばね22、吸入弁体23、吸入弁座24はいずれも吐出弁17におけるものと、等形、等寸法、同材質をもって構成されている。
【0054】
但し、弁ばね18と弁ばね22とは、それぞれ弁座に弁体を押圧閉塞するばね荷重を相違させなければならない。
【0055】
吸入弁21の場合は、吸入弁体23を吸入弁座24に載置すれば、その重量で閉塞して、電磁プランジャ12の往衝程、すなわち吐出衝程時はさらに吐出圧力できつく前記閉塞するわけで、復衝程すなわち吸入衝程では気体の流入抵抗による流入量を減らすおそれのないように、弁体23には弁座24を押圧する負荷が無い方が望ましいわけであるが、実際には前記ばね荷重による負荷が無いと気体漏れを生じるので、きわめて小荷重の、すなわちP2 =0.00981N〜0.005N(ニュートン)(1gf〜0.5 gf) のばね荷重がこの実施の形態の実験上必要であった。
【0056】
また、吐出弁17の場合には、電磁プランジャ12の往衝程、すなわち吐出衝程時は弁ばね18が吐出弁体19を吐出弁座20に押圧閉塞する荷重P1 は吐出圧力によるよりもはるかに小であってもよいわけである。しかし、実験によると、復衝程すなわち吸入衝程時に、吸入弁21を経て管柱シリンダ25内に突入する流体の吸入圧力によって吐出弁体19が吐出弁座20を開放して、そのために吐出口側に気体が漏洩して、それが往衝程時の吐出圧力流量が減殺される要因となることが判った。それ故、この要因を除くために、弁ばねの荷重P1 を0.0981N(10gf)にして、この弁ばね18の荷重で吐出弁体19を吐出弁座20に押圧閉塞することによって、この実施の形態の所期の吐出圧力、流量を確保することを可能としたものである。
【0057】
すなわち、前記吐出弁体19を吐出弁座20に押圧閉塞する弁ばね18のばね荷重P1 =0.0981N(10gf)の荷重は、吸入弁体23を吸入弁座24に押着閉塞する弁ばね22のばね荷重P2 =0.00981N〜0.005N(1gf〜0.5 gf) の10〜20倍となるのである。
【0058】
因みに、吸入弁21と吐出弁17の両逆止弁機構の各構成部材の材質形状、寸法は弁ばねを除き、前述の通りすべて同一であるから、図3の吐出弁座20の本実施の形態における弁座の直径d1=4mm、r=1mm、φ=6mmに選んであるから、吐出弁座20の断面積62・π/4=0.2827cm2で、この面積に0.0981N(10gf)の負荷がかかっているといことは、1cm2の面積では3.47KPa(35.37gf/cm2)で、0.347N(35.37gf)の空気圧と荷重に匹敵する。
【0059】
この値は、吐出圧力9.81KPa (0.1Kgf/cm2)の35.3%である。仮に、吐出圧力の許容差を±10%とした場合に、吐出圧力 −10%の9.81×(1−0.1)=8.83KPa の場合、0.883Nの吐出圧力荷重に対する前記換算したばね荷重0.347Nの比は0.393で40%以内であり、もちろん基準値の吐出圧力9.81KPa ±10%の前記荷重0.0981N±10%に対し前記吐出弁ばねの換算荷重0.347Nの比はその40%以内に納まるものである。
【0060】
なお、前記した吸入弁21の弁ばね22の前記閉止荷重P2 を辛うじて吸入弁体23が吸入弁座24を閉塞し得る0.005N(0.5g)としたときおよび前記した吐出弁17の弁ばね18の閉止荷重P1 を0.0981N(10gf)としたとき最も吐出圧力と流量の吐出特性が良好で、弁ばね18の荷重をこれよりも増加しても減少させても吐出能力は低下し、荷重0の場合前記したように、漏洩によりその能力が甚だしく低下し、荷重を倍増した結果は、流動抵抗によって同様に能力が低下して、実用に供し得なかったものである。
【0061】
図1の本発明の1つの実施の形態の電磁コンプレッサの作動音すなわち発生する騒音と、従来技術の前記この種の用途に用いられている電磁ダイヤフラムポンプによるものについて次に比較説明する。この電磁ダイヤフラムポンプの吐出圧力と流量は本発明の前記実施の形態とほぼ同様の9.81KPa (0.1Kgf/cm2)で1100ml/min、吐出圧力14.7KPa (0.15Kgf/cm2)では、吐出流量は0となり、いずれも比較的性能は低下しているが、騒音は水平距離1mの位置にマイクロフォンを置き測定して45dB(A) であり、これを合成樹脂製の遮音箱内に収納して測定した場合には、35.5dB(A) で9.5dB(A) 低下している。この両者を比較して、騒音については同等の結果で大差はなかった。
【0062】
この騒音は吸入および吐出弁の弁体が弁座を開閉する際に発することが主な要因である。
【0063】
いずれも、吐出継手には、軟質合成ゴムまたは合成樹脂製の配管が接続されている。吸入側にも同様の配管で、しかも上流側にさらに大径の管を接続したマフラーを備えることで消音効果はさらに増すものである。
【0064】
この騒音測定は、無響室内ではなく、使用される実態に即して、敢えて住居地域のRC構造建物において夜間に測定したが、暗騒音34dB(A) であった。
【0065】
つぎに、図4により本発明の他の実施の形態の電磁コンプレッサについて説明する。図1の実施の形態の場合にも、その吐出能力を増大したり、または調整することについて説明したが、さらに吐出能力と効率を高め、かつその作動音を低減する目的をもって図4に示されるようなその一部断面して示す縦断面説明図で表した構成の本発明の他の一実施の形態の電磁コンプレッサ101を提供するものである。
【0066】
すなわち、電磁コイル10の軸心縦貫孔に挿嵌され、その両端部位に、一方には吸入継手35を他方には吐出継手39を、それぞれ環状磁路127と同じく127′を外嵌させた上、これを介して接続した管柱シリンダ125内に摺動往復自在に嵌装され、かつそれぞれ同一方向性をもって機能する逆止弁機構121と同じく117を内蔵する第一電磁プランジャ112と第二電磁プランジャ112′とがその間に戻し部材で緩衝部材も兼ねた戻しばね16を介してタンデムに配設され、前記吸入継手35と吐出継手39のそれぞれ要部との間に下ばね115と上ばね114とによって釣り合い圧支され、前記電磁コイル10の縦軸中心部の磁気中性点付近で管柱シリンダ125に外嵌固定され、かつ前記縦貫孔に内嵌した共通の環状磁極126の一方の端面と、これに対向する第一電磁プランジャ112の端部との間におよび環状磁極126の他方の端面とこれに対向する第二電磁プランジャ112′の端部との間に、それぞれgなる値の磁気空隙140′および140を有して、前記両ばね115ならびに114が前記両電磁プランジャ112ならびに112′の間に介設された前記緩衝部材を兼ねた戻しばね16と共に前記両電磁プランジャ112ならびに112′を挟支しているのである。
【0067】
前記吸入継手35の吸入口36と管柱シリンダ125を経て吐出継手39の吐出口38との間の内部は気密が保たれて連通している。
【0068】
その他の構成は、図1に示す実施の形態の場合と同様で、同一数字の符号で示す構成部材の名称もまた同じである。
【0069】
電磁コイル10へ断続パルス電流を付勢して作動するこの電磁コンプレッサ101の作用は、図1に示す実施の形態の1のものの場合に準じ、かつ本出願人がさきに提案した特開平9−158828号公報(特願平7−320710)に開示され、説明されている通りであるから、その説明を繰り返すことは省略するが、このコンプレッサはタンデムに連設された電磁プランジャ112と112′の往復作動時に各衝程ごとに吸入、吐出作用をするので、要するに電磁コイル10へ断続パルス電流を付勢したときに1パルス毎に2回の吐出作用を行い、したがって図1の電磁コンプレッサ1の場合よりもほぼ倍量の吐出能力があり、しかも吐出脈動が平滑化されるので、騒音も減らすことができると共に、水平対向型として横置きに設置可能で振動も減殺される。
【0070】
なお、吐出継手側にさらに図1に示すような吐出逆止弁機構を設けると、さらに逆方向からの流体の逆流を阻止し、圧縮効率を高めることができる。
【0071】
【発明の効果】
以上詳述したように、本発明の例えば燃料電池用の電磁コンプレッサは、特に従来技術の問題点を解決するための課題として、また実施の形態の欄で述べた理由により以下のような効果が得られる。
【0072】
(a) ダイヤフラムやベローズを用いた容積形の電磁コンプレッサの場合のダイヤフラム、ベローズ等の疲労、劣化等による耐久性が無く、それ自体の大型化する構成を避け、また電磁プランジャを有するプランジャポンプの従来技術における減摩剤をプランジャの外周に塗布、コーテングすることによる偏磨耗とそれによる剥離、破損、ロックなど作動停止する従来技術の欠陥を回避して、減摩剤の弗素樹脂製のプランジャリングを電磁プランジャの外径側に嵌設し、摺動摩擦抵抗を減殺してかつ耐久性を増しかつ小形計量化を計ることが可能である。
【0073】
(b) 前記電磁プランジャに嵌設したピストンリング状のプランジャリングを嵌合するための環状溝は、その環状磁極に対向する端部側のものにおいては、電磁プランジャの往衝程時にその先端部が該環状磁極の内側に突入する最大値と同等に定めた幅を環状帯の外周縁に残して穿設したので、該往衝程時の電磁プランジャを環状磁極と最大限に重なり合うように備えて磁気回路の抵抗を増大させることがなく、磁気効率を高め、吐出能力を高めた。
【0074】
(c) 電磁コンプレッサの吸入弁機構および吐出弁機構の弁座を押圧閉塞する弁体を付勢する弁ばねの荷重をそれぞれ前記請求項3に記載しかつ実施の形態の欄で説明したように定めたので、吸入および吐出時の流体の漏洩を防ぎ、吐出能力を高めかつこれを保持可能とした。
【0076】
(e) 電磁プランジャ複数(二個)をタンデムに連接して気体の吐出量をほぼ倍加させると共に、騒音と振動を減少させた上記電磁コンプレッサを得ることを可能とした。
【図面の簡単な説明】
【図1】本発明による電磁コンプレッサの1つの実施の形態を一部断面して示す縦断説明図である。
【図2】図1の要部の説明図である。
【図3】本発明の電磁コンプレッサの吐出弁機構の拡大縦断説明図である。
【図4】本発明の電磁コンプレッサの他の実施の形態の一部断面を示す縦断説明図である。
【符号の説明】
1,101 電磁コンプレッサ
10 電磁コイル
12,112,112′ 電磁プランジャ
16 緩衝部材、戻しばね
17 吐出弁機構
21 吸入弁機構
25,125 管柱シリンダ
26,126 環状磁極
27,127 環状磁路
117,121 逆止弁機構
g 磁気空隙
s 衝程長
k 電磁プランジャの環状帯の幅[0001]
BACKGROUND OF THE INVENTION
The present invention, for example, among fuel cells that have been actively studied for practical use in recent years, especially in polymer solid electrolyte fuel cells (PEFC), in components such as natural gas, methanol, gasoline, propane, and butane. When reforming fuel containing hydrogen and converting it to hydrogen, CO 2 , NO X , CO and HC are generated in a small amount. This carbon monoxide CO is compatible with the catalyst and adsorbs to inhibit hydrogen. That is, when this gas is supplied to the fuel cell, air is supplied to the catalyst section of the hydrogen generator (reformer) in order to prevent CO poisoning that prevents the CO from adhering to the electrodes and taking out electricity. CO is oxidized by mixing a small amount, CO 2 Remove as (carbon dioxide). The present invention relates to an electromagnetic compressor for supplying air.
[0002]
[Prior art]
The research on the fuel cell described above has been carried out diligently in various directions, but many of them are still in the process of development, and for example, there is a diaphragm pump as a blower for supplying air. This is because the diaphragm is connected to a movable body of a permanent magnet and / or a ferromagnetic body, and this movable body is operated by energizing the electromagnetic circuit, and the air fluid is sucked and discharged by the volume change due to the expansion and contraction of the diaphragm. It is comprised so that an effect | action may be performed. Many diaphragm pumps of this type usually operate with commercial AC power.
[0003]
Moreover, there exists a thing using bellows instead of a diaphragm.
[0004]
In Japanese Utility Model Publication No. 4-42536, JP-A-63-65182, 63-176680, and 63-227978 are exemplified as conventional techniques of the diaphragm pump, and these problems are described. Next, the technology of electromagnetic piston pumps with magnets has been proposed.
[0005]
Furthermore, a reciprocating compressor which is one of electromagnetic plunger pumps disclosed in Japanese Patent Laid-Open No. 48-33411 has been proposed.
[0006]
[Problems to be solved by the invention]
In the air pump using the diaphragm, as described in Japanese Utility Model Publication No. 4-42536 of the prior art described above, the diaphragm bends whenever the movable body reciprocates. This diaphragm is flexible. Since it is made of a material such as synthetic rubber and is easily damaged and has no durability, maintenance is troublesome. If the diaphragm is made to have a high durability in order to prevent this breakage, the desired pressure and flow rate cannot be expected, the cost becomes high, and the structure of the support portion of the diaphragm becomes complicated, resulting in a decrease in productivity. In addition, since the movable body is supported by the diaphragm itself, there is a risk that the movable body may come into contact with the core during operation due to the bending of the diaphragm. In that case, there are many problems such as generating noise and damaging the pump. The point is stated.
[0007]
In any case, almost all of the drive power for this diaphragm pump uses the commercial AC power as it is, and it is difficult to vary the air discharge flow rate, and there is a limit to the discharge pressure. .
[0008]
The prior art electromagnetic free piston pump proposed in Japanese Utility Model Publication No. 4-42536 is described as a fluid being applied as a gas compression or vacuum pump.
[0009]
The configuration is such that a state core made of a magnetic material such as low carbon steel is arranged in the axial longitudinal hole of the electromagnetic cylindrical coil, and a piston is slidably reciprocated inside a very thin bearing provided inside. It is supported by springs from the left and right. This piston is provided with a piston head and a permanent magnet symmetrically, and the left and right permanent magnets are connected in a hollow state, and this piston is a cylindrical piston formed of a non-magnetic material such as resin, carbon, aluminum or the like. It has a main body in the center and is composed of a pair of front and rear front magnet yokes fixed to both ends of the piston, permanent magnets, that is, a magnet and a rear magnet yoke, and the front magnet yoke forms a piston head. Explained.
[0010]
The piston assembly further includes, on the inner peripheral portion of the coil, the spring for returning the piston to a neutral position symmetrically, and the state between the central portion of the coil inner peripheral portion and the bearing. A core is disposed.
[0011]
When an alternating current is applied to the coil, a magnetic circuit through which magnetic flux passes is formed in the state core, and ends (portions indicated by L and R) positioned at both ends of the cylindrical coil and both ends of the state core Since no magnetic material is disposed between the two portions, leakage magnetic flux is generated, and S and N magnetic poles are alternately generated at both ends of the end portions L and R and the state core. The piston slides to the left side by the magnetic action of the magnet in the half wave, and then the magnetic poles of the respective parts are reversed in the other half wave, so the piston slides to the right and reciprocates once here. The pump action is repeated, and the reciprocating action is not different from a known electromagnetic plunger pump.
[0012]
Next, the prior art disclosed in Japanese Patent Application Laid-Open No. 48-33411 discloses an intermittent magnetic force and elastic return device generated in a fixed magnetic circuit by a current energized from an AC power source via a rectifier such as a diode to a coil, That is, it is a reciprocating compressor having a piston that reciprocates in a cylinder by the repulsive force of a spring, and in short, an electromagnetic plunger pump.
[0013]
And the gist of this is that when the piston closes the opening of the outlet passage during the compression stroke, the compression chamber receives the energy absorption filled with gas, thereby mitigating the impact at the end of the stroke. The effect of reducing the current as an operating condition, that is, the phase of movement of the moving system moves forward according to the voltage applied to the magnetic winding, thereby eliminating the conduction current. It is intended to improve the output coefficient of the motor and is the main object of the invention.
[0014]
In such an electromagnetic plunger pump, a piston that slides and reciprocates in a cylinder called a bearing is generally surface-treated with a lubricant on the outer periphery thereof. When the fluid to be pumped is a liquid such as fuel oil or water, there is a lubricating action by these liquids. However, the outer peripheral surface of the piston is still subjected to nitriding hardening treatment and coating and baking treatment of a lubricant such as molybdenum disulfide or fluorine. The surface is protected by coating the resin. Generally, the electromagnetic plunger pump for liquid actually has a short piston stroke length, and most of them are about 2 to 3 mm. However, in the case of a compressor for gas, for example, for air, the compression ratio is large, and the stroke length of the piston extends several times as will be described later as compared with the case of an incompressible liquid, so the degree of wear is also large. Become.
[0015]
The fitting between the piston and the cylinder does not actually have any parts where the roundness and straightness of the cylindrical fitting surfaces of each other are perfect. High accuracy such as a ring gauge is very expensive and difficult to obtain economically. Furthermore, even in the compression coil spring that supports the piston, the seat is not completely perpendicular to the shaft center, and even if there is extremely tight tolerance, there is actually a buckling. Therefore, for these reasons, even if the piston has an anti-friction coating on the entire sliding surface, the piston wears apart during sliding reciprocation, causing uneven wear, and the coating agent is also peeled off, increasing the sliding anti-friction resistance. However, the possibility of damaging and damaging the discharge capacity of the pump is even greater in the case of a gas pump for the reasons described above.
[0016]
This problem solving is not mentioned at all in the above-described conventional technology.
[0017]
In the present invention, the problems in the prior art and the problems detailed in the embodiments below, that is, the magnetic efficiency of the magnetic circuit is increased, the pump is made more economical, the durability is increased, and the discharge pressure flow rate is increased. Has been solved by the following means to make it possible to control the power generation according to the amount of power generated by the fuel cell and to further improve the noise prevention effect.
[0018]
[Means for Solving the Problems]
In order to solve the above problem, for example, an electromagnetic compressor for supplying air to a reformer of a polymer solid oxide fuel cell is:
A tube cylinder with a built-in check valve mechanism that presses and closes the valve body against the valve seat with a valve spring, and an electromagnetic plunger that is pressure-supported between the two upper and lower springs is inserted into the axial through hole of the electromagnetic coil A positive displacement once-through pump that is slidably reciprocated by a magnetic attractive force generated by intermittently energizing an intermittent pulse current to the electromagnetic coil, the main part and the end of the electromagnetic coil on the axis A volume having an annular magnetic pole and an annular magnetic path that are located on the tube cylinder and are externally fitted to the tube cylinder, and have a magnetic gap at rest between the end of the electromagnetic plunger facing the end face of the annular magnetic pole In the cross-flow pump, a piston ring-shaped plunger ring made of a fluororesin is fitted into annular grooves formed on both ends of the electromagnetic plunger leaving an outer peripheral edge of the annular band, and the electric plunger When the annular groove of the plunger is drilled, the width value of the outer peripheral edge of the annular band left at both ends thereof on the side of the end facing the annular magnetic pole is determined by the forward stroke of the electromagnetic plunger. The maximum value where the tip part enters the inside of the annular magnetic pole to the top dead center at the time of the forward stroke and overlaps with the annular magnetic pole in the longitudinal direction Equivalent to It is characterized by that.
[0020]
Further, the check valve mechanism built in the electromagnetic plunger is a suction valve, which operates in the same direction as this, and presses and closes the discharge valve body to the discharge valve seat by a valve spring provided in the discharge joint of the pump. The discharge valve mechanism, the spring load that the valve spring of the suction valve tries to close by pressing the suction valve body against the suction valve seat is barely comparable to this load. The spring load of the valve spring that presses and closes the discharge valve body against the discharge valve seat is 10 to 20 times that, and the closing pressure of each valve spring is set to be within 40% of the predetermined discharge pressure of the pump. The spring load is set.
[0022]
Further, it is inserted into the axial center through hole of the electromagnetic coil, and is fitted in a reciprocating manner in a tube cylinder having a suction joint on one side and a discharge joint on the other side at both ends thereof. And a first electromagnetic plunger and a second electromagnetic plunger, each incorporating a check valve mechanism that functions in the same direction, are arranged in tandem via a return member therebetween, and each of the suction joint and the discharge joint is required. It is characterized by being balanced and supported by two springs of a lower spring and an upper spring.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0024]
FIG. 1 is a longitudinal sectional view showing a part of one embodiment of an electromagnetic compressor according to the present invention.
[0025]
FIG. 2 is an enlarged vertical cross-sectional explanatory view of a main part of FIG. In the above drawings, a check is made such that a suction valve body 23 is pressed and closed by a valve spring 22 in a tube cylinder 25 fitted in a longitudinal center hole of an electromagnetic coil 10 mounted on a bobbin 11 by a valve spring 22. In this embodiment, in this embodiment, a suction valve 21 is built in, and the electromagnetic plunger 12 supported by pressure between the upper spring 14 and the lower spring 15 is intermittently pulsed from the drive power supply circuit (not shown) to the electromagnetic coil 10. 1 is a positive displacement type once-through pump that is slidably reciprocated by an intermittent magnetic attractive force generated by energizing the electromagnetic coil, and is a main portion on the axis of the electromagnetic coil 10, that is, in this embodiment, one end portion thereof and others. An annular magnetic pole 26 and an annular magnetic path 27 that are externally fitted to the tube cylinder 25 are provided at an end portion, and between the end of the electromagnetic plunger 12 facing the lower end surface of the annular magnetic pole 26 In addition, it has a magnetic gap of g when stationary, and annular grooves formed at both ends of the electromagnetic plunger 12 leaving outer peripheral edges each having a width k of the width of the annular band, as represented by a product name Teflon, for example. A so-called piston ring-shaped plunger ring 13 made of a fluororesin is fitted by a method such as resin molding.
[0026]
When the annular groove of the electromagnetic plunger 12 is drilled, among the widths of the annular band left at both ends thereof, the K value of the width on the end side facing the annular magnetic pole 26 and facing the annular magnetic pole 26 is In the forward stroke of the plunger 12, that is, the stroke in which the electromagnetic plunger 12 moves toward the annular magnetic pole 26 when an intermittent pulse current is applied to the electromagnetic coil 10, the tip of the annular loop reaches the top dead center at the forward stroke. Maximum value entering inside the magnetic pole 26 and overlapping with the annular magnetic pole in the longitudinal direction Equivalent to It is determined in
[0027]
The electromagnetic compressor of the present invention is also an electromagnetic plunger pump, and in order to obtain a required gas discharge amount and discharge pressure, the pressure discharge amount determined by the cylinder inner diameter, that is, the plunger diameter, the stroke length, the number of strokes, and the thrust must be obtained. I must. For this purpose, the ampere turn for obtaining the output of the pump and the number of windings of the electromagnetic coil and the current value to be energized are determined.
[0028]
The energizing current to the electromagnetic coil is an intermittent pulse current obtained by transforming a commercial AC power source, or rectifying the AC power source and stepping down the voltage using a resistor, or obtaining, for example, DC 24V from a battery such as a motor vehicle through an oscillator. .
[0029]
The return spring for returning the electromagnetic plunger to the old position at rest by the disappearance of the magnetic force at the time of non-conduction during the period of the intermittent pulse current, that is, the upper spring 14 in this embodiment is promptly provided at the time of non-conduction during the period. In order to return the electromagnetic plunger, it is necessary to have a relatively strong repulsive force. However, if it is too strong, the force against the magnetic force is large, the resistance against the operation of the electromagnetic plunger is increased, and the efficiency of the pump is lowered. Therefore, springs with as little repulsive force as possible are desirable.
[0030]
Furthermore, since the electromagnetic compressor sucks and discharges gas, compared with the case where it is used as a liquid pump such as water or oil, the ability to absorb and discharge the heat generated by the electromagnetic coil is low. The smaller one is convenient for preventing the temperature of the electromagnetic coil from rising, and for this purpose, it is necessary to reduce the repulsive force of the return spring and reduce the operating resistance of the electromagnetic plunger.
[0031]
Also, the flow resistance of the fluid increases with the sliding friction resistance between the electromagnetic plunger and the tube cylinder and with the increase of the discharge pressure. This electromagnetic compressor is also a so-called free piston electromagnetic pump, so the electromagnetic plunger fills the magnetic gap. It is well known that it operates by reducing its stroke length. Before further detailed description of the operation of the electromagnetic plunger 12 described above, the overall configuration of this embodiment is first known, but the outline thereof will be described.
[0032]
In the pipe column cylinder 25, an upper spring seat 28 is fitted on the upper end portion, and the discharge valve seat 20 and the discharge valve body 19 urged by the valve spring 18 are engaged with each other to discharge the valve seat 20. A discharge joint 39 having a discharge port 38 that is fitted around the end of the tube column cylinder 25 is mounted together with the discharge valve mechanism 17 that presses and closes.
[0033]
In the figure of the pipe cylinder 25, a suction joint 35 having a suction filter 37 on the suction port 36 side is externally connected to the lower end portion thereof, and between the lower spring seat 29 provided in the interior and the electromagnetic plunger 12. A lower spring 15 is provided, and the electromagnetic plunger 12 is pressure-supported by the upper spring 14 provided between the upper spring seat 28 and the electromagnetic plunger 12.
[0034]
The above-described tube cylinder 25, the annular magnetic pole 26 and the annular magnetic path 27 that are externally fitted thereto, and the upper and lower magnetic iron plates 32 that are externally fitted thereto and the respective buffer packings 31 are arranged with the bobbin 11 of the electromagnetic coil 10 inside. The outer frame yoke 30 and the lower plate 33, which are externally fitted to the discharge joint 39 and the suction joint 35 to form a magnetic circuit, are tightly fastened with a plurality of small screws 34 so as to be sandwiched and fixed.
[0035]
The outer frame yoke 30, the lower plate 33, the magnetic iron plate 32, the annular magnetic pole 26, the annular magnetic path 27, and the electromagnetic plunger 12 are all made of a ferromagnetic material and constitute a magnetic circuit.
[0036]
The tube cylinder 25 is made of non-magnetic stainless steel, copper alloy, or the like, and its inner surface is finished to a mirror surface equivalent to or close to a mirror surface, and the respective dimensional accuracy of the Hameai electromagnetic plunger 12 that is slidably fitted thereto. The surface Arasa is regulated accordingly.
[0037]
The electromagnetic compressor of the embodiment of FIGS. 1 and 2 is for air supply of a small fuel cell, and the fitting of the tube cylinder 25 and the electromagnetic plunger is based on a diameter d = 16 mm, for example. The gap j between the inner diameter of the annular magnetic pole 26 and the outer diameter of the tip of the electromagnetic plunger 12 is the maximum discharge pressure (discharge amount 0) of the electromagnetic compressor when the thickness of the pipe column cylinder 25 is subtracted 0.5 mm as shown below. The current value mA flowing through the electromagnetic coil 10 was as shown in Table 1.
[0038]
[Table 1]
Figure 0003765720
However, the energizing current to the electromagnetic coil 10 is DC 24V, frequency 20Hz, conduction period 12m Sec in the cycle.
[0039]
As shown in Table 1, the maximum discharge pressure decreases as the gap j increases, and the energizing current value to the electromagnetic coil increases on the contrary. This is because of the magnetic circuit resistance This is because of the increase.
[0040]
In addition, this Magnetic circuit resistance The reason why the annular band having the width of k is left when the annular groove for fitting the plunger ring 13 of the electromagnetic plunger 12 is formed will be described with reference to Table 2.
[0041]
In the case of Table 2, similarly to the case of Table 1, an intermittent pulse current having a conduction period of 12 m Sec in a DC current of 24 V, a frequency of 20, and a period of 50 m Sec was energized to the electromagnetic coil 10. This current was used because it was selected as a result of design and experiment that was adapted for an electromagnetic compressor with a pressure of 9.81 KPa and a discharge flow rate of about 1200 ml / min for a small fuel cell (for example, 1-2 kW class). . Since the conduction period is a small fuel cell, in order to minimize power consumption, it is not desired to increase the value, and the experiment was conducted with this constant for the time being. And discharge pressure PKPa, discharge flow rate Qml / min, magnetic gap g = 3mm (at rest), moving distance emm to top dead center at the top of the electromagnetic plunger 12, the position at rest at the back stroke The return stroke of the distance e + f = S mm that returns to the bottom dead center over the distance and further deviates by inertia is the reciprocating stroke length of the electromagnetic compressor. E-g mm is a distance by which the tip of the electromagnetic plunger 12 enters the annular magnetic pole 26.
[0042]
[Table 2]
Figure 0003765720
The strength of the magnetic force that fills the magnetic gap g and causes the electromagnetic plunger 12 to approach the annular magnetic pole 26, that is, the attractive gap is inversely proportional to the square of the distance of the magnetic gap g.
[0043]
When this magnetic gap g becomes 0, there are ferromagnets. Longitudinal overlap Therefore, if the non-magnetic fluororesin plunger ring 13 exists, the magnetic circuit is narrowed by the annular groove into which the non-magnetic fluororesin ring 13 is fitted, and if the reluctance increases, naturally the magnetic attraction to the electromagnetic plunger 12 Power is reduced. In order to prevent this, at least the maximum value at which the tip of the electromagnetic plunger 12 enters the inside of the annular magnetic pole 26, that is, in the case of this embodiment, the above-mentioned eg, that is, the outer peripheral edge of the annular band of 2 mm, for example. An annular groove for fitting the plunger ring 13 of the electromagnetic plunger 12 must be drilled from the width k.
[0044]
The voltage of the energizing current to the electromagnetic coil 10 and the conduction period (duty ratio) in the cycle are the same in both Tables 1 and 2, and the discharge pressure was set to 9.81 KPa and 14.71 KPa when the conduction frequency was 20 Hz. Table 3 shows the discharge pressure and flow rate when the frequency is converted. At this time, the power consumption is 6.3 to 3 W and the higher the frequency, the larger the amount of power (the temperature rise of the electromagnetic coil is 40 K at the maximum).
[0045]
Further, the discharge flow rate substantially matches the calculation from the reciprocal stroke length S of the electromagnetic plunger 12 and its diameter d and frequency, that is, the number of the strokes. According to this, its volumetric efficiency is very high. Thus, as indicated by arrow a by the pumping action of the electromagnetic compressor 1, the fluid that has entered from the suction port 36 is discharged from the discharge port 38 through the inside thereof as indicated by arrow b.
[0046]
[Table 3]
Figure 0003765720
In the embodiment of the present invention shown in FIG. 1 and FIG. 2, the dimensions of the components, the spring load of the upper and lower springs, the wire diameter and the number of windings of the electromagnetic coil, the frequency of the current energized to the electromagnetic coil, and the period The conduction period, i.e., duty ratio, voltage, etc., is not limited to these values, and it is natural to set and further adjust appropriately according to the air pressure and air amount required by the fuel cell. .
[0047]
In addition, as a magnetic force attracting | sucking the electromagnetic plunger which generate | occur | produces in an electromagnetic coil, the above-mentioned space | gap attractive force, solenoid magnetic attraction force, the relationship between the bending and load as a synthetic spring by the upper and lower springs that press and support the electromagnetic plunger, Since the length and the like are as described in detail in the specification and drawings of Japanese Patent Publication No. 57-12863 previously proposed by the applicant of the present invention, the description thereof will be omitted.
[0048]
In this embodiment, the frequency of the energizing intermittent pulse current to the electromagnetic coil 10 is increased to 25 Hz. In other cases, the discharge pressure is 9.81 KPa, the discharge flow rate is 2000 ml / min, and the current value is 410 mA. Increased. The temperature rise was 40K.
[0049]
Next, referring to FIG. 3, the both valve mechanisms of the suction valve 21 and the discharge valve 17 in the above embodiment will be described.
[0050]
First, in the discharge valve 17, a valve spring 18 interposed between the inner top portion of the discharge valve cylinder 17 ′ engaged with the discharge valve seat 20 and the discharge valve body 19 connects the discharge valve body 19 to the discharge valve seat 19. The opening end of 20 is closed by pressing.
[0051]
The diameter of the opening is d 1 The opening end portion is a semicircular ring-shaped jetty drawn with a radius of curvature r from the center diameter φ, and a disc-shaped discharge provided with a conical small protrusion for fitting the valve spring 18 to the upper center portion thereof. The valve body 19 is engaged.
[0052]
The discharge valve body 19 is made of fluorine resin, and the discharge valve seat 20 is also made of a special synthetic resin mixed with reinforcing fibers and an anti-friction agent and has wear resistance. However, the radius of curvature r is worn as much as possible. Is preventing.
[0053]
The suction valve 21 also has the valve spring 22, the suction valve body 23, and the suction valve seat 24, all having the same shape, the same dimensions, and the same material as those in the discharge valve 17.
[0054]
However, the spring load that presses and closes the valve body against the valve seat must be different between the valve spring 18 and the valve spring 22.
[0055]
In the case of the intake valve 21, if the intake valve body 23 is placed on the intake valve seat 24, the intake valve body 23 is closed by its weight, and the electromagnetic plunger 12 is closed at the forward stroke, that is, at the discharge stroke. In order to avoid the risk of reducing the amount of inflow due to gas inflow resistance in the return stroke, that is, the suction stroke, it is desirable that the valve body 23 has no load that presses the valve seat 24. If there is no load due to the load, gas leakage will occur. 2 A spring load of 0.00981 N to 0.005 N (Newton) (1 gf to 0.5 gf) was necessary for the experiment of this embodiment.
[0056]
In the case of the discharge valve 17, the load P that causes the valve spring 18 to press and close the discharge valve body 19 against the discharge valve seat 20 during the forward stroke of the electromagnetic plunger 12, that is, the discharge stroke. 1 May be much smaller than by the discharge pressure. However, according to an experiment, the discharge valve body 19 opens the discharge valve seat 20 by the suction pressure of the fluid that enters the pipe cylinder 25 through the suction valve 21 during the return stroke, that is, the suction stroke. It has been found that gas leaks into the air, which causes the discharge pressure flow rate during the forward stroke to be reduced. Therefore, to eliminate this factor, the load P of the valve spring 1 Is set to 0.0981 N (10 gf), and the discharge valve body 19 is pressed against the discharge valve seat 20 with the load of the valve spring 18 to ensure the desired discharge pressure and flow rate of this embodiment. It is possible.
[0057]
That is, the spring load P of the valve spring 18 that presses and closes the discharge valve body 19 against the discharge valve seat 20. 1 = 0.0981 N (10 gf) is the load P of the valve spring 22 that presses and closes the suction valve body 23 to the suction valve seat 24. 2 = 0.00981N to 0.005N (1 gf to 0.5 gf).
[0058]
Incidentally, since the material shapes and dimensions of the constituent members of both the check valve mechanisms of the suction valve 21 and the discharge valve 17 are the same as described above except for the valve spring, this embodiment of the discharge valve seat 20 in FIG. Diameter of valve seat in form d 1 = 4 mm, r = 1 mm, φ = 6 mm, so the sectional area 6 of the discharge valve seat 20 2 ・ Π / 4 = 0.2827cm 2 And this area is said to be loaded with 0.0981N (10gf) U That is 1cm 2 In the area of 3.47 KPa (35.37 gf / cm 2 ) Is comparable to air pressure and load of 0.347N (35.37gf).
[0059]
This value is a discharge pressure of 9.81 KPa (0.1 kgf / cm 2 ) Of 35.3%. If the discharge pressure tolerance is ± 10% and the discharge pressure is −10%, 9.81 × (1-0.1) = 8.83 KPa, the above conversion for 0.883 N discharge pressure load The ratio of the spring load 0.347N is 0.393, which is within 40%. Of course, the converted load of the discharge valve spring is 0 with respect to the load 0.0981N ± 10% of the discharge pressure of 9.81 KPa ± 10% of the standard value. The ratio of .347N is within 40% of that.
[0060]
It should be noted that the closing load P of the valve spring 22 of the suction valve 21 described above. 2 The closing valve load P of the valve spring 18 of the discharge valve 17 described above and when the suction valve body 23 is 0.005 N (0.5 g) capable of closing the suction valve seat 24. 1 When the pressure is 0.0981 N (10 gf), the discharge characteristics of the discharge pressure and the flow rate are the best, and the discharge capacity decreases even if the load of the valve spring 18 is increased or decreased more than this. As described above, the result of drastically decreasing the capacity due to leakage and doubling the load is that the capacity is similarly decreased due to the flow resistance and cannot be put to practical use.
[0061]
The operation sound, that is, generated noise of the electromagnetic compressor according to the embodiment of the present invention shown in FIG. 1 and the electromagnetic diaphragm pump used for this kind of application in the prior art will be described below. The discharge pressure and flow rate of this electromagnetic diaphragm pump are 9.81 KPa (0.1 kgf / cm) which is almost the same as that of the above-mentioned embodiment of the present invention. 2 ) 1100ml / min, discharge pressure 14.7KPa (0.15Kgf / cm 2 ), The discharge flow rate is 0, and the performance is relatively low in all cases, but the noise is 45 dB (A) measured by placing a microphone at a horizontal distance of 1 m, and this is a sound insulation box made of synthetic resin. When it is stored in the case, it is reduced by 9.5 dB (A) at 35.5 dB (A). When both were compared, the noise was the same and there was no significant difference.
[0062]
This noise is mainly caused when the valve body of the intake and discharge valves opens and closes the valve seat.
[0063]
In either case, a pipe made of soft synthetic rubber or synthetic resin is connected to the discharge joint. The muffler effect is further increased by providing a muffler with a similar pipe on the suction side and a larger diameter pipe connected to the upstream side.
[0064]
This noise measurement was not performed in an anechoic room, but was measured at night in an RC structure building in the residential area according to the actual condition of use, and the background noise was 34 dB (A).
[0065]
Next, an electromagnetic compressor according to another embodiment of the present invention will be described with reference to FIG. In the case of the embodiment of FIG. 1, the description has been given of increasing or adjusting the discharge capacity, but it is shown in FIG. 4 for the purpose of further increasing the discharge capacity and efficiency and reducing the operating noise. The electromagnetic compressor 101 of other embodiment of this invention of the structure represented with the longitudinal cross-sectional explanatory drawing shown in such a partial cross section is provided.
[0066]
In other words, the electromagnetic coil 10 is inserted into the axial longitudinal through hole, and at both ends thereof, the suction joint 35 is fitted on one side and the discharge joint 39 is fitted on the other side. The first electromagnetic plunger 112 and the second electromagnetic that have 117 built in the same as the check valve mechanism 121 that is slidably reciprocated in the tube cylinder 125 connected through this and functions in the same direction. A plunger 112 ′ is disposed in tandem via a return spring 16 that serves as a buffer member as a return member therebetween, and a lower spring 115 and an upper spring 114 between the suction joint 35 and the discharge joint 39. Common annular magnetic pole 1 that is externally fitted and fixed to the tube column cylinder 125 in the vicinity of the magnetic neutral point at the center of the longitudinal axis of the electromagnetic coil 10 and fitted into the longitudinal through hole. And one end surface of the 6, between the end of the first magnetic armature 112 opposed thereto and Between the other end face of the annular magnetic pole 126 and the end of the second electromagnetic plunger 112 ′ opposite thereto, magnetic gaps 140 ′ and 140 each having a value of g are provided, and the springs 115 and 114 are respectively The electromagnetic plungers 112 and 112 'are sandwiched together with the return spring 16 also serving as the buffer member interposed between the electromagnetic plungers 112 and 112'.
[0067]
The interior between the suction port 36 of the suction joint 35 and the discharge port 38 of the discharge joint 39 through the tube column cylinder 125 is maintained in airtight communication.
[0068]
Other configurations are the same as those in the embodiment shown in FIG. 1, and the names of the constituent members indicated by the same reference numerals are also the same.
[0069]
The operation of the electromagnetic compressor 101 that operates by energizing the intermittent pulse current to the electromagnetic coil 10 is the same as that of the first embodiment shown in FIG. 158828 (Japanese Patent Application No. 7-320710) has been disclosed and described, and therefore the description thereof will not be repeated. However, this compressor is provided with electromagnetic plungers 112 and 112 'connected in tandem. In the reciprocating operation, the suction and discharge actions are performed at each stroke. In short, when the intermittent pulse current is energized to the electromagnetic coil 10, the discharge action is performed twice per pulse, and therefore the electromagnetic compressor 1 of FIG. The discharge capacity is almost twice as much as this, and since the discharge pulsation is smoothed, it can reduce noise and can be installed horizontally as a horizontally opposed type. Vibrations are also diminished.
[0070]
If a discharge check valve mechanism as shown in FIG. 1 is further provided on the discharge joint side, the backflow of fluid from the reverse direction can be further prevented and the compression efficiency can be increased.
[0071]
【The invention's effect】
As described above in detail, the electromagnetic compressor for a fuel cell of the present invention has the following effects, particularly as a problem to solve the problems of the prior art and for the reasons described in the embodiments. can get.
[0072]
(a) In the case of a displacement type electromagnetic compressor using a diaphragm or bellows, there is no durability due to fatigue, deterioration, etc. of the diaphragm, bellows, etc., avoiding an increase in the size of itself, and a plunger pump having an electromagnetic plunger Plunger ring made of fluororesin as a lubricant, avoiding the conventional wear-and-failures such as uneven wear caused by applying and coating the lubricant on the outer periphery of the plunger and the resulting peeling, breakage, lock, etc. Can be fitted on the outer diameter side of the electromagnetic plunger to reduce the sliding frictional resistance, increase the durability, and reduce the size.
[0073]
(b) The annular groove for fitting the piston ring-shaped plunger ring fitted to the electromagnetic plunger is on the end side facing the annular magnetic pole, and the tip of the annular groove is located during the forward stroke of the electromagnetic plunger. Maximum value entering the inside of the annular magnetic pole Equivalent to Since the predetermined width is perforated while leaving the outer periphery of the annular band, the electromagnetic plunger at the time of the forward stroke is provided so as to overlap with the annular magnetic pole as much as possible without increasing the resistance of the magnetic circuit, thereby improving the magnetic efficiency. Increased discharge capacity.
[0074]
(c) The load of the valve spring that urges the valve body that presses and closes the valve seats of the suction valve mechanism and the discharge valve mechanism of the electromagnetic compressor is described in claim 3 and described in the section of the embodiment. As a result, fluid leakage during inhalation and ejection was prevented, and the ejection capacity was increased and retained.
[0076]
(e) A plurality of electromagnetic plungers (two) are connected in tandem to almost double the gas discharge rate, and the electromagnetic compressor with reduced noise and vibration can be obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a longitudinal sectional view illustrating a part of an embodiment of an electromagnetic compressor according to the present invention.
FIG. 2 is an explanatory diagram of a main part of FIG.
FIG. 3 is an enlarged longitudinal sectional view of the discharge valve mechanism of the electromagnetic compressor of the present invention.
FIG. 4 is a longitudinal explanatory view showing a partial cross section of another embodiment of the electromagnetic compressor of the present invention.
[Explanation of symbols]
1,101 Electromagnetic compressor
10 Electromagnetic coil
12, 112, 112 'Electromagnetic plunger
16 Buffer member, return spring
17 Discharge valve mechanism
21 Suction valve mechanism
25,125 tube cylinder
26,126 annular magnetic pole
27,127 annular magnetic path
117, 121 Check valve mechanism
g Magnetic gap
s Length of stroke
k The width of the annular band of the electromagnetic plunger

Claims (3)

弁ばねをもって弁体を弁座に押着閉塞する逆止弁機構を内蔵しかつ上下2つのばねの間に圧支された電磁プランジャが、電磁コイルの軸心縦貫孔に挿嵌された管柱シリンダ内を、前記電磁コイルへ断続パルス電流を付勢して発生し断続する磁気吸引力によって摺動往復自在に作動する容積形貫流ポンプであって、前記電磁コイルの軸心上の要部および端部位に位置しかつ前記管柱シリンダにそれぞれ外嵌された環状磁極ならびに環状磁路を備え、前記環状磁極の端面に対向する前記電磁プランジャの端部との間に、静止時に磁気空隙を有する容積形貫流ポンプにおいて、
前記電磁プランジャの両端にそれぞれ環状帯状の外周縁を残して穿設した環状溝に、弗素樹脂をもってなるピストンリング状のプランジャリングをそれぞれ嵌設し、前記電磁プランジャの環状溝を穿設する際に、その両端に残した環状帯の外周縁の幅のうち、前記環状磁極に対向する端部の側の前記幅の値は、前記電磁プランジャの往衝程において、その先端部が往衝程時の上死点まで前記環状磁極の内側に進入して環状磁極と長手軸方向で重なる最大値と同等に定めたことを特徴とする空気供給用電磁コンプレッサ。
A tube column with a built-in check valve mechanism that presses and closes the valve body against the valve seat with a valve spring, and an electromagnetic plunger that is pressure-supported between the two upper and lower springs is inserted into the axial center through hole of the electromagnetic coil A positive displacement once-through pump that is slidably reciprocated by a magnetic attraction force generated by intermittently applying an intermittent pulse current to the electromagnetic coil in the cylinder, the main part on the axial center of the electromagnetic coil, and An annular magnetic pole and an annular magnetic path that are located at the end portion and are respectively fitted on the tube cylinder are provided, and a magnetic gap is provided between the end of the electromagnetic plunger facing the end face of the annular magnetic pole when stationary. In positive displacement pumps,
When a piston ring-shaped plunger ring made of fluorine resin is fitted in each of the annular grooves formed on the both ends of the electromagnetic plunger leaving the outer peripheral edge of the annular band, and when the annular groove of the electromagnetic plunger is formed Of the width of the outer peripheral edge of the annular band left at both ends, the value of the width on the end side facing the annular magnetic pole is the upper end of the forward stroke of the electromagnetic plunger. An air supply electromagnetic compressor characterized in that it is set to be equal to the maximum value that enters the inside of the annular magnetic pole to the dead point and overlaps the annular magnetic pole in the longitudinal axis direction.
前記電磁プランジャに内蔵する逆止弁機構を吸入弁とし、これと同一方向性をもって作動し、かつポンプの吐出継手に内設の弁ばねで吐出弁体を吐出弁座に押圧閉止するものを吐出弁機構とする場合に、前記吸入弁の弁ばねが吸入弁体を吸入弁座に押着して閉止しようとするばね荷重は、辛うじて閉止可能とする程度として、この荷重に比較して前記吐出弁体を吐出弁座に押圧閉塞する弁ばねのばね荷重はそれの10〜20倍であり、その閉止圧力はポンプの所定吐出圧力の40%以内とするように該それぞれの弁ばねのばね荷重を設定したことを特徴とする請求項1に記載の空気供給用電磁コンプレッサ。  A check valve mechanism built in the electromagnetic plunger is used as a suction valve, which operates in the same direction as this, and discharges a valve that is closed to the discharge valve seat by a valve spring built in the discharge joint of the pump. In the case of a valve mechanism, the spring load that the valve spring of the suction valve attempts to close by pressing the suction valve body against the suction valve seat is determined so that it can barely be closed. The spring load of the valve spring that presses and closes the valve body against the discharge valve seat is 10 to 20 times that, and the spring load of each valve spring is set so that its closing pressure is within 40% of the predetermined discharge pressure of the pump. The air supply electromagnetic compressor according to claim 1, wherein: 前記電磁コイルの軸心縦貫孔に挿嵌され、その両端部位に、一方には吸入継手を、他方には吐出継手を接続した管柱シリンダ内に、摺動往復自在に嵌装され、かつそれぞれ同一方向性をもって機能する逆止弁機構を内蔵する第一電磁プランジャと第二電磁プランジャとがその間に戻し部材を介してタンデムに配設され、前記吸入継手と吐出継手のそれぞれ要部との間に、下ばねと上ばねの2つのばねとによって釣合い圧支されていることを特徴とする請求項1に記載の空気供給用電磁コンプレッサ。  The electromagnetic coil is inserted into the longitudinal longitudinal through hole of the electromagnetic coil, and is slidably fitted in both ends of the pipe column cylinder connected to the suction joint on the one side and the discharge joint on the other side. A first electromagnetic plunger and a second electromagnetic plunger that incorporate a check valve mechanism that functions in the same direction are arranged in tandem via a return member between them, and between the suction joint and the discharge joint, respectively. 2. The electromagnetic compressor for supplying air according to claim 1, wherein the pressure is balanced and supported by two springs, a lower spring and an upper spring.
JP2000325872A 2000-10-25 2000-10-25 Electromagnetic compressor for air supply Expired - Lifetime JP3765720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325872A JP3765720B2 (en) 2000-10-25 2000-10-25 Electromagnetic compressor for air supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325872A JP3765720B2 (en) 2000-10-25 2000-10-25 Electromagnetic compressor for air supply

Publications (2)

Publication Number Publication Date
JP2002130122A JP2002130122A (en) 2002-05-09
JP3765720B2 true JP3765720B2 (en) 2006-04-12

Family

ID=18803164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325872A Expired - Lifetime JP3765720B2 (en) 2000-10-25 2000-10-25 Electromagnetic compressor for air supply

Country Status (1)

Country Link
JP (1) JP3765720B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4946234B2 (en) * 2006-02-22 2012-06-06 株式会社不二越 Exhaust automatic oil draining method
DE102009045616A1 (en) 2009-10-13 2011-05-05 Robert Bosch Gmbh Pump i.e. axial-piston pump, for integration into e.g. pane washing device of motor vehicle, has valve units provided at respective end sides of housing, so that conveying partial volumes are generated with movement of piston
CN103174622B (en) * 2013-03-07 2015-09-30 浙江海洋学院 Portable electric inflator
DE102016114568A1 (en) * 2016-08-05 2018-02-08 Sysko Ag Oscillating piston pump device
CN111946567A (en) * 2020-09-16 2020-11-17 文晋儒 Magnetic energy liquid-gas power machine

Also Published As

Publication number Publication date
JP2002130122A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
EP2818713B1 (en) Linear compressor
EP2568173B1 (en) Reciprocating compressor with gas bearing
KR101305404B1 (en) Membrane pump
JP2905600B2 (en) Oiling device for frictional part of linear compressor
KR101454550B1 (en) A linear compressor
US10670004B2 (en) Linear compressor
KR100608681B1 (en) Reciprocating compressor
EP2818715B1 (en) Linear compressor
JPH11257224A (en) Muffler coupling structure for linear compressor
JP3765720B2 (en) Electromagnetic compressor for air supply
KR101513611B1 (en) Reciprocating Compressor
BR0200462A (en) Engine structure for reciprocating compressor
JP3286808B2 (en) Electromagnetic pump
JP2003274626A (en) Electromagnetic plunger pump for liquid fluid
JP4159374B2 (en) Gas electromagnetic pump
US20090148319A1 (en) Linear compressor with permanent magnets
JPS5987285A (en) Electromagnetic reciprocating compressor
KR20210120657A (en) Linear motor and linear compressor thereof
JP3219629B2 (en) Linear compressor
JP2006246550A (en) Drive unit of electromagnetic capacity type pump
JP4159413B2 (en) Low pressure electromagnetic compressor
CN217002194U (en) Linear compressor
KR101265132B1 (en) Reciprocating Compressor
KR102060473B1 (en) Compressor
KR100597295B1 (en) Linear compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term