JP2004231695A - Method for decomposing thermosetting resin and/or its cured product and method for producing thermosetting resin using decomposition product obtained by the method - Google Patents

Method for decomposing thermosetting resin and/or its cured product and method for producing thermosetting resin using decomposition product obtained by the method Download PDF

Info

Publication number
JP2004231695A
JP2004231695A JP2003018959A JP2003018959A JP2004231695A JP 2004231695 A JP2004231695 A JP 2004231695A JP 2003018959 A JP2003018959 A JP 2003018959A JP 2003018959 A JP2003018959 A JP 2003018959A JP 2004231695 A JP2004231695 A JP 2004231695A
Authority
JP
Japan
Prior art keywords
thermosetting resin
resin
decomposition
cured product
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003018959A
Other languages
Japanese (ja)
Other versions
JP4317696B2 (en
Inventor
Tomonori Inazumi
智則 稲積
Hiroto Kai
博人 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2003018959A priority Critical patent/JP4317696B2/en
Publication of JP2004231695A publication Critical patent/JP2004231695A/en
Application granted granted Critical
Publication of JP4317696B2 publication Critical patent/JP4317696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a thermosetting resin by efficiently decomposing a thermosetting resin and/or its cured product into a low-molecular-weight component such as a constituent monomer thereof or an oligomer, recovering the low-molecular-weight decomposition product obtained by the decomposition and using the decomposition product as a synthetic raw material for the thermosetting resin such as a phenol resin or an epoxy resin and to realize chemical recycle. <P>SOLUTION: A method for decomposing the thermosetting resin and/or its cured product comprises dissolving the thermosetting resin and/or its cured product in the presence of a zinc halide in phenols under heating/pressurizing and carrying out decomposition thereof. A method for producing the thermosetting resin comprises using the resultant low-molecular-weight decomposition product as the raw material and reproducing the thermosetting resin. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱硬化性樹脂及び/又はその硬化物の分解方法並びにそれによって得られた分解生成物を用いた熱硬化性樹脂の製造方法に係り、特に、熱硬化性樹脂及び/又はその硬化物を、モノマーやオリゴマー等の低分子量成分へ効率的に分解する方法と、そのようにして得られた低分子量の分解生成物を、フェノール樹脂やエポキシ樹脂等の熱硬化性樹脂の合成原料としてリサイクルして、熱硬化性樹脂を製造する方法に関するものである。
【0002】
【従来の技術】
従来より、ポリエチレンテレフタレート(PET)の如きポリエステル等の熱可塑性樹脂の廃棄物が、プラスチック原料として再生されていることは、よく知られているところである。このような熱可塑性樹脂に対し、フェノール樹脂等の熱硬化性樹脂は、軟化・溶融しないところから、その硬化物は、そのままでは、プラスチック原料として再生することが出来ない。このため、フェノール樹脂等の熱硬化性樹脂やその硬化物の廃棄物にあっては、リサイクルが困難とされてきたのである。
【0003】
そこで、そのような問題を解決するために、熱硬化性樹脂の廃棄物処理方法として、例えば、特許文献1には、超臨界状態又は亜臨界状態の水を溶媒として用い、これに、酸素、空気又は過酸化水素を加えて酸化分解する方法が、提案されている。しかしながら、この方法では、生成する低分子化合物が酸化されることが多くなり、そのために再利用し得るモノマー類の割合が低くなる等といった欠点があるところから、再利用の効率性において問題があり、実用化されるには至っていない。
【0004】
また、特許文献2や非特許文献1には、超臨界又は亜臨界状態の単核フェノール類化合物、又は水/単核フェノール類化合物の溶液中で、熱硬化性樹脂を可溶化処理することにより、熱硬化性樹脂を、分子量が200〜10000程度のオリゴマーを主体とする低〜中分子量化合物まで分解する方法が提案され、更に、特許文献3には、超臨界水又は亜臨界水を溶媒として用い、これに、アルカリ金属とフェノール類化合物からなる塩又はアルカリ土類金属とフェノール類化合物からなる塩を、触媒として加えて、熱硬化性樹脂を低〜中分子化合物まで分解する方法が提案されている。しかしながら、これら何れの手法にあっても、熱硬化性樹脂の分解率(低分子量成分への転化率)が、未だ充分なものとは言い難く、また、臨界状態又は亜臨界状態となるまで、高温・高圧にしなければならないところから、より低い温度や圧力での分解が、望まれているのである。
【0005】
【特許文献1】
特開平10−287766号公報
【特許文献2】
特開2001−151933号公報
【特許文献3】
特開2001−98107号公報
【非特許文献1】
後藤純也、外2名,「超臨界状態および亜臨界状態の水/フェノール2成分系溶媒を用いたフェノール樹脂硬化物からのオリゴマー回収」,第52回ネットワークポリマー講演討論会 講演要旨集,合成樹脂工業協会主催,p.56−59(2002)
【0006】
【発明が解決しようとする課題】
ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、熱硬化性樹脂及び/又はその硬化物を、その構成モノマーやオリゴマー等の低分子量成分へ効率的に分解する方法を、提供することにある。また、別の解決課題とするところは、熱硬化性樹脂及び/又はその硬化物の分解によって得られた低分子量の分解生成物を回収して、フェノール樹脂やエポキシ樹脂等の熱硬化性樹脂の合成原料として用いることにより、熱硬化性樹脂を製造し、ケミカルリサイクルを実現することにある。
【0007】
【課題を解決するための手段】
そして、本発明者等は、そのような課題を解決すべく鋭意検討を重ねた結果、溶媒乃至は媒体として、フェノール類を用いると共に、ハロゲン化亜鉛を分解助剤として存在せしめることによって、熱硬化性樹脂が、加熱・加圧下において、その構成モノマーやオリゴマー等の低分子量成分に効果的に分解され、優れた分解率(転化率)が実現され得ることを見出したのである。
【0008】
従って、本発明は、かかる知見に基づいて完成されたものであって、その要旨とするところは、熱硬化性樹脂及び/又はその硬化物を、ハロゲン化亜鉛の存在下、加熱・加圧下のフェノール類中において、分解せしめることを特徴とする熱硬化性樹脂及び/又はその硬化物の分解方法にある。
【0009】
このような本発明に従う熱硬化性樹脂及び/又はその硬化物の分解方法にあっては、フェノール類が分解反応系における溶媒乃至は媒体として用いられていると共に、ハロゲン化亜鉛の存在下において、熱硬化性樹脂及び/又はその硬化物の分解が行なわれるようになっているところから、熱硬化性樹脂及び/又はその硬化物が、従来の手法に比して、低い温度と圧力で、より効果的に、モノマーやオリゴマー等の低分子量成分に分解せしめられ得ることとなるのである。
【0010】
しかも、この本発明に従う分解方法に採用されるハロゲン化亜鉛は、熱硬化性樹脂を製造する際に、触媒として用いられたりするものであるところから、得られた分解生成物中に、ハロゲン化亜鉛が存在しても、そのまま再利用することが可能であり、ケミカルリサイクルに悪影響が惹起され得ない等といった特徴をも有しているのである。
【0011】
なお、かかる本発明に従う熱硬化性樹脂及び/又はその硬化物の分解方法の好ましい態様の一つによれば、前記熱硬化性樹脂は、フェノール樹脂、メラミン樹脂、尿素樹脂又はエポキシ樹脂が望ましく、これらの熱硬化性樹脂及びその硬化物が有利に分解せしめられることとなる。
【0012】
また、本発明における好ましい態様の他の一つによれば、前記ハロゲン化亜鉛として、塩化亜鉛が好適に採用され得る。
【0013】
さらに、本発明に従う分解方法の好ましい態様の別の一つによれば、前記フェノール類としては、フェノール、オルソクレゾール、メタクレゾール及びパラクレゾールからなる群より選ばれた少なくとも1種の化合物が、望ましい。
【0014】
加えて、本発明は、上述せる如き熱硬化性樹脂及び/又はその硬化物の分解方法により得られた低分子量の分解生成物を、原料として用い、熱硬化性樹脂を形成することを特徴とする熱硬化性樹脂の製造方法をも、その要旨とするものである。このように、上述せるようにして得られた、モノマーやオリゴマー等の低分子量の分解生成物を、原料として用いて、再度、熱硬化性樹脂を製造するようにすれば、ケミカルリサイクルが有利に実現され得るのである。
【0015】
【発明の実施の形態】
次に、本発明について、その詳細を具体的に明らかにすることとする。
【0016】
先ず、本発明において分解対象となる熱硬化性樹脂及びその硬化物としては、従来より公知の熱硬化性樹脂及びその硬化物であれば、特に限定されるものではない。そして、そのような熱硬化性樹脂及びその硬化物としては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、エポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等の熱硬化性樹脂、及びそれらの硬化物を挙げることが出来るが、本発明に従う方法によれば、それらの中でも、フェノール樹脂、メラミン樹脂、尿素樹脂、エポキシ樹脂及びそれらの硬化物が、特に有利に分解され得て、その構成モノマーや、オリゴマー等の低分子量成分が効果的に取り出されることとなる。
【0017】
なお、これらの分解対象は、硬化前の樹脂であっても、硬化途中のものであっても、更には不溶不融となった硬化物であっても、また、それら熱硬化性樹脂とその硬化物との混合物であっても、何等差支えない。加えて、かかる熱硬化性樹脂やその硬化物には、ガラス繊維,布,パルプ,アスベスト等の補強材料や、木粉等の各種の充填材等が含まれている場合があるが、そのような対象物であっても、本発明を有利に適用することが出来る。
【0018】
また、かかる分解対象である熱硬化性樹脂及び/又はその硬化物の性状にあっても、液状物乃至は流動物の他、固形物(固体)があり、特に制限されるものではないのであるが、中でも、分解対象が固形物である場合には、後述するフェノール類への溶解性や分解反応の促進等を考慮して、フェノール類との接触面積が大きい、換言すれば、表面積が大きい、粉状,粒状,繊維状のものが、望ましいのである。
【0019】
また、本発明において用いられるフェノール類は、加熱・加圧下において、上述せる如き熱硬化性樹脂やその硬化物を溶解せしめる溶媒、乃至はそのような熱硬化性樹脂やその硬化物の分解反応を進行せしめる反応媒体であると共に、その分解によって開裂した部分と結合して、高分子量成分を、ケミカルリサイクルの可能な低分子量成分へ、効果的に分解乃至は再配列化するための成分である。そして、そのようなフェノール類としては、フェノール(標準沸点:181.8℃)、o−クレゾール(190.8℃)、m−クレゾール(202.7℃)、p−クレゾール(201.9℃)が挙げられ、これらのうちの1種を単独で用いたり、或いは、2種以上を組み合わせ、適当な割合で混合して、使用したりすることが出来る。なお、このようなフェノール類は、高純度である必要はなく、水等の不純物が含まれていても良いのであるが、分解率をより一層向上せしめるためには、水等の含有が可及的に少ないものが、選択されることが望ましい。
【0020】
そして、このようなフェノール類の使用量としては、特に限定されるものではなく、分解対象たる熱硬化性樹脂やその硬化物の種類や量等に応じて適宜に設定されることが望ましいが、熱硬化性樹脂の100重量部に対して、一般に、100〜5000重量部、更に好ましくは、150〜2000重量部の割合において、用いられることが望ましいのである。何故ならば、かかるフェノール類の使用量が少な過ぎると、加熱・加圧下において、熱硬化性樹脂のフェノール類への溶解量が減少して、低分子量化が困難となったり、或いは分解反応媒体として有効に機能し得ず、分解反応が充分に進行され得なくなったりして、所望とする分解率が得られなくなったりする恐れがあるからであり、逆に、フェノール類の使用量が多過ぎても、分解率はさほど上がらず、経済性の面からして好ましくないからである。
【0021】
一方、本発明において用いられるハロゲン化亜鉛は、強酸性の非プロトン性化合物であり、熱硬化性樹脂及び/又はその硬化物の分解反応のための助剤としての作用を奏する。このハロゲン化亜鉛の添加により、熱硬化性樹脂及び/又はその硬化物が、従来の分解手法に比して、低い温度と圧力で、より効果的に分解され得るようになるのである。しかも、かかるハロゲン化亜鉛は、熱硬化性樹脂を製造する際にも、触媒として用いられている成分であるところから、ケミカルリサイクルに際して、熱硬化性樹脂及び/又はその硬化物の分解処理後に得られる分解生成物中に存在しても、除去せしめる必要がないといった特徴を有しているのである。そのようなハロゲン化亜鉛としては、例えば、亜鉛の塩素化物や臭素化物等が挙げられるのであるが、中でも、塩化亜鉛が優れた効果を発揮するところから、本発明において、好適に採用されることとなる。
【0022】
また、このようなハロゲン化亜鉛の使用量としては、分解対象たる熱硬化性樹脂やその硬化物の種類や存在量等に応じて適宜に設定され得るものであって、一般に、熱硬化性樹脂の100重量部に対して、0.1〜30重量部程度、好ましくは、1〜15重量部程度の割合において、用いられることが望ましい。これは、ハロゲン化亜鉛の使用量が少な過ぎると、その添加による効果が充分に得られず、分解温度や圧力を低くすることが出来ず、また、分解率の向上も実現され得なくなる恐れがあるからであり、多過ぎても、分解率はさほど上がらず、経済性の面からして好ましくないからである。
【0023】
かくして、本発明にあっては、上述せる如きフェノール類やハロゲン化亜鉛を用い、加熱・加圧下において、熱硬化性樹脂及び/又はその硬化物の分解、換言すれば、低分子量化が行なわれることとなるのであるが、具体的には、以下のようにして行なわれる。勿論、本発明手法が、下記の具体例に何等限定的に解釈されるものではないことは、言うまでもないところである。
【0024】
すなわち、先ず、オートクレーブの如き耐熱・耐圧性の容器内に、分解対象である熱硬化性樹脂及び/又はその硬化物と共に、上述せる如きフェノール類とハロゲン化亜鉛を投入し、その容器内を、窒素ガス等の不活性ガスで置換する。その後、かかる容器の内部が、内部に収容されたフェノール類の標準沸点以上の温度、具体的には、フェノール類の標準沸点よりも1〜150℃程度高い温度、或いはそれ以上の高い温度となるように、ヒーター等の加熱装置を用いて加熱し、加熱・加圧下にて、熱硬化性樹脂やその硬化物をフェノール類に溶解乃至は分散せしめて、分解反応を行なう。その際、加熱温度としては、一般に、180〜500℃、好ましくは250〜300℃の範囲の温度で、適宜に設定され得る。また、圧力としては、分解反応時に、フェノール類が気化することがないような圧力が設定され、通常、1気圧を超える圧力、好ましくは0.5〜60MPa、更に好ましくは1〜30MPaの範囲で、適宜に設定される。因みに、容器内を加圧するために、系外から圧力を付与することも可能であるが、容器を加熱するだけで、密閉された容器内の圧力を充分に高めることが可能であり、この場合には、容器内の圧力は、使用するフェノール類の蒸気圧に、フェノール樹脂及び/又はその硬化物等の分解ガスの影響を加えた程度の値となる。更に、加熱・加圧状態下に保持する保持時間は、分解対象物の量や加熱温度等に応じて適宜に設定され、目標温度にまで加熱・昇温せしめた後、直ちに冷却するようにすることも可能であるが、一般に、10時間以内、好ましくは、1時間以内とされることが望ましい。
【0025】
そして、所定の保持時間、加熱・加圧を行なった後、容器を冷却して、その内部を常温常圧にする。次いで、分解処理物たる内容物を取り出し、これを、液体成分と固体成分に濾別する等して、分離するのである。なお、このようにして分離された固体成分は、充填材,補強材,樹脂炭化物,未分解物等である一方、液体成分は、熱硬化性樹脂及び/又はその硬化物が、フェノール類と交換反応し、低分子化して生じたモノマー乃至オリゴマーの低分子量成分と、フェノール類の混合物である。そして、分解によって生成した低分子成分は回収されて、樹脂合成用の原料として、再利用され得るのである。また、このような方法にて、熱硬化性樹脂硬化物を分解すれば、熱硬化性樹脂硬化物のリサイクル可能な低分子成分への分解率(転化率)は60〜100重量%程度となり、優れた分解率(転化率)が有利に達成され得ることとなる。
【0026】
このように、本発明に従う分解方法にあっては、熱硬化性樹脂及び/又はその硬化物を、ケミカルリサイクル可能な低分子化合物にまで、高収率で転化させることが出来るようなっているのである。これは、分解対象物が、ハロゲン化亜鉛の存在下、加熱及び加圧された高温高圧のフェノール類に対して極めて高い溶解性乃至は親和性を示すと共に、フェノール類と交換反応を生じ、熱硬化性樹脂やその硬化物を、ケミカルリサイクル可能な低分子化合物に分解することによるものと推察されている。
【0027】
ところで、上述せる如くして得られた分解生成物は、再度、原料として用いられ、フェノール樹脂やエポキシ樹脂等の熱硬化性樹脂が製造されることとなる。なお、その際の熱硬化性樹脂の製造方法としては、合成原料を低分子量化された分解生成物とする以外は、従来から公知の手法が、そのまま、採用されることとなる。
【0028】
具体的には、分解操作によって得られた分解生成物の液体成分を回収し、そのまま、熱硬化性樹脂の原料として使用すればよく、例えば、オリゴマーを含む分解生成物にホルムアルデヒドを反応させて、フェノール樹脂を製造することが出来る。そして、その際、必要に応じて、新しいフェノール類を追加することも可能であることは、勿論である。
【0029】
かくして、本発明手法に従って、低分子量化された分解生成物を用いて熱硬化性樹脂を製造すれば、廃棄処分とされる熱硬化性樹脂或いは熱硬化性樹脂硬化物から、重量平均分子量が200〜10000程度のオリゴマーやモノマーを回収し、この低分子量の分解生成物を、新たに、熱硬化性樹脂の合成原料として再利用することが出来、リサイクルが可能となる。また、従来の方法(特許文献1)では、超臨界状態或いは亜臨界状態の水に酸素等の酸化剤を加えて、酸化分解を行うものであるところから、生成する低分子化合物が酸化されることが多く、再利用し得る低分子化合物の割合が低いという欠点があるが、本発明においては、低分子量成分が酸化されることが少なく、リサイクル率が高くなるといった利点も享受され得るのである。
【0030】
【実施例】
以下に、本発明を、実施例を用いて更に具体的に明らかにするが、本発明は、そのような実施例の記載によって、何等限定的に解釈されるものではない。なお、本実施例における熱硬化性樹脂硬化物の低分子量化合物への転化率(分解率)は、次のようにして求められたものである。
【0031】
(熱硬化性樹脂硬化物の転化率)
分解前の熱硬化性樹脂硬化物の重量と、分解後に分解処理物から濾紙を用いて分離された固体成分の乾燥重量を、それぞれ、測定し、それらの測定値から、下記計算式に従って算出することにより、転化率を求めた。
【数1】

Figure 2004231695
【0032】
−熱硬化性樹脂硬化物の分解−
(実施例1)
フェノール樹脂硬化物(液状レゾール樹脂の熱硬化物)を5mm程度の大きさに破砕した粗砕品130g、フェノール390g及び塩化亜鉛13gを、1.8Lのオートクレーブに収容した後、かかるオートクレーブ内の空気を、窒素ガスで充分に置換し、そして密閉した後、ヒーターで加熱し、300℃まで昇温させた。このとき、オートクレーブ内の圧力は、4.0MPa程度であった。そして、この温度・圧力を、30分間保持した後、冷却して、常温常圧に戻した。次いで、得られた固液混合の反応溶液(分解処理物)を、孔径:5μmの濾紙を用いて、固体成分と液体成分に分離した。
【0033】
そして、その分離された固体成分を分析したところ、炭化が進んだ樹脂分と未分解の硬化物であることが分かった。また、得られた液体成分を、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と略記する)を用いて分析(UV検出器:検出波長254nm)した結果、オリゴマーを含むフェノール溶液であることが分かった。更に、転化率を求め、その得られた結果を、下記表1に示した。
【0034】
(実施例2)
上記実施例1において、ヒーターで300℃まで昇温させた後、直ちに冷却した(保持時間:0時間)こと以外は、実施例1と同様の操作を行ない、フェノール樹脂硬化物を分解せしめた。
【0035】
そして、分離された固体成分を分析したところ、炭化が進んだ樹脂分と未分解の硬化物であることを認める一方、得られた液体成分を、GPCを用いて分析した結果、オリゴマーを含むフェノール溶液であることが分かった。更に、転化率を求め、得られた結果を、下記表1に示した。
【0036】
(実施例3)
上記実施例1において、ヒーターでの昇温温度を、250℃とすると共に、保持時間を60分間としたこと以外は、実施例1と同様の操作を行ない、フェノール樹脂硬化物を分解せしめた。なお、250℃におけるオートクレーブ内の圧力は、2.5MPa程度であった。
【0037】
そして、分離された固体成分を分析したところ、炭化が進んだ樹脂分と未分解の硬化物であることを認め、また、得られた液体成分を、GPCを用いて分析した結果、オリゴマーを含むフェノール溶液であることが分かった。更に、転化率を求め、得られた結果を、下記表1に示した。
【0038】
(実施例4)
上記実施例1において、フェノール390gを、オルソクレゾール390gに代えたこと以外は、実施例1と同様の操作を行ない、フェノール樹脂硬化物を分解せしめた。なお、300℃におけるオートクレーブ内の圧力は、3.5MPa程度であった。
【0039】
そして、分離された固体成分を分析したところ、炭化が進んだ樹脂分と未分解の硬化物であることを認め、また、得られた液体成分を、GPCを用いて分析した結果、オリゴマーを含むフェノール溶液であることが分かった。更に、転化率を求め、得られた結果を、下記表1に示した。
【0040】
(実施例5)
上記実施例1において、フェノール樹脂硬化物に代えて、5mm程度に粉砕したメラミン樹脂硬化物(メチロールメラミンの熱硬化物)を用いたこと以外は、実施例1と同様の操作を行ない、メラミン樹脂硬化物を分解せしめた。なお、300℃におけるオートクレーブ内の圧力は、4.0MPa程度であった。
【0041】
そして、分離された固体成分を分析したところ、炭化が進んだ樹脂分と未分解の硬化物であることを認め、また、得られた液体成分を、GPCを用いて分析した結果、オリゴマーを含むメラミン溶液であることが分かった。更に、転化率を求め、得られた結果を、下記表1に示した。
【0042】
(実施例6)
上記実施例1において、フェノール樹脂硬化物に代えて、5mm程度に粉砕した尿素樹脂硬化物(メチロール尿素の熱硬化物)を用いたこと以外は、実施例1と同様の操作を行ない、尿素樹脂硬化物を分解せしめた。なお、300℃におけるオートクレーブ内の圧力は、4.0MPa程度であった。
【0043】
そして、分離された固体成分を分析したところ、炭化が進んだ樹脂分と未分解の硬化物であることを認め、また、得られた液体成分を、GPCを用いて分析した結果、オリゴマーを含む尿素溶液であることが分かった。更に、転化率を求め、得られた結果を、下記表1に示した。
【0044】
(実施例7)
上記実施例1において、フェノール樹脂硬化物に代えて、5mm程度に粉砕したエポキシ樹脂硬化物を用いたこと以外は、実施例1と同様の操作を行ない、エポキシ樹脂硬化物を分解せしめた。なお、300℃におけるオートクレーブ内の圧力は、4.0MPa程度であった。
【0045】
そして、分離された固体成分を分析したところ、炭化が進んだ樹脂分と未分解の硬化物であることを認め、また、得られた液体成分を、GPCを用いて分析した結果、オリゴマーを含むフェノール溶液であることが分かった。更に、転化率を求め、得られた結果を、下記表1に示した。
【0046】
(比較例1)
上記実施例1において、塩化亜鉛を用いないこと以外は、実施例1と同様の操作を行ない、フェノール樹脂硬化物を分解せしめた。なお、300℃におけるオートクレーブ内の圧力は、2.5MPa程度であった。
【0047】
そして、分離された固体成分を分析したところ、炭化が進んだ樹脂分を含むフェノール樹脂硬化物であることを認め、また、得られた液体成分を、GPCを用いて分析した結果、オリゴマーを含むフェノール溶液であることが分かった。更に、転化率を求め、得られた結果を、下記表1に示した。
【0048】
(比較例2)
上記実施例1において、塩化亜鉛に代えて、塩化アルミニウムを用いたこと以外は、実施例1と同様の操作を行ない、フェノール樹脂硬化物を分解せしめた。なお、300℃におけるオートクレーブ内の圧力は、3.0MPa程度であった。
【0049】
そして、分離された固体成分を分析したところ、炭化が進んだ樹脂分を含むフェノール樹脂硬化物であることが分かった。また、得られた液体成分を、GPCを用いて分析した結果、オリゴマーを含むフェノール溶液であることが分かった。更に、転化率を求め、得られた結果を、下記表1に示した。
【0050】
(比較例3)
上記実施例1において、フェノールに代えて、イソプロピルアルコールを用いたこと以外は、実施例1と同様の操作を行ない、フェノール樹脂硬化物を分解せしめた。なお、300℃におけるオートクレーブ内の圧力は、13.0MPa程度であった。
【0051】
そして、分離された固体成分を分析したところ、炭化が進んだ樹脂分を含むフェノール樹脂硬化物であることを認め、また、得られた液体成分を、GPCを用いて分析した結果、オリゴマーを含むフェノール溶液であることが分かった。更に、転化率を求め、得られた結果を、下記表1に示した。
【0052】
【表1】
Figure 2004231695
【0053】
上記表1からも明らかなように、本発明に従って、溶媒として、フェノール若しくはクレゾールを用いると共に、塩化亜鉛を分解助剤として使用すれば、加熱温度が300℃であっても、80%以上の転化率(分解率)が達成されていることが分かる。
【0054】
これに対して、ハロゲン化亜鉛を分解助剤として用いない比較例1,2や、溶媒がイソプロピルアルコールである比較例3にあっては、転化率(分解率)が低く、効率的な分解が実現され得ていないことが認められるのである。
【0055】
−熱硬化性樹脂の製造−
また、ケミカルリサイクルが可能であるか、どうかの確認を行なうために、上述せる如き分解操作によって得られた低分子量の成分を用いて、熱硬化性樹脂の製造を、以下のようにして行なった。
【0056】
(実施例8)
上記実施例1において、分解操作後に固体成分と分離された液体成分(分解生成物+フェノール)の100gを用い、これを、フェノール100g、47%ホルムアルデヒド水溶液110g、蓚酸1gと共に、1Lフラスコに仕込み、100℃まで1時間をかけて攪拌混合しながら昇温した。そして、その温度を保持して、縮合反応を3時間行なった。その後、脱水・脱モノマー工程を、常法に従って行なったところ、181gのフェノールノボラック樹脂が得られたことを、確認した。
【0057】
【発明の効果】
以上説明したように、本発明によれば、熱硬化性樹脂及び/又はその硬化物を、モノマー乃至オリゴマー等の低分子量成分へ効率よく分解することが出来るのであり、また、そのようにして得られた低分子量成分は、回収され、再び、新たな合成材料としてフェノール樹脂等の熱硬化性樹脂への製造に有利に利用することができるところから、熱硬化性樹脂のケミカルリサイクルが容易に実現され得ることとなったのである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for decomposing a thermosetting resin and / or a cured product thereof, and a method for producing a thermosetting resin using a decomposition product obtained by the method. Method for efficiently decomposing substances into low molecular weight components such as monomers and oligomers, and using the low molecular weight decomposition products thus obtained as a raw material for the synthesis of thermosetting resins such as phenolic resins and epoxy resins The present invention relates to a method for producing a thermosetting resin by recycling.
[0002]
[Prior art]
It is well known that waste of thermoplastic resin such as polyester such as polyethylene terephthalate (PET) has been recycled as a plastic raw material. In contrast to such a thermoplastic resin, a thermosetting resin such as a phenolic resin does not soften or melt, and thus the cured product cannot be recycled as a plastic raw material as it is. For this reason, it has been considered difficult to recycle thermosetting resins such as phenolic resins and wastes of cured products thereof.
[0003]
Therefore, in order to solve such a problem, as a waste treatment method of a thermosetting resin, for example, in Patent Document 1, supercritical or subcritical water is used as a solvent, and oxygen, A method of oxidative decomposition by adding air or hydrogen peroxide has been proposed. However, in this method, the low-molecular compound to be generated is often oxidized, and thus has a drawback that the ratio of the recyclable monomers is low, and thus there is a problem in the efficiency of the recycling. Has not been put to practical use.
[0004]
Further, Patent Document 2 and Non-Patent Document 1 disclose a method of solubilizing a thermosetting resin in a solution of a mononuclear phenol compound in a supercritical or subcritical state or a solution of water / mononuclear phenol compound. A method has been proposed in which a thermosetting resin is decomposed into low to medium molecular weight compounds mainly composed of oligomers having a molecular weight of about 200 to 10000. Further, Patent Document 3 discloses that supercritical water or subcritical water is used as a solvent. A method is proposed in which a salt composed of an alkali metal and a phenol compound or a salt composed of an alkaline earth metal and a phenol compound is added as a catalyst to decompose the thermosetting resin into low to medium molecular compounds. ing. However, in any of these methods, the decomposition rate of the thermosetting resin (conversion rate to a low molecular weight component) is still not sufficiently high, and until a critical state or a subcritical state is reached. Since high temperature and pressure are required, decomposition at lower temperature and pressure is desired.
[0005]
[Patent Document 1]
JP-A-10-287766
[Patent Document 2]
JP 2001-151933 A
[Patent Document 3]
JP 2001-98107 A
[Non-patent document 1]
Junya Goto, et al., "Oligomer recovery from cured phenolic resin using supercritical and subcritical water / phenol binary solvents", Proceedings of the 52nd Network Polymer Symposium, Synthetic Resins Sponsored by the Industrial Association, p. 56-59 (2002)
[0006]
[Problems to be solved by the invention]
Here, the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a thermosetting resin and / or a cured product thereof with a low molecular weight such as a constituent monomer or oligomer. An object of the present invention is to provide a method for efficiently decomposing components. Another problem to be solved is that a thermosetting resin and / or a low molecular weight decomposition product obtained by decomposing a cured product thereof is recovered, and a thermosetting resin such as a phenol resin or an epoxy resin is recovered. An object of the present invention is to produce a thermosetting resin and realize chemical recycling by using it as a synthetic raw material.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve such a problem, and as a result, by using phenols as a solvent or a medium and by allowing zinc halide to be present as a decomposition aid, thermosetting was performed. It has been found that, under heat and pressure, the conductive resin is effectively decomposed into low molecular weight components such as its constituent monomers and oligomers, and an excellent decomposition rate (conversion rate) can be realized.
[0008]
Therefore, the present invention has been completed on the basis of such knowledge, and the gist of the present invention is to provide a thermosetting resin and / or a cured product thereof under heating and pressure in the presence of zinc halide. A method for decomposing a thermosetting resin and / or a cured product thereof, which is characterized by being decomposed in phenols.
[0009]
In such a method for decomposing a thermosetting resin and / or a cured product thereof according to the present invention, phenols are used as a solvent or a medium in a decomposition reaction system, and in the presence of zinc halide, Since the thermosetting resin and / or the cured product thereof is to be decomposed, the thermosetting resin and / or the cured product thereof can be produced at a lower temperature and pressure than the conventional method. It can be effectively decomposed into low molecular weight components such as monomers and oligomers.
[0010]
Moreover, since the zinc halide employed in the decomposition method according to the present invention is used as a catalyst when producing a thermosetting resin, the resulting decomposition product contains halogenated zinc. Even if zinc is present, it can be reused as it is, and it also has such features that no adverse effects can be caused on chemical recycling.
[0011]
According to one preferred embodiment of the method for decomposing the thermosetting resin and / or the cured product thereof according to the present invention, the thermosetting resin is preferably a phenol resin, a melamine resin, a urea resin or an epoxy resin, These thermosetting resins and cured products thereof are advantageously decomposed.
[0012]
According to another preferred embodiment of the present invention, zinc chloride can be suitably used as the zinc halide.
[0013]
Further, according to another preferred embodiment of the decomposition method according to the present invention, the phenol is preferably at least one compound selected from the group consisting of phenol, orthocresol, metacresol and paracresol. .
[0014]
In addition, the present invention is characterized in that a thermosetting resin and / or a low-molecular-weight decomposition product obtained by the method for decomposing a cured product thereof is used as a raw material to form a thermosetting resin. The method for producing a thermosetting resin is also the gist of the invention. As described above, if a low-molecular-weight decomposition product such as a monomer or oligomer obtained as described above is used as a raw material, and a thermosetting resin is produced again, chemical recycling is advantageously performed. It can be achieved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, details of the present invention will be specifically clarified.
[0016]
First, the thermosetting resin to be decomposed in the present invention and its cured product are not particularly limited as long as they are conventionally known thermosetting resins and their cured products. And such thermosetting resins and cured products thereof include, for example, phenolic resins, melamine resins, urea resins, epoxy resins, polyimide resins, unsaturated polyester resins, thermosetting resins such as diallyl phthalate resin, and the like. Among them, according to the method according to the present invention, among them, phenol resin, melamine resin, urea resin, epoxy resin and their cured products can be decomposed particularly advantageously, and their composition Low molecular weight components such as monomers and oligomers are effectively extracted.
[0017]
In addition, these decomposition targets may be a resin before curing, a resin in the course of curing, or a cured product that has become insoluble and infusible, or a thermosetting resin and a thermosetting resin. Even if it is a mixture with a cured product, there is no problem. In addition, such thermosetting resins and cured products thereof may include reinforcing materials such as glass fiber, cloth, pulp, and asbestos, and various fillers such as wood flour. The present invention can be advantageously applied to any object.
[0018]
Further, even in the properties of the thermosetting resin and / or its cured product to be decomposed, there is a solid (solid) in addition to a liquid or a fluid, and there is no particular limitation. However, among others, when the object to be decomposed is a solid, the contact area with the phenol is large, in other words, the surface area is large, in consideration of the solubility in phenols and promotion of the decomposition reaction described below. Powder, granular, or fibrous materials are desirable.
[0019]
Further, the phenols used in the present invention, under heat and pressure, a solvent that dissolves the thermosetting resin or the cured product thereof as described above, or a decomposition reaction of such a thermosetting resin or the cured product thereof. It is a reaction medium that is allowed to proceed, and is a component for effectively decomposing or rearranging a high molecular weight component into a low molecular weight component that can be chemically recycled by combining with a portion cleaved by the decomposition. Examples of such phenols include phenol (standard boiling point: 181.8 ° C), o-cresol (190.8 ° C), m-cresol (202.7 ° C), and p-cresol (201.9 ° C). One of these can be used alone, or two or more can be used in combination and mixed at an appropriate ratio. Such phenols need not be high-purity and may contain impurities such as water. However, in order to further improve the decomposition rate, the content of water and the like is as high as possible. It is desirable to select as few as possible.
[0020]
The amount of such phenols used is not particularly limited, and is preferably set appropriately according to the type and amount of the thermosetting resin to be decomposed or the cured product thereof, In general, it is desirable to use 100 to 5,000 parts by weight, more preferably 150 to 2,000 parts by weight, based on 100 parts by weight of the thermosetting resin. If the amount of the phenol used is too small, the amount of the thermosetting resin dissolved in the phenol decreases under heating and pressure, and it becomes difficult to reduce the molecular weight, or the decomposition reaction medium Because the decomposition reaction may not be able to proceed sufficiently and the desired decomposition rate may not be obtained, and conversely, the amount of phenols used is too large. However, the decomposition rate does not increase so much, which is not preferable in terms of economy.
[0021]
On the other hand, the zinc halide used in the present invention is a strongly acidic aprotic compound, and acts as an auxiliary for a decomposition reaction of a thermosetting resin and / or a cured product thereof. By the addition of the zinc halide, the thermosetting resin and / or its cured product can be more effectively decomposed at a lower temperature and pressure than the conventional decomposition method. In addition, such a zinc halide is a component used as a catalyst in the production of a thermosetting resin, and thus is obtained after decomposition treatment of the thermosetting resin and / or its cured product during chemical recycling. It has the characteristic that it does not need to be removed even if it is present in the decomposition products obtained. Examples of such a zinc halide include, for example, chlorinated products and brominated products of zinc, and among them, zinc chloride exhibits an excellent effect, and is preferably employed in the present invention. It becomes.
[0022]
The amount of such a zinc halide used can be appropriately set according to the type and abundance of the thermosetting resin to be decomposed or the cured product thereof, and generally, the thermosetting resin is used. It is desirably used in a ratio of about 0.1 to 30 parts by weight, preferably about 1 to 15 parts by weight, based on 100 parts by weight. This is because if the amount of zinc halide used is too small, the effect of its addition cannot be sufficiently obtained, the decomposition temperature and pressure cannot be lowered, and the decomposition rate may not be improved. This is because, even if the amount is too large, the decomposition rate does not increase so much, which is not preferable in terms of economy.
[0023]
Thus, in the present invention, the decomposition of the thermosetting resin and / or the cured product thereof, in other words, the reduction of the molecular weight, is carried out under heat and pressure using the phenols and zinc halides as described above. Specifically, this is performed as follows. Of course, it goes without saying that the method of the present invention is not limited to the following specific examples.
[0024]
That is, first, into a heat-resistant and pressure-resistant container such as an autoclave, a phenol and a zinc halide as described above are charged together with the thermosetting resin to be decomposed and / or a cured product thereof. Replace with an inert gas such as nitrogen gas. Thereafter, the inside of the container is at a temperature higher than the standard boiling point of the phenols contained therein, specifically, a temperature higher by about 1 to 150 ° C. than the standard boiling point of the phenols, or a higher temperature. As described above, a thermosetting resin or a cured product thereof is dissolved or dispersed in a phenol under heating and pressurization using a heating device such as a heater to perform a decomposition reaction. At that time, the heating temperature can be appropriately set generally at a temperature in the range of 180 to 500 ° C, preferably 250 to 300 ° C. As the pressure, a pressure is set such that the phenol does not evaporate during the decomposition reaction, and is usually a pressure exceeding 1 atm, preferably 0.5 to 60 MPa, more preferably 1 to 30 MPa. Are set as appropriate. Incidentally, in order to pressurize the inside of the container, it is possible to apply pressure from outside the system, but it is possible to sufficiently increase the pressure in the sealed container only by heating the container. Therefore, the pressure in the container is a value obtained by adding the effect of a decomposition gas such as a phenol resin and / or a cured product thereof to the vapor pressure of the phenol used. Further, the holding time for holding under the heating and pressurizing state is appropriately set according to the amount of the decomposition target, the heating temperature, and the like, and after cooling to the target temperature, the cooling is performed immediately. Although it is possible to do so, it is generally desirable to do so within 10 hours, preferably within 1 hour.
[0025]
Then, after heating and pressurizing for a predetermined holding time, the container is cooled and the inside thereof is brought to normal temperature and normal pressure. Next, the content, which is a decomposition product, is taken out and separated by, for example, filtering it into a liquid component and a solid component. The solid component thus separated is a filler, a reinforcing material, a resin carbide, an undecomposed product, and the like, while the liquid component is obtained by exchanging the thermosetting resin and / or its cured product with phenols. It is a mixture of phenols and low molecular weight components of monomers or oligomers formed by reacting to lower molecular weight. Then, the low molecular components generated by the decomposition can be recovered and reused as a raw material for resin synthesis. In addition, if the cured thermosetting resin is decomposed by such a method, the decomposition rate (conversion rate) of the cured thermosetting resin into recyclable low molecular components is about 60 to 100% by weight, Excellent decomposition rates (conversions) can be advantageously achieved.
[0026]
As described above, in the decomposition method according to the present invention, the thermosetting resin and / or the cured product thereof can be converted into a chemically recyclable low molecular compound in high yield. is there. This is because the decomposition target exhibits extremely high solubility or affinity for phenols heated and pressurized at a high temperature and a high pressure in the presence of zinc halide, and causes an exchange reaction with the phenols. It is presumed that the curable resin or its cured product is decomposed into a chemically recyclable low molecular compound.
[0027]
By the way, the decomposition product obtained as described above is used again as a raw material, and a thermosetting resin such as a phenol resin or an epoxy resin is produced. As a method for producing the thermosetting resin at that time, a conventionally known method is employed as it is, except that the synthesis raw material is a decomposition product having a reduced molecular weight.
[0028]
Specifically, the liquid component of the decomposition product obtained by the decomposition operation may be collected and used as it is as a raw material of the thermosetting resin.For example, by reacting the decomposition product containing the oligomer with formaldehyde, Phenol resin can be manufactured. Then, at that time, it is of course possible to add a new phenol as needed.
[0029]
Thus, according to the method of the present invention, when a thermosetting resin is produced using a decomposition product having a reduced molecular weight, the weight-average molecular weight of the thermosetting resin or the cured thermosetting resin which is discarded is 200. About 10 to 10,000 oligomers and monomers are recovered, and this low-molecular-weight decomposition product can be newly reused as a raw material for synthesizing a thermosetting resin, and can be recycled. In the conventional method (Patent Document 1), an oxidizing agent such as oxygen is added to water in a supercritical state or a subcritical state to perform oxidative decomposition, so that a generated low-molecular compound is oxidized. In many cases, the ratio of low-molecular compounds that can be reused is low, but in the present invention, low-molecular-weight components are less likely to be oxidized, and advantages such as a higher recycling rate can be obtained. .
[0030]
【Example】
Hereinafter, the present invention will be more specifically described with reference to Examples. However, the present invention should not be construed as being limited by the description of such Examples. In addition, the conversion rate (decomposition rate) of the cured thermosetting resin into the low-molecular-weight compound in the present example was determined as follows.
[0031]
(Conversion rate of cured thermosetting resin)
The weight of the cured thermosetting resin before decomposition and the dry weight of the solid component separated from the decomposition-treated product using filter paper after decomposition are measured, respectively, and calculated from the measured values according to the following formula. Thus, the conversion was determined.
(Equation 1)
Figure 2004231695
[0032]
-Decomposition of cured thermosetting resin-
(Example 1)
130 g of crushed phenol resin (thermo-cured liquid resole resin) into a size of about 5 mm, 390 g of phenol and 13 g of zinc chloride are accommodated in a 1.8 L autoclave, and then the air in the autoclave is filled. Was sufficiently replaced with nitrogen gas, and after sealing, the mixture was heated with a heater and heated to 300 ° C. At this time, the pressure in the autoclave was about 4.0 MPa. Then, after maintaining the temperature and the pressure for 30 minutes, the temperature was cooled and returned to the normal temperature and the normal pressure. Next, the obtained solid-liquid mixed reaction solution (decomposed product) was separated into a solid component and a liquid component using a filter paper having a pore size of 5 μm.
[0033]
When the separated solid component was analyzed, it was found that the resin component had advanced carbonization and was an undecomposed cured product. Further, the obtained liquid component was analyzed by gel permeation chromatography (hereinafter abbreviated as “GPC”) (UV detector: detection wavelength: 254 nm), and as a result, it was found that the phenol solution was a phenol solution containing an oligomer. Was. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0034]
(Example 2)
In Example 1 described above, the same operation as in Example 1 was performed, except that the temperature was raised to 300 ° C. by the heater and then immediately cooled (holding time: 0 hour) to decompose the cured phenolic resin.
[0035]
When the separated solid component was analyzed, it was confirmed that the resin component had advanced carbonization and was an undecomposed cured product. On the other hand, the obtained liquid component was analyzed using GPC. It turned out to be a solution. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0036]
(Example 3)
In the above Example 1, the same operation as in Example 1 was performed except that the heating temperature of the heater was set to 250 ° C. and the holding time was set to 60 minutes to decompose the phenol resin cured product. The pressure in the autoclave at 250 ° C. was about 2.5 MPa.
[0037]
Then, when the separated solid component was analyzed, it was confirmed that the resin component had advanced carbonization and was an undecomposed cured product, and the obtained liquid component was analyzed using GPC, and as a result, it was found that the product contained oligomers. It was found to be a phenol solution. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0038]
(Example 4)
The same operation as in Example 1 was carried out except that 390 g of phenol was replaced with 390 g of orthocresol in Example 1 to decompose the phenol resin cured product. The pressure in the autoclave at 300 ° C. was about 3.5 MPa.
[0039]
Then, when the separated solid component was analyzed, it was confirmed that the resin component had advanced carbonization and was an undecomposed cured product, and the obtained liquid component was analyzed using GPC, and as a result, it was found that the product contained oligomers. It was found to be a phenol solution. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0040]
(Example 5)
A melamine resin was obtained in the same manner as in Example 1 except that a cured melamine resin (thermoset of methylolmelamine) ground to about 5 mm was used in place of the cured phenol resin in Example 1 above. The cured product was decomposed. The pressure in the autoclave at 300 ° C. was about 4.0 MPa.
[0041]
Then, when the separated solid component was analyzed, it was confirmed that the resin component had advanced carbonization and was an undecomposed cured product, and the obtained liquid component was analyzed using GPC, and as a result, it was found that the product contained oligomers. It turned out to be a melamine solution. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0042]
(Example 6)
The same operation as in Example 1 was performed except that a cured urea resin (thermoset of methylol urea) pulverized to about 5 mm was used in place of the cured phenol resin in Example 1 above. The cured product was decomposed. The pressure in the autoclave at 300 ° C. was about 4.0 MPa.
[0043]
Then, when the separated solid component was analyzed, it was confirmed that the resin component had advanced carbonization and it was an undecomposed cured product, and the obtained liquid component was analyzed using GPC, and as a result, it was found that the product contained oligomers. It was found to be a urea solution. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0044]
(Example 7)
In the above Example 1, the same operation as in Example 1 was performed, except that an epoxy resin cured product ground to about 5 mm was used instead of the phenol resin cured product, to decompose the epoxy resin cured product. The pressure in the autoclave at 300 ° C. was about 4.0 MPa.
[0045]
Then, when the separated solid component was analyzed, it was confirmed that the resin component had advanced carbonization and it was an undecomposed cured product, and the obtained liquid component was analyzed using GPC, and as a result, it was found that the product contained oligomers. It was found to be a phenol solution. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0046]
(Comparative Example 1)
In the above Example 1, the same operation as in Example 1 was performed except that zinc chloride was not used, and the cured phenol resin was decomposed. The pressure in the autoclave at 300 ° C. was about 2.5 MPa.
[0047]
Then, when the separated solid component was analyzed, it was confirmed that it was a phenol resin cured product containing a carbonized resin component, and the obtained liquid component was analyzed using GPC, and as a result, it was found that the product contained oligomers. It was found to be a phenol solution. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0048]
(Comparative Example 2)
The same operation as in Example 1 was performed except that aluminum chloride was used in place of zinc chloride in Example 1 described above to decompose the cured phenol resin. The pressure in the autoclave at 300 ° C. was about 3.0 MPa.
[0049]
And when the separated solid component was analyzed, it turned out that it was a phenol resin hardened | cured material containing the resin component which carbonization advanced. Further, the obtained liquid component was analyzed using GPC, and as a result, it was found to be a phenol solution containing an oligomer. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0050]
(Comparative Example 3)
In Example 1, the same operation as in Example 1 was performed except that isopropyl alcohol was used instead of phenol, to decompose the cured phenol resin. The pressure inside the autoclave at 300 ° C. was about 13.0 MPa.
[0051]
Then, when the separated solid component was analyzed, it was confirmed that it was a phenol resin cured product containing a carbonized resin component, and the obtained liquid component was analyzed using GPC, and as a result, it was found that the product contained oligomers. It was found to be a phenol solution. Further, the conversion was determined, and the obtained results are shown in Table 1 below.
[0052]
[Table 1]
Figure 2004231695
[0053]
As is clear from Table 1 above, according to the present invention, when phenol or cresol is used as a solvent and zinc chloride is used as a decomposition aid, even if the heating temperature is 300 ° C., the conversion is 80% or more. It can be seen that the rate (decomposition rate) has been achieved.
[0054]
In contrast, in Comparative Examples 1 and 2 in which zinc halide was not used as a decomposition aid and in Comparative Example 3 in which the solvent was isopropyl alcohol, the conversion rate (decomposition rate) was low, and efficient decomposition was not achieved. It is recognized that it has not been realized.
[0055]
-Production of thermosetting resin-
Further, in order to confirm whether or not chemical recycling is possible, using a low molecular weight component obtained by the decomposition operation as described above, a thermosetting resin was produced as follows. .
[0056]
(Example 8)
In Example 1 above, 100 g of a liquid component (decomposition product + phenol) separated from a solid component after the decomposition operation was used, and this was charged into a 1 L flask together with 100 g of phenol, 110 g of a 47% aqueous formaldehyde solution, and 1 g of oxalic acid. The temperature was raised to 100 ° C. over 1 hour while stirring and mixing. Then, while maintaining that temperature, a condensation reaction was carried out for 3 hours. Thereafter, when the dehydration / de-monomerization step was performed according to a conventional method, it was confirmed that 181 g of a phenol novolak resin was obtained.
[0057]
【The invention's effect】
As described above, according to the present invention, a thermosetting resin and / or a cured product thereof can be efficiently decomposed into low molecular weight components such as monomers or oligomers. The low-molecular-weight components recovered are recovered and can be advantageously used again as a new synthetic material in the production of thermosetting resins such as phenolic resins. It could be done.

Claims (5)

熱硬化性樹脂及び/又はその硬化物を、ハロゲン化亜鉛の存在下、加熱・加圧下のフェノール類中において、分解せしめることを特徴とする熱硬化性樹脂及び/又はその硬化物の分解方法。A method for decomposing a thermosetting resin and / or a cured product thereof, which comprises decomposing a thermosetting resin and / or a cured product thereof in a phenol under heat and pressure in the presence of a zinc halide. 前記熱硬化性樹脂が、フェノール樹脂、メラミン樹脂、尿素樹脂又はエポキシ樹脂である請求項1に記載の熱硬化性樹脂及び/又はその硬化物の分解方法。The method for decomposing a thermosetting resin and / or a cured product thereof according to claim 1, wherein the thermosetting resin is a phenol resin, a melamine resin, a urea resin, or an epoxy resin. 前記ハロゲン化亜鉛が、塩化亜鉛である請求項1又は請求項2に記載の熱硬化性樹脂及び/又はその硬化物の分解方法。The method for decomposing a thermosetting resin and / or a cured product thereof according to claim 1 or 2, wherein the zinc halide is zinc chloride. 前記フェノール類が、フェノール、オルソクレゾール、メタクレゾール及びパラクレゾールからなる群より選ばれた少なくとも1種の化合物である請求項1乃至請求項3の何れかに記載の熱硬化性樹脂及び/又はその硬化物の分解方法。The thermosetting resin according to any one of claims 1 to 3, wherein the phenol is at least one compound selected from the group consisting of phenol, orthocresol, metacresol, and paracresol. Decomposition method of cured product. 請求項1乃至請求項4の何れかに記載の熱硬化性樹脂及び/又はその硬化物の分解方法により得られた低分子量の分解生成物を、原料として用い、熱硬化性樹脂を形成することを特徴とする熱硬化性樹脂の製造方法。A thermosetting resin is formed by using a thermosetting resin according to any one of claims 1 to 4 and / or a low molecular weight decomposition product obtained by the method for decomposing a cured product thereof as a raw material. A method for producing a thermosetting resin, comprising:
JP2003018959A 2003-01-28 2003-01-28 Method for decomposing thermosetting resin and / or cured product thereof and method for producing thermosetting resin using decomposition product obtained thereby Expired - Fee Related JP4317696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018959A JP4317696B2 (en) 2003-01-28 2003-01-28 Method for decomposing thermosetting resin and / or cured product thereof and method for producing thermosetting resin using decomposition product obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018959A JP4317696B2 (en) 2003-01-28 2003-01-28 Method for decomposing thermosetting resin and / or cured product thereof and method for producing thermosetting resin using decomposition product obtained thereby

Publications (2)

Publication Number Publication Date
JP2004231695A true JP2004231695A (en) 2004-08-19
JP4317696B2 JP4317696B2 (en) 2009-08-19

Family

ID=32948961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018959A Expired - Fee Related JP4317696B2 (en) 2003-01-28 2003-01-28 Method for decomposing thermosetting resin and / or cured product thereof and method for producing thermosetting resin using decomposition product obtained thereby

Country Status (1)

Country Link
JP (1) JP4317696B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104230A (en) * 2004-09-30 2006-04-20 Sumitomo Bakelite Co Ltd Method for treating and recycling plastic, treated and recovered plastic material and recycled plastic
WO2007032047A1 (en) * 2005-09-12 2007-03-22 Sumitomo Bakelite Co., Ltd. Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
US10106421B2 (en) 2015-12-16 2018-10-23 Korea Institute Of Science And Technology Composition and method for depolymerization of cured epoxy resin materials using transition metal salts
JP2018177970A (en) * 2017-04-13 2018-11-15 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Method and composition for depolymerization of epoxy resin cured article using transition metal salt or transition metal oxide
JP2020513044A (en) * 2017-04-01 2020-04-30 ザ・ボーイング・カンパニーThe Boeing Company Method for recovering carbon fibers from composite waste
JP2020515658A (en) * 2017-04-01 2020-05-28 ザ・ボーイング・カンパニーThe Boeing Company Method for recovering carbon fiber from composite waste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269227A (en) * 1995-03-29 1996-10-15 Hisashi Tanazawa Phenolic resin molding material and its production
JPH10152578A (en) * 1996-10-08 1998-06-09 Samsung Electron Co Ltd Recycling of waste rigid polyurethane foam and production of polyurethane foam improved in heat-insulating characteristic from recycled polyol obtained by the method
JP2001151933A (en) * 1999-11-29 2001-06-05 Sumitomo Bakelite Co Ltd Treating method for decomposition of thermosetting resin and recycling method
JP2002241538A (en) * 2001-02-14 2002-08-28 Mitsubishi Electric Corp Composition for decomposing polyurethane resin, polyurethane foam obtained by using recycled polyol, and heat insulating box

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269227A (en) * 1995-03-29 1996-10-15 Hisashi Tanazawa Phenolic resin molding material and its production
JPH10152578A (en) * 1996-10-08 1998-06-09 Samsung Electron Co Ltd Recycling of waste rigid polyurethane foam and production of polyurethane foam improved in heat-insulating characteristic from recycled polyol obtained by the method
JP2001151933A (en) * 1999-11-29 2001-06-05 Sumitomo Bakelite Co Ltd Treating method for decomposition of thermosetting resin and recycling method
JP2002241538A (en) * 2001-02-14 2002-08-28 Mitsubishi Electric Corp Composition for decomposing polyurethane resin, polyurethane foam obtained by using recycled polyol, and heat insulating box

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
森田幹雄、広沢邦男: "フェノール・ホルムアルデヒド樹脂の水素化分解", 北海道工業開発試験所報告, JPN4007016895, 1978, pages 30 - 35, ISSN: 0000880069 *
森田幹雄、広沢邦男: "フェノール・ホルムアルデヒド樹脂の水素化分解", 北海道工業開発試験所報告, JPN7008000957, 1978, pages 30 - 35, ISSN: 0000973720 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104230A (en) * 2004-09-30 2006-04-20 Sumitomo Bakelite Co Ltd Method for treating and recycling plastic, treated and recovered plastic material and recycled plastic
JP4581607B2 (en) * 2004-09-30 2010-11-17 住友ベークライト株式会社 Plastic processing method, recycling method, plastic processing collection and recycled plastic
WO2007032047A1 (en) * 2005-09-12 2007-03-22 Sumitomo Bakelite Co., Ltd. Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
US7851514B2 (en) 2005-09-12 2010-12-14 Sumitomo Bakelite Company, Ltd. Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
JP5007671B2 (en) * 2005-09-12 2012-08-22 住友ベークライト株式会社 Manufacturing method of recycled resin
KR101226414B1 (en) 2005-09-12 2013-01-24 스미토모 베이클리트 컴퍼니 리미티드 Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
US10106421B2 (en) 2015-12-16 2018-10-23 Korea Institute Of Science And Technology Composition and method for depolymerization of cured epoxy resin materials using transition metal salts
JP2020513044A (en) * 2017-04-01 2020-04-30 ザ・ボーイング・カンパニーThe Boeing Company Method for recovering carbon fibers from composite waste
JP2020515658A (en) * 2017-04-01 2020-05-28 ザ・ボーイング・カンパニーThe Boeing Company Method for recovering carbon fiber from composite waste
US11319489B2 (en) 2017-04-01 2022-05-03 The Boeing Company Method for recovering carbon fibers from composite material waste
JP7098639B2 (en) 2017-04-01 2022-07-11 ザ・ボーイング・カンパニー How to recover carbon fiber from composite waste
JP7138572B2 (en) 2017-04-01 2022-09-16 ザ・ボーイング・カンパニー Method for recovering carbon fiber from composite waste
JP2018177970A (en) * 2017-04-13 2018-11-15 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Method and composition for depolymerization of epoxy resin cured article using transition metal salt or transition metal oxide

Also Published As

Publication number Publication date
JP4317696B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
CN109415531B (en) Recycling of polymer matrix composites
JP2010007074A (en) Method for decomposing plastic
JP4317696B2 (en) Method for decomposing thermosetting resin and / or cured product thereof and method for producing thermosetting resin using decomposition product obtained thereby
JP5007671B2 (en) Manufacturing method of recycled resin
JP5148617B2 (en) Decomposition of thermosetting resin and recovery method of decomposition product
JPWO2009081974A1 (en) Decomposition of thermosetting resin and recovery method of decomposition product
JP4806758B2 (en) Decomposition and recovery method of thermosetting resin
JP2001151933A (en) Treating method for decomposition of thermosetting resin and recycling method
JP2001055468A (en) Decomposition and production of phenolic resin or epoxy resin
JPH10287766A (en) Decomposing and recycling methods for thermosetting resin
JP4581607B2 (en) Plastic processing method, recycling method, plastic processing collection and recycled plastic
JP5508025B2 (en) Decomposition of thermosetting resin and recovery method of decomposition product
JP2005113096A (en) Method for solubilization-treating plastic material, method of recycling and plastic-forming material
JP2005126667A (en) Method for treating and recycling plastic, treated and recovered plastic material, and recycled plastic
JP3888979B2 (en) Method for decomposing and recycling thermosetting resin
JP4806757B2 (en) Decomposition and recovery method of thermosetting resin
JP2006124480A (en) Plastic regeneration method, regenerated product, recycling method, and recycled plastic
RU2337926C2 (en) Polycondensation products, method of their production and their application
JP3131420B2 (en) Method for producing resin material composition from plant-based material
JP4979568B2 (en) Decomposition and recovery method of thermosetting resin
JP4792750B2 (en) Manufacturing method of recycled resin
JP4971124B2 (en) Decomposition and recovery method of thermosetting resin
JP2005126669A (en) Method for recycling plastic, treated and recovered plastic, thermosetting resin-forming material and recycled plastic
JP2005281429A (en) Processing method of plastic, processed and recovered matter, recycling method and recycled plastic
JP2011006580A (en) Method for decomposition and recovery of plastics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees