JP4159413B2 - Low pressure electromagnetic compressor - Google Patents

Low pressure electromagnetic compressor Download PDF

Info

Publication number
JP4159413B2
JP4159413B2 JP2003163185A JP2003163185A JP4159413B2 JP 4159413 B2 JP4159413 B2 JP 4159413B2 JP 2003163185 A JP2003163185 A JP 2003163185A JP 2003163185 A JP2003163185 A JP 2003163185A JP 4159413 B2 JP4159413 B2 JP 4159413B2
Authority
JP
Japan
Prior art keywords
electromagnetic
pressure
discharge
plunger
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003163185A
Other languages
Japanese (ja)
Other versions
JP2004360659A (en
Inventor
亨 小林
千葉泰常
田辺和市
Original Assignee
太産工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太産工業株式会社 filed Critical 太産工業株式会社
Priority to JP2003163185A priority Critical patent/JP4159413B2/en
Publication of JP2004360659A publication Critical patent/JP2004360659A/en
Application granted granted Critical
Publication of JP4159413B2 publication Critical patent/JP4159413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば空気などの気体を低圧力で圧送供給する低圧電磁コンプレッサの改良に係る。
【0002】
【従来の技術】
上記の気体用電磁コンプレッサとしては、本特許出願人の特開2002−130122号公報(ならびに公開以前の手続補正書を含む)開示の従来技術およびこれを改良した特願2003−23242号による提案の先行技術、その他多くの従来技術がある。
【0003】
【発明が解決しようとする課題】
前記従来技術を改良した先行技術は、吐出圧力が大になるほど、この圧力がポンプ作動の負荷抵抗になって電磁コイルへパルス電流の周期中の導通期間に発生する磁気吸引力に加わって、吸入行程時に電磁プランジャが環状磁極内に進入してシリンダ壁を介して重合して、さらにその行程長を伸長するので、復帰ばねはさらに大きく圧縮され、その撓み量を増す故に、前記周期の非導通切電時の吐出行程時に復帰ばねの弾発力が増大し、吐出行程も同時に行程長を増すことで吐出流量も増加することができ、したがってポンプの小形軽量化したにもかかわらず磁力が有効に利用されて効率が高められるという説明がある。
【0004】
前記先行技術を含む従来技術の電磁ポンプおよびコンプレッサでは、いずれも吐出圧力を高めると、吐出流量は減少することが通常である。
【0005】
しかして、これら上記技術の電磁ポンプおよびコンプレッサは、直流電流により稼動する消費電力をきわめて少なくした小吐出流量で吐出圧力もきわめて小なる、例えば燃料電池用で燃料成分中の水素転換時の改質に用いる空気供給ポンプとして利用されるほか、気体燃料供給の用途がある。これらの場合には,電源をその電池自体から採ることができるが、一般向き、もしくは内臓の内視鏡の先端部から空気を吐出すための送風装置などで、前記燃料電池用よりも吐出圧力、流量もやや大で、それでも汎用のものよりは、遥かに小形、軽量、低圧小吐出流量で、その吐出性能の可変調整が可能で耐久性があり、しかも廉価になる要求を満足させると共に、簡単に断続パルス電流の駆動電流が得られる一般商用交流電源から交流半波整流方法を、本発明では、選んだのである。
【0006】
この交流半波整流を利用する方法は、すでに周知であり、最も簡単確実安価で公用されているものであるが、断続パルス電流は商用交流電源の周波数50または60Hzに限定され、その周波数の大きいことは周期の短いことを意味し、電磁プランジャの往復作動時に、復帰ばねが短い時間に作動するために磁気吸引力および周期中の非導通時に充分対応してその復帰時の弾発力も強くなければならない。そしてこれと共に吐出流量を増すためには、磁気吸引力を増大して吸入行程長を伸長させなければならない。磁気吸引力を増大させるためには、電磁コイルのアンペアターンを増大させるが、磁気吸引力のうち最も大きい空隙引力は磁気空隙の自乗に反比例するので、電磁プランジャポンプ形の電磁コンプレッサには、その行程長を増大させることは、磁力を効果的に利用すること自体に自ずから制限があり、行程長を多く求めることは不利であり,換言すれば、電磁プランジャポンプ自体に吐出流量に多くを求めることは期待できないとされている。
【0007】
しかして、在来のものと同様にこの電磁プランジャポンプも、吐出流量の平滑化と蓄力作用により吐出性能を高めるために、その吐出側にブラダ形もしくは弾性体により付勢保持された作動隔膜などで構成されたアキュムレータを通常備えている。それにもかかわらず、低吐出圧力で使用するときには、その作用効果がほとんど認められず、しかも吐出流量が低下することが多い。例えば吐出圧力がきわめて低く吐出流量を大気中に放出する場合には、返って吐出量が低下し、しかもアキュムレータの有無にかかわらずその有意差が認められない。その状態を後述の表1に示す。
【0008】
つぎに、吐出口の開口面積を絞り、吐出圧力を高めるため吐出口のオリフィスを変換してゆくと、後述する表2に示すように、吐出圧力の上昇に伴い、吐出流量も増加する帯域があることが判った。これは先に述べた吐出圧力を高めると、吐出流量が低下する一般の液体用の電磁ポンプとは相違するところがある特性があるためで、この理由の1つは、さきに述べたように吐出圧力が高くなることは、ポンプ作動時の負荷抵抗になって、その吸入作用時に電磁プランジャが環状磁極内に入り込み、シリンダ壁を介して重なり合う度合いを増すと同時に復帰ばねをそれだけ多く撓み圧縮し、復行程の吐出行程でその弾発力も大きくなると共に往復行程も伸長するので、吐出圧力が上昇すると共に吐出流量も増加するのである。また、アキュムレータの作動隔膜の柔軟性およびこれを圧支付勢保持するばねまたは弾性ゴムのような弾性体も前記吐出圧力とパルス電流の周期により往復動する疲労に対応する耐久性、持続性のある弾力と強度を保有しなければならないから、前記のような低圧力ではアキュムレータの作動隔膜は応動しない故、その効果が認められないのである。
【0009】
以上述べた事実は、表1に示した通りである。
【0010】
先ず、市場で現在要求されている低圧電磁コンプレッサの1つの定格定圧交流電源100V 50Hz,60Hz共用半波整流
消費電力 16W程度
吐出圧力 20KPa 常時
吐出流量 4.5 l/min MAX
吐出継手口径 6m/m
のものを選び、その吐出継手の上流にアキュムレータを付設した場合と、これを除いた場合の吐出性能は表1に示す通りで、それぞれの吐出圧力は圧力計では指示されず、ほとんど0KPaであり、吐出流量も低下し有意差が無い。その理由は前述の説明通りである。
【0011】
【表1】

Figure 0004159413
つぎに、前述した観点から吐出圧力を高める手段として、ポンプの吐出側に備えたアキュムレータの下流で、例えば吐出継手乃至その上流側に開口面積を加減する圧力調整絞り部材を設けた。この圧力調整絞り部材は圧力一定で可変の必要がなければ、一定絞り口径のオリフィスでよいが、可変の必要があれば、絞り弁であってもよい。本発明の場合には、前記圧力調整絞り部材として口径0.8mmのオリフィスを選んだところ、電磁コンプレッサは後述する表2に記載のような結果で所期の目的を果たし得たのである。その理由は、前述の説明通りであるので省略するが、実施の形態の欄で以下述べる事項と共に補足説明する。
【0012】
本発明の電磁コンプレッサは気体を圧送するために用いられるので、気体は被圧縮性であり、通常圧縮比も大になり、したがって電磁プランジャの往復行程長も伸長しがちであり、一方気体には液体のような潤滑性がない上に、電磁プランジャとシリンダとの間の摩擦に対する考慮も特に必要で、その減摩手段として、さきに前記先行技術における明細書の実施の形態の欄で述べているように、磁路を形成すると共に減摩効果のある手段が必要である。
【0013】
そして電磁プランジャをその両端から圧支する2つのばねの繰り返し荷重撓みに起因する座屈変形で電磁プランジャのシリンダ壁に対する側圧による弊害を除くことが望ましい。
【0014】
また、電磁コイルへの付勢電流の1つは商用交流電源を半波整流で、その電圧、電流値を種々変換して電磁コンプレッサの吐出性能を可変調整可能であることが必要である。
【0015】
本発明においては、以上の従来および先行技術における問題点を逐一解決しようとしたものである。
【0016】
【課題を解決するための手段】
上記の課題を解決するために、本発明による低圧電磁コンプレッサは、電磁コイルに囲繞された管柱シリンダ内を、逆止弁を内臓し、かつ復帰ばねと補助ばねとの間に圧支された電磁プランジャが、前記電磁コイルへ付勢する断続パルス電流の周期の導通期間に発生する磁気吸引力と、これに抗しながら圧縮されかつ前記電流の非導通期間に反発する復帰ばねの弾発力とにより往復動する容積形貫流ポンプであって、前記管柱シリンダの両端部位のうち、前記復帰ばねの側に環状磁極を、そしてその反対側の補助ばねの側に環状磁路をそれぞれ外嵌して備え、前記環状磁極の端面に対向した電磁プランジャの端部との間を磁気空隙を有する上流吸入側とし、その反対側の電磁プランジャの端面を下流吐出側の加圧面とするポンプにおいて、前記パルス電流の導通期間に電磁プランジャはその往行程で環状磁極の内側に進入して管柱シリンダ壁を介してこれに重合して磁気回路を結び、そして前記非導通時に、復帰ばねの弾発力で復行程を行うポンプ作用時の往復行程長を伸長し、かつ蓄力作用を助長するためにポンプの吐出側にアキュムレータを設け、さらにその下流に圧力調整部材を設けてアキュムレータの蓄力効果を高めることにより前記吐出流量を増大させるようにし、また電磁プランジャの両端部位に、それぞれ環帯状の外周縁を残して他の外周に、該電磁プランジャを超える外径を有する弗素系合成樹脂をもってなるプランジャリングを嵌設するか、もしくは同樹脂被膜を施したことを特徴とする。
【0017】
また、前記電磁プランジャを圧支する2つのばねの少なくとも一方のばね座は調心構造とすることが望ましい。すなわち、例えば特に復帰ばねは前述の通り圧縮時の撓み代が多く、その伸縮長も大きいので、後述するように調心ばね受座を設けると良い。
【0018】
さらに、前記電磁コイルへの付勢電流の1つは商用交流電源から得る半波整流電流であり、その電圧、電流値、電流の同期のいずれか、もしくはその複数のものを加減調整して吐出流体の圧力、流量を可変制御することを可能とすることが望ましい。
【0019】
【発明の実施の形態】
本発明の実施の形態は、前記特許請求の範囲ならびに課題を解決するための手段の欄で述べた通りの構成で特に説明するまでもないが、一応実施の形態を述べる前に前述した従来の技術を引用して、発明の解決しようとする課題の欄で述べた特に表2に関する説明をする必要がある。
【0020】
表2に示す吐出圧力、流量、消費電力等の値は、前記表1に示す電磁コンプレッサの吐出側の下流に口径の異なるオリフィスを設けて吐出流動抵抗を変換し、かつ各オリフィス毎にその上流にアキュムレータを備えるか否かの場合について、そのいずれが所期の流量特性を得ることができるかの実験時の流量、その他の前記項目の測定値を示したものである。
【0021】
【表2】
Figure 0004159413
表2のうち、標準とする吐出圧力20KPa、吐出流量4.5 l/minMAXの前記吐出口断面積における絞り吐出圧力を高めるためのオリフィスの直径を0.8mmに定めて、AC100V、50Hzおよび60Hzを半波整流したときの電磁コンプレッサの吐出側にこれを配設し、その上流の吐出側にアキュムレータを設けた場合の(A)と、これを除いた場合の(B)との比較をさらに表3に示す。
【0022】
【表3】
Figure 0004159413
プランジャの外径Dとして吐出流量=(D/2)2 π×L×周波数で吐出効率を単純に計算すると、52〜54%である。これは、プランジャとシリンダ間の漏洩と吐出、吸入両逆止弁の作動時差等によるものと考えられるが、特に60Hzの場合には周期が短い故電磁プランジャが周期に同調するのに充分の遑が無いこと、および復帰ばねが50Hzの場合に比較して60Hzにいくらか適応していないこともあり得る。
【0023】
表3において、電磁プランジャは、その往復作動時にはその静止の位置から吸入側に偏位した下死点から上死点までの行程長をストロボスコープで測定したものが示されている。この行程長の測定には、本願出願人がさきに特公昭57−12863号特許公報第3図に開示され、その明細書において説明されたような指示桿36端部に付設の指示標片37を設けて、これによって行った。
【0024】
この表によると、50Hzのとき電磁プランジャの釣合静止点がその行程長の下死点で、上死点まで14.8mmの行程長は最大であり、吐出流量も4.8 l/minであり,同様に最大であった。
【0025】
なお、表2に示す各オリフィス、すなわち流体の流動抵抗を付したときの圧力−流量特性はこれを線図をもって表すまでもなく、比例的でもなく、二次曲線でもなく、不規則な山形であった。
【0026】
つぎに、以下本発明の実施の形態を図面により詳細に説明する。
【0027】
図1は、本発明の低圧電磁コンプレッサの1つの実施の形態を一部断面した縦断面図である。
【0028】
図1において、前記特許請求の範囲の請求項1〜2に記載したような構成を繰り返して説明することにはなるが、低圧電磁コンプレッサ1は、その電磁コイル10に囲繞された、すなわち電磁コイル10の軸心縦貫孔に嵌設された管柱シリンダ25内を、吸入側逆止弁18を内蔵しかつ復帰ばね14と補助ばね15との間に圧支された電磁プランジャ12が、前記電磁コイル10へ付勢する断続パルス電流の周期中の導通期間に発生する磁気吸引力と、これに抗しながら圧縮され、前記電流の非導通期間に反発する復帰ばねの弾発力とにより往復運動する容積形貫流ポンプを備え、このポンプの前記管柱シリンダ25の両端部位のうち、前記復帰ばね14の側に環状磁極26を、そしてその反対側の補助ばね15の側に環状磁路27をそれぞれ外嵌して備え、前記環状磁極26の端面に対向する電磁プランジャ12の端部との間に磁気空隙gを有する上流の吸入側とし、反対側の電磁プランジャ12の端面を下流吐出側で加圧面とするポンプ(コンプレッサ)における前記パルス電流の導通期間に電磁プランジャ12はその往行程で環状磁極26に吸引され、さらにその内部に進入して管柱シリンダ25の壁を介して重合して磁気回路を結ぶように構成してあり、そして前記非導通時に復帰ばねの弾発力で復行程を行うように形成してある。
【0029】
電磁プランジャ12の両端部位には、図3(a)および(b)に示すように、それぞれ巾Sを以って表す環帯状の外周縁を残して、電磁プランジャ12の外径Dを超える外径D′の弗素系合成樹脂をもってなる潤滑用および耐磨耗性の環状のプランジャリング13を嵌設もしくは同じ目的で同様な材質のテープの捲装もしくは被膜34の焼付施行がなされている。
【0030】
コンプレッサは空気など気体用であるから、油または水等液体用に比較して潤滑性、耐磨耗性に乏しくなるからその対策として上記構成が必要であり、これにより効果を得る。前記電磁プランジャ12の両端部位にそれぞれ残す環帯状の巾Sの寸法は、該電磁プランジャ12が吸入行程において、環状磁極26内に進入し管柱シリンダ25の壁を介して重合する電磁コイル10へ前述した導通時に必要とする磁束を得るのに充分な磁気回路を結ぶための前記重なり合う巾を標準とするものである。また、電磁プランジャ12の外径Dを超える弗素系合成樹脂をもってなる潤滑減摩用のプランジャリング13および同被膜34の外径寸法D′の寸法は、前記すなわち本願出願人がさきに提案した先行技術特願2003−23242号の特許出願明細書に図6(a)をもって示した寸法Eを参照し、この寸法が大に過ぎると磨耗耐久性は良くなるが、磁気回路のリラクタンスが増し、したがって磁気吸引力は低下する点を考慮して定めた。
【0031】
管柱シリンダ25の吸入側端部には、吸入口40に網フィルタ37とフィルタエレメント39を内臓した吸入筒体36が嵌合し、その軸心中央部位に電磁プランジャ12に面して突出した円錐面を有する当接尖端部35に、これが当接係止する逆円錐面の凹部をもつ調心受座17を備えた復帰ばね座金16と電磁プランジャ12との間に復帰ばねを係設し、電磁プランジャ12の吐出側端部と、吐出口20をもつ吐出継手21を備えかつ吐出弁19を内蔵し、管柱シリンダ25の他端に結合した吐出継手23の内部に設けた補助ばね座24との間に補助ばね15を係設して、双方からの等しいばねの反発力で電磁プランジャ12を挟持圧設している。
【0032】
前記調心ばね受座17およびこれに当接する当接尖端部35を設けて調心構造としたことは、前述の通り電磁プランジャ12をその両端から復帰ばね14と補助ばね15の2つのばねで挟持圧支して、繰り返し伸縮させ、荷重撓みに起因するばねの疲労のための座屈変形が電磁プランジャ12の管柱シリンダ25壁に対する側圧となり、両者が偏磨耗して損傷することを防止するためと、コンプレッサの作動不良の要因を防止するためである。この場合、圧縮撓みの多い復帰ばね16の損耗を特に留意して少なくともこの側の1つは調心構造とすることが肝要である。
【0033】
つぎに、すでに説明されている点もあるが、その他実施の形態について補足する。
【0034】
電磁コイル10を捲装したボヒン11の両端面には、それぞれ磁気座金31が環状磁極26、環状磁路27に外嵌した上蓋設されていて、前記吸入筒体36と吐出継手体23のそれぞれの鍔部を介して外枠継鉄30により挟設、複数の螺子29により緊と螺締固定されている。環状磁極26と環状磁路27との間にスペースリング28が管柱シリンダ25に外嵌されている。吐出継手体23の吐出弁19の下流に作動隔膜22を挟設したアキュムレータ2が接続されている。
【0035】
吐出継手体23の吐出継手21の吐出口20の上流でアキュムレータ2の直下流にオリフィス3が設けられて、アキュムレータ2の吐出蓄力作用の吐出流量を絞り、内圧を高めてアキュムレータ2の作動隔膜22の伸縮の度合いを増大し、電磁プランジャ12の行程長を伸長させる構成となっている。このオリフィス3が圧力調整絞り部材である。
【0036】
ポンプの内部は、O−リングなどのパッキングで気密を保持されている。
【0037】
前記環状磁極26、環状磁路27、磁気座金31、外枠継鉄30は、磁気回路を構成する。
【0038】
外枠継鉄30は、例えば4個など複数の合成ゴム等からなる防振部材33を介して取付ステー32に固定される。
【0039】
このような低圧電磁コンプレッサは、前記電磁コイル10への断続パルス電流と復帰ばね14の反発力とにより管柱シリンダ25内を往復作動する電磁プランジャ12および吸入弁18、吐出弁19の作用と相俟ってポンプ作用を営み、矢印aに示すように吸入筒体36の吸入口40から吸入し、ポンプ内部を貫流して吐出継手体23のオリフィス3によりアキュムレータ2の蓄力効果を高めて吐出口20から矢印bのように流体を吐出する。
【0040】
吸入筒体36に内蔵した網フィルタ37とフィルタエレメント39は防塵のためであり、マタフィルタエレメント39は小径の通孔38と共に遮音効果があり、前記電磁プランジャ12の往復運動、吸入および吐出弁18,19の作動当接音などの騒音を防止する。また、電磁プランジャ12の上死点における制動作用も考えられる。電磁プランジャ12の縦軸線上の磁気中心点と電磁コイル10の縦軸中央の磁気中性点間の所謂ソレノイド磁気吸引力の作用は前記先行技術の場合に準じ、前記両支点と磁気空隙gとの関係位置は、電流の周期と大きさならびに吐出圧力により偏位および変更がある。
【0041】
つぎに、図2は本発明の他の実施の形態の正面外観図で、前記オリフィス3に変えて吐出圧力流量を制御するのに、コンプレッサの吐出圧力を加減して吐出流量の所期値を得るための圧力調整部材の絞り弁4を備えたものである。
【0042】
それ以外の構成は、図1に示す実施の形態と同様で符号も同一である。
【0043】
つぎに、電磁コイル10への断続パルス電流の付勢時商用交流電源のインバータによる周波数の制御、その電圧の変圧器による変換、可変抵抗器等を直列に接続して電流値を加減する方法などと、圧力調整部材であるオリフィスの交換や絞り弁などとの併用によって、低圧電磁コンプレッサの吐出性能を可変調整することが可能である。
【0044】
なお、前記表1〜3の実験で騒音測定は無響室ではなく、実態に即して住居地域のRC構造の建物内で夜間測定し、暗騒音は33dB/A Scale であった。
【0045】
電磁コイルの温度上昇 deg Kは電気抵抗法により、上記パルス電流を通電して連続運転し、電磁コイルが磁気飽和してから測定した。
【0046】
その他の測定も上記通りである。
【0047】
また、上記騒音の遮断、温度上昇に対する放熱手段、コンプレッサの保護方法としては、つぎの通りの手段がある。
【0048】
イ、吸入筒体36、吐出継手体23を熱伝導性の高い軽合金製とし、その外周または外部に縦に複数の放熱フィンを設ける。
【0049】
ロ、電磁コンプレッサ1を前記軽合金製の筐体に収め、外周に適宜放熱フィンを設ける。
【0050】
ハ、電磁コンプレッサ1を筐体に収めて保護しおよび防滴および遮音構造とする。
【0051】
【発明の効果】
以上詳述したように、本発明の低圧電磁コンプレッサは、特に従来技術、先行技術を挙げて、その問題点を解決するための課題として、特許出願明細書の特許請求の範囲各請求項ならびに課題を解決するための手段および発明の実施の形態の欄に詳述記載した通りである。
【0052】
該説明した本発明の構成および前記説明で述べた理由により以下のような効果が得られる。
(a)電磁コイルへ通電するパルス電流の導通期間に発生する磁気吸引力により電磁プランジャは、その吸入往行程で環状磁極の内側に進入して管柱シリンダ壁を介してこれに重なり合って磁気回路を結び、このとき前記磁気吸引力と、これに加わる吐出側からの負荷圧力で、吸入行程長が伸長した分が余分に復帰ばねを圧縮して撓ませ、前記非導通時の吐出復行程時に前記余分に撓んだためにそれだけ強くなった復帰ばねの弾発力でポンプの吐出圧力が高まる。そして前記吸入行程長が伸長したことは、電磁プランジャが環状磁極内で重合して磁束の通過に充分な磁気回路が構成されることで、リラクタンスが少ないので効率が高まり,行程長が伸長することは吐出量を高めることになるのである。
(b)コンプレッサ(ポンプ)の吐出側に備えたアキュムレータの直下流に、吐出流量を増大させるための圧力調整絞り部材を設けたので、低圧コンプレッサとして、前記明細書に説明したように前記アキュムレータの作動隔膜などの伸縮作動を容易にしてその蓄力作用効果を助長し、ポンプの低圧吐出能力を高めることができた。
(c)電磁プランジャの両端部位に、それぞれ環帯状の外縁を残して、他の外周部分にこの電磁プランジャを超える外径を有する弗素系合成樹脂をもってなるプランジャリングを嵌設するか、もしくは同樹脂被膜を施したので、電磁プランジャが管柱シリンダ内を摺動往復するときの潤滑減摩の効果が大きく耐久性を有する。
【0053】
前記電磁プランジャの両端部位にそれぞれ環帯状の外縁を残したので、磁気回路のリラクタンスを減らすことができる。
(d)前記電磁プランジャを圧支する2つのばねの少なくとも一方(復帰ばね優先である)のばね座を調心構造としたので、これらのばねの端部位の疲労による座屈のために電磁プランジャが管柱シリンダ内を摺動往復時に側圧によって偏磨耗したり、シリンダ壁を損傷させて作動不能となることを防止した。
(e)前記電磁コイルへの付勢電流の1つは商用交流電源から得る半波整流電流であり、その電圧電流値、電流の周期のいずれか、もしくはその複数のものを、前記圧力調整絞り機構の作用との相関関係の調整を計りつつ加減して吐出流体の圧力、流量を可変制御することの可能な低圧電磁コンプレッサを得ることができる。
【図面の簡単な説明】
【図1】 本発明による低圧電磁コンプレッサの1つの実施の形態を一部断面して表す縦断説明図である。
【図2】 本発明の低圧電磁コンプレッサの他の実施の形態の外観説明図である。
【図3】 本発明の低圧電磁コンプレッサの1つの部品の外観説明図である。
【符号の説明】
1 電磁コンプレッサ
2 アキュムレータ
3 オリフィス 圧力調整部材
4 圧力調整部材;絞弁
10 電磁コイル
12 電磁プランジャ
13 プランジャリング
14 復帰ばね
15 補助ばね
16 復帰ばね座金
17 調心受座
18 吸入弁
19 吐出弁
20 吐出口
21 吐出継手
22 作動隔膜
23 吐出継手体
25 管柱シリンダ
26 環状磁極
27 環状磁路
34 被膜
35 当接尖端部
36 吸入筒体
37 網フィルタ
38 通孔
39 フィルタエレメント
40 吸入口
g 磁気空隙
s 電磁プランジャの環帯状外周縁
D 電磁プランジャの外径
D′ 弗素系合成樹脂製プランジャリングの外径もしくは同被膜の外径[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a low-pressure electromagnetic compressor that supplies a gas such as air at a low pressure.
[0002]
[Prior art]
As the above-mentioned electromagnetic compressor for gas, the conventional technology disclosed in Japanese Patent Application Laid-Open No. 2002-130122 (including the procedure amendment before publication) of the present applicant and the proposal by Japanese Patent Application No. 2003-23242 improved therewith. There are prior art and many other conventional techniques.
[0003]
[Problems to be solved by the invention]
In the prior art improved from the prior art, as the discharge pressure increases, the pressure becomes the load resistance of the pump operation, and in addition to the magnetic attraction force generated during the conduction period in the cycle of the pulse current to the electromagnetic coil, During the stroke, the electromagnetic plunger enters the annular magnetic pole and superposes through the cylinder wall, further extending its stroke length, so that the return spring is further compressed and increases its amount of deflection. The spring force of the return spring increases during the discharge stroke when turning off, and the discharge flow rate can be increased by increasing the stroke length at the same time. Therefore, the magnetic force is effective despite the smaller and lighter pump. There is an explanation that the efficiency can be improved by using it.
[0004]
In both conventional electromagnetic pumps and compressors including the prior art, when the discharge pressure is increased, the discharge flow rate is usually reduced.
[0005]
Thus, the electromagnetic pumps and compressors of the above-described technologies have a small discharge flow rate with a very small power consumption operated by a direct current, and a discharge pressure is extremely small. For example, reforming at the time of hydrogen conversion in a fuel component for a fuel cell. In addition to being used as an air supply pump used for the above, there is a use for supplying gaseous fuel. In these cases, the power supply can be taken from the battery itself, but the discharge pressure is higher than that for the fuel cell in a general orientation or a blower for discharging air from the distal end of the internal endoscope. The flow rate is slightly larger, yet it is much smaller, lighter, and low pressure with a small discharge flow rate than the general-purpose one, and its discharge performance can be variably adjusted, durable, and low-cost. In the present invention, the AC half-wave rectification method is selected from a general commercial AC power source that can easily obtain a driving current of intermittent pulse current.
[0006]
This method of utilizing AC half-wave rectification is already well known and is the simplest, most reliable, and inexpensive one. However, the intermittent pulse current is limited to the frequency of commercial AC power supply 50 or 60 Hz, and the frequency is large. This means that the cycle is short, and when the electromagnetic plunger is reciprocated, the return spring operates in a short time, so the magnetic attractive force and the elastic force at the time of return must be strong enough to cope with non-conduction during the cycle. I must. In order to increase the discharge flow rate along with this, the magnetic attraction force must be increased to extend the suction stroke length. In order to increase the magnetic attractive force, the ampere turn of the electromagnetic coil is increased. However, since the largest air attractive force among the magnetic attractive forces is inversely proportional to the square of the magnetic air gap, the electromagnetic plunger pump type electromagnetic compressor Increasing the stroke length naturally limits the effective use of magnetic force itself, and it is disadvantageous to obtain a large stroke length. In other words, the electromagnetic plunger pump itself requires a large discharge flow rate. Is not expected.
[0007]
Thus, like conventional ones, this electromagnetic plunger pump is also equipped with a diaphragm or elastic body that is biased and held on its discharge side in order to improve discharge performance by smoothing discharge flow and accumulating action. It usually has an accumulator composed of Nevertheless, when used at a low discharge pressure, the effect is hardly recognized, and the discharge flow rate often decreases. For example, when the discharge pressure is very low and the discharge flow rate is released into the atmosphere, the discharge amount is reduced and no significant difference is observed regardless of the presence or absence of an accumulator. The state is shown in Table 1 described later.
[0008]
Next, when the opening area of the discharge port is reduced and the orifice of the discharge port is changed to increase the discharge pressure, as shown in Table 2 described later, there is a band in which the discharge flow rate increases as the discharge pressure increases. It turns out that there is. This is because there is a characteristic that is different from the general liquid electromagnetic pump that increases the discharge pressure described above, and the discharge flow rate decreases. One of the reasons for this is as described above. The increase in pressure becomes a load resistance when the pump is operated, and the electromagnetic plunger enters the annular magnetic pole during the suction action, increasing the degree of overlap through the cylinder wall and at the same time flexing and compressing the return spring as much, In the return stroke, the resilience increases and the reciprocating stroke also extends, so that the discharge pressure increases and the discharge flow rate also increases. In addition, the flexibility of the operating diaphragm of the accumulator and the elastic body such as a spring or elastic rubber that supports and supports the durability of the accumulator have durability and durability corresponding to fatigue that reciprocates according to the period of the discharge pressure and pulse current. Since the elasticity and strength must be maintained, the operating diaphragm of the accumulator does not respond at such a low pressure, so that the effect is not recognized.
[0009]
The facts described above are as shown in Table 1.
[0010]
First, one rated constant-pressure AC power source for low-pressure electromagnetic compressors currently required in the market 100V 50Hz, 60Hz shared half-wave rectified power consumption About 16W Discharge pressure 20KPa Regular discharge flow rate 4.5 l / min MAX
Discharge joint diameter 6m / m
Table 1 shows the discharge performance when an accumulator is attached upstream of the discharge joint and when this is omitted, and the discharge pressure is not indicated by the pressure gauge and is almost 0 KPa. The discharge flow rate also decreases and there is no significant difference. The reason is as described above.
[0011]
[Table 1]
Figure 0004159413
Next, as a means for increasing the discharge pressure from the above-described viewpoint, a pressure adjusting throttle member for adjusting the opening area is provided downstream of the accumulator provided on the discharge side of the pump, for example, on the upstream side of the discharge joint. The pressure adjusting throttle member may be an orifice having a constant throttle aperture if the pressure is constant and does not need to be variable, but may be a throttle valve if variable. In the case of the present invention, when an orifice having a diameter of 0.8 mm was selected as the pressure adjusting throttle member, the electromagnetic compressor achieved its intended purpose with the results shown in Table 2 described later. The reason is omitted because it is the same as described above, but will be supplementarily explained together with the following items in the embodiment.
[0012]
Since the electromagnetic compressor of the present invention is used to pump gas, the gas is compressible, and usually the compression ratio is large, so the reciprocating stroke length of the electromagnetic plunger tends to be extended, while the gas is In addition to the lack of lubricity such as liquid, it is also necessary to consider the friction between the electromagnetic plunger and the cylinder. As the anti-friction means, it has been described in the embodiment section of the specification in the prior art. Thus, there is a need for a means for forming a magnetic path and having an anti-friction effect.
[0013]
It is desirable to eliminate the adverse effects caused by the lateral pressure on the cylinder wall of the electromagnetic plunger due to buckling deformation caused by repeated load deflection of the two springs that support the electromagnetic plunger from both ends thereof.
[0014]
In addition, one of the energizing currents to the electromagnetic coil is required to be able to variably adjust the discharge performance of the electromagnetic compressor by variously converting the voltage and current value of the commercial AC power supply by half-wave rectification.
[0015]
The present invention is intended to solve the above problems in the conventional and prior art one by one.
[0016]
[Means for Solving the Problems]
In order to solve the above-described problems, a low-pressure electromagnetic compressor according to the present invention includes a check valve built in a pipe cylinder surrounded by an electromagnetic coil, and is supported between a return spring and an auxiliary spring. The magnetic attraction force generated during the conduction period of the intermittent pulse current cycle in which the electromagnetic plunger urges the electromagnetic coil, and the elastic force of the return spring that is compressed against this and repels during the non-conduction period of the current A reciprocating positive displacement pump, wherein an annular magnetic pole is fitted on the return spring side and an annular magnetic path is fitted on the opposite auxiliary spring side of both ends of the tube cylinder. In the pump with the upstream suction side having a magnetic gap between the end of the electromagnetic plunger facing the end surface of the annular magnetic pole, and the pressure surface on the downstream discharge side as the opposite end surface of the electromagnetic plunger, in front During the conduction period of the pulse current, the electromagnetic plunger enters the inside of the annular magnetic pole in its forward stroke and superimposes it on the tube cylinder wall to connect the magnetic circuit, and the elastic force of the return spring during the non-conduction In order to extend the reciprocating stroke length at the time of the pump action that performs the reverse stroke and to promote the accumulator action, an accumulator is provided on the discharge side of the pump, and a pressure adjusting member is further provided downstream thereof to increase the accumulator effect of the accumulator. The discharge flow rate is increased by increasing the plunger, and the plunger having a fluorine-based synthetic resin having an outer diameter larger than that of the electromagnetic plunger is provided on the other outer periphery at both ends of the electromagnetic plunger, leaving an outer peripheral edge of the ring band. A ring is fitted or the resin coating is applied.
[0017]
In addition, it is desirable that at least one spring seat of the two springs that support the electromagnetic plunger has a centering structure. That is, for example, the return spring has a large bending allowance during compression as described above, and its expansion and contraction length is also large. Therefore, it is preferable to provide a centering spring seat as described later.
[0018]
Further, one of the energizing currents to the electromagnetic coil is a half-wave rectified current obtained from a commercial AC power supply, and discharges by adjusting the voltage, current value, current synchronization, or a plurality thereof. It is desirable to be able to variably control the pressure and flow rate of the fluid.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The embodiments of the present invention need not be particularly described in the configuration as described in the claims and the means for solving the problems, but the prior art described before the embodiments will be described. It is necessary to cite the technology and particularly to explain Table 2 described in the section of the problem to be solved by the invention.
[0020]
The values of discharge pressure, flow rate, power consumption, etc. shown in Table 2 are obtained by converting the discharge flow resistance by providing orifices having different diameters on the downstream side of the discharge side of the electromagnetic compressor shown in Table 1, and upstream of each orifice. In the case of whether or not an accumulator is provided, the flow rate at the time of experiment and the measured values of the other items are shown as to which one can obtain the desired flow rate characteristics.
[0021]
[Table 2]
Figure 0004159413
In Table 2, the diameter of the orifice for increasing the throttle discharge pressure in the discharge port cross-sectional area at a standard discharge pressure of 20 KPa and a discharge flow rate of 4.5 l / min MAX is set to 0.8 mm, and AC 100 V, 50 Hz, and 60 Hz. A comparison between (A) when this is disposed on the discharge side of the electromagnetic compressor when half-wave rectified and an accumulator is provided on the discharge side upstream thereof, and (B) when this is excluded Table 3 shows.
[0022]
[Table 3]
Figure 0004159413
When the discharge efficiency is simply calculated with the discharge flow rate = (D / 2) 2 π × L × frequency as the outer diameter D of the plunger, it is 52 to 54%. This is considered to be due to leakage and discharge between the plunger and the cylinder, the difference in operating time of the suction check valves, etc. In particular, in the case of 60 Hz, since the cycle is short, the electromagnetic plunger must be sufficiently synchronized with the cycle. And there may be some adaptation to 60 Hz compared to the case where the return spring is 50 Hz.
[0023]
In Table 3, the electromagnetic plunger has a stroke length measured from the bottom dead center to the top dead center, which is displaced from the stationary position to the suction side during the reciprocating operation, is shown by a stroboscope. In order to measure the stroke length, the applicant of the present application previously disclosed in Japanese Patent Publication No. 57-12863, FIG. 3 and described in the specification, an indicator bar 37 attached to the end of the indicator rod 36. And this was done.
[0024]
According to this table, the balance stationary point of the electromagnetic plunger is the bottom dead center of the stroke length at 50 Hz, the stroke length of 14.8 mm to the top dead center is the maximum, and the discharge flow rate is 4.8 l / min. Yes, as well as the maximum.
[0025]
In addition, each orifice shown in Table 2, that is, the pressure-flow rate characteristic when the flow resistance of the fluid is attached, does not need to be represented by a diagram, is not proportional, is not a quadratic curve, is an irregular mountain shape. there were.
[0026]
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0027]
FIG. 1 is a longitudinal sectional view, partly in section, of an embodiment of a low-pressure electromagnetic compressor according to the present invention.
[0028]
In FIG. 1, the configuration as described in claims 1 to 2 of the claims will be described repeatedly, but the low-pressure electromagnetic compressor 1 is surrounded by the electromagnetic coil 10, that is, the electromagnetic coil. An electromagnetic plunger 12 having a built-in suction side check valve 18 and supported between a return spring 14 and an auxiliary spring 15 in a tube cylinder 25 fitted in the axial center through hole of the shaft 10 includes the electromagnetic Reciprocating motion due to the magnetic attraction force generated during the conduction period during the period of the intermittent pulse current energizing the coil 10 and the elastic force of the return spring compressed against the current and repelling the non-conduction period of the current Of the pump cylinder cylinder 25 of the pump. An annular magnetic pole 26 is provided on the return spring 14 side, and an annular magnetic path 27 is provided on the opposite auxiliary spring 15 side. That An external fitting is provided, and an upstream suction side having a magnetic gap g between the end of the electromagnetic plunger 12 facing the end surface of the annular magnetic pole 26 is provided, and the end surface of the opposite electromagnetic plunger 12 is added on the downstream discharge side. During the conduction period of the pulse current in the pump (compressor) serving as the pressure surface, the electromagnetic plunger 12 is attracted to the annular magnetic pole 26 in the forward stroke, and further enters the inside through the wall of the tube column cylinder 25 to be magnetized. The circuit is configured to be connected, and is configured to perform a return stroke by the resilient force of the return spring when the circuit is not conducting.
[0029]
As shown in FIGS. 3 (a) and 3 (b), both ends of the electromagnetic plunger 12 have outer ring-shaped outer peripheries represented by the width S, respectively, and are outside the outer diameter D of the electromagnetic plunger 12. A lubricating and wear-resistant annular plunger ring 13 made of a fluorine-based synthetic resin having a diameter D 'is fitted or taped with a similar material or a coating 34 is baked for the same purpose.
[0030]
Since the compressor is for gas such as air, it has poor lubricity and wear resistance as compared with that for liquid such as oil or water, so the above-described configuration is necessary as a countermeasure, thereby obtaining an effect. The dimensions of the ring-shaped width S to be left at both end portions of the electromagnetic plunger 12 are such that the electromagnetic plunger 12 enters the annular magnetic pole 26 and superposes via the wall of the tube column cylinder 25 in the intake stroke. The above-described overlapping width for connecting a magnetic circuit sufficient to obtain the magnetic flux required for conduction is standard. Also, the dimension of the outer diameter D ′ of the plunger ring 13 for lubrication and lubrication and the coating 34 made of a fluorine-based synthetic resin exceeding the outer diameter D of the electromagnetic plunger 12 is the same as that previously proposed by the applicant of the present application. Reference is made to the dimension E shown in FIG. 6A in the patent application specification of Japanese Patent Application No. 2003-23242. If this dimension is too large, the wear durability is improved, but the reluctance of the magnetic circuit is increased. The magnetic attraction force was determined in consideration of the decrease.
[0031]
A suction cylinder 36 containing a net filter 37 and a filter element 39 is fitted into the suction port 40 at the suction side end of the tube cylinder 25, and protrudes from the central portion of the shaft facing the electromagnetic plunger 12. A return spring is provided between the return spring washer 16 and the electromagnetic plunger 12 provided with a centering receiving seat 17 having a conical recess having a conical surface at the contact tip portion 35 having a conical surface. An auxiliary spring seat provided inside a discharge joint 23 having a discharge side end of the electromagnetic plunger 12 and a discharge joint 21 having a discharge port 20 and having a built-in discharge valve 19 coupled to the other end of the tube column cylinder 25. Auxiliary springs 15 are provided between the electromagnetic plungers 12 and 24, and the electromagnetic plungers 12 are sandwiched and pressed by equal repulsive forces from both sides.
[0032]
The alignment structure is provided by providing the alignment spring receiving seat 17 and the contact pointed end portion 35 to be in contact therewith. As described above, the electromagnetic plunger 12 is connected to the two springs of the return spring 14 and the auxiliary spring 15 from both ends. The buckling deformation due to the fatigue of the spring caused by the load deflection becomes a side pressure against the wall of the tube cylinder 25 of the electromagnetic plunger 12 and prevents both from being damaged due to uneven wear. This is to prevent the cause of malfunction of the compressor. In this case, it is important that at least one of these sides has a self-aligning structure, paying particular attention to the wear of the return spring 16 having a large amount of compressive deflection.
[0033]
Next, although there is a point already explained, it supplements about other embodiment.
[0034]
A magnetic washer 31 is provided on each end face of the bohin 11 equipped with the electromagnetic coil 10 and an upper cover is fitted around the annular magnetic pole 26 and the annular magnetic path 27. The suction cylinder 36 and the discharge joint body 23 are respectively provided. The outer frame yoke 30 is sandwiched between the flanges 30 and fixed by a plurality of screws 29. A space ring 28 is externally fitted to the tube column cylinder 25 between the annular magnetic pole 26 and the annular magnetic path 27. An accumulator 2 having a working diaphragm 22 sandwiched therebetween is connected downstream of the discharge valve 19 of the discharge joint body 23.
[0035]
An orifice 3 is provided upstream of the discharge port 20 of the discharge joint 21 of the discharge joint body 23 and immediately downstream of the accumulator 2, and the discharge flow rate of the discharge accumulating action of the accumulator 2 is reduced to increase the internal pressure, thereby operating the diaphragm of the accumulator 2. The degree of expansion / contraction of 22 is increased, and the stroke length of the electromagnetic plunger 12 is extended. The orifice 3 is a pressure adjusting throttle member.
[0036]
The inside of the pump is kept airtight by packing such as an O-ring.
[0037]
The annular magnetic pole 26, the annular magnetic path 27, the magnetic washer 31, and the outer frame yoke 30 constitute a magnetic circuit.
[0038]
The outer frame yoke 30 is fixed to the mounting stay 32 via a vibration isolating member 33 made of a plurality of synthetic rubbers such as four.
[0039]
Such a low-pressure electromagnetic compressor is in phase with the action of the electromagnetic plunger 12, the intake valve 18, and the discharge valve 19 that reciprocate in the tube cylinder 25 by the intermittent pulse current to the electromagnetic coil 10 and the repulsive force of the return spring 14. As shown by an arrow a, the air is pumped from the suction port 40 of the suction cylinder 36 and flows through the pump to enhance the accumulator 2's power accumulation effect by the orifice 3 of the discharge joint body 23. Fluid is discharged from the outlet 20 as indicated by an arrow b.
[0040]
The net filter 37 and the filter element 39 built in the suction cylinder 36 are for dust prevention, and the Mata filter element 39 has a sound insulation effect together with a small-diameter through hole 38. The reciprocating motion of the electromagnetic plunger 12, the suction and discharge valve 18 , 19 to prevent noise such as operation contact noise. A braking action at the top dead center of the electromagnetic plunger 12 is also conceivable. The action of the so-called solenoid magnetic attractive force between the magnetic center point on the vertical axis of the electromagnetic plunger 12 and the magnetic neutral point at the center of the vertical axis of the electromagnetic coil 10 is the same as in the prior art, and both the fulcrum and the magnetic gap g There are deviations and changes in the relative positions depending on the period and magnitude of the current and the discharge pressure.
[0041]
Next, FIG. 2 is a front external view of another embodiment of the present invention. In order to control the discharge pressure flow rate in place of the orifice 3, the desired value of the discharge flow rate is adjusted by adjusting the discharge pressure of the compressor. The throttle valve 4 of the pressure adjusting member for obtaining is provided.
[0042]
Other configurations are the same as those of the embodiment shown in FIG.
[0043]
Next, when the intermittent pulse current to the electromagnetic coil 10 is energized, the frequency is controlled by the inverter of the commercial AC power supply, the voltage is converted by the transformer, the variable resistor is connected in series, and the current value is adjusted. The discharge performance of the low-pressure electromagnetic compressor can be variably adjusted by exchanging the orifice, which is a pressure adjusting member, or in combination with a throttle valve.
[0044]
In the experiments shown in Tables 1 to 3, noise was measured at night in an RC structure building in the residential area according to the actual situation, not in an anechoic room, and the background noise was 33 dB / A Scale.
[0045]
The temperature rise deg K of the electromagnetic coil was measured by the electric resistance method after the pulse current was applied and continuously operated, and the electromagnetic coil was magnetically saturated.
[0046]
Other measurements are as described above.
[0047]
In addition, the following means can be used as a means for blocking the noise, a heat dissipating means against temperature rise, and a compressor protecting method.
[0048]
(B) The suction cylinder 36 and the discharge joint body 23 are made of a light alloy having high thermal conductivity, and a plurality of heat radiation fins are provided vertically on the outer periphery or outside thereof.
[0049]
(B) The electromagnetic compressor 1 is housed in the light alloy casing, and heat radiation fins are appropriately provided on the outer periphery.
[0050]
C. The electromagnetic compressor 1 is housed in a housing for protection and a drip-proof and sound-insulating structure.
[0051]
【The invention's effect】
As described above in detail, the low-pressure electromagnetic compressor according to the present invention has the prior art and the prior art as problems to solve the problems. As described in detail in the section of the means for solving the problem and the embodiment of the invention.
[0052]
The following effects can be obtained by the configuration of the present invention described above and the reason described in the above description.
(A) Due to the magnetic attraction force generated during the conduction period of the pulse current energized to the electromagnetic coil, the electromagnetic plunger enters the inside of the annular magnetic pole during its intake stroke and overlaps with this via the tube column cylinder wall. At this time, due to the magnetic attraction force and the load pressure from the discharge side applied thereto, the extension of the suction stroke length compresses and bends the return spring excessively, and during the non-conducting discharge return stroke The discharge pressure of the pump is increased by the elastic force of the return spring which is strengthened by the excessive bending. The increase in the suction stroke length is that the electromagnetic plunger is superposed in the annular magnetic pole to form a magnetic circuit sufficient for the passage of the magnetic flux, so that the reluctance is low and the efficiency is increased, and the stroke length is extended. This increases the discharge amount.
(B) Since the pressure adjusting throttle member for increasing the discharge flow rate is provided immediately downstream of the accumulator provided on the discharge side of the compressor (pump), as described in the specification, the accumulator of the accumulator is provided as a low pressure compressor. The expansion and contraction operation of the working diaphragm and the like was facilitated to promote the energy storage effect, and the low pressure discharge capacity of the pump could be increased.
(C) Plunger rings made of a fluorine-based synthetic resin having an outer diameter larger than that of the electromagnetic plunger are fitted on the other outer peripheral portion, leaving ring-shaped outer edges at both ends of the electromagnetic plunger, or the same resin Since the coating is applied, the effect of lubrication and lubrication when the electromagnetic plunger slides and reciprocates in the tube column cylinder is great and has durability.
[0053]
Since the ring-shaped outer edges are left at both ends of the electromagnetic plunger, the reluctance of the magnetic circuit can be reduced.
(D) Since the spring seat of at least one of the two springs that supports the electromagnetic plunger (prior to the return spring) has a self-aligning structure, the electromagnetic plunger is used for buckling due to fatigue of end portions of these springs. However, it was prevented from being worn out due to side pressure during sliding reciprocation in the tube column cylinder, or from becoming inoperable due to damage to the cylinder wall.
(E) One of the energizing currents to the electromagnetic coil is a half-wave rectified current obtained from a commercial AC power source. A low-pressure electromagnetic compressor capable of variably controlling the pressure and flow rate of the discharged fluid by adjusting the correlation with the operation of the mechanism can be obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a longitudinal cross-sectional explanatory view showing a part of one embodiment of a low-pressure electromagnetic compressor according to the present invention.
FIG. 2 is an external explanatory view of another embodiment of the low-pressure electromagnetic compressor of the present invention.
FIG. 3 is an external view of one component of the low-pressure electromagnetic compressor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electromagnetic compressor 2 Accumulator 3 Orifice Pressure adjustment member 4 Pressure adjustment member; Throttle valve 10 Electromagnetic coil 12 Electromagnetic plunger 13 Plunger ring 14 Return spring 15 Auxiliary spring 16 Return spring washer 17 Alignment seat 18 Suction valve 19 Discharge valve 20 Discharge port 21 discharge joint 22 working diaphragm 23 discharge joint body 25 tube cylinder 26 annular magnetic pole 27 annular magnetic path 34 coating 35 abutting tip 36 suction cylinder 37 mesh filter 38 through hole 39 filter element 40 suction opening g magnetic gap s electromagnetic plunger Ring-shaped outer peripheral edge D Electromagnetic plunger outer diameter D 'Fluorine-based synthetic resin plunger ring outer diameter or outer diameter of the same coating

Claims (3)

電磁コイルに囲繞された管柱シリンダ内を、逆止弁を内臓しかつ復帰ばねと補助ばねとの間に圧支された電磁プランジャが、前記電磁コイルへ付勢する断続パルス電流の周期の導通期間に発生する磁気吸引力と、これに抗しながら圧縮されかつ前記電流の非導通期間に反発する復帰ばねの弾発力とにより往復動する容積形貫流ポンプであって、前記管柱シリンダの両端部位のうち、前記復帰ばねの側に環状磁極を、そしてその反対側の補助ばねの側に環状磁路をそれぞれ外嵌して備え、前記環状磁極の端面に対向した電磁プランジャの端部との間を磁気空隙を有する上流吸入側とし、その反対側の電磁プランジャの端面を下流吐出側の加圧面とするポンプにおいて、
前記パルス電流の導通期間に電磁プランジャはその往行程で環状磁極の内側に進入して管柱シリンダ壁を介してこれに重合して磁気回路を結び、そして前記非導通時に、復帰ばねの弾発力で復行程を行うポンプ作用時の往復行程長を伸長しかつ蓄力作用を助長するためにポンプの吐出側にアキュムレータを設け、さらにその下流に圧力調整部材を設けてアキュムレータの蓄力効果を高めることにより吐出流量を増大させるようにし、また電磁プランジャの両端部位に、それぞれ環帯状の外周縁を残して他の外周に、該電磁プランジャを超える外径を有する弗素系合成樹脂をもってなるプランジャリングを嵌設するか、もしくは同樹脂被膜を施したことを特徴とする低圧電磁コンプレッサ。
Conduction of the cycle of intermittent pulse current in which the solenoid plunger, which includes a check valve and is pressure-supported between the return spring and the auxiliary spring, is energized in the cylinder cylinder surrounded by the electromagnetic coil. A positive displacement once-through pump that reciprocates by a magnetic attraction force generated during a period and a resilient force of a return spring that is compressed against the current and repels during a non-conduction period of the current, An end portion of an electromagnetic plunger facing the end face of the annular magnetic pole, comprising an annular magnetic pole on the return spring side and an annular magnetic path on the opposite auxiliary spring side of the both end portions, In the pump with the gap between the upstream suction side having a magnetic gap and the end surface of the electromagnetic plunger on the opposite side as the pressure surface on the downstream discharge side,
During the conduction period of the pulse current, the electromagnetic plunger enters the inside of the annular magnetic pole in the forward stroke and superimposes it on the tube cylinder wall to connect the magnetic circuit. An accumulator is provided on the discharge side of the pump in order to extend the reciprocating stroke length during the pump action that performs the reverse stroke by force and to promote the accumulator action, and further, a pressure adjusting member is provided downstream thereof to increase the accumulator effect of the accumulator. Plunger ring comprising a fluorine-based synthetic resin having an outer diameter larger than that of the electromagnetic plunger on the other outer periphery, leaving an annular outer peripheral edge at each end portion of the electromagnetic plunger. A low-pressure electromagnetic compressor characterized by being fitted with a resin coating.
前記電磁プランジャを圧支する2つのばねの少なくとも1方のばね座は調心構造としたことを特徴とする、請求項1に記載の低圧電磁コンプレッサ。The low-pressure electromagnetic compressor according to claim 1, wherein at least one spring seat of the two springs that support the electromagnetic plunger has a centering structure. 前記電磁コイルへの付勢電流の1つは、商用交流電源から得る半波整流電流であり、その電圧、電流値、電流の周期のいずれか、もしくはその複数のものを加減調整して吐出流体の圧力、流量を可変制御可能としたことを特徴とする前記請求項1または2に記載の低圧電磁コンプレッサ。One of the energizing currents to the electromagnetic coil is a half-wave rectified current obtained from a commercial AC power supply, and the discharge fluid is obtained by adjusting the voltage, current value, current cycle, or a plurality thereof. The low-pressure electromagnetic compressor according to claim 1 or 2, wherein the pressure and flow rate of the compressor can be variably controlled.
JP2003163185A 2003-06-09 2003-06-09 Low pressure electromagnetic compressor Expired - Lifetime JP4159413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163185A JP4159413B2 (en) 2003-06-09 2003-06-09 Low pressure electromagnetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163185A JP4159413B2 (en) 2003-06-09 2003-06-09 Low pressure electromagnetic compressor

Publications (2)

Publication Number Publication Date
JP2004360659A JP2004360659A (en) 2004-12-24
JP4159413B2 true JP4159413B2 (en) 2008-10-01

Family

ID=34055073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163185A Expired - Lifetime JP4159413B2 (en) 2003-06-09 2003-06-09 Low pressure electromagnetic compressor

Country Status (1)

Country Link
JP (1) JP4159413B2 (en)

Also Published As

Publication number Publication date
JP2004360659A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
US9695811B2 (en) Linear compressor
EP1618303B1 (en) System for adjusting resonance frequencies in a linear compressor
EP2818713B1 (en) Linear compressor
KR101454549B1 (en) A linear compressor
US20170321692A1 (en) Linear compressor
KR101892006B1 (en) Apparatus and method for controlling compressor
EP2818711A2 (en) Linear compressor
KR20160000651A (en) A linear compressor and a suction apparatus of the linerar compressor
JP4159413B2 (en) Low pressure electromagnetic compressor
KR101495185B1 (en) Apparatus for controlling linear compressor and method the same
US20090232666A1 (en) Linear Compressor
KR100529937B1 (en) Linear compressor and its method for the same
KR20120137899A (en) Apparatus for controlling compressor and method of the same
JP3765720B2 (en) Electromagnetic compressor for air supply
JP3821512B2 (en) Vibrating compressor
US8963454B2 (en) Apparatus for controlling compressor
CN112253421A (en) Wearable air conditioner is with oilless linear drive compressor
JP4159374B2 (en) Gas electromagnetic pump
KR101637441B1 (en) Apparatus for controlling linear compressor, method thereof, and refrigerating system with the same
JP2003274626A (en) Electromagnetic plunger pump for liquid fluid
US20080213108A1 (en) Linear Compressor
US7932647B2 (en) Electromagnetic reciprocating fluid apparatus
KR20100112480A (en) Discharge valve assembly for linear compressor
CN214273879U (en) Wearable air conditioner is with oilless linear drive compressor
KR101521935B1 (en) Apparatus for controlling linear compressor and method the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R150 Certificate of patent or registration of utility model

Ref document number: 4159413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term