JP3888979B2 - Method for decomposing and recycling thermosetting resin - Google Patents

Method for decomposing and recycling thermosetting resin Download PDF

Info

Publication number
JP3888979B2
JP3888979B2 JP2003065884A JP2003065884A JP3888979B2 JP 3888979 B2 JP3888979 B2 JP 3888979B2 JP 2003065884 A JP2003065884 A JP 2003065884A JP 2003065884 A JP2003065884 A JP 2003065884A JP 3888979 B2 JP3888979 B2 JP 3888979B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
decomposition
resin
compound
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003065884A
Other languages
Japanese (ja)
Other versions
JP2004161983A (en
Inventor
智子 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003065884A priority Critical patent/JP3888979B2/en
Publication of JP2004161983A publication Critical patent/JP2004161983A/en
Application granted granted Critical
Publication of JP3888979B2 publication Critical patent/JP3888979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱硬化性樹脂の分解処理方法およびリサイクル方法に関する。更に詳しくは、工場などから大量に廃棄されている産業廃棄物や、一般廃棄物中に含まれる熱硬化性樹脂を分解処理する方法であり、更には、この方法により、得られた低分子量から高分子量化合物を、熱硬化性樹脂の原料として再利用するリサイクル方法に関する。
【0002】
【従来の技術】
プラスチックの中でも熱硬化性樹脂は、優れた電気絶縁性・耐熱性・機械的強度を示すため、電気・電子部品、自動車部品等の材料として広く用いられている。しかし、熱硬化性樹脂は、一旦、硬化すると、熱により軟化・融解せず、溶剤にも溶解しないため、その硬化物をプラスチック原料として再生することは技術的に困難であった。
【0003】
近年、これらの課題を克服するための、超臨界流体を用いて熱硬化性樹脂を分解処理する方法が検討されている。例えば、超臨界水単独では難分解性な熱硬化性樹脂を分解処理およびリサイクルするために、超臨界又は亜臨界状態の、単核フェノール類化合物又は水/単核フェノール類化合物の溶液中で可溶化処理する方法が検討されている(例えば、特許文献1参照。)。この方法では、酸触媒やアルカリ触媒などを加えることなく、10分間程度の短い反応時間で熱硬化性樹脂が可溶化して、分子量200〜10,000の樹脂成分を回収できるとしている。
【0004】
リサイクルにより得られた原料から製造された熱硬化性樹脂の硬化性を向上させるため、高分子量化は重要であるが、上記の方法による熱硬化性樹脂のリサイクルにおいて、回収できる樹脂成分の分子量には上限があり、それ以上の高い分子量の樹脂成分を得ることは困難である。
【0005】
【特許文献1】
特開2001−151933号公報(第3−4頁)
【0006】
【発明が解決しようとする課題】
本発明は、分解効率が良く、より高分子量の化合物が得られる熱硬化性樹脂の分解処理方法及びリサイクル方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、超臨界条件下、単核フェノール類化合物を含む反応溶媒中で、熱硬化性樹脂の分解処理を行う際に、ホルムアルデヒド類化合物を添加し分解反応を行うことで、より高分子量の化合物が効率よく得られることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、
(1) 超臨界又は亜臨界状態の、単核フェノール類化合物又は水と単核フェノール類化合物との混合物を反応溶媒として、熱硬化性樹脂を分解する分解処理方法において、熱硬化性樹脂は、フェノール樹脂、メラミン樹脂、及びユリア樹脂の中から選択された1種又は2種以上であり、さらにホルムアルデヒド類化合物を添加することを特徴とする、熱硬化性樹脂の分解処理方法、
(2) ホルムアルデヒド類化合物を、熱硬化性樹脂の分解工程中で添加する、前記第(1)項に記載の熱硬化性樹脂の分解処理方法、
(3) ホルムアルデヒド類化合物が、ホルムアルデヒド、パラホルム、トリオキサン、ヘキサメチレンテトラミン及びそれらの水溶液の中から選ばれる、前記第(1)項又は第(2)項に記載の熱硬化性樹脂の分解処理方法、
(4) ホルムアルデヒド類化合物が、ホルムアルデヒド又はパラホルムである前記第(3)項に記載の熱硬化性樹脂の分解処理方法。
(5) 単核フェノール類化合物が、フェノール、クレゾール、キシレノール、レゾルシノール、及びアルキル置換フェノールの中から選ばれる、前記第(1)項〜第(4)項のいずれかに記載の熱硬化性樹脂の分解処理方法、
(6) フェノール類化合物が、フェノールである前記第(5)項記載の熱硬化性樹脂の分解処理方法、
(7) 単核フェノール類化合物が、前記熱硬化性樹脂の分解処理方法により得られた200〜100,000の分子量を有する樹脂成分を主体とする低分子量から高分子量の化合物より分離、精製して得られたものである、前記第(1)項〜第(6)項のいずれかに記載の熱硬化性樹脂の分解処理方法、
(8) 熱硬化性樹脂が、フェノール樹脂である前記第(1)項〜第(7)項のいずれかに記載の熱硬化性樹脂の分解処理方法、
(9) フェノール樹脂、メラミン樹脂、及びユリア樹脂の中から選択された1種又は2種以上である熱硬化性樹脂を前記第(1)項〜第(8)項のいずれかに記載の分解処理方法により分解して200〜100,000の分子量を有する樹脂成分を主体とする低分子量から高分子量の化合物を得た後、前記の低分子量から高分子量の化合物を熱硬化性樹脂の原料として再利用する熱硬化性樹脂のリサイクル方法、
を提供するものである。
【0009】
【発明の実施の形態】
本発明は、超臨界又は亜臨界状態の、単核フェノール類化合物又は水と単核フェノール類化合物との混合物を反応溶媒として、熱硬化性樹脂を分解する分解処理方法において、さらにホルムアルデヒド類化合物を添加することで、分解効率よく、200〜100,000の分子量を有する樹脂成分を主体とする低分子量から高分子量の化合物を分解回収することができる熱硬化性樹脂の分解処理方法であり、特に、ホルムアルデヒド類の添加を、熱硬化性樹脂の分解工程中で行うことにより、更に、短時間で分解処理が可能となるものである。また、本発明は、前記熱硬化性樹脂の分解処理方法により分解回収された化合物を再利用するリサイクル方法である。
【0010】
本発明で熱硬化性樹脂から回収できる分子量200〜100,000の樹脂成分を主体とする低分子量から高分子量化合物とは、ここで示した分子量の樹脂成分が50重量%以上含まれることを言うが、主体とする前記樹脂成分の他に、分子量100,000以上の樹脂成分も含まれる。また、分子量200〜100,000の樹脂成分としては、通常の熱硬化性樹脂の場合は、原料モノマーの2〜1000核体程度である。
【0011】
本発明に用いるホルムアルデヒド類化合物としては、ホルムアルデヒド、パラホルム、トリオキサン、ヘキサメチレンテトラミン及びそれらの水溶液が好適に挙げられ、これらの1種または2種以上が用いられる。これらの中でより好ましくはパラホルム、ホルムアルデヒドが挙げられる。ただし、固体のホルムアルデヒド類化合物を用いる場合には、予め、前記固体のホルムアルデヒド類化合物を、単核フェノール類化合物又は水と単核フェノール類化合物との混合物の一部と、混合し、スラリー化する必要がある。スラリー化に用いる単核フェノール類化合物又は水と単核フェノール類化合物との混合物の使用割合としては、本発明で用いる単核フェノール類化合物又は水と単核フェノール類化合物との混合物全量100重量部に対して、1〜99重量部の範囲が好ましく、さらに好ましくは15〜30重量部の範囲である。
本発明において、添加するホルムアルデヒド類化合物の使用割合としては、熱硬化性樹脂100重量部に対して、1〜100重量部の範囲が好ましく、更に好ましくは5〜50重量部の範囲である。ホルムアルデヒド類化合物が上記の範囲よりも少なくなると、高分子量化反応に関して格別の効果が得られない場合がある。一方、上記の範囲よりも多くなると、部分的にゲル化し、回収が困難になる。
【0012】
本発明において反応溶媒として用いる単核フェノール類化合物は、フェノール、クレゾール、キシレノール、レゾルシノール、及びp−tert−ブチルフェノールなどのアルキル置換フェノールが好適に挙げられ、これらの1種又は2種以上が用いられる。これらの内、コスト面および分解反応に与える効果から、フェノールが好ましい。
また、単核フェノール類化合物は、本発明の熱硬化性樹脂の分解処理方法により得られた200〜100,000の分子量を有する樹脂成分を主体とする低分子量から高分子量の化合物より分離、精製して得られたものを用いることができる。
【0013】
本発明において、反応溶媒として、水と単核フェノール類化合物との混合物を用いる場合、溶媒の混合割合としては、単核フェノール類化合物100重量部に対して水0.1〜500重量部の範囲が好ましく、更に好ましくは、単核フェノール類化合物100重量部に対して水5〜50重量部の範囲である。
【0014】
本発明において、単核フェノール類化合物又は水と単核フェノール類化合物との混合物の使用割合は、熱硬化性樹脂100重量部に対して、混合物50〜1000重量部の範囲が好ましく、更に好ましくは100〜400重量部の範囲である。
単核フェノール類化合物又は水と単核フェノール類化合物との混合物が上記の範囲よりも少なくなると、熱硬化性樹脂の分解反応を円滑に進行させるのが困難になる恐れがある。一方、上記の範囲よりも多くなると、好ましい上限値の効果と比べ格別の効果は得られず、その場合、溶媒を加熱するために要する熱量が増加するため、熱エネルギーの消費が多くなる。
【0015】
本発明の方法で分解される熱硬化性樹脂は、硬化した樹脂、未硬化もしくは半硬化の樹脂、樹脂を含有するワニスなどを含むものとする。また、単独の熱硬化性樹脂の他に、シリカ微粒子、ガラス繊維等の無機質系や、木粉等の有機質系の充填剤を含む成形材料もしくは成形品、ガラス布のような無機質系や、紙、布等の有機質系基材を用いた積層板、これに銅箔等の金属箔を張り合わせた金属張り積層板、さらには銅張り積層板などを加工して得られるプリント回路板のような熱硬化性樹脂製品も含むものとする。
また、熱硬化性樹脂の種類としては、本発明は、フェノール樹脂、メラミン樹脂、ユリア樹脂について、特に効果的に適応できる。さらに、フェノール樹脂はより効果的に適応できる。
また、分解処理に供する熱硬化性樹脂は、粉砕して用いるのが好ましく、その形状や大きさには特に制限はないが、粉砕に要するコスト、分解速度を考慮して、最適な大きさを選択すればよいが、通常は、粒子径500μm以下であり、好ましくは250μm以下、さらに好ましくは100μm以下である。
【0016】
本発明で熱硬化性樹脂から回収できる200〜100,000の分子量を有する樹脂成分を主体とする低分子量から高分子量の化合物は、通常、熱硬化性樹脂製品を製造する際に用いられるプレポリマーと同程度の分子量、あるいは、より高分子量であるため、必要に応じて精製を行うことにより、熱硬化性樹脂製品の化学原料(プレポリマー)として再利用することができる。
【0017】
本発明において、分解条件としては、温度及び圧力を、通常、温度が200〜500℃、圧力が1〜60Mpaの範囲で、超臨界又は亜臨界の条件に調製すれば良いが、望ましくは、温度が300〜450℃、圧力が2〜40MPa範囲で温度および圧力を設定すれば良い。温度が上記の範囲よりも低くなると、熱硬化性樹脂の分解反応速度が小さいため、短時間での処理が困難になる。一方、上記の範囲よりも高くなると、熱分解などの副反応が併発して回収した樹脂成分の化学構造が変化するため、熱硬化性樹脂製品の化学原料としての再利用が困難になる。
また、反応時間は、1〜60分の範囲で調製できるが、通常は3〜15分で分解処理が終了する。
【0018】
本発明において、ホルムアルデヒド類化合物を熱硬化性樹脂の分解工程中で添加する場合、分解が、ある程度進んだ状態で添加することが好ましく、具体的には、熱硬化性樹脂の分解可能な成分の8割程度進んだところで添加することが、より好ましい。熱硬化性樹脂の分解可能な成分の分解が、8割以上分解した時点でホルムアルデヒド類化合物を添加することにより、熱硬化性樹脂の分解に要する時間が、より短縮できる。8割未満の場合においてホルムアルデヒド類化合物を添加すると、分解反応と同時に高分子量化反応が起こるため、前記効果が小さくなる傾向にある。
【0019】
図1に、あらかじめホルムアルデヒド類化合物を添加した後、熱硬化性樹脂の分解を行う概念を示す。ホルムアルデヒド類化合物を添加してから分解した場合は分解反応と同時に高分子量化反応が起こるため高分子量のオリゴマーを回収できるが、熱硬化性樹脂の分解が完了するまでの時間の短縮が困難な場合がある。図2に、熱硬化性樹脂の分解工程中で、ホルムアルデヒド類化合物を注入する概念を示す。ホルムアルデヒド類化合物を、熱硬化性樹脂の分解工程中に添加することで、より短時間で効率良く分解処理を行うことができる。
【0020】
本発明の熱硬化性樹脂の分解処理方法は、加熱加圧容器中において、酸、アルカリ触媒を用いることなく、前記分解条件により、超臨界あるいは亜臨界状態として、単核フェノール類化合物又は水と単核フェノール類化合物との混合物からなる溶媒中で、ホルムアルデヒド類化合物を添加し、熱硬化性樹脂を分解処理することで、分解効率よく分子量200〜100,000の樹脂成分を主体とする低分子量から高分子量化合物を分解回収することができる。また、前記ホルムアルデヒド類化合物を、熱硬化性樹脂の分解工程中に添加することで、より熱分解の時間を短縮することができる。さらに、本発明のリサイクル方法は、上記方法で得られた200〜100,000の分子量を有する樹脂成分を主体とする低分子量から高分子量の化合物からなる分解生成物と反応溶媒の混合物を、常圧および減圧条件下で加熱し、溶媒(フェノール、水)を除去した後、得られた分解生成物を粉砕し、熱硬化性樹脂の原料として再利用することができる。
【0021】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明は、これによって何ら限定されるものではない。
【0022】
[実施例1] フェノール樹脂硬化物の分解
フェノール樹脂硬化物は、フェノール樹脂(住友ベークライト(株)製PR−51714)100重量部に対し、ヘキサメチレンテトラミン(和光純薬(株)製)15重量部を配合して、150℃で15分間加圧成形して、さらに180℃で4時間の熱処理を加えて調整した。これを粉砕ふるいわけして、粒子径を250μm以下に調整したものを用いた。分解処理結果を、表1にまとめて示した。上記フェノール樹脂硬化物45.8gと、フェノール(和光純薬(株)製)77.0gと水8.6gの混合物からなる反応溶媒を、ハステロイ製のオートクレーブ(日東高圧(株)製 内容積200cm3)に仕込んだのち、加熱して内温を360℃とすることで、反応器内圧を7MPaまで上昇させ、高温高圧状態とした。予め、360℃、7MPaで5分間の分解条件で分解反応の8割が進行することを確認し、360℃、7MPaで5分間保った分解工程中で、パラホルム(和光純薬(株)製)5gをフェノール(和光純薬(株)製)19.0gと水2.1gの混合物からなる反応溶媒と混合しスラリー化したものを注入し、冷却して、常温常圧に戻した。反応終了後、分解生成物と反応溶媒の混合物から、常圧および減圧条件下で加熱することで、溶媒(フェノール、水)を除去して、分解生成物118.4gを得た。この生成物を、テトラヒドロフラン(THF)(キシダ化学(株)製)に溶解させたのち、孔径1.0μmのフィルターで、ろ過して、ろ液をTHF可溶分とした。ろ過した後のフィルターに残ったTHF不溶残渣は、100℃で12時間乾燥させたのち秤量した。
その結果、THF不溶残渣のほとんどは、フェノール樹脂成形材料中の無機フィラーであり、樹脂および有機フィラーは、ほぼ100%がTHF可溶分まで分解したことを確認した。このTHF可溶分で得られた分解生成物の分子量および残存フェノール単量体含有量について、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定したところ、Mn:750、Mw:61000の樹脂成分であることを確認した。GPC測定は、カラムに東ソーTSKgel GMHXL2本、TSKgel G2000HXL2本、検出器には示差屈折計を使用し、溶離液としてTHFを用い、流量1ml/分、温度40℃の条件で測定し、検量線よりポリスチレン換算により算出した。さらに、硬化性の目安として得られた分解生成物を粉砕し、ヘキサメチレンテトラミン(和光純薬(株)製)15重量部を配合して、150℃の熱板上でゲル化するまでの時間(ゲルタイ
ム)を測定し、102秒を得た。
【0023】
[実施例2] フェノール樹脂硬化物の分解
実施例1において、分解工程中で注入するパラホルムの量を8gに変更した以外は、実施例1と同様な操作で、分解処理を行った。分解処理結果を、表1にまとめて示した。
【0024】
[実施例3] フェノール樹脂硬化物の分解
実施例1において、あらかじめ、分解工程中で注入するパラホルムをフェノール樹脂硬化物と、フェノールと水の混合物からなる反応溶媒と共に仕込み、360℃、9MPaで10分間反応させた以外は、実施例1と同様な操作で、分解処理を行った。分解処理結果を、表1にまとめて示した。
【0025】
[比較例1] フェノール樹脂硬化物の分解
実施例1において、パラホルムを添加しない以外は、実施例1と同様な操作で、分解処理を行った。分解処理結果を、表1にまとめて示した。
【0026】
【表1】

Figure 0003888979
【0027】
[実施例4]フェノール樹脂成形材料の分解
実施例1において、熱硬化性樹脂としてフェノール樹脂成形材料45.8gを用いた以外は、実施例1と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
ここで、熱硬化性樹脂として、フェノール樹脂成形材料(PM−8200:住友ベークライト(株)製)を粉砕ふるいわけして、粒子径を250μm以下に調整したものを用いた。
【0028】
[実施例5] フェノール樹脂成形材料の分解
実施例4において、分解工程中で注入するパラホルムの添加量を8gに変更した以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0029】
[実施例6] フェノール樹脂成形材料の分解
実施例4において、反応温度を400℃に変更した以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0030】
[実施例7] フェノール樹脂成形材料の分解
実施例4において、分解工程中で注入するパラホルムの代わりにトリオキサン(関東化学(株)製)に変更した以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0031】
[実施例8] フェノール樹脂成形材料の分解
実施例4において、分解工程中で注入するパラホルムの代わりにヘキサメチレンテトラミン(和光純薬(株)製)に変更した以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0032】
[実施例9] フェノール樹脂成形材料の分解
実施例4において、上記フェノール樹脂硬化物45.8gと、フェノール(和光純薬(株)製)96.0gと水
10.7gの混合物からなる反応溶媒を仕込み、分解工程中、ホルマリン(ホルムアルデヒド37%含有)(和光純薬(株)製)19gを注入した以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表
2にまとめて示した。
【0033】
[実施例10]フェノール樹脂成形材料の分解
実施例4において、反応溶媒として、フェノールに代えて、オルトクレゾール(和光純薬(株)製)を用いた以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0034】
[実施例11]フェノール樹脂成形材料の分解
実施例4において、反応溶媒として、フェノールに代えて、2,5−キシレノール(関東化学(株)製)を用いた以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0035】
[実施例12]フェノール樹脂成形材料の分解
実施例4において、反応溶媒として、フェノールに代えて、レゾルシノール(関東化学(株)製)を用いた以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0036】
[実施例13]フェノール樹脂成形材料の分解
実施例4において、反応溶媒として、フェノールに代えて、p−tert−ブチルフェノール(関東化学(株)製)を用いた以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0037】
[実施例14] フェノール樹脂成形材料の分解
実施例4において、反応溶媒として、フェノールに代えて、実施例4で得た分解生成物と反応溶媒の混合物からの減圧下回収物(主としてフェノール)を用いた以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0038】
[実施例15] フェノール樹脂成形材料の分解
実施例4において、あらかじめ、分解工程中で注入するパラホルムをフェノール樹脂硬化物(同上)と、フェノールと水の混合物からなる反応溶媒と共に仕込み、360℃、9MPaで10分間反応させた以外は、実施例1と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0040】
[実施例17]メラミン樹脂成形材料の分解
実施例1において、熱硬化性樹脂として、メラミン樹脂成形材料(松下電工製ME−J)45.8gを用いた以外は、実施例1と同様な操作で、分解処理を行い、樹脂成分:75.0gを得た。
【0041】
[実施例18]ユリア樹脂成形材料の分解
実施例1において、熱硬化性樹脂として、ユリア樹脂成形材料(松下電工製 CU−A)45.8gを用いた以外は、実施例1と同様な操作で、分解処理を行い、樹脂成分:70.6gを得た。
【0042】
[比較例2] フェノール樹脂成形材料の分解
実施例4において、パラホルムを添加しない以外は、実施例4と同様な操作で、分解処理を行った。分解処理結果を、表2にまとめて示した。
【0043】
【表2】
Figure 0003888979
【0044】
表1及び表2に示した結果からわかるように、実施例1〜8に示した分解処理方法では、より短時間で効果的に比較例1、2と同程度の高分子量の化合物を得た。さらに、反応時間の短縮により、反応点が残存するため、ゲルタイムも短縮され、硬化性が向上した。
【0045】
【発明の効果】
本発明によれば、熱硬化性樹脂を、より短時間で効率よく、従来法より高分子量である200〜100,000の分子量を有する樹脂成分を主体とする低分子量から高分子量の化合物に分解することができ、熱硬化性樹脂の原料としてリサイクルすることができる。
【図面の簡単な説明】
【図1】ホルマリンを添加し熱硬化性樹脂を分解する概念図である。
【図2】本発明によるホルマリンを添加し熱硬化性樹脂を分解する概念図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a decomposition treatment method and a recycling method for a thermosetting resin. More specifically, it is a method for decomposing a thermosetting resin contained in industrial waste or general waste that is disposed of in large quantities from factories, and further, by this method, from the low molecular weight obtained. The present invention relates to a recycling method for reusing a high molecular weight compound as a raw material for a thermosetting resin.
[0002]
[Prior art]
Among plastics, thermosetting resins are widely used as materials for electric / electronic parts, automobile parts and the like because they exhibit excellent electrical insulation, heat resistance, and mechanical strength. However, once the thermosetting resin is cured, it is not softened or melted by heat and does not dissolve in a solvent, and it is technically difficult to regenerate the cured product as a plastic raw material.
[0003]
In recent years, a method for decomposing a thermosetting resin using a supercritical fluid has been studied to overcome these problems. For example, in order to decompose and recycle thermosetting resins that are difficult to decompose with supercritical water alone, they can be used in mononuclear phenolic compounds or water / mononuclear phenolic compound solutions in the supercritical or subcritical state. A method of solubilizing is being studied (for example, see Patent Document 1). In this method, the thermosetting resin is solubilized in a short reaction time of about 10 minutes without adding an acid catalyst or an alkali catalyst, and a resin component having a molecular weight of 200 to 10,000 can be recovered.
[0004]
In order to improve the curability of the thermosetting resin produced from the raw material obtained by recycling, it is important to increase the molecular weight, but in the recycling of the thermosetting resin by the above method, the molecular weight of the resin component that can be recovered is increased. Has an upper limit, and it is difficult to obtain a resin component having a higher molecular weight than that.
[0005]
[Patent Document 1]
JP 2001-151933 A (page 3-4)
[0006]
[Problems to be solved by the invention]
The present invention provides a decomposition treatment method and a recycling method for a thermosetting resin that have a high decomposition efficiency and can yield a higher molecular weight compound.
[0007]
[Means for Solving the Problems]
The present inventors added a formaldehyde compound when performing a decomposition reaction in a reaction solvent containing a mononuclear phenol compound in a supercritical condition to perform a decomposition reaction by adding a formaldehyde compound. The inventors have found that a compound having a molecular weight can be obtained efficiently, and have completed the present invention.
[0008]
That is, the present invention
(1) In a decomposition treatment method for decomposing a thermosetting resin using a mononuclear phenolic compound or a mixture of water and a mononuclear phenolic compound in a supercritical or subcritical state as a reaction solvent, One or more selected from phenolic resins, melamine resins, and urea resins, and further adding a formaldehyde compound, a thermosetting resin decomposition treatment method,
(2) The method for decomposing a thermosetting resin according to (1) above, wherein the formaldehyde compound is added during the decomposition step of the thermosetting resin,
(3) The method for decomposing a thermosetting resin according to (1) or (2), wherein the formaldehyde compound is selected from formaldehyde, paraform, trioxane, hexamethylenetetramine, and an aqueous solution thereof. ,
(4) The method for decomposing a thermosetting resin according to (3), wherein the formaldehyde compound is formaldehyde or paraform.
(5) The thermosetting resin according to any one of (1) to (4), wherein the mononuclear phenol compound is selected from phenol, cresol, xylenol, resorcinol, and alkyl-substituted phenol. Decomposition method,
(6) The method for decomposing a thermosetting resin according to (5), wherein the phenol compound is phenol,
(7) A mononuclear phenol compound is separated and purified from a low molecular weight to high molecular weight compound mainly composed of a resin component having a molecular weight of 200 to 100,000 obtained by the method for decomposing a thermosetting resin. The method for decomposing a thermosetting resin according to any one of items (1) to (6), which is obtained by:
(8) The thermosetting resin decomposition treatment method according to any one of (1) to (7), wherein the thermosetting resin is a phenol resin,
(9) The decomposition according to any one of (1) to (8) above , wherein one or more thermosetting resins selected from phenol resin, melamine resin, and urea resin are used. processing method by Ri and disassembly, after obtaining the high molecular weight compounds from low molecular weight mainly comprising a resin component having a molecular weight of 200 to 100,000, thermosetting high molecular weight compounds from the low molecular weight of the is reused as a raw material of resin, the method of recycling a thermosetting resin,
Is to provide.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a decomposition method for decomposing a thermosetting resin using a mononuclear phenol compound or a mixture of water and a mononuclear phenol compound in a supercritical or subcritical state as a reaction solvent. It is a decomposition treatment method of a thermosetting resin that can decompose and recover a low-molecular weight to high-molecular weight compound mainly composed of a resin component having a molecular weight of 200 to 100,000 by adding, particularly, By adding formaldehyde during the decomposition process of the thermosetting resin, the decomposition process can be performed in a shorter time. Moreover, this invention is a recycling method which reuses the compound decomposed | disassembled and collected by the decomposition processing method of the said thermosetting resin.
[0010]
The low molecular weight to high molecular weight compound mainly composed of a resin component having a molecular weight of 200 to 100,000 that can be recovered from the thermosetting resin in the present invention means that the resin component having the molecular weight shown here is contained by 50% by weight or more. However, in addition to the resin component as a main component, a resin component having a molecular weight of 100,000 or more is also included. Moreover, as a resin component of molecular weight 200-100,000, in the case of a normal thermosetting resin, it is about 2-1000 nucleus of a raw material monomer.
[0011]
As the formaldehyde compound used in the present invention, formaldehyde, paraform, trioxane, hexamethylenetetramine and an aqueous solution thereof are preferably exemplified, and one or more of these are used. Of these, paraform and formaldehyde are more preferable. However, when using a solid formaldehyde compound, the solid formaldehyde compound is mixed in advance with a mononuclear phenol compound or a part of a mixture of water and a mononuclear phenol compound to form a slurry. There is a need. As the use ratio of the mononuclear phenol compound or the mixture of water and the mononuclear phenol compound used in the slurry, the total amount of the mononuclear phenol compound or the mixture of water and the mononuclear phenol compound used in the present invention is 100 parts by weight. Is preferably in the range of 1 to 99 parts by weight, more preferably in the range of 15 to 30 parts by weight.
In the present invention, the ratio of the formaldehyde compound to be added is preferably in the range of 1 to 100 parts by weight, more preferably in the range of 5 to 50 parts by weight with respect to 100 parts by weight of the thermosetting resin. When the formaldehyde compound is less than the above range, a special effect may not be obtained with respect to the high molecular weight reaction. On the other hand, if it exceeds the above range, it partially gels and it becomes difficult to recover.
[0012]
The mononuclear phenol compounds used as the reaction solvent in the present invention preferably include alkyl-substituted phenols such as phenol, cresol, xylenol, resorcinol, and p-tert-butylphenol, and one or more of these are used. . Of these, phenol is preferable from the viewpoints of cost and decomposition reaction.
Further, mononuclear phenol compounds are separated and purified from low molecular weight to high molecular weight compounds mainly comprising a resin component having a molecular weight of 200 to 100,000 obtained by the method for decomposing a thermosetting resin of the present invention. What was obtained in this way can be used.
[0013]
In the present invention, when a mixture of water and a mononuclear phenol compound is used as the reaction solvent, the mixing ratio of the solvent is in the range of 0.1 to 500 parts by weight of water with respect to 100 parts by weight of the mononuclear phenol compound. More preferably, it is the range of 5-50 weight part of water with respect to 100 weight part of mononuclear phenol compounds.
[0014]
In the present invention, the use ratio of the mononuclear phenol compound or the mixture of water and the mononuclear phenol compound is preferably in the range of 50 to 1000 parts by weight, more preferably 100 parts by weight of the thermosetting resin. It is the range of 100-400 weight part.
If the mononuclear phenolic compound or the mixture of water and the mononuclear phenolic compound is less than the above range, it may be difficult to smoothly proceed the decomposition reaction of the thermosetting resin. On the other hand, if the amount is larger than the above range, no particular effect can be obtained as compared with the effect of the preferable upper limit value. In this case, the amount of heat required to heat the solvent increases, and the consumption of heat energy increases.
[0015]
The thermosetting resin decomposed by the method of the present invention includes a cured resin, an uncured or semi-cured resin, a varnish containing the resin, and the like. In addition to a single thermosetting resin, inorganic materials such as silica fine particles and glass fibers, molding materials or articles containing organic fillers such as wood powder, inorganic materials such as glass cloth, paper Heat like a printed circuit board obtained by processing a laminate using an organic base material such as cloth, a metal-clad laminate obtained by laminating a metal foil such as copper foil, and a copper-clad laminate Including curable resin products.
As the kind of the thermosetting resin, the present invention include phenolic resins, melamine resins, for urea resins, can particularly effectively adapt. Furthermore, phenolic resins can be adapted more effectively.
Further, the thermosetting resin to be subjected to the decomposition treatment is preferably used after being pulverized, and the shape and size thereof are not particularly limited, but the optimum size is taken into consideration in consideration of the cost required for pulverization and the decomposition rate. The particle diameter is usually 500 μm or less, preferably 250 μm or less, and more preferably 100 μm or less.
[0016]
The low molecular weight to high molecular weight compound mainly composed of a resin component having a molecular weight of 200 to 100,000, which can be recovered from the thermosetting resin in the present invention, is a prepolymer usually used when producing a thermosetting resin product. Therefore, it can be reused as a chemical raw material (prepolymer) of a thermosetting resin product by performing purification as necessary.
[0017]
In the present invention, as decomposition conditions, the temperature and pressure are usually adjusted to supercritical or subcritical conditions within a temperature range of 200 to 500 ° C. and a pressure of 1 to 60 Mpa. May be set within a range of 300 to 450 ° C. and a pressure of 2 to 40 MPa. When the temperature is lower than the above range, since the decomposition reaction rate of the thermosetting resin is low, it becomes difficult to process in a short time. On the other hand, when the temperature is higher than the above range, the chemical structure of the resin component recovered by side reactions such as thermal decomposition is changed, so that it is difficult to reuse the thermosetting resin product as a chemical raw material.
The reaction time can be adjusted in the range of 1 to 60 minutes, but the decomposition treatment is usually completed in 3 to 15 minutes.
[0018]
In the present invention, when the formaldehyde compound is added during the decomposition step of the thermosetting resin, it is preferably added in a state where the decomposition has progressed to some extent. Specifically, the decomposable component of the thermosetting resin It is more preferable to add it when it has advanced about 80%. By adding a formaldehyde compound when decomposition of the decomposable component of the thermosetting resin is decomposed by 80% or more, the time required for decomposition of the thermosetting resin can be further shortened. When the formaldehyde compound is added in the case of less than 80%, a high molecular weight reaction occurs simultaneously with the decomposition reaction, so that the effect tends to be small.
[0019]
FIG. 1 shows a concept of decomposing a thermosetting resin after adding a formaldehyde compound in advance. When decomposition after adding formaldehyde compounds, high molecular weight oligomers can be recovered at the same time as the decomposition reaction, but it is difficult to shorten the time to complete decomposition of the thermosetting resin There is. FIG. 2 shows the concept of injecting a formaldehyde compound during the decomposition process of the thermosetting resin. By adding the formaldehyde compound during the decomposition step of the thermosetting resin, the decomposition treatment can be efficiently performed in a shorter time.
[0020]
The method for decomposing a thermosetting resin according to the present invention includes a mononuclear phenolic compound or water in a supercritical or subcritical state according to the decomposition conditions without using an acid or alkali catalyst in a heated and pressurized container. Low molecular weight mainly composed of resin components having a molecular weight of 200 to 100,000 by adding a formaldehyde compound in a solvent composed of a mixture with a mononuclear phenol compound and decomposing the thermosetting resin with high decomposition efficiency. High molecular weight compounds can be decomposed and recovered from Moreover, the time of thermal decomposition can be shortened more by adding the said formaldehyde compounds during the decomposition process of the thermosetting resin. Furthermore, the recycling method of the present invention usually uses a mixture of a decomposition product composed of a low molecular weight to high molecular weight compound mainly composed of a resin component having a molecular weight of 200 to 100,000 obtained by the above method and a reaction solvent. After heating under pressure and reduced pressure conditions to remove the solvent (phenol, water), the resulting decomposition product can be pulverized and reused as a raw material for the thermosetting resin.
[0021]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by this.
[0022]
[Example 1] Decomposition of cured phenol resin The cured phenol resin is 15 parts by weight of hexamethylenetetramine (manufactured by Wako Pure Chemical Industries, Ltd.) with respect to 100 parts by weight of phenol resin (PR-51714, manufactured by Sumitomo Bakelite Co., Ltd.). The components were blended, pressure molded at 150 ° C. for 15 minutes, and further heat treated at 180 ° C. for 4 hours for adjustment. This was pulverized and screened, and a particle size adjusted to 250 μm or less was used. The decomposition treatment results are summarized in Table 1. A reaction solvent consisting of 45.8 g of the above cured phenol resin, 77.0 g of phenol (manufactured by Wako Pure Chemical Industries, Ltd.) and 8.6 g of water was used as an autoclave made by Hastelloy (manufactured by Nitto Koatsu Co., Ltd., internal volume 200 cm). After charging in 3 ), the reactor was heated to an internal temperature of 360 ° C., whereby the internal pressure of the reactor was increased to 7 MPa to obtain a high temperature and high pressure state. It was confirmed in advance that 80% of the decomposition reaction proceeded under the decomposition conditions at 360 ° C. and 7 MPa for 5 minutes, and during the decomposition process maintained at 360 ° C. and 7 MPa for 5 minutes, Paraform (manufactured by Wako Pure Chemical Industries, