JP2004232530A - Diesel particulate filter - Google Patents

Diesel particulate filter Download PDF

Info

Publication number
JP2004232530A
JP2004232530A JP2003021291A JP2003021291A JP2004232530A JP 2004232530 A JP2004232530 A JP 2004232530A JP 2003021291 A JP2003021291 A JP 2003021291A JP 2003021291 A JP2003021291 A JP 2003021291A JP 2004232530 A JP2004232530 A JP 2004232530A
Authority
JP
Japan
Prior art keywords
exhaust gas
cell
pore diameter
wall
flow type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003021291A
Other languages
Japanese (ja)
Inventor
Osamu Kuroda
修 黒田
Norihiro Shinotsuka
教広 篠塚
Toshifumi Hiratsuka
俊史 平塚
Hiroko Watanabe
裕子 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003021291A priority Critical patent/JP2004232530A/en
Publication of JP2004232530A publication Critical patent/JP2004232530A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning device for effectively filtering PM in exhaust gas in a diesel engine, wherein pressure loss/increase caused by removal of the PM is small. <P>SOLUTION: A pore diameter of a porous cellular wall for filtering the PM of a wall flow type monolithic honeycomb filter is inclined so as to be larger at an inlet side of the exhaust gas and smaller at an outlet side of the exhaust gas. Also, the pore diameter is inclined by laminating a plurality of plates having different pore diameters. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼル機関から排出されるガス中に含まれるパティキュレート(PM)除去するフィルタ、いわゆるディーゼルパーティキュレートフィルタ(DPF)に関わり、特にウォールフロー型モノリスハニカムフィルタの改良に関する。
【0002】
【従来の技術】
自動車等の内燃機関から排出される排ガスに含まれる、炭化水素(HC),一酸化炭素(CO),窒素酸化物(NOx)等は大気汚染物質として人体に悪影響を及ぼす。また、地球環境への悪影響も無視できない。
【0003】
そこで、従来よりこれらの排出量低減には多大な努力が払われてきたが、今後さらに徹底した排出量低減が望まれ、高度な技術開発が必要となっている。
【0004】
また、化石燃料を使用する内燃機関は地球温暖化の原因物質である炭酸ガスを排出するため、燃料消費量の低減が強く要求されている。
【0005】
自動車等の内燃機関には有害物質排出量の一層の低減と燃費低減の両立が不可欠である。
【0006】
ディーゼルエンジンは平均的なガソリンエンジンと比べると燃料消費量が少ない。そこで、排気のクリーン化が達成できれば理想的な内燃機関ひいては理想的な自動車が実現する。
【0007】
ガソリンエンジン排ガス中の主要有害物質は、NOx,HC,COであるが、ディーゼルエンジン排気にはこれにパーティキュレート(PM;Particulate Matter)が加わる。PMは呼吸器に障害をもたらすため、ディーゼル排ガス浄化において避けて通れない物質である。
【0008】
PM対策としては、ディーゼルパーティキュレートフィルタ(DPF)なるフィルタで捕集し、PMの蓄積でフィルタの圧力損失が増大すればPMを燃焼させて、フィルタを再生する方法がある。DPFには各種型式・材質のものが知られているが、その一種に多孔質セラミックス(コーディエライト等)を成形したいわゆるモノリスハニカムのセル(排ガス流路)入口と出口を交互に封じ、入口が開放された(出口が封じられている)セルに排ガスを導入し、排ガスを該セルを構成する多孔質壁面を通過せしめて、入口が封じられ(出口が開放されている)隣接するセルに移動せしめ、この過程でPMを濾過し、隣接セルから最終的にPMを除去した排ガスをモノリス外へ排出する、ウォールフロー型モノリスハニカムフィルタが知られている。
【0009】
例えば、以下に示すような非特許文献1がある。
【0010】
【非特許文献1】
自動車技術シリーズ1、自動車原動機の環境対応技術
p141−142;(社)自動車技術会編、(株)朝倉書店発行、
1997年7月初版発行
さらに、このフィルタに触媒をコートしPMとNOx,HC等の排ガス成分を同時に浄化する方法が、以下に示すような特許文献1及び2がある。
【0011】
【特許文献1】
特開平6−159037号公報
【特許文献2】
特許3012249号等公報
【0012】
【発明が解決しようとする課題】
上記従来技術では、PM除去効率が高く、PMの除去にともなう圧力損失増加の小さい、かつ捕捉したPMの燃焼による除去が容易な触媒及びそれを用いた排気浄化装置を達成することは難しい。そこで、本発明では、PM除去効率が高く、PMの除去にともなう圧力損失増加の小さく、捕捉したPMの燃焼による除去が容易な触媒、例えば、ウォールフロー型モノリスハニカムフィルタおよびそれを用いた排気浄化装置を実現することにある。本発明は、ウォールフロー型モノリスハニカムフィルタの改良に関する。
【0013】
【課題を解決するための手段】
本発明は、モノリスハニカム触媒であって、セルを構成する多孔質壁の細孔径は排ガス入口面側の細孔径を大きく、排ガス出口面側の細孔径を小さく、排ガス入口面側から排ガス出口面側に向かって傾斜させたことを特徴とする。
【0014】
また、多孔質壁は、細孔径の異なる複数の平板を積層して細孔径に傾斜を持たせて構成したことを特徴とする。
【0015】
【発明の実施の形態】
本発明の実施例に拠れば、モノリスハニカムの排ガス入口側のセル(排ガス流路)の開口端を一つおきに(千鳥状に)封じかつ入口開口端が封じられていないセル(排ガス流路)の排ガス出口側開口端を(結果的に一つおきに)封じ、入口側が開放された(出口側が封じられている)セルに排ガスを導入し、排ガスを該セルを構成する多孔質壁内を通過させて入口側が封じられ(出口側が開放された)た隣接するセルに移動せしめ、この過程でPMを濾過し、隣接するセルから最終的にPMを除去した排ガスをモノリスハニカム外へ排出する、ウォールフロー型モノリスハニカムフィルタであって、セルを構成する多孔質壁の細孔径を排ガスの入口面側の細孔径を大きく出口面側の細孔径を小さく、入口面側から出口面側に向かって傾斜させたことを特徴とする、ウォールフロー型モノリスハニカムフィルタ、および該フィルタを用いた排ガス浄化装置である。
【0016】
また、細孔径の異なる複数の平板を積層して細孔径に傾斜を持たせたセル壁を構成したことを特徴とする、ウォールフロー型モノリスハニカムフィルタ、および該フィルタを用いた排ガス浄化装置である。
【0017】
本発明の具体的実施態様を挙げて本発明をさらに詳細に説明する。なお、本発明は以下の実施態様及び実施例に限定されるものでなく、その思想範囲内において各種の実施態様があることは言うまでもない。
【0018】
図1は本発明の方法によるモノリスハニカムフィルタのセル壁におけるPM除去機構の模式図であり、図2は、本発明の方法によるウォールフロー型モノリスハニカムフィルタを排ガス流れ方向に平行な面で切断した断面図であり、図3は、その排ガス入口側端面図である。図1におけるPM5は、必ずしも1次粒子を示したものではなく、2次粒子であっても良い。
【0019】
本発明の方法によるウォールフロー型モノリスハニカムフィルタ1には、一方の表面から他方の表面に通じる多数の連通孔を有する多孔質セル壁4で仕切られて構成される多数のセル(排ガス流路)2が設けられている。
【0020】
排ガス入口側端面において、セル開口端は一つ置きに(千鳥状に)セル目封じ3により封じられ、排ガス出口側開口端面においては、入口側開口端が目封じされていないセル開口端が(結果的に)一つ置きにセル目封じ3により封じられる。その結果、セル2はセル(排ガス入口流路)2Aとセル(排ガス出口流路)2Bに区分される。セル壁4には、セル2Aから2Bに向かって2A側の細孔径が大きく2B側の細孔径が小さくなるよう孔径を傾斜させた連通孔が設けてある。
【0021】
以上の方法で構成されたウォールフロー型モノリスハニカムフィルタは以下のように機能する。
【0022】
PM5を含む排ガス6はセル2Aに導入される。導入された排ガスは、多孔質のセル壁4を通過してセル2Bに移動する。このときPM5は細孔内に捕捉されるが細孔径の大きな2A側からセル2Bに傾斜しているため、粒径の大きなPMは入口側で捕捉され細孔径の小さなPMは出口側で捕捉される。すなわち、セル壁全体を使ってPMが除去される。したがって、フィルタの単位体積あたりのPM除去能力が向上し、PMの捕捉にともなう圧力損失の増加が抑制される。
【0023】
なお、捕捉されたPMは、エンジン運転条件の調整や外部熱源により排ガス温度やフィルタ自体の温度を上昇させて、また、必要に応じて高温ガスを排ガス出口側から導入(いわゆる逆洗)してPMの燃焼を行わしめることができる。この場合も、本発明の方法においてはPMが粒子径により分級されて捕捉されているため、PMの凝集が抑制されて、効果的に燃焼が進行する。
【0024】
なお、セル壁内の細孔径に傾斜を設けるには各種の方法が考えられるが、細孔径の異なる複数の平板を積層する方法も有効な方法である。
【0025】
【発明の効果】
以上から明らかな様に、本発明によれば、ディーゼルから排出されるパティキュレートPMをウォールフロー型モノリスハニカムフィルタで除去するにあたり、PM除去性能が高まり、圧力損失の増加を抑制することができる。PMの燃焼による除去も容易となる。
【図面の簡単な説明】
【図1】本発明の方法によるウォールフロー型モノリスハニカムフィルタのセル壁におけるPM除去機構を示す模式図。
【図2】本発明の代表的な実施態様を示す本発明の方法によるウォールフロー型モノリスハニカムフィルタの構成図(断面図)。
【図3】本発明の代表的な実施態様を示す本発明の方法によるウォールフロー型モノリスハニカムフィルタの構成図(排ガス入口端面図)。
【符号の説明】
1…ウォールフロー型モノリスハニカムフィルタ、2A…セル(排ガス入口流路)、2B…セル(排ガス出口流路)、3…セル目封じ、4…セル壁、5…PM、6…排ガス、7…浄化排ガス。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a filter for removing particulates (PM) contained in gas discharged from a diesel engine, that is, a so-called diesel particulate filter (DPF), and more particularly to an improvement of a wall flow type monolith honeycomb filter.
[0002]
[Prior art]
Hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), and the like, contained in exhaust gas discharged from internal combustion engines of automobiles and the like, adversely affect the human body as air pollutants. In addition, the adverse effects on the global environment cannot be ignored.
[0003]
So far, great efforts have been made to reduce these emissions, but a more thorough reduction of emissions is desired in the future, and advanced technology development is required.
[0004]
In addition, since an internal combustion engine using fossil fuel emits carbon dioxide, which is a substance causing global warming, reduction of fuel consumption is strongly required.
[0005]
It is indispensable for internal combustion engines such as automobiles to achieve both further reduction of harmful substance emissions and reduction of fuel consumption.
[0006]
Diesel engines consume less fuel than average gasoline engines. Therefore, if clean exhaust gas can be achieved, an ideal internal combustion engine and an ideal automobile will be realized.
[0007]
The main harmful substances in the gasoline engine exhaust gas are NOx, HC, and CO, and the particulate matter (PM) is added to the diesel engine exhaust gas. PM is an inevitable substance in diesel exhaust gas purification because it causes respiratory problems.
[0008]
As a countermeasure against PM, there is a method in which the filter is collected by a diesel particulate filter (DPF), and if the pressure loss of the filter increases due to accumulation of PM, the PM is burned to regenerate the filter. Various types and materials of DPF are known, and a kind of monolith honeycomb cell (exhaust gas passage) formed of porous ceramics (cordierite or the like) is alternately sealed with an inlet and an outlet. Exhaust gas is introduced into a cell in which is opened (the outlet is closed), and the exhaust gas is passed through the porous wall surface constituting the cell, and the inlet is closed and an adjacent cell is opened (the outlet is open). There is known a wall flow type monolith honeycomb filter that moves the filter, filters PM in this process, and discharges exhaust gas from which PM has been finally removed from an adjacent cell to the outside of the monolith.
[0009]
For example, there is Non-Patent Document 1 shown below.
[0010]
[Non-patent document 1]
Automotive Technology Series 1, Environmentally Responsive Technology for Automotive Engines, p141-142; Edited by the Society of Automotive Engineers, published by Asakura Shoten Co., Ltd.
In addition, Patent Documents 1 and 2 disclose a method of coating a catalyst on this filter to simultaneously purify PM and exhaust gas components such as NOx and HC.
[0011]
[Patent Document 1]
JP-A-6-159037 [Patent Document 2]
Japanese Patent No. 3012249, etc.
[Problems to be solved by the invention]
In the above-mentioned prior art, it is difficult to achieve a catalyst having high PM removal efficiency, a small increase in pressure loss due to PM removal, and easy removal of captured PM by combustion, and an exhaust gas purification device using the same. Therefore, in the present invention, a catalyst having high PM removal efficiency, a small increase in pressure loss accompanying PM removal, and easy removal of captured PM by combustion, for example, a wall flow type monolith honeycomb filter and exhaust gas purification using the same are provided. It is to implement the device. The present invention relates to an improvement of a wall flow type monolith honeycomb filter.
[0013]
[Means for Solving the Problems]
The present invention relates to a monolithic honeycomb catalyst, wherein the pore diameter of the porous wall constituting the cell is such that the pore diameter on the exhaust gas inlet side is large, the pore diameter on the exhaust gas outlet side is small, and the exhaust gas exit side from the exhaust gas inlet side. It is characterized by being inclined toward the side.
[0014]
In addition, the porous wall is characterized in that a plurality of flat plates having different pore diameters are stacked and the pore diameter is inclined.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the embodiment of the present invention, the cells (exhaust gas flow paths) on the exhaust gas inlet side of the monolith honeycomb are sealed alternately (in a staggered pattern) and the inlet open ends are not sealed (exhaust gas flow paths). ) Is closed (as a result, every other end), and the exhaust gas is introduced into a cell whose inlet side is open (the outlet side is sealed), and the exhaust gas is introduced into a porous wall constituting the cell. To move to the adjacent cell where the inlet side is sealed (the outlet side is open), and in this process, the PM is filtered and the exhaust gas from which the PM is finally removed from the adjacent cell is discharged out of the monolith honeycomb. A wall flow type monolith honeycomb filter, wherein the pore diameter of the porous wall constituting the cell is increased on the inlet side of the exhaust gas, the pore diameter on the outlet side is reduced, and from the inlet side toward the outlet side. Tilt Characterized in that an exhaust gas purifying apparatus using wall-flow type monolith honeycomb filter, and the filter.
[0016]
Further, there is provided a wall flow type monolith honeycomb filter, wherein a plurality of flat plates having different pore diameters are stacked to form a cell wall having a gradient in the pore diameter, and an exhaust gas purification device using the filter. .
[0017]
The present invention will be described in more detail with reference to specific embodiments of the present invention. The present invention is not limited to the following embodiments and examples, and it goes without saying that there are various embodiments within the scope of the idea.
[0018]
FIG. 1 is a schematic view of a PM removing mechanism on a cell wall of a monolith honeycomb filter according to the method of the present invention, and FIG. 2 is a wall flow type monolith honeycomb filter according to the method of the present invention cut along a plane parallel to the exhaust gas flow direction. FIG. 3 is a sectional view of the exhaust gas inlet side end view. PM5 in FIG. 1 does not necessarily indicate primary particles, but may be secondary particles.
[0019]
In the wall flow type monolith honeycomb filter 1 according to the method of the present invention, a large number of cells (exhaust gas passages) constituted by a porous cell wall 4 having a large number of communication holes communicating from one surface to the other surface. 2 are provided.
[0020]
On the exhaust gas inlet side end face, every other cell opening end (in a staggered manner) is sealed by cell plugging 3, and on the exhaust gas outlet side opening end face, the cell opening end where the inlet side opening end is not plugged is ( As a result) every other cell is sealed by the cell seal 3. As a result, the cell 2 is divided into a cell (exhaust gas inlet passage) 2A and a cell (exhaust gas outlet passage) 2B. The cell wall 4 is provided with a communication hole whose diameter is inclined such that the pore diameter on the 2A side becomes larger and the pore diameter on the 2B side becomes smaller from the cells 2A to 2B.
[0021]
The wall flow type monolith honeycomb filter configured by the above method functions as follows.
[0022]
Exhaust gas 6 containing PM 5 is introduced into cell 2A. The introduced exhaust gas passes through the porous cell wall 4 and moves to the cell 2B. At this time, PM5 is trapped in the pores, but is inclined from the large pore diameter 2A side to the cell 2B. Therefore, PM having a large particle diameter is trapped at the entrance side, and PM having a small pore diameter is trapped at the exit side. You. That is, PM is removed using the entire cell wall. Therefore, the PM removal capacity per unit volume of the filter is improved, and an increase in pressure loss due to the capture of PM is suppressed.
[0023]
In addition, the trapped PM raises the temperature of the exhaust gas or the temperature of the filter itself by adjusting the engine operating conditions or an external heat source, and introduces a high-temperature gas from the exhaust gas outlet side (so-called backwashing) as necessary. PM combustion can be performed. Also in this case, in the method of the present invention, the PM is classified and trapped by the particle diameter, so that the aggregation of the PM is suppressed and the combustion proceeds effectively.
[0024]
Various methods are conceivable for providing a gradient in the pore diameter in the cell wall, and a method of laminating a plurality of flat plates having different pore diameters is also an effective method.
[0025]
【The invention's effect】
As is clear from the above, according to the present invention, when particulate PM discharged from diesel is removed by the wall flow type monolith honeycomb filter, PM removal performance is enhanced, and an increase in pressure loss can be suppressed. Removal by burning PM is also facilitated.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a PM removing mechanism on a cell wall of a wall flow type monolith honeycomb filter according to a method of the present invention.
FIG. 2 is a configuration diagram (cross-sectional view) of a wall-flow type monolith honeycomb filter according to the method of the present invention showing a typical embodiment of the present invention.
FIG. 3 is a configuration diagram (an end view of an exhaust gas inlet) of a wall flow type monolith honeycomb filter according to a method of the present invention showing a typical embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Wall flow type monolith honeycomb filter, 2A ... cell (exhaust gas inlet channel), 2B ... cell (exhaust gas outlet channel), 3 ... cell sealing, 4 ... cell wall, 5 ... PM, 6 ... exhaust gas, 7 ... Purified exhaust gas.

Claims (2)

排ガス入口面側は開口され、排ガス出口面側は開口されていない第1のセルと、上記排ガス入口面側は開口されず、上記排ガス出口面側は開口されている第2のセルとが少なくとも1つ以上隣接され、上記第1のセルから流入された排ガスを上記第2のセルへ流出する多孔質壁を上記第1のセル及び上記第2のセルに有するモノリスハニカム触媒であって、上記第1又は上記第2のセルを構成する多孔質壁の細孔径は上記排ガス入口面側の細孔径を大きく、上記排ガス出口面側の細孔径を小さく、上記排ガス入口面側から上記排ガス出口面側に向かって傾斜させたことを特徴とする排ガス浄化触媒。At least a first cell in which the exhaust gas inlet surface is open and the exhaust gas outlet surface is not open, and a second cell in which the exhaust gas inlet surface is not opened and the exhaust gas outlet surface is open are at least. A monolithic honeycomb catalyst having one or more adjacent porous walls in the first cell and the second cell for discharging exhaust gas flowing from the first cell to the second cell, The pore diameter of the porous wall constituting the first or second cell is such that the pore diameter on the exhaust gas inlet surface side is large, the pore diameter on the exhaust gas outlet surface side is small, and the exhaust gas outlet surface from the exhaust gas inlet surface side. An exhaust gas purifying catalyst characterized by being inclined toward the side. 請求項1において、
上記多孔質壁は、上記細孔径の異なる複数の平板を積層して上記細孔径に傾斜を持たせて構成したことを特徴とするモノリスハニカム触媒。
In claim 1,
A monolith honeycomb catalyst, wherein the porous wall is formed by laminating a plurality of flat plates having different pore diameters so as to have a gradient in the pore diameter.
JP2003021291A 2003-01-30 2003-01-30 Diesel particulate filter Pending JP2004232530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021291A JP2004232530A (en) 2003-01-30 2003-01-30 Diesel particulate filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021291A JP2004232530A (en) 2003-01-30 2003-01-30 Diesel particulate filter

Publications (1)

Publication Number Publication Date
JP2004232530A true JP2004232530A (en) 2004-08-19

Family

ID=32950666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021291A Pending JP2004232530A (en) 2003-01-30 2003-01-30 Diesel particulate filter

Country Status (1)

Country Link
JP (1) JP2004232530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026805A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic structure
WO2009060933A1 (en) * 2007-11-07 2009-05-14 Honda Motor Co., Ltd. Exhaust gas cleaner
CN110201666A (en) * 2019-06-20 2019-09-06 中自环保科技股份有限公司 A kind of gasoline engine granule capturing catalyst and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026805A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic structure
JP4819814B2 (en) * 2005-08-31 2011-11-24 日本碍子株式会社 Honeycomb structure and honeycomb catalyst body
US8609581B2 (en) 2005-08-31 2013-12-17 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic body
WO2009060933A1 (en) * 2007-11-07 2009-05-14 Honda Motor Co., Ltd. Exhaust gas cleaner
JP2009112962A (en) * 2007-11-07 2009-05-28 Honda Motor Co Ltd Exhaust gas cleaner
US8449643B2 (en) 2007-11-07 2013-05-28 Honda Motor Co., Ltd. Exhaust gas cleaner
CN110201666A (en) * 2019-06-20 2019-09-06 中自环保科技股份有限公司 A kind of gasoline engine granule capturing catalyst and preparation method thereof
CN110201666B (en) * 2019-06-20 2022-01-25 中自环保科技股份有限公司 Gasoline engine particle trapping catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
US7618596B2 (en) Honeycomb filter and exhaust gas purification system
US7806956B2 (en) Tuning particulate filter performance through selective plugging and use of multiple particulate filters to reduce emissions and improve thermal robustness
US20070104632A1 (en) Refractory exhaust filtering method and apparatus
JP2004084666A (en) Removal of soot fine particles from exhaust gas of diesel engine
KR101916049B1 (en) Catalyzed particulate filter
JPS62225221A (en) Particulates trap
JP2003301713A (en) Exhaust emission control device of engine
EP1601440B1 (en) Method for filtering exhaust particulates
EP2191108B1 (en) Filter media and method of filtering exhaust gas
JP4373067B2 (en) Honeycomb structure, manufacturing method thereof, and exhaust gas purification system using the honeycomb structure
JP4222599B2 (en) Honeycomb structure, manufacturing method thereof, and exhaust gas purification system using the honeycomb structure
EP2761146B1 (en) Apparatus and method for filtering engine exhaust gases
JP4412641B2 (en) Exhaust gas purification device and exhaust gas purification method
JP2002119867A (en) Catalytic structural body for purifying waste gas
JPH0472413A (en) Backwash type particulate filter
KR101776746B1 (en) Catalyzed particulate filter
JP2004232530A (en) Diesel particulate filter
KR101786698B1 (en) Catalyzed particulate filter
JP2006102742A (en) Filter assembly for exhaust treatment apparatus
KR101316878B1 (en) Exhaust gas filter
JP2004243189A (en) Purifying apparatus for exhaust gas of internal combustion engine
JP2003035126A (en) Exhaust emission control device for diesel engine
JP3780268B2 (en) Diesel engine exhaust gas purification system
JPH04301130A (en) Filter for cleaning exhaust gas of internal combustion engine
JP2007046516A (en) Exhaust gas treatment device