JP2004232018A - Method for producing complex structure type high tension cold-rolled steel sheet excellent in deep drawability - Google Patents

Method for producing complex structure type high tension cold-rolled steel sheet excellent in deep drawability Download PDF

Info

Publication number
JP2004232018A
JP2004232018A JP2003021699A JP2003021699A JP2004232018A JP 2004232018 A JP2004232018 A JP 2004232018A JP 2003021699 A JP2003021699 A JP 2003021699A JP 2003021699 A JP2003021699 A JP 2003021699A JP 2004232018 A JP2004232018 A JP 2004232018A
Authority
JP
Japan
Prior art keywords
cold
phase
annealing
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003021699A
Other languages
Japanese (ja)
Other versions
JP4178974B2 (en
Inventor
裕美 ▲吉▼田
Hiromi Yoshida
Saiji Matsuoka
才二 松岡
Takashi Sakata
敬 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003021699A priority Critical patent/JP4178974B2/en
Publication of JP2004232018A publication Critical patent/JP2004232018A/en
Application granted granted Critical
Publication of JP4178974B2 publication Critical patent/JP4178974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a complex structure type high tension cold-rolled steel sheet excellent in deep drawability. <P>SOLUTION: A steel slab having the composition by mass% of 0.01-0.05% C, 0.1-1.5% Si, 1.0-3.0% Mn, ≤0.10% P, ≤0.02% S, 0.005-0.1% Al, ≤0.02% N, 0.01-0.2% V and 0.001-0.2% Nb and satisfying the relation of 0.5× C/12 ≤(V/51+Nb/93) ≤2×C/12, is subjected to hot-rolling and cold-rolling, in order. Thereafter, annealing is applied at 650-780°C and again, the cold-rolling is applied and successively, after cooling, this steel sheet is heated at the temperature higher than the temperature obtaining the structure containing ferrite-phase and martensite-phase and higher than recrystallizing temperature and ≤950°C, and the annealing, in which after heating to the above temperature, the cooling is applied at an average cooling speed of at least 5°C/s until it reaches 400°C. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用鋼板等の使途に有用な深絞り性に優れた、引張強さが440MPa以上の複合組織型高張力冷延鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、地球環境の保全という観点から、自動車の燃費改善が要求されている。加えて、車両衝突時に乗員を保護する観点から、自動車車体の安全性向上も要求されている。このようなことから、自動車車体の軽量化と強化の双方を満たすための検討が積極的に進められている。
自動車車体の軽量化と強化を同時に満足させるには、部品素材を高強度化することが効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。
【0003】
鋼板を素材とする自動車部品の多くがプレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性を具備していることが必要とされる。しかし、−般に、鋼板を高強度化すると、ランクフォード値(r値)および延性(El)が低下してプレス成形性が劣化するとともに、降伏応力が上昇して形状凍結性が劣化する傾向がある。特に引張強さ(TS)と延性(El)との積TS×Elで表される、いわゆる強度伸びバランスの値が大きいほどプレス成形性には有利であり、従来から鋼板の高強度化と共に高延性化が図られてきた。
高強度と高延性を兼ね備えた鋼板については、歪み誘起塑性(TRIP)現象を利用した残留オーステナイト鋼(残留γ鋼)を始めとして、フェライト相とマルテンサイト相の2相を有するDual‐Phase鋼(DP鋼)など、いわゆる複合組織鋼についての開発研究が進められている。
【0004】
プレス成形性の良好な高張力鋼板の代表例としては、フェライト相とマルテンサイト相の複合組織からなる複合組織鋼板が挙げられ、特に連続焼鈍後ガスジェット冷却で製造される複合組織鋼板は、降伏応力(YS)が低く、さらに高延性(El)と優れた焼付け硬化性とを兼ね備えている。しかしながら、上記複合組織鋼板は、加工性については概ね良好であるものの、ランクフォード値(r値)が低く、深絞り成形性に劣るという欠点があった。
【0005】
近年では、自動車の高強度化に伴い、引張強さが440MPa以上、特に590MPa級の高強度鋼板にも、高延性のみならず優れた深絞り性、すなわち高r値が要求される。
【0006】
これまでにも、複合組織鋼板のランクフォード値(r値)を上昇させて深絞り性を改善する試みがなされてきた。例えば、特許文献1では、冷間圧延後、再結晶温度〜Ac3変態点の温度で箱焼鈍を行い、その後、複合組織とするため700〜800℃に加熱した後、焼入れ焼戻しを伴う連続焼鈍を行う技術が開示されている。しかしながら、この方法では、連続焼鈍時に焼入れ焼戻しを行うため降伏応力が高く、低い降伏比が得られない。なお、ここで降伏比(YR)とは、引張強さ(TS)に対する降伏応力(YS)の比であり、YR=YS/TSである。この高降伏応力の鋼板には、プレス時にプレス部品の形状凍結性が悪いという欠点がある。
【0007】
【特許文献1】
特公昭55−10650号公報
【0008】
この高降伏応力を改善するための方法としては、特許文献2に開示されている。この方法は、高いランクフォード値(r値)を得るためにまず箱焼鈍を行うが、箱焼鈍時の温度をフェライト相(α)−オーステナイト相(γ)の2相域とし、均熱時にα相からγ相にMnを濃化させる。このMn濃化相は連続焼鈍時に優先的にγ相となり、ガスジェット程度の冷却速度でも混合組織が得られ、さらに降伏応力も低い。しかし、この方法では、Mn濃化のためα相とγ相の2相域という比較的高温で長時間の箱焼鈍が必要であり、そのため鋼板間の密着の多発、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造工程上、多くの問題がある。従来、このように高いランクフォード値(r値)と低い降伏応力(YS)を兼ね備えた高張力鋼板を工業的に安定して製造することは困難であった。
【0009】
【特許文献2】
特開昭55−100934号公報
【0010】
加えて、特許文献3では、0.012質量%C−0.32質量%Si−0.53質量%Mn−0.03質量%P−0.051質量%Tiの組成の鋼を冷間圧延後、α相とγ相の2相域温度である870℃に加熱後、100℃/sの平均冷却速度にて冷却することにより、r値=1.61、YS=224MPa、TS=482MPaの非常に高いランクフォード値(r値)と低降伏応力を有する複合組織型冷延鋼板が製造可能となる技術が開示されている。しかしながら、100℃/sという高い冷却速度を、通常の連続焼鈍ラインで実現することは困難であるため、水焼入れ設備が必要となる他、水焼入れした冷延鋼板は、表面処理性の問題も顕在化するため、製造設備上および材質上の問題がある。
【0011】
【特許文献3】
特公平1−35900号公報
【0012】
一般に、高r値化には{111}再結晶集合組織を発達させることが有効であり、そのためには冷間圧延時の圧下率をある程度まで高くする、すなわち歪みエネルギーを導入することが必要になる。しかしながら、高強度鋼板では、高冷延圧下率を達成しようとすると、冷間圧延時のロールへの負荷が大きくなり、冷間圧延時におけるトラブル発生の危険性が増大すると共に、生産性の低下が懸念される。つまり、高強度鋼板は、1回の冷間圧延工程では、高冷延圧下率を出すことが困難であり、従って、引き続き再結晶焼鈍を施しても{111}再結晶集合組織が発達しにくくなる。
【0013】
深絞り用冷延鋼板のr値を高める方法として、2回冷間圧延と2回焼鈍を組合せた、いわゆる2回冷延−2回焼鈍法が従来から提案されている。例えば、特許文献4、特許文献5及び特許文献6では、極低炭素冷延鋼板に2回冷間圧延と2回焼鈍を施すことにより、強度レベルがTS<440MPaのフェライト単相鋼である冷延鋼板のr値を、3.0以上にまで高めることができる技術が開示されている。これらの技術は、2回の冷間圧延による高歪みエネルギーの蓄積と、2回の再結晶焼鈍による{111}再結晶集合組織形成の集積を図ったものである。
【0014】
【特許文献4】
特開平3−97812号公報
【特許文献5】
特開平3−97813号公報
【特許文献6】
特開平5−209228号公報
【0015】
しかしながら、これらの技術を本発明である、C含有量が0.01〜0.05質量%のセミ極低炭素鋼を基本組成とする、引張強さが440MPa以上の複合組織型高張力冷延鋼板に適用した場合、1次焼鈍(中間焼鈍)次第では、▲1▼鋼板が回復・再結晶による軟化を示さず、2次冷間圧下率40%以上の確保には、ロールへの負荷が高まりトラブルが多発する、▲2▼1次焼鈍中に炭化物が溶解して固溶Cが多量に生じるため2次焼鈍時に{111}再結晶集合組織が発達しない、などの問題が生じる。
【0016】
また、特許文献7には、深絞り性に優れた複合組織型冷延鋼板およびその製造方法が開示されている。そして、引張強さが590MPa以上でr値が1.9の特性が得られることが開示されている。しかしながら、そのときの冷延圧下率は、いずれも70%という高圧下率の冷間圧延であるため、設備能力によっては幅狭による圧延を余儀なくされるなど制約も多く、また、上記したように圧延時のトラブル多発といった問題点が残る。
【0017】
【特許文献7】
特開2002−226941号公報
【0018】
【発明が解決しようとする課題】
本発明は、上記の問題を材質面でも製造面でも有利に解決したもので、鋼組成として特にCとVおよびNbの含有量を適正範囲に規制するとともに、製造条件として、特に1次焼鈍温度を制御した、2回冷延−2回焼鈍という工程を採用することにより、高いランクフォード値を有する深絞り性に優れた複合組織型高張力冷延鋼板を安定して製造できる技術を提案することを目的とする。
【0019】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するため、冷延鋼板のミクロ組織および再結晶集合組織におよぼす合金元素、冷間圧延条件および焼鈍条件の影響について鋭意研究を重ねた。その結果、C含有量を0.01〜0.05質量%とし、適正範囲のV、Nb量を含有することにより、再結晶焼鈍前には、固溶Cを極力低減させて{111}再結晶集合組織を発達させることにより、高いランクフォード値(r値)が得られ、冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度以上、すなわちα相とγ相の2相域温度以上で再結晶焼鈍し、その後、少なくとも400℃までは平均冷却速度5℃/s以上として室温まで冷却し、第2相としてマルテンサイト相を生成させることで、高強度にもかかわらず延性に優れ、さらにランクフォード値が高く、深絞り成形性にも優れる複合組織型高張力冷延鋼板が製造可能であることを見出した。特に、冷間圧延時に圧延ロールへの負荷を極力低減させた上で、高強度鋼の冷間圧下率を高くし、できるだけ{111}再結晶集合組織を発達させるためには、1回目の冷間圧延後、炭化物が殆ど溶けず(すなわち、固溶Cが少ない状態に維持)、かつ鋼板が回復を起こすような温度域である650〜780℃で焼鈍し、次いで再び2回目の冷間圧延を施し、次いで、冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度以上かつ再結晶温度以上、950℃以下に加熱した後、少なくとも400℃までは平均冷却速度5℃/s以上として冷却する焼鈍を施すことが有効であることを見出した。
【0020】
ここで、本発明の方法で製造した複合組織型冷延鋼板とは、主相がフェライト相であり、面積率で1%以上のマルテンサイト相を含む第2相との複合組織鋼板である。主相のフェライト相は主としてポリゴナルフェライト相であるが、オーステナイト域からの冷却過程により生成した転位密度の高いベイニチックフェライト相が混在していても何ら問題はない。また、第2相は、面積率で1%以上のマルテンサイト相単独としても、あるいはこれに副相として残留オーステナイト相、パーライト相、ベイナイト相などいずれかが混在していてもよい。
【0021】
まず、本発明者らが行った基礎的な実験結果について説明する。
質量%で、C:0.02%、Si:0.5%、Mn:2.0%、P:0.05%、S:0.005%、Al:0.03%、N:0.002%を基本組成とし、これにV:0.01〜0.1質量%の範囲およびNb:0.001〜0.16質量%の範囲で添加することによって、異なるVおよびNb含有量を有する種々の鋼素材(シートバー)について、1250℃に加熱しこの加熱温度で均熱保持した後、仕上圧延終了温度が880℃となるように3パス圧延を行って板厚4.0mmとした。なお、仕上圧延終了後、コイル巻取り処理として650℃×3hの保温相当処理を施した。引き続き、圧下率50%の冷間圧延を施して板厚2.0mmとして、これら冷延板に、700〜850℃で1次焼鈍を施した後、空冷した。さらに、圧下率60%の冷間圧延を施して板厚0.8mmとし、次いで、700〜970℃の温度域で2次連続焼鈍(再結晶焼鈍)を施し、その後、少なくとも400℃までは平均冷却速度5℃/s以上として室温まで冷却する焼鈍を施した。
【0022】
得られた冷延鋼板について、引張試験を実施し引張特性を調査した。引張試験は、JIS5号引張試験片を用いて行った。引張強さTSおよび延性Elは、圧延方向に対して垂直方向に引張試験を行ったときの値である。r値は、圧延方向(r)、圧延方向に45度方向(r)および圧延方向に垂直(90度)方向(r)の平均r値{=(r +r +2×r)/4}として求めた。
【0023】
図1は、2回冷延(圧下率:50〜60%)−2回焼鈍(700〜800℃)工程で得られた冷延鋼板のr値と強度伸びバランス(TS×El)に及ぼすV、NbおよびC含有量の影響を示した図であり、横軸はVおよびNbの含有量とC含有量の原子比((V/51+Nb/93)/(C/12))であり、縦軸はr値と強度伸びバランス(TS×El)を上下に分けて示す。
【0024】
図1から、鋼スラブ中のVおよびNbの含有量をCとの原子比にして0.5〜2.0の範囲に制限することにより、高いr値と高い強度伸びバランスが得られ、高r値と高い延性Elを有する複合組織型冷延鋼板が製造可能となることが明らかになった。
【0025】
次に、図1で用いた冷延鋼板のうち、(V/51+Nb/93)/(C/12)=1.2の鋼素材素材に冷間圧延を施し、700〜850℃の温度範囲で1次焼鈍を施し、その後、再び2回目の冷間圧延を施してから、さらに800℃で加熱した後に、少なくとも400℃までは平均冷却速度5℃/s以上として冷却する2次連続焼鈍(再結晶焼鈍)を施すことによって製造された種々の冷延鋼板において、一次焼鈍温度と製造された冷延鋼板のランクフォード(r値)との関係を図2に示す。
【0026】
図2の結果から、1次連続焼鈍温度を780℃以下にすることで、高いランクフォード値が得られ、深絞り性に優れた複合組織型冷延鋼板が2回冷延−2回焼鈍工程で製造可能であることがわかる。
【0027】
図3は、本発明の2回冷延−2回焼鈍工程(本発明法)と、従来の1回冷延−1回焼鈍工程(従来法)とで製造した冷延鋼板について、トータル圧下率(%)がr値に及ぼす影響を示したものである。
【0028】
図3の結果から、高圧下率に伴い、r値が上昇する(これは一般的な傾向である。)が、累積で同じトータル圧下率になる場合であっても、従来法よりも本発明法の方がr値が高くなっているのがわかる。
【0029】
本発明の冷延鋼板では、1次焼鈍過程においては、650〜780℃での焼鈍処理により、圧延組織が回復(一部再結晶)することで、2回目の冷間圧延が容易になり、トータルで高冷延圧下率を達成でき、かつ熱延板で形成されていた炭化物が殆ど溶けず、固溶Cが極力少ない状態に維持できるため、2次連続焼鈍(再結晶焼鈍)前にも固溶Cおよび固溶Nが少ない状態が保たれ、2次連続焼鈍時に再結晶温度以上に加熱した際、{111}再結晶集合組織が強く発達し、高r値が得られる。
【0030】
特許文献4、5および6に開示されているような温度域で1次連続焼鈍(再結晶焼鈍)させた場合、固溶Cが多量に存在し、これを引き続き2次冷延−2次連続焼鈍しても、{111}再結晶集合組織はさらに発達することはなく、むしろr値に好ましくない再結晶集合組織が形成することが明らかになった。
【0031】
すなわち、1次焼鈍温度は、炭化物が殆ど溶けないような温度で行うべきであり、たとえその温度で完全に再結晶せずとも、2回冷延−2回焼鈍(再結晶焼鈍)後には、強い{111}再結晶集合組織が発達し、1回冷延−1回焼鈍法よりもr値が高くなることを見出した。もちろん、炭化物が溶解しない温度域で再結晶が進行することは何ら問題ない。さらに、1次焼鈍温度は少なくとも回復が起こる650以上であることが、2回冷延−2回焼鈍(再結晶焼鈍)後の強い{111}再結晶集合組織の発達と、2回冷間圧延時における圧延ロールへの負荷軽減には不可欠であることも見出した。
【0032】
本発明は、上記した知見に基づき、さらに検討して完成されたものであり、本発明の要旨は下記のとおりである。
(1)質量%で
C:0.01〜0.05%、Si:0.1〜1.5%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%およびNb:0.001〜0.2%を含有し、かつ、VおよびNbとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93)≦2×C/12
なる関係を満たす組成になる鋼スラブを、熱間圧延し、次いで冷間圧延を施し、その後、650〜780℃に加熱する焼鈍を施してから再び冷間圧延を施し、次いで、冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度以上でかつ再結晶温度以上、950℃以下に加熱した後、少なくとも400℃までは平均冷却速度5℃/s以上として冷却する焼鈍を施すことを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。
【0033】
(2)質量%で
C:0.01〜0.05%、Si:0.1〜1.5%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%、Nb:0.001〜0.2%およびTi:0.001〜0.3%を含有し、かつ、V、NbおよびTiとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12
なる関係を満たす組成になる鋼スラブを、熱間圧延し、次いで冷間圧延を施し、その後、650〜780℃に加熱する焼鈍を施してから再び冷間圧延を施し、次いで、冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度以上でかつ再結晶温度以上、950℃以下に加熱した後、少なくとも400℃までは平均冷却速度5℃/s以上として冷却する焼鈍を施すことを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。
【0034】
(3)鋼スラブは、上記組成に加えてさらにMo:0.01〜0.5質量%を含有することを特徴とする、上記(1)または(2)に記載の深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。
【0035】
【発明の実施の形態】
本発明の方法で製造した冷延鋼板は、引張強さTSが440MPa以上の深絞り性に優れた複合組織型高張力冷延鋼板である。
【0036】
かかる複合組織型高張力冷延鋼板は、主相がフェライト相であり、さらに面積率で1%以上のマルテンサイト相を含む第2相との複合組織鋼板である。主相のフェライト相は主としてポリゴナルフェライト相であるが、オーステナイト域からの冷却過程により生成した転位密度の高いベイニチックフェライト相が混在していても何ら問題はない。また、第2相は、面積率で1%以上のマルテンサイト相単独としても、あるいはこれに副相として残留オーステナイト相、パーライト相、ベイナイト相などいずれかが混在していてもよい。主相であるフェライト相は{111}集合組織が発達しており、高いr値を有する。
【0037】
低い降伏応力(YS)と高い強度伸びバランス(TS×El)を有し、優れた深絞り性を有する冷延鋼板とするために、本発明では冷延鋼板の組織を、主相であるフェライト相と、マルテンサイト相を含む第2相との複合組織とする必要がある。主相であるフェライト相は、面積率で80%以上とすることが好ましい。フェライト相の面積率が80%未満では、高い強度伸びバランスを確保することが困難となり、プレス成形性が低下する傾向があるからである。また、さらに良好な延性と穴拡げ性が要求される場合には、主相のポリゴナルフェライト相中に占めるベイニチックフェライト相の割合が、面積率で5%以上とするのが好ましい。なお、複合組織の利点を利用するため、フェライト相は99%以下とするのが好ましい。
【0038】
また、第2相として、本発明では、マルテンサイト相が存在することが必要であり、組織全体に対する面積率で1%以上含有するような複合組織鋼である。マルテンサイト相が面積率で1%未満では、低い降伏比と高い強度伸びバランス(TS×El)を同時に満足させることが難しい。なお、第2相は、面積率で1%以上のマルテンサイト相単独としても、あるいは面積率で1%以上のマルテンサイト相と、副相としてそれ以外のパーライト相、ベイナイト相、残留オーステナイト相のいずれかとの混合としてもよい。
【0039】
1次連続焼鈍時には、炭化物が極力溶解しないことが重要である。ここで、本発明法において生成される鋼中の炭化物とは、主にVおよびNb系の複合炭化物である。2次連続(再結晶)焼鈍前には固溶C量が極力少ない方が好ましく、すなわち、1次連続焼鈍中に溶解してしまう炭化物の量は、例えば、熱間圧延した熱延板段階で析出している炭化物の50%以下とすることが好ましい。
【0040】
次に、本発明の製造方法に用いた鋼スラブの組成を限定した理由について説明する。なお、質量%は単に%と記す。
C:0.01〜0.05%
Cは、主相であるフェライト相とマルテンサイト相の複合組織の形成を促進し、さらに鋼板の強度を増加する元素であり、本発明では複合組織形成の観点から0.01%以上含有する必要がある。一方、0.05%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り成形性および延性を低下させる。このため、本発明では、C含有量は0.01〜0.05%に限定した。
【0041】
Si:0.1〜1.5%
Siは、鋼板を高強度化すると同時に延性向上にも寄与する、すなわち強度伸びバランスを向上させることができる有用な強化元素であり、この効果を得るためには、Si含有量は0.1%以上とする必要がある。しかしながら、Si含有量が1.5%を超えると、延性向上の効果が小さくなると同時に深絞り性の劣化を招き、さらに表面性状が悪化する。このため、Si含有量は0.1〜1.5%に限定した。
【0042】
Mn:1.0〜3.0%
Mnは、鋼を強化する作用があり、さらに主相であるフェライト相と、第2相であるマルテンサイト相との複合組織が得られる臨界冷却速度を低くする。つまり、主相であるフェライト相と、第2相であるマルテンサイト相の複合組織の形成を促進する作用を有しており、焼鈍後の冷却速度に応じ含有するのが好ましい。臨界冷却速度未満での緩慢な冷却速度ではマルテンサイト相は生成されず、代わりにベイナイト相あるいはパーライト相が生成されるが、第2相にマルテンサイト相が存在しない場合、強度伸びバランスが低下する傾向にある。したがって、マルテンサイト相の生成を容易にするため、すなわち臨界冷却速度を低くするためには、Mnの添加が有効となる。また、Mnは、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて含有するのが好ましい。このような効果は、Mnを1.0%以上含有させることで顕著となる。一方、Mn含有量が3.0%を超えると、深絞り性および溶接性が劣化する。このため、本発明ではMn含有量は1.0〜3.0%の範囲に限定した。
【0043】
P:0.10%以下
Pは鋼を強化する作用があり、所望の強度に応じて適宜含有させることができ、この効果を得るためには、Pは0.005%以上含有することが好ましい。しかしながら、P含有量が0.10%を超えると、強度伸びバランスが低下するとともに深絞り性が劣化する傾向にある。このため、P含有量は0.10%以下に限定した。なお、より優れたプレス成形性が要求される場合には、P含有量は0.08%以下とするのが好ましい。
【0044】
S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ成形性の劣化をもたらす元素であるため、できるだけ低減するのが好ましいが、0.02%以下に低減すると、さほど悪影響を及ぼさなくなることから、本発明ではS含有量は0.02%を上限とした。なお、より優れた伸びフランジ成形性が要求される場合には、S含有量は0.01%以下とするのが好ましく、より好ましくは0.005%以下である。
【0045】
Al:0.005〜0.1%
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有用な元素であるが、0.005%未満では添加の効果がなく、一方、0.1%を超えて含有してもより一層の脱酸効果は得られず、逆に深絞り性が劣化する.このため、Al含有量は0.005〜0.1%に限定した。なお、本発明では、Al脱酸以外の脱酸方法による溶製方法を排除するものではなく、たとえばTi脱酸やSi脱酸を行ってもよく、これらの脱酸法による鋼板も本発明の範囲に含まれる。その際、CaやREM等を溶鋼に添加しても、本発明鋼板の特徴はなんら阻害されず、CaやREM等を含む鋼板も本発明範囲に含まれるのは勿論である。
【0046】
N:0.02%以下
Nは、固溶強化や歪時効硬化で鋼板の強度を増加させる元素であるが、0.02%を超えて含有すると、鋼板中に窒化物が増加し、それにより鋼板の深絞り性が顕著に劣化する。このため、Nは0.02%以下に限定した。なお、よりプレス成形性の向上が要求される場合にはNは低減させることが好ましく、0.004%以下とするのが好適である。
【0047】
V:0.01〜0.2% 、Nb:0.001〜0.2%でかつ0.5×C/12≦(V/51+Nb/93)≦2×C/12の関係を満たすこと
VおよびNbは、本発明において最も重要な元素であり、再結晶前には固溶CをVおよびNb系炭化物として析出固定することにより、{111}再結晶集合組織を発達させて高いランクフォード値を得ることができる。さらに、2次焼鈍である再結晶焼鈍時には、VおよびNb系炭化物を溶解させて固溶Cを多量にオーステナイト相に濃化させ、その後の冷却過程においてマルテンサイト変態させることにより、主相であるフェライト相と、第2相であるマルテンサイト相との複合組織鋼板を得る。このような効果を奏するには、VおよびNbの含有量がそれぞれ0.01%以上および0.001%以上でかつ、C、V、Nbの含有量(質量%)が0.5×C/12≦(V/51+Nb/93)の関係を満足することが必要である。つまり、V含有量が0.01%未満若しくはNb含有量が0.001%未満であるか、あるいは、0.5×C/12>(V/51+Nb/93)では、固溶Cが多量に存在し、{111}再結晶集合組織が発達せず、高r値が得られない。一方、VおよびNbの少なくとも一方の含有量が0.2%を超えるか、あるいは、C、V、Nbの含有量(質量%)が(V/51+Nb/93)>2×C/12であると、2次焼鈍である再結晶焼鈍時にVおよびNb系炭化物の溶解が起こりにくくなるため、主相であるフェライト相と、第2相であるマルテンサイト相の複合組織が得られない。したがって、本発明では、V:0.01〜0.2% 、Nb:0.001〜0.2%でかつ0.5×C/12≦(V/51+Nb/93)≦2×C/12の関係を満たすことに限定した。
【0048】
また、本発明では、上記した組成に加えて、Ti:0.001〜0.3%を含有することが好ましく、この場合には、上記C、V、Nbの含有量(質量%)の関係式である0.5×C/12≦(V/51+Nb/93)≦2×C/12に代えて、上記C、V、Nb、Tiの含有量(質量%)の関係式、すなわち0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12なる関係式を満たすことが必要である。
Tiは炭化物形成元素であり、再結晶前には固溶CをV、NbおよびTi系炭化物として析出固定することにより、{111}再結晶集合組織を発達させて高いランクフォード値を得る。さらに、2次焼鈍である再結晶焼鈍時には、V、NbおよびTi系炭化物を溶解させて固溶Cを多量にオーステナイト相に濃化させ、その後の冷却過程においてマルテンサイト変態させることにより、主相であるフェライト相と、第2相であるマルテンサイト相との複合組織鋼板を得る。このような効果を奏するには、V含有量が0.01%以上、Nb含有量が0.001%以上、Ti含有量が0.001%以上でかつ0.5×C/12≦(V/51+Nb/93+Ti/48)の関係を満足することが必要である。つまり、V含有量が0.01%未満、Nb含有量が0.001%未満若しくはTi含有量が0.001%未満であるか、あるいは、0.5×C/12>(V/51+Nb/93+Ti/48)では、固溶Cが多量に存在し、{111}再結晶集合組織が発達せず、高r値が得られない。一方、VおよびNbの少なくとも一方の含有量が0.2%を超えるか、Ti含有量が0.3%を超えるか、あるいは、(V/51+Nb/93+Ti/48)>2×C/12であると、2次焼鈍である再結晶焼鈍で炭化物の溶解が起こりにくくなるため、主相であるフェライト相と、第2相であるマルテンサイト相の複合組織が得られず、加えて、過剰な固溶あるいは炭・窒・硫化物等を形成して、鋼板の延性が著しく劣化する。したがって、Tiを含有する場合には、Ti:0.001〜0.3%であって0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12なる関係を満たすことに限定した。
【0049】
また、本発明では、上記した組成に加えてさらにMo:0.01〜0.5%を含有することが好ましい。
Mo:0.01〜0.5%
MoはMnと同様に、主相であるフェライト相と、第2相であるマルテンサイト相との複合組織が得られる臨界冷却速度を低くする。すなわち、フェライト相とマルテンサイト相の複合組織の形成を促進する作用を有しており、必要に応じて含有できる。その効果は、0.01%以上のMoの含有により発揮される。しかしながら、Mo含有量が0.5%を超えると、深絞り性が低下するため、Mo含有量は0.01〜0.5%に限定した。
【0050】
なお、本発明では、上記した成分以外については、特に限定していないが、B、Ca、REM等を含有させても、通常の鋼組成の範囲内であればなんら問題はない。
【0051】
Bは、鋼の焼入性を向上する作用を有する元素であり、必要に応じ含有できる。しかし、B含有量が0.003%を超えると、効果が飽和するため、Bは0.003%以下が好ましい。なお、より望ましい範囲は0.0001〜0.002%である。
CaおよびREMは、硫化物系介在物の形態を制御する作用を有し、これにより鋼板の伸びフランジ性を向上させる効果を有する。このような効果は、CaおよびREMのうちから選ばれた1種または2種の含有量が合計で、0.01%を超えると飽和する。このため、CaおよびREMのうちの1種または2種の含有量は、合計で0.01%以下とするのが好ましい。なお、より好ましい範囲は0.001〜0.005%である。
【0052】
上記した成分以外の残部は実質的にFeおよび不可避的不純物である。不可避的不純物としては、例えばSb、Sn、Zn、Coが挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下の範囲である。
【0053】
次に、本発明において、製造条件を限定した理由について説明する。
本発明は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材に熱間圧延を施し熱延板とする熱延工程と、該熱延板に冷間圧延を施し冷延板とする1次冷延工程と、該冷延板に650〜780℃の温度域に加熱する1次焼鈍工程と、該冷延板に再び冷間圧延を施す2次冷延工程と、再結晶焼鈍を施す2次焼鈍(再結晶焼鈍)工程とを順次施すことにより冷延鋼板を製造する方法である。
【0054】
使用する鋼スラブは、成分のマクロ偏析を防止するために連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造したのち、いったん室温まで冷却し、その後、再度加熱する従来法に加え、冷却しないで、温片のままで加熱炉に挿入する方法や、わずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延する方法などの省エネルギープロセスも問題なく適用できる。
【0055】
上記した素材(鋼スラブ)を加熱し、熱間圧延を施し熱延板とする熱延工程を施す。熱延工程は所望の板厚の熱延板が製造できる条件であればよく、通常の圧延条件を用いても特に問題はない。なお、参考のため、好適な熱延条件を以下に示しておく。
【0056】
スラブ加熱温度:900℃以上
スラブ加熱温度は、析出物を粗大化させることにより、{111}再結晶集合組織を発達させ、深絞り性を改善するため、低い方が望ましい。しかし、加熱温度が900℃未満では、圧延荷重が増大し、熱間圧延時におけるトラブル発生の危険性が増大する。このため、スラブ加熱温度は900℃以上にすることが好ましい。また、酸化重量の増加に伴うスケールロスの増大などから、スラブ加熱温度の上限は1300℃とすることがより好適である。なお、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する、いわゆるシートバーヒーターを活用することは、有効な方法であることは言うまでもない。
【0057】
仕上圧延終了温度:700℃以上
仕上圧延終了温度(FT)は、冷間圧延および再結晶焼鈍後に優れた深絞り性が得られる均一な熱延母板組織を得るため、700℃以上にすることが好ましい。すなわち、仕上圧延終了温度が700℃未満では、熱延母板組織が不均一となるとともに、熱間圧延時の圧延負荷が高くなり、熱間圧延時におけるトラブル発生の危険性が増大するからである。
【0058】
巻取温度:800℃以下
巻取温度は、800℃以下とするのが好ましい。すなわち、巻取温度が800℃を超えると、スケールが増加しスケールロスにより歩留りが低下する傾向があるからである。なお、巻取温度は200℃未満となると、鋼板形状が顕著に乱れ、実際の使用にあたり不具合を生じる危険性が増大するため、巻取温度の下限を200℃とすることがより好適である。
【0059】
このように、本発明の熱延工程では、鋼スラブを900℃以上に加熱した後、仕上圧延終了温度:700℃以上とする熱間圧延を施し、800℃以下好ましくは200℃以上の巻取温度で巻き取り、熱延板とするのが好ましい。
なお、本発明における熱間圧延工程では、熱間圧延時の圧延荷重を低滅するため、仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。加えて、潤滑圧延を行うことは、鋼板形状の均一化や材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とすることが好ましい。
【0060】
また、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることが好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。
【0061】
次いで、熱延板に1次冷間圧延を施し冷延板とする。なお、熱延板は通常行われているように酸洗後、冷間圧延をすることが好ましく、酸洗は通常の条件にて行えばよい。冷間圧延条件は、所望の寸法形状の冷延板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は30%以上とすることが好ましい。圧下率が30%未満では、次の工程である1次焼鈍工程において、回復あるいは再結晶が起こりにくく、最終的に優れた深絞り性が得られないからである。
本発明は、例えば、前述したようなセミ極低炭素鋼の場合、広幅材の圧延が困難になる70%以上の1次冷延圧下率を適用することなく70%未満という比較的低い1次冷延圧下率であっても、十分な深絞り性を得ることができる。
【0062】
次に、上記冷延鋼板に1次焼鈍工程を施す。1次焼鈍は、箱焼鈍でもかまわないが、連続焼鈍ラインで行うことが製造コストの点から好ましい。1次焼鈍温度は、熱延板の炭化物が殆ど溶けない温度域である650〜780℃で行う必要がある。1次焼鈍温度が780℃を超える高温焼鈍では、炭化物が多量に溶解するため、固溶Cが多量に存在し、引き続く2次冷間圧延と2次焼鈍(再結晶焼鈍)工程において{111}再結晶集合組織が充分に発達せず、高r値が得られない。なお、1次焼鈍温度が650℃より低い場合には、冷間圧延後の組織が回復していないため、1次焼鈍後には冷延まま材と同等の強度を有し、引き続く2次冷間圧延時において、所定の冷延圧下率を確保することができず、さらに2次焼鈍(再結晶焼鈍)時に{111}再結晶集合組織が充分に発達しない。したがって、1次焼鈍温度を650〜780℃に限定した。
【0063】
さらに、上記冷延焼鈍鋼板に2次冷間圧延を施す。冷間圧延条件は、所望の寸法形状の冷延板とすることができればよく、とくに限定されないが、冷間圧延時の圧下率は40%以上とすることが好ましい。高r値には高冷延圧下率が一般に有効であり、次の工程が再結晶焼鈍工程に当たるため、圧下率は高い方が好ましい。圧下率が40%未満では、再結晶焼鈍工程において、{111}再結晶集合組織が充分に発達せず、最終的に優れた深絞り性が得られないからである。
なお、本発明では、2次冷延圧下率が比較的低い圧下率、例えば70%未満という低い圧下率であっても、十分な深絞り性を得ることができる。
【0064】
引き続き、上記冷延鋼板に再結晶焼鈍を行い冷延焼鈍板とする2次焼鈍(再結晶焼鈍)工程を施す。2次焼鈍(再結晶焼鈍)は、本発明で必要とする冷延速度を確保するため連続焼鈍ラインで行うことが好ましい。再結晶焼鈍の焼鈍温度は、冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度以上でかつ再結晶温度以上、950℃以下の温度範囲で行う必要がある。焼鈍温度が低く、焼鈍温度が冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度未満であると、目的とする組織が得られず、低い降伏応力と高い強度伸びバランスを同時に満足させた鋼板とすることが困難となる。また、再結晶温度未満だと、未再結晶組織が残り、十分な延在が得られないとともに{111}再結晶集合組織が発達せず、高いr値が得られない。一方、950℃を超える高温では、再結晶粒が著しく粗大化し、特性が顕著に劣化する傾向があるからである。
なお、ここで冷却後フェライト相とマルテンサイト相を含む組織が得られる温度とは、焼鈍をシミュレイトして種々の温度に加熱後、400℃までを平均冷却速度5℃/sで冷却する焼鈍を施した鋼板について、ミクロ組織観察を行い、フェライト相とマルテンサイト相を含む組織が確認される加熱温度である。また、再結晶温度とは、上記ミクロ組織観察において、未再結晶組織が観察されず、再結晶率が100%になる温度である。
このような冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度とするには、焼鈍中にフェライト相(α相)とオーステナイト相(γ相)の2相域温度以上、すなわちAc変態点以上とすればよい。本発明ではこのようなα相とγ相の2相域温度以上で焼鈍することにより、VおよびNb系炭化物が溶解し、冷却後にフェライト相とマルテンサイト相を含む組織を形成できる。焼鈍温度がα相とγ相の2相域温度未満、すなわちAc変態点未満では、冷却後フェライト単相組織となり、フェライト相とマルテンサイト相を含む組織を得ることができない。
なお、本発明においては、焼鈍温度を概ね750℃以上とすることにより、冷却後フェライト相とマルテンサイト相を含む組織が得られる温度以上、かつ再結晶温度以上とすることができる。すなわち、本発明鋼では、概ね750℃以上とすることにより、VおよびNb系炭化物が溶解して、α相からγ相への変態が進みやすくなりα相とγ相の2相域温度以上となるとともに、再結晶も進み再結晶温度以上とできる。
すなわち、750℃未満では、VおよびNb系炭化物の溶解が不十分であり、α相とγ相の2相域温度以上とすることが困難となり、冷却後にフェライト相とマルテンサイト相を含む組織を得ることが困難となるとともに、未再結晶組織が残りやすくなる。
【0065】
なお、2次焼鈍(再結晶焼鈍)時の冷却は、マルテンサイト形成の観点から、少なくとも400℃までは平均冷却速度5℃/s以上として室温まで冷却することが必要である。平均冷却速度が5℃/s未満だと、マルテンサイト相が形成されにくくフェライト単相組織となり、強度伸びバランスが低下するからである。したがって、本発明においては、マルテンサイト相を含む第2相の存在が必須であることから、そのためには、400℃までの平均冷却速度が臨界冷却速度以上である5℃/s以上とすることが必要である。なお、400℃以下の冷却は特に限定する必要はなく、ひきつづき冷却を行ってもよく、空冷としても良い。
【0066】
また、2次連続焼鈍後の冷延焼鈍鋼板には、形状矯正、表面粗度等の調整のための調質圧延を加えてもよい。また、樹脂あるいは油脂コーティング、各種塗装あるいは電気めっき等の処理を施しても何ら不都合はない。
【0067】
なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。
【0068】
【実施例】
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。ついで、これら鋼スラブを1250℃に加熱したのち、仕上圧延終了温度:880℃、巻取温度:650℃とする熱間圧延を施す熱延工程により、板厚4.0mmの熱延鋼帯(熱延板)とした。引き続き、これら熱延鋼帯(熱延板)を酸洗した後、表2に示す圧下率で1次冷間圧延を施す冷延工程により、冷延鋼帯(冷延板)とした。次いで、これら冷延鋼帯(冷延板)に、連続焼鈍ラインで表2に示す温度にて1次連続焼鈍を行った。引き続き、表2に示す圧下率で2次冷間圧延を施した。ここで、2次冷間圧延後の鋼板を実験室的に2次連続焼鈍をシミュレイトして、加熱速度5℃/sで焼鈍温度に加熱後すぐに400℃までの冷却速度を5℃/sとして冷却し、組織観察を行い、冷却後にフェライト相とマルテンサイト相を含む組織を得られかつ再結晶率が100%となり未再結晶組織が認められなくなる温度の下限温度(T)を求めた。なお、焼鈍温度としては、700℃から10℃ピッチで変更して上記調査を行った。求めた上記下限温度Tを表2に示す。
次いで、連続焼鈍ラインで2次連続焼鈍を施した。また、一部の鋼帯(表2の鋼板No.4)に関しては、1次冷間圧延、および1次焼鈍工程を省略し、1回冷延−1回焼鈍工程とした。さらに、得られたそれぞれの鋼帯(冷延焼鈍鋼板)には、伸び率:0.5%の調質圧延を施した。
【0069】
また、上記の方法で製造して得られた鋼帯から試験片を採取し、圧延方向に平行な断面(L断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて微視組織を撮像し、画像解析装置を用いて主相であるフェライト相の面積率および第2相の種類と面積率を求めた。また、得られた鋼帯から、JIS5号引張試験片を採取して、JIS Z 2241の規定に準拠して引張試験を行い、降伏応力(YS)、引張強さ(TS)、伸び(El)、降伏比(YR)を求めた。なお、YS、TS、El、YRは、圧延方向に対して垂直方向に引張試験を行った時の値である。またr値は、得られた鋼帯から採取したJIS 5号引張試験片を用いて、JIS Z 2254の規定に準拠して平均r値(平均塑性ひずみ比)を求め、これをr値とした。これらの結果を表2に示す。
【0070】
【表1】

Figure 2004232018
【0071】
【表2】
Figure 2004232018
【0072】
表2に示す結果から、本発明例は、いずれも、目標とする、低い降伏比(YR≦70%)、高い伸び(El≧28%)および高いランクフォード値(r値≧1.3)を有し、深絞り成形性に優れた鋼板となっている。特に本発明例では、熱処理条件を規定し、2回冷延2回焼鈍工程を採用することで、1回冷延1回焼鈍工程を採用した場合よりも、r値が飛躍的に上昇し、高強度鋼板ながらr値1.3以上を確保できる。これに対し、本発明の範囲を外れる条件で製造した比較例では、ランクフォード値(r値)が低下しているか、あるいは、強度伸びバランスが低下した鋼板となっている。
【0073】
【発明の効果】
本発明によれば、強度伸びバランスに優れるとともに、深絞り成形性にも優れた冷延鋼板を、工程に対して低負荷で且つ安定して製造することが可能となり、産業上格段の効果を奏する。本発明の冷延鋼板を自動車部品に適用した場合、プレス成形が容易で、自動車車体の軽量化に十分に寄与できるという効果もある。
【図面の簡単な説明】
【図1】VとNbの含有量とCの含有量との関係を表す比(V/51+Nb/93)/(C/12)がランクフォード値(r値)と強度伸びバランス(TS×El)に及ぼす影響を示した図である。
【図2】一次焼鈍温度とランクフォード(r値)との関係を示した図である。
【図3】本発明の2回冷延−2回焼鈍工程(本発明法)と、従来の1回冷延−1回焼鈍工程(従来法)とで製造した冷延鋼板について、トータル圧下率(%)がr値に及ぼす影響を示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and useful in applications such as steel sheets for automobiles and having a tensile strength of 440 MPa or more.
[0002]
[Prior art]
2. Description of the Related Art In recent years, from the viewpoint of preserving the global environment, there has been a demand for improved fuel efficiency of automobiles. In addition, from the viewpoint of protecting occupants in the event of a vehicle collision, it is also required to improve the safety of the vehicle body. Under such circumstances, studies for satisfying both the weight reduction and strengthening of the vehicle body are being actively pursued.
It is said that it is effective to increase the strength of component materials in order to satisfy the weight reduction and strengthening of an automobile body at the same time. Recently, high-tensile steel sheets have been actively used for automobile components.
[0003]
Since many automotive parts made of steel sheets are formed by press working, steel sheets for automobiles are required to have excellent press formability. However, in general, when the strength of a steel sheet is increased, the Rankford value (r value) and the ductility (El) are reduced to deteriorate press formability, and the yield stress is increased to deteriorate the shape freezing property. There is. In particular, the larger the value of the so-called strength-elongation balance, represented by the product TS × El of the tensile strength (TS) and the ductility (El), is more advantageous for press formability. Ductileness has been attempted.
For a steel plate having both high strength and high ductility, a dual-phase steel (having two phases of a ferrite phase and a martensite phase) including a retained austenitic steel (residual γ steel) utilizing a strain-induced plasticity (TRIP) phenomenon. Development research on so-called composite structure steels, such as DP steels, is underway.
[0004]
A typical example of a high-strength steel sheet having good press formability is a composite steel sheet composed of a composite structure of a ferrite phase and a martensite phase. It has low stress (YS) and has both high ductility (El) and excellent bake hardenability. However, although the composite structure steel sheet is generally good in workability, it has a disadvantage that it has a low Rankford value (r value) and is inferior in deep drawability.
[0005]
In recent years, with the increase in strength of automobiles, not only high ductility but also excellent deep drawability, that is, a high r value is required for high-strength steel sheets having a tensile strength of 440 MPa or more, particularly 590 MPa class.
[0006]
Until now, attempts have been made to improve the deep drawability by increasing the Rankford value (r value) of a composite structure steel sheet. For example, in Patent Document 1, after cold rolling, the recrystallization temperature ~ A c3 A technique is disclosed in which box annealing is performed at the temperature of the transformation point, and thereafter, the steel sheet is heated to 700 to 800 ° C. in order to form a composite structure, followed by continuous annealing accompanied by quenching and tempering. However, in this method, since quenching and tempering are performed during continuous annealing, the yield stress is high, and a low yield ratio cannot be obtained. Here, the yield ratio (YR) is the ratio of the yield stress (YS) to the tensile strength (TS), and YR = YS / TS. The steel sheet having a high yield stress has a disadvantage that the shape freezing property of a pressed part during pressing is poor.
[0007]
[Patent Document 1]
JP-B-55-10650
[0008]
A method for improving the high yield stress is disclosed in Patent Document 2. In this method, box annealing is first performed in order to obtain a high Rankford value (r value). The temperature during box annealing is set to a two-phase region of a ferrite phase (α) -austenite phase (γ), and α Mn is concentrated from the phase to the γ phase. This Mn-enriched phase preferentially becomes a γ phase during continuous annealing, and a mixed structure can be obtained even at a cooling rate of about a gas jet, and the yield stress is low. However, this method requires long-time box annealing at a relatively high temperature in the two-phase region of the α phase and the γ phase for Mn enrichment, so that there is frequent occurrence of adhesion between steel sheets, generation of a temper color, and a furnace body. There are many problems in the manufacturing process such as shortening of the life of the inner cover. Conventionally, it has been difficult to industrially stably produce a high-strength steel sheet having such a high Rankford value (r value) and a low yield stress (YS).
[0009]
[Patent Document 2]
JP-A-55-100934
[0010]
In addition, in Patent Document 3, a steel having a composition of 0.012 mass% C-0.32 mass% Si-0.53 mass% Mn-0.03 mass% P-0.051 mass% Ti is cold-rolled. Then, after heating to 870 ° C., which is the two-phase temperature of the α-phase and γ-phase, and cooling at an average cooling rate of 100 ° C./s, r value = 1.61, YS = 224 MPa, TS = 482 MPa. There is disclosed a technology that enables production of a composite structure type cold-rolled steel sheet having a very high Rankford value (r value) and a low yield stress. However, since it is difficult to achieve a high cooling rate of 100 ° C./s with a normal continuous annealing line, water quenching equipment is required. Since it becomes obvious, there are problems in terms of manufacturing facilities and materials.
[0011]
[Patent Document 3]
Japanese Patent Publication No. 1-35900
[0012]
In general, it is effective to develop {111} recrystallized texture to increase the r-value. For this purpose, it is necessary to increase the rolling reduction during cold rolling to a certain degree, that is, to introduce strain energy. Become. However, in the case of high-strength steel sheets, when trying to achieve a high cold rolling reduction, the load on the rolls during cold rolling increases, increasing the risk of trouble during cold rolling and reducing productivity. Is concerned. In other words, it is difficult for a high-strength steel sheet to achieve a high cold-rolling reduction rate in one cold rolling step, and therefore, the {111} recrystallized texture hardly develops even if recrystallization annealing is performed continuously. Become.
[0013]
As a method for increasing the r-value of a cold-rolled steel sheet for deep drawing, a so-called two-time cold-rolling-two-time annealing method that combines two times of cold rolling and two times of annealing has been conventionally proposed. For example, in Patent Document 4, Patent Document 5, and Patent Document 6, a cold rolled ferritic single-phase steel having a strength level of TS <440 MPa is obtained by performing twice cold rolling and twice annealing on a very low carbon cold rolled steel sheet. A technique capable of increasing the r-value of a rolled steel sheet to 3.0 or more is disclosed. These techniques aim at accumulation of high strain energy by two cold rollings and accumulation of {111} recrystallization texture formation by two recrystallization annealings.
[0014]
[Patent Document 4]
JP-A-3-97812
[Patent Document 5]
JP-A-3-97813
[Patent Document 6]
JP-A-5-209228
[0015]
However, these techniques are applied to the present invention, a composite structure type high tension cold rolled steel having a basic composition of semi-ultra low carbon steel having a C content of 0.01 to 0.05% by mass and a tensile strength of 440 MPa or more. When applied to a steel sheet, depending on the primary annealing (intermediate annealing), (1) the steel sheet does not show softening due to recovery and recrystallization, and a load on the roll is required to ensure a secondary cold reduction of 40% or more. There are problems such as (2) carbides dissolving during the primary annealing to generate a large amount of solid solution C, and {111} recrystallization texture does not develop during the secondary annealing.
[0016]
Patent Document 7 discloses a composite structure type cold-rolled steel sheet excellent in deep drawability and a method for producing the same. It is disclosed that a property having an r value of 1.9 can be obtained when the tensile strength is 590 MPa or more. However, since the cold rolling reduction at that time is a cold rolling at a high rolling reduction of 70%, there are many restrictions such as rolling due to the narrow width depending on the equipment capacity, and as described above. Problems such as frequent troubles during rolling remain.
[0017]
[Patent Document 7]
JP-A-2002-226941
[0018]
[Problems to be solved by the invention]
The present invention advantageously solves the above problems both in terms of material and production, and regulates the contents of C, V, and Nb as appropriate in the steel composition, and as the production conditions, in particular, the primary annealing temperature. Proposes a technology that can stably produce a composite structure type high-tensile cold-rolled steel sheet having a high Rankford value and excellent in deep drawability by adopting a process of twice cold rolling and two times annealing. The purpose is to:
[0019]
[Means for Solving the Problems]
Means for Solving the Problems In order to achieve the above object, the present inventors have intensively studied the effects of alloying elements, cold rolling conditions and annealing conditions on the microstructure and recrystallization texture of a cold-rolled steel sheet. As a result, by setting the C content to 0.01 to 0.05% by mass and containing V and Nb in appropriate ranges, the amount of solid solution C is reduced as much as possible before the recrystallization annealing to reduce {111} By developing the crystal texture, a high Rankford value (r-value) is obtained, and the temperature is higher than the temperature at which a structure containing a ferrite phase and a martensite phase is obtained after cooling, that is, the two-phase region temperature of the α phase and the γ phase. And then cooled to room temperature at an average cooling rate of at least 5 ° C./s up to at least 400 ° C. to form a martensitic phase as a second phase, which is excellent in ductility despite high strength, Furthermore, it has been found that a composite structure type high-tensile cold-rolled steel sheet having a high Rankford value and excellent deep drawability can be manufactured. In particular, in order to minimize the load on the rolling rolls during cold rolling, increase the cold reduction rate of high-strength steel, and develop {111} recrystallization texture as much as possible, After the cold rolling, the steel is annealed at 650 to 780 ° C., which is a temperature range in which carbide hardly dissolves (that is, the solid solution C is kept low) and the steel sheet recovers, and then the second cold rolling is performed again And then heated to a temperature not lower than a temperature at which a structure containing a ferrite phase and a martensite phase can be obtained after cooling and not lower than a recrystallization temperature and not higher than 950 ° C. Has been found to be effective.
[0020]
Here, the composite structure type cold-rolled steel sheet manufactured by the method of the present invention is a composite structure steel sheet having a ferrite phase as a main phase and a second phase containing a martensite phase having an area ratio of 1% or more. The main ferrite phase is mainly a polygonal ferrite phase, but there is no problem even if a bainitic ferrite phase having a high dislocation density generated by a cooling process from the austenite region is mixed. Further, the second phase may be a martensite phase alone having an area ratio of 1% or more, or a mixture of any of a retained austenite phase, a pearlite phase, and a bainite phase as an auxiliary phase.
[0021]
First, the results of basic experiments performed by the present inventors will be described.
In mass%, C: 0.02%, Si: 0.5%, Mn: 2.0%, P: 0.05%, S: 0.005%, Al: 0.03%, N: 0. 002% as a basic composition, to which V: 0.01 to 0.1% by mass and Nb: 0.001 to 0.16% by mass to have different V and Nb contents. Various steel materials (sheet bars) were heated to 1250 ° C. and maintained at a constant temperature at this heating temperature, and then subjected to three-pass rolling so that the finish rolling end temperature was 880 ° C., to a sheet thickness of 4.0 mm. After the finish rolling, a heat treatment equivalent to 650 ° C. × 3 h was performed as a coil winding process. Subsequently, the sheet was subjected to cold rolling at a reduction rate of 50% to a sheet thickness of 2.0 mm, subjected to primary annealing at 700 to 850 ° C., and then air-cooled. Further, the sheet is subjected to cold rolling at a rolling reduction of 60% to a sheet thickness of 0.8 mm, and then subjected to secondary continuous annealing (recrystallization annealing) in a temperature range of 700 to 970 ° C. Annealing for cooling to room temperature was performed at a cooling rate of 5 ° C./s or more.
[0022]
The obtained cold-rolled steel sheet was subjected to a tensile test to investigate tensile properties. The tensile test was performed using a JIS No. 5 tensile test piece. The tensile strength TS and the ductility El are values obtained when a tensile test is performed in a direction perpendicular to the rolling direction. The r value is determined in the rolling direction (r L ), 45 degree direction (r D ) And the direction perpendicular to the rolling direction (90 degrees) (r c ) = (R L + R c + 2 × r D ) / 4}.
[0023]
FIG. 1 shows the effect of V on the r-value and strength-elongation balance (TS × El) of the cold-rolled steel sheet obtained in the twice cold-rolling (rolling reduction: 50 to 60%)-twice annealing (700 to 800 ° C.) process. , Nb and C contents, the horizontal axis represents the atomic ratio of the V and Nb contents to the C content ((V / 51 + Nb / 93) / (C / 12)), The axis indicates the r-value and the strength-elongation balance (TS × El) by dividing it into upper and lower parts.
[0024]
From FIG. 1, by limiting the contents of V and Nb in the steel slab to the range of 0.5 to 2.0 in terms of atomic ratio with C, a high r value and a high strength elongation balance can be obtained, It became clear that a composite structure type cold rolled steel sheet having an r value and high ductility El can be manufactured.
[0025]
Next, among the cold-rolled steel sheets used in FIG. 1, a steel material having (V / 51 + Nb / 93) / (C / 12) = 1.2 was subjected to cold rolling, and was subjected to a temperature range of 700 to 850 ° C. The primary annealing is performed, then, the second cold rolling is performed again, and after the heating is further performed at 800 ° C., the secondary cooling is performed at an average cooling rate of at least 5 ° C./s at least up to 400 ° C. FIG. 2 shows the relationship between the primary annealing temperature and Rankford (r value) of the manufactured cold-rolled steel sheet in various cold-rolled steel sheets manufactured by performing crystal annealing.
[0026]
From the results in FIG. 2, by setting the primary continuous annealing temperature to 780 ° C. or lower, a high Rank Ford value is obtained, and a composite structure type cold-rolled steel sheet having excellent deep drawability is obtained by performing twice cold rolling and two times annealing. It can be seen that it is possible to manufacture with.
[0027]
FIG. 3 shows the total rolling reduction of the cold-rolled steel sheet manufactured by the two-time cold rolling and two-time annealing process of the present invention (the method of the present invention) and the conventional one-time cold rolling and one-time annealing process (the conventional method). (%) Shows the effect on the r value.
[0028]
From the results shown in FIG. 3, the r-value increases with the high rolling reduction (this is a general tendency), but even when the cumulative total rolling reduction is the same, the present invention is more effective than the conventional method. It can be seen that the r value is higher in the method.
[0029]
In the cold-rolled steel sheet of the present invention, in the primary annealing process, the annealing process at 650 to 780 ° C recovers the rolled structure (partially recrystallizes), so that the second cold rolling is facilitated, High cold rolling reduction can be achieved in total, and carbide formed in the hot-rolled sheet hardly dissolves, and solid solution C can be kept as small as possible. Therefore, even before the second continuous annealing (recrystallization annealing), The state in which the solid solution C and the solid solution N are small is maintained, and when heated to a temperature higher than the recrystallization temperature during the second continuous annealing, the {111} recrystallization texture is strongly developed and a high r value is obtained.
[0030]
When primary continuous annealing (recrystallization annealing) is performed in a temperature range as disclosed in Patent Documents 4, 5, and 6, a large amount of solute C is present, and this is continuously secondary-rolled-secondarily continuous. It has been found that even after annealing, the {111} recrystallized texture does not further develop, but rather forms a recrystallized texture unfavorable for the r value.
[0031]
That is, the primary annealing temperature should be a temperature at which carbides hardly dissolve, and even if not completely recrystallized at that temperature, after twice cold rolling and twice annealing (recrystallization annealing), It has been found that a strong {111} recrystallized texture develops and the r-value becomes higher than in the single cold rolling and single annealing method. Of course, there is no problem that recrystallization proceeds in a temperature range in which carbides do not dissolve. Further, the primary annealing temperature is at least 650 or higher at which recovery occurs, and the development of a strong {111} recrystallized texture after two-time cold rolling and two-time annealing (recrystallization annealing) and the second cold rolling It has also been found that it is indispensable to reduce the load on the rolling roll at the time.
[0032]
The present invention has been completed by further study based on the above findings, and the gist of the present invention is as follows.
(1) In mass%
C: 0.01 to 0.05%, Si: 0.1 to 1.5%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al : 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2% and Nb: 0.001 to 0.2%, and V and Nb and C Content (% by mass)
0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12
A steel slab having a composition satisfying the following relationship is hot-rolled, then cold-rolled, then annealed by heating to 650 to 780 ° C, cold-rolled again, and after cooling, the ferrite phase After heating to a temperature not lower than the temperature at which the structure containing the martensite phase is obtained and not lower than the recrystallization temperature and not higher than 950 ° C., annealing is performed at an average cooling rate of 5 ° C./s or higher until at least 400 ° C. To produce a composite structure type high-tensile cold-rolled steel sheet having excellent deep drawability.
[0033]
(2) In mass%
C: 0.01 to 0.05%, Si: 0.1 to 1.5%, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.02% or less, Al : 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2%, Nb: 0.001 to 0.2%, and Ti: 0.001 to 0.3% And the content (% by mass) of V, Nb and Ti and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12
A steel slab having a composition satisfying the following relationship is hot-rolled, then cold-rolled, then annealed by heating to 650 to 780 ° C, cold-rolled again, and after cooling, the ferrite phase After heating to a temperature not lower than the temperature at which the structure containing the martensite phase is obtained and not lower than the recrystallization temperature and not higher than 950 ° C., annealing is performed at an average cooling rate of 5 ° C./s or higher until at least 400 ° C. To produce a composite structure type high-tensile cold-rolled steel sheet having excellent deep drawability.
[0034]
(3) The steel slab is excellent in deep drawability as described in (1) or (2) above, further comprising Mo: 0.01 to 0.5% by mass in addition to the above composition. A method for producing a composite structure type high-tensile cold-rolled steel sheet.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
The cold-rolled steel sheet manufactured by the method of the present invention is a composite structure type high-tensile cold-rolled steel sheet having a tensile strength TS of 440 MPa or more and excellent in deep drawability.
[0036]
Such a composite structure type high-tensile cold-rolled steel sheet is a composite structure steel sheet having a main phase of a ferrite phase and a second phase containing a martensite phase having an area ratio of 1% or more. The main ferrite phase is mainly a polygonal ferrite phase, but there is no problem even if a bainitic ferrite phase having a high dislocation density generated by a cooling process from the austenite region is mixed. Further, the second phase may be a martensite phase alone having an area ratio of 1% or more, or a mixture of any of a retained austenite phase, a pearlite phase, and a bainite phase as an auxiliary phase. The ferrite phase, which is the main phase, has a {111} texture developed and has a high r value.
[0037]
In order to obtain a cold-rolled steel sheet having a low yield stress (YS) and a high strength-elongation balance (TS × El) and excellent deep drawability, in the present invention, the structure of the cold-rolled steel sheet is changed to ferrite as a main phase. It is necessary to form a composite structure of a phase and a second phase including a martensite phase. It is preferable that the ferrite phase, which is the main phase, has an area ratio of 80% or more. If the area ratio of the ferrite phase is less than 80%, it becomes difficult to secure a high strength-elongation balance, and the press formability tends to decrease. In the case where even better ductility and hole expandability are required, the ratio of the bainitic ferrite phase to the main phase of the polygonal ferrite phase is preferably 5% or more in terms of area ratio. In order to utilize the advantages of the composite structure, the ferrite phase is preferably set to 99% or less.
[0038]
Further, in the present invention, the second phase is a composite structure steel in which a martensitic phase is required to be present and contains 1% or more in terms of an area ratio with respect to the entire structure. If the martensite phase has an area ratio of less than 1%, it is difficult to simultaneously satisfy a low yield ratio and a high strength-elongation balance (TS × El). The second phase may be a martensite phase alone having an area ratio of 1% or more, or a martensite phase having an area ratio of 1% or more and other pearlite, bainite, and residual austenite phases as subphases. It may be mixed with either one.
[0039]
At the time of primary continuous annealing, it is important that carbides are not dissolved as much as possible. Here, the carbides in the steel produced in the method of the present invention are mainly V and Nb-based composite carbides. It is preferable that the amount of solid solution C is as small as possible before the secondary continuous (recrystallization) annealing. That is, the amount of carbide dissolved during the primary continuous annealing is determined, for example, in a hot-rolled hot-rolled steel sheet stage. It is preferable that the content is set to 50% or less of the precipitated carbide.
[0040]
Next, the reason for limiting the composition of the steel slab used in the manufacturing method of the present invention will be described. In addition, mass% is simply described as%.
C: 0.01-0.05%
C is an element that promotes the formation of a composite structure of a ferrite phase and a martensite phase, which is a main phase, and further increases the strength of a steel sheet. In the present invention, it is necessary to contain 0.01% or more from the viewpoint of forming a composite structure. There is. On the other hand, when the content exceeds 0.05%, the development of the {111} recrystallization texture is inhibited, and the deep drawability and ductility are reduced. For this reason, in the present invention, the C content is limited to 0.01 to 0.05%.
[0041]
Si: 0.1 to 1.5%
Si is a useful strengthening element that contributes to improving the ductility at the same time as increasing the strength of the steel sheet, that is, improving the strength-elongation balance. To obtain this effect, the Si content is 0.1%. It is necessary to do above. However, when the Si content exceeds 1.5%, the effect of improving ductility is reduced, and at the same time, the deep drawability is deteriorated, and the surface properties are further deteriorated. For this reason, the Si content was limited to 0.1 to 1.5%.
[0042]
Mn: 1.0-3.0%
Mn has the effect of strengthening the steel, and further lowers the critical cooling rate at which a composite structure of the ferrite phase as the main phase and the martensite phase as the second phase is obtained. That is, it has an effect of promoting the formation of a composite structure of the ferrite phase as the main phase and the martensite phase as the second phase, and is preferably contained according to the cooling rate after annealing. At a slow cooling rate below the critical cooling rate, a martensite phase is not generated, and instead a bainite phase or a pearlite phase is generated. However, when the martensite phase does not exist in the second phase, the strength-elongation balance is reduced. There is a tendency. Therefore, the addition of Mn is effective for facilitating the formation of the martensite phase, that is, for lowering the critical cooling rate. Further, Mn is an effective element for preventing hot cracking due to S, and is preferably contained according to the amount of S contained. Such effects become remarkable when Mn is contained at 1.0% or more. On the other hand, if the Mn content exceeds 3.0%, deep drawability and weldability deteriorate. For this reason, in the present invention, the Mn content is limited to the range of 1.0 to 3.0%.
[0043]
P: 0.10% or less
P has the effect of strengthening steel and can be appropriately contained according to the desired strength. In order to obtain this effect, it is preferable that P be contained at 0.005% or more. However, when the P content exceeds 0.10%, the strength-elongation balance tends to decrease and the deep drawability tends to deteriorate. For this reason, the P content is limited to 0.10% or less. When more excellent press formability is required, the P content is preferably set to 0.08% or less.
[0044]
S: 0.02% or less
S is an element that is present as an inclusion in the steel sheet and causes deterioration of the ductility, formability, and particularly stretch flangeability of the steel sheet. Therefore, it is preferable to reduce S as much as possible. In the present invention, the upper limit of the S content is 0.02%, since it has no significant adverse effect. When more excellent stretch flange formability is required, the S content is preferably 0.01% or less, more preferably 0.005% or less.
[0045]
Al: 0.005 to 0.1%
Al is added as a deoxidizing element of steel and is a useful element for improving the cleanliness of steel. However, if it is less than 0.005%, the effect of addition is ineffective, and if it exceeds 0.1%, it is contained. However, no further deoxidizing effect can be obtained, and on the contrary, deep drawability deteriorates. For this reason, the Al content was limited to 0.005 to 0.1%. Note that, in the present invention, a melting method by a deoxidizing method other than Al deoxidizing is not excluded, and for example, Ti deoxidizing or Si deoxidizing may be performed. Included in the range. At this time, even if Ca, REM, or the like is added to the molten steel, the characteristics of the steel sheet of the present invention are not impaired at all, and a steel sheet containing Ca, REM, or the like is, of course, included in the scope of the present invention.
[0046]
N: 0.02% or less
N is an element that increases the strength of a steel sheet by solid solution strengthening and strain age hardening. However, if it exceeds 0.02%, nitrides increase in the steel sheet, and the deep drawability of the steel sheet is conspicuous. Deteriorates. For this reason, N was limited to 0.02% or less. In the case where further improvement in press formability is required, it is preferable to reduce N, and it is preferable to set N to 0.004% or less.
[0047]
V: 0.01 to 0.2%, Nb: 0.001 to 0.2%, and satisfy the relationship of 0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12.
V and Nb are the most important elements in the present invention. Before recrystallization, solid solution C is precipitated and fixed as V and Nb-based carbides to develop {111} recrystallized texture to obtain a high Rankford. Value can be obtained. Further, at the time of recrystallization annealing, which is the secondary annealing, V and Nb-based carbides are dissolved, so that a large amount of solute C is concentrated in the austenite phase, and the martensitic transformation is performed in the subsequent cooling process to form the main phase. A composite steel sheet having a ferrite phase and a martensite phase as a second phase is obtained. In order to achieve such effects, the contents of V and Nb are 0.01% or more and 0.001% or more, respectively, and the contents (% by mass) of C, V, and Nb are 0.5 × C / It is necessary to satisfy the relationship of 12 ≦ (V / 51 + Nb / 93). That is, if the V content is less than 0.01% or the Nb content is less than 0.001%, or if 0.5 × C / 12> (V / 51 + Nb / 93), the amount of dissolved C is large. Exists, the {111} recrystallized texture does not develop, and a high r value cannot be obtained. On the other hand, the content of at least one of V and Nb exceeds 0.2%, or the content (% by mass) of C, V, and Nb is (V / 51 + Nb / 93)> 2 × C / 12. In addition, since the dissolution of V and Nb-based carbides hardly occurs during the recrystallization annealing as the secondary annealing, a composite structure of the ferrite phase as the main phase and the martensite phase as the second phase cannot be obtained. Therefore, in the present invention, V: 0.01 to 0.2%, Nb: 0.001 to 0.2%, and 0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12 Limited to satisfying the relationship.
[0048]
In the present invention, in addition to the above-described composition, it is preferable to contain 0.001 to 0.3% of Ti. In this case, the relationship between the contents (% by mass) of the above C, V, and Nb is preferable. Instead of the expression 0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12, the above-mentioned relational expression of the contents (% by mass) of C, V, Nb and Ti, that is, 0. It is necessary to satisfy the relational expression of 5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12.
Ti is a carbide-forming element. Before recrystallization, solid solution C is precipitated and fixed as V, Nb and Ti-based carbides to develop {111} recrystallization texture and obtain a high Rankford value. Further, at the time of recrystallization annealing, which is the secondary annealing, V, Nb and Ti-based carbides are dissolved, so that a large amount of solid solution C is concentrated in the austenite phase, and the main phase is transformed by martensite transformation in the subsequent cooling process. Is obtained, and a composite structure steel sheet of a ferrite phase as a second phase and a martensite phase as a second phase is obtained. To achieve such effects, the V content is 0.01% or more, the Nb content is 0.001% or more, the Ti content is 0.001% or more, and 0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48). That is, the V content is less than 0.01%, the Nb content is less than 0.001%, or the Ti content is less than 0.001%, or 0.5 × C / 12> (V / 51 + Nb / In (93 + Ti / 48), a large amount of solute C is present, {111} recrystallization texture is not developed, and a high r value cannot be obtained. On the other hand, the content of at least one of V and Nb exceeds 0.2%, the content of Ti exceeds 0.3%, or (V / 51 + Nb / 93 + Ti / 48)> 2 × C / 12. In some cases, the carbide is less likely to be dissolved in the recrystallization annealing as the secondary annealing, so that a composite structure of the ferrite phase as the main phase and the martensite phase as the second phase cannot be obtained. It forms a solid solution or forms carbon, nitrogen, sulfide, etc., and the ductility of the steel sheet is significantly deteriorated. Therefore, when Ti is contained, Ti is 0.001 to 0.3% and satisfies the relationship of 0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12. Limited to that.
[0049]
In the present invention, it is preferable to further contain Mo: 0.01 to 0.5% in addition to the above composition.
Mo: 0.01 to 0.5%
Mo, like Mn, lowers the critical cooling rate at which a composite structure of the ferrite phase as the main phase and the martensite phase as the second phase is obtained. That is, it has an effect of promoting the formation of a composite structure of a ferrite phase and a martensite phase, and can be contained as necessary. The effect is exhibited by containing Mo of 0.01% or more. However, when the Mo content exceeds 0.5%, the deep drawability decreases, so the Mo content was limited to 0.01 to 0.5%.
[0050]
In the present invention, there is no particular limitation on the components other than the above-mentioned components, but there is no problem even if B, Ca, REM, and the like are contained within the range of a normal steel composition.
[0051]
B is an element having an effect of improving the hardenability of steel, and can be contained as necessary. However, if the B content exceeds 0.003%, the effect is saturated, so that B is preferably 0.003% or less. Note that a more desirable range is 0.0001 to 0.002%.
Ca and REM have the effect of controlling the form of the sulfide-based inclusions, and thereby have the effect of improving the stretch flangeability of the steel sheet. Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total. Therefore, the content of one or two of Ca and REM is preferably set to 0.01% or less in total. Note that a more preferable range is 0.001 to 0.005%.
[0052]
The balance other than the above components is substantially Fe and inevitable impurities. The inevitable impurities include, for example, Sb, Sn, Zn, and Co. The allowable ranges of these contents are as follows: Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01%. Hereinafter, Co: 0.1% or less.
[0053]
Next, the reason for limiting the manufacturing conditions in the present invention will be described.
The present invention uses a steel slab having a composition within the above-described range as a raw material, a hot-rolling step of performing hot rolling on the raw material to form a hot-rolled sheet, and performing a cold rolling on the hot-rolled sheet to obtain a cold-rolled sheet. A first cold rolling step, a first annealing step of heating the cold rolled sheet to a temperature range of 650 to 780 ° C., a second cold rolling step of cold rolling the cold rolled sheet again, and a recrystallization annealing And a secondary annealing (recrystallization annealing) step of sequentially producing a cold-rolled steel sheet.
[0054]
The steel slab to be used is preferably manufactured by a continuous casting method in order to prevent macro segregation of components, but may be manufactured by an ingot casting method or a thin slab casting method. In addition, after the steel slab is manufactured, it is cooled to room temperature, and then heated again.In addition to the conventional method, it is not cooled, but inserted into the heating furnace as a hot piece, or after performing a slight heat retention. Energy saving processes such as a direct rolling method and a direct rolling method in which rolling is performed immediately can be applied without any problem.
[0055]
The above-mentioned material (steel slab) is heated, subjected to hot rolling, and subjected to a hot rolling process to form a hot rolled sheet. The hot-rolling step may be performed under conditions that can produce a hot-rolled sheet having a desired thickness, and there is no particular problem even if ordinary rolling conditions are used. In addition, suitable hot rolling conditions are shown below for reference.
[0056]
Slab heating temperature: 900 ° C or more
The slab heating temperature is desirably lower because the precipitate is coarsened to develop {111} recrystallized texture and improve deep drawability. However, when the heating temperature is lower than 900 ° C., the rolling load increases, and the risk of occurrence of trouble during hot rolling increases. Therefore, the slab heating temperature is preferably set to 900 ° C. or higher. In addition, the upper limit of the slab heating temperature is more preferably set to 1300 ° C. because of an increase in scale loss due to an increase in oxidation weight. From the viewpoint of reducing the slab heating temperature and preventing problems during hot rolling, it is needless to say that utilizing a so-called sheet bar heater for heating the sheet bar is an effective method.
[0057]
Finish rolling end temperature: 700 ° C or more
The finish rolling finish temperature (FT) is preferably set to 700 ° C. or higher in order to obtain a uniform hot-rolled base plate structure that can obtain excellent deep drawability after cold rolling and recrystallization annealing. That is, when the finish rolling end temperature is less than 700 ° C., the hot-rolled base plate structure becomes non-uniform, the rolling load during hot rolling increases, and the risk of trouble occurring during hot rolling increases. is there.
[0058]
Winding temperature: 800 ° C or less
The winding temperature is preferably set to 800 ° C. or lower. That is, if the winding temperature exceeds 800 ° C., the scale tends to increase and the yield tends to decrease due to scale loss. If the winding temperature is lower than 200 ° C., the shape of the steel sheet is remarkably disturbed, and the risk of causing troubles in actual use increases. Therefore, it is more preferable to set the lower limit of the winding temperature to 200 ° C.
[0059]
As described above, in the hot rolling step of the present invention, after the steel slab is heated to 900 ° C. or higher, hot rolling is performed at a finish rolling end temperature of 700 ° C. or higher, and winding at 800 ° C. or lower, preferably 200 ° C. or higher. It is preferable to wind at a temperature to form a hot-rolled sheet.
In the hot rolling step of the present invention, lubricating rolling may be performed between some or all of the finishing passes in order to reduce the rolling load during hot rolling. In addition, performing lubricating rolling is effective from the viewpoint of uniformizing the shape of the steel sheet and uniforming the material. In addition, it is preferable that the friction coefficient at the time of lubricating rolling be in the range of 0.10 to 0.25.
[0060]
Further, it is preferable to adopt a continuous rolling process in which successive sheet bars are joined and finish rolling is continuously performed. Applying the continuous rolling process is also desirable from the viewpoint of operational stability of hot rolling.
[0061]
Next, primary cold rolling is performed on the hot-rolled sheet to obtain a cold-rolled sheet. The hot-rolled sheet is preferably cold-rolled after pickling as usual, and the pickling may be performed under normal conditions. The conditions of the cold rolling are not particularly limited as long as a cold rolled sheet having a desired size and shape can be obtained, and the rolling reduction during the cold rolling is preferably 30% or more. If the rolling reduction is less than 30%, recovery or recrystallization hardly occurs in the subsequent primary annealing step, and ultimately excellent deep drawability cannot be obtained.
For example, in the case of the semi-ultra low carbon steel as described above, the present invention has a relatively low primary rolling ratio of less than 70% without applying a primary cold rolling reduction of 70% or more, which makes it difficult to roll a wide material. Even at the cold rolling reduction, sufficient deep drawability can be obtained.
[0062]
Next, a primary annealing step is performed on the cold-rolled steel sheet. The primary annealing may be box annealing, but is preferably performed on a continuous annealing line from the viewpoint of manufacturing cost. It is necessary to perform the primary annealing at 650 to 780 ° C., which is a temperature range in which carbides of the hot-rolled sheet hardly dissolve. In the high-temperature annealing in which the primary annealing temperature exceeds 780 ° C., a large amount of carbide is dissolved, so that a large amount of solute C is present. In the subsequent secondary cold rolling and secondary annealing (recrystallization annealing) steps, {111} is used. Recrystallized texture is not sufficiently developed, and a high r value cannot be obtained. If the primary annealing temperature is lower than 650 ° C., the structure after cold rolling is not recovered, so that it has the same strength as the cold-rolled material after primary annealing, At the time of rolling, a predetermined cold rolling reduction cannot be ensured, and further, during the secondary annealing (recrystallization annealing), the {111} recrystallization texture does not sufficiently develop. Therefore, the primary annealing temperature was limited to 650-780 ° C.
[0063]
Further, the cold-rolled annealed steel sheet is subjected to secondary cold rolling. The cold rolling conditions are not particularly limited as long as a cold rolled sheet having a desired size and shape can be obtained, but the rolling reduction during cold rolling is preferably 40% or more. A high cold rolling reduction is generally effective for a high r value, and the next step corresponds to a recrystallization annealing step. Therefore, a higher rolling reduction is preferable. If the rolling reduction is less than 40%, the {111} recrystallized texture does not sufficiently develop in the recrystallization annealing step, and ultimately excellent deep drawability cannot be obtained.
In the present invention, sufficient deep drawability can be obtained even when the secondary cold rolling reduction is relatively low, for example, a low reduction of less than 70%.
[0064]
Subsequently, the cold-rolled steel sheet is subjected to a recrystallization annealing to perform a secondary annealing (recrystallization annealing) step to form a cold-rolled annealed sheet. The secondary annealing (recrystallization annealing) is preferably performed in a continuous annealing line to secure the cold rolling speed required in the present invention. The annealing temperature of the recrystallization annealing must be not lower than the temperature at which a structure containing a ferrite phase and a martensite phase is obtained after cooling, and not lower than the recrystallization temperature and not higher than 950 ° C. If the annealing temperature is low and the annealing temperature is lower than the temperature at which a structure containing a ferrite phase and a martensite phase is obtained after cooling, a desired structure cannot be obtained, and a low yield stress and a high strength-elongation balance are simultaneously satisfied. It becomes difficult to use a steel plate. If the temperature is lower than the recrystallization temperature, an unrecrystallized structure remains, sufficient elongation cannot be obtained, a {111} recrystallized texture does not develop, and a high r value cannot be obtained. On the other hand, at a high temperature exceeding 950 ° C., the recrystallized grains are significantly coarsened, and the characteristics tend to be significantly deteriorated.
Here, the temperature at which a structure containing a ferrite phase and a martensite phase is obtained after cooling is defined as annealing after simulating annealing and heating to various temperatures and then cooling to 400 ° C at an average cooling rate of 5 ° C / s. The heating temperature at which the microstructure of the applied steel sheet is observed and a structure including a ferrite phase and a martensite phase is confirmed. Further, the recrystallization temperature is a temperature at which no unrecrystallized structure is observed in the microstructure observation and the recrystallization rate becomes 100%.
In order to obtain a temperature at which a structure containing a ferrite phase and a martensite phase is obtained after such cooling, the temperature in the two-phase region of a ferrite phase (α phase) and an austenite phase (γ phase) or more during annealing, that is, Ac l What is necessary is just to be above the transformation point. In the present invention, by annealing at a temperature not lower than the two-phase region temperature of the α phase and the γ phase, V and Nb-based carbides are dissolved, and a structure containing a ferrite phase and a martensite phase can be formed after cooling. The annealing temperature is lower than the two-phase region temperature of α phase and γ phase, that is, Ac l If the temperature is lower than the transformation point, a ferrite single phase structure is obtained after cooling, and a structure containing a ferrite phase and a martensite phase cannot be obtained.
In the present invention, by setting the annealing temperature to approximately 750 ° C. or higher, the temperature can be set to a temperature at which a structure containing a ferrite phase and a martensite phase is obtained after cooling, and to a recrystallization temperature or higher. That is, in the steel of the present invention, when the temperature is approximately 750 ° C. or higher, the V and Nb-based carbides are dissolved, and the transformation from the α phase to the γ phase is easily promoted. At the same time, recrystallization proceeds and the recrystallization temperature can be increased.
That is, if the temperature is lower than 750 ° C., the dissolution of V and Nb-based carbides is insufficient, and it is difficult to raise the temperature to the two-phase region temperature of the α phase and the γ phase. It becomes difficult to obtain, and an unrecrystallized structure tends to remain.
[0065]
The cooling during the secondary annealing (recrystallization annealing) needs to be cooled to room temperature at an average cooling rate of 5 ° C./s or more at least up to 400 ° C. from the viewpoint of martensite formation. If the average cooling rate is less than 5 ° C./s, a martensitic phase is hardly formed, and a ferrite single phase structure is formed, and the strength-elongation balance is lowered. Therefore, in the present invention, since the presence of the second phase including the martensite phase is indispensable, the average cooling rate up to 400 ° C. must be 5 ° C./s or more, which is higher than the critical cooling rate. is necessary. The cooling at 400 ° C. or lower does not need to be particularly limited, and may be continued cooling or air cooling.
[0066]
Further, the cold-rolled annealed steel sheet after the second continuous annealing may be subjected to temper rolling for shape correction, adjustment of surface roughness and the like. Further, there is no inconvenience even if a treatment such as resin or oil coating, various kinds of painting or electroplating is performed.
[0067]
The above description is only an example of the embodiment of the present invention, and various changes can be made within the scope of the claims.
[0068]
【Example】
Molten steel having the composition shown in Table 1 was smelted in a converter and made into a slab by a continuous casting method. Then, after heating these steel slabs to 1250 ° C., a hot rolling step of performing hot rolling at a finish rolling end temperature of 880 ° C. and a winding temperature of 650 ° C. is performed to obtain a hot-rolled steel strip having a thickness of 4.0 mm. Hot-rolled sheet). Subsequently, after pickling these hot-rolled steel strips (hot-rolled sheets), a cold-rolled steel strip (cold-rolled sheets) was obtained by a cold-rolling step of performing primary cold rolling at a rolling reduction shown in Table 2. Next, these cold-rolled steel strips (cold-rolled sheets) were subjected to primary continuous annealing at the temperatures shown in Table 2 in a continuous annealing line. Subsequently, secondary cold rolling was performed at a rolling reduction shown in Table 2. Here, the steel sheet after the secondary cold rolling is simulated in the laboratory by secondary continuous annealing, and after heating to the annealing temperature at a heating rate of 5 ° C./s, the cooling rate to 400 ° C. is immediately increased to 5 ° C./s. After cooling, the structure was observed, and after cooling, a structure containing a ferrite phase and a martensite phase was obtained, and the lower limit temperature (T) of the temperature at which the recrystallization ratio was 100% and no unrecrystallized structure was observed was determined. The above investigation was conducted by changing the annealing temperature from 700 ° C. at a pitch of 10 ° C. Table 2 shows the determined lower limit temperature T.
Next, secondary continuous annealing was performed in a continuous annealing line. Further, for some steel strips (steel No. 4 in Table 2), the first cold rolling and the first annealing step were omitted, and the first cold rolling and the first annealing step were performed. Further, each of the obtained steel strips (cold rolled annealed steel sheets) was subjected to temper rolling at an elongation of 0.5%.
[0069]
Further, a test piece is collected from a steel strip obtained by the above method, and a microstructure is imaged using a light microscope or a scanning electron microscope for a cross section (L cross section) parallel to the rolling direction, The area ratio of the ferrite phase, which is the main phase, and the type and area ratio of the second phase were determined using an image analyzer. Further, a JIS No. 5 tensile test piece was sampled from the obtained steel strip and subjected to a tensile test in accordance with the provisions of JIS Z 2241, yield stress (YS), tensile strength (TS), elongation (El) , Yield ratio (YR). In addition, YS, TS, El, and YR are values when a tensile test was performed in a direction perpendicular to the rolling direction. The r value was determined by using a JIS No. 5 tensile test specimen collected from the obtained steel strip, obtaining an average r value (average plastic strain ratio) in accordance with the provisions of JIS Z 2254, and defining this as the r value. . Table 2 shows the results.
[0070]
[Table 1]
Figure 2004232018
[0071]
[Table 2]
Figure 2004232018
[0072]
From the results shown in Table 2, all of the examples of the present invention are aimed at low yield ratio (YR ≦ 70%), high elongation (El ≧ 28%) and high Rankford value (r value ≧ 1.3). And has excellent deep drawability. In particular, in the example of the present invention, by defining the heat treatment conditions and adopting the twice cold-rolling twice annealing step, the r value is dramatically increased as compared with the case where the single cold rolling once annealing step is adopted, An r value of 1.3 or more can be ensured in spite of a high-strength steel sheet. On the other hand, in the comparative example manufactured under the condition out of the range of the present invention, the steel sheet has a reduced Rankford value (r value) or a reduced strength-elongation balance.
[0073]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while being excellent in intensity | strength elongation balance, it becomes possible to manufacture the cold rolled steel sheet which was also excellent in the deep drawing formability with low load and a stable process, and the industrially remarkable effect is obtained. Play. When the cold-rolled steel sheet of the present invention is applied to an automobile part, there is also an effect that press forming is easy and it is possible to sufficiently contribute to reducing the weight of an automobile body.
[Brief description of the drawings]
FIG. 1 shows the ratio (V / 51 + Nb / 93) / (C / 12) representing the relationship between the contents of V and Nb and the content of C. The ratio between the Rankford value (r value) and the strength-elongation balance (TS × El) FIG.
FIG. 2 is a diagram showing a relationship between primary annealing temperature and Rankford (r value).
FIG. 3 shows the total rolling reduction of the cold-rolled steel sheet manufactured by the two-time cold rolling and two-time annealing process of the present invention (the method of the present invention) and the conventional one-time cold rolling and one-time annealing process (the conventional method). FIG. 9 is a diagram showing the effect of (%) on the r value.

Claims (3)

質量%で
C:0.01〜0.05%、Si:0.1〜1.5%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%およびNb:0.001〜0.2%を含有し、かつ、VおよびNbとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93)≦2×C/12
なる関係を満たす組成になる鋼スラブを、熱間圧延し、次いで冷間圧延を施し、その後、650〜780℃に加熱する焼鈍を施してから再び冷間圧延を施し、次いで、冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度以上でかつ再結晶温度以上、950℃以下に加熱した後、少なくとも400℃までは平均冷却速度5℃/s以上として冷却する焼鈍を施すことを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。
C: 0.01-0.05%, Si: 0.1-1.5%, Mn: 1.0-3.0%, P: 0.10% or less, S: 0.02% by mass% Hereafter, it contains Al: 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2%, and Nb: 0.001 to 0.2%. The content (% by mass) of Nb and C is
0.5 × C / 12 ≦ (V / 51 + Nb / 93) ≦ 2 × C / 12
A steel slab having a composition satisfying the following relationship is hot-rolled, then cold-rolled, then annealed by heating to 650 to 780 ° C, cold-rolled again, and after cooling, the ferrite phase After heating to a temperature not lower than the temperature at which the structure containing the martensite phase is obtained and not lower than the recrystallization temperature and not higher than 950 ° C., annealing is performed at an average cooling rate of 5 ° C./s or higher until at least 400 ° C. To produce a composite structure type high-tensile cold-rolled steel sheet having excellent deep drawability.
質量%で
C:0.01〜0.05%、Si:0.1〜1.5%、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.02%以下、V:0.01〜0.2%、Nb:0.001〜0.2%およびTi:0.001〜0.3%を含有し、かつ、V、NbおよびTiとCとの含有量(質量%)が、
0.5×C/12≦(V/51+Nb/93+Ti/48)≦2×C/12
なる関係を満たす組成になる鋼スラブを、熱間圧延し、次いで冷間圧延を施し、その後、650〜780℃に加熱する焼鈍を施してから再び冷間圧延を施し、次いで、冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度以上でかつ再結晶温度以上、950℃以下に加熱した後、少なくとも400℃までは平均冷却速度5℃/s以上として冷却する焼鈍を施すことを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。
C: 0.01-0.05%, Si: 0.1-1.5%, Mn: 1.0-3.0%, P: 0.10% or less, S: 0.02% by mass% Hereinafter, Al: 0.005 to 0.1%, N: 0.02% or less, V: 0.01 to 0.2%, Nb: 0.001 to 0.2%, and Ti: 0.001 to 0 0.3%, and the contents (% by mass) of V, Nb and Ti and C are:
0.5 × C / 12 ≦ (V / 51 + Nb / 93 + Ti / 48) ≦ 2 × C / 12
A steel slab having a composition satisfying the following relationship is hot-rolled, then cold-rolled, then annealed by heating to 650 to 780 ° C, cold-rolled again, and after cooling, the ferrite phase After heating to a temperature not lower than the temperature at which the structure containing the martensite phase is obtained and not lower than the recrystallization temperature and not higher than 950 ° C., annealing is performed at an average cooling rate of 5 ° C./s or higher until at least 400 ° C. To produce a composite structure type high-tensile cold-rolled steel sheet having excellent deep drawability.
鋼スラブは、上記組成に加えてさらにMo:0.01〜0.5質量%を含有することを特徴とする、請求項1または2に記載の深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。The composite structure type high tensile cold steel having excellent deep drawability according to claim 1 or 2, wherein the steel slab further contains Mo: 0.01 to 0.5% by mass in addition to the above composition. Manufacturing method of rolled steel sheet.
JP2003021699A 2003-01-30 2003-01-30 Manufacturing method of high-strength cold-rolled steel sheet with excellent structure Expired - Fee Related JP4178974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021699A JP4178974B2 (en) 2003-01-30 2003-01-30 Manufacturing method of high-strength cold-rolled steel sheet with excellent structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021699A JP4178974B2 (en) 2003-01-30 2003-01-30 Manufacturing method of high-strength cold-rolled steel sheet with excellent structure

Publications (2)

Publication Number Publication Date
JP2004232018A true JP2004232018A (en) 2004-08-19
JP4178974B2 JP4178974B2 (en) 2008-11-12

Family

ID=32950962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021699A Expired - Fee Related JP4178974B2 (en) 2003-01-30 2003-01-30 Manufacturing method of high-strength cold-rolled steel sheet with excellent structure

Country Status (1)

Country Link
JP (1) JP4178974B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197748A (en) * 2006-01-25 2007-08-09 Jfe Steel Kk Method for producing high strength complex structure type cold-rolled sheet steel for deep drawing
JP2014055310A (en) * 2012-09-11 2014-03-27 Jfe Steel Corp Method of manufacturing thin steel sheet excellent in rigidity
CN117165751A (en) * 2023-08-08 2023-12-05 北京科技大学 Method for improving full-length tissue uniformity of microalloyed high-strength steel cold-rolled base stock

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2898421C (en) * 2013-02-11 2017-09-12 Tata Steel Ijmuiden B.V. A high-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197748A (en) * 2006-01-25 2007-08-09 Jfe Steel Kk Method for producing high strength complex structure type cold-rolled sheet steel for deep drawing
JP2014055310A (en) * 2012-09-11 2014-03-27 Jfe Steel Corp Method of manufacturing thin steel sheet excellent in rigidity
CN117165751A (en) * 2023-08-08 2023-12-05 北京科技大学 Method for improving full-length tissue uniformity of microalloyed high-strength steel cold-rolled base stock
CN117165751B (en) * 2023-08-08 2024-04-16 北京科技大学 Method for improving full-length tissue uniformity of microalloyed high-strength steel cold-rolled base stock

Also Published As

Publication number Publication date
JP4178974B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
EP1291448B1 (en) Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
US20080199347A1 (en) Method of Producing High-Strength Steel Plates with Excellent Ductility and Plates Thus Produced
JP4460343B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
EP1354972A1 (en) Cold-rolled steel sheet having ultrafine grain structure and method for manufacturing the same
JP2009132981A (en) High-strength cold-rolled steel sheet having small in-plane anisotropy of elongation, and manufacturing method therefor
WO2013054464A1 (en) High-strength cold-rolled steel plate having excellent deep drawability and in-coil material uniformity, and method for manufacturing same
JP2012112039A (en) High-strength cold-rolled steel sheet superior in deep-drawability and bake hardenability, and method for manufacturing the same
KR20130051500A (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
KR20140044938A (en) High strength hot dip galvanized steel sheet having excellent deep-drawability, and method for producing same
JP2006002186A (en) Method for producing high strength cold-rolled steel sheet excellent in ductility and pore-expandability
JP5456026B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4337604B2 (en) Strain aging treatment method for high-tensile steel sheet and method for producing high-strength structural member
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP4010132B2 (en) Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP4178974B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent structure
JP5088092B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP2007092154A (en) Method for manufacturing ultrahigh-strength cold-rolled steel sheet superior in formability
CN116507753A (en) Ultra-high strength steel sheet having excellent ductility and method for manufacturing same
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees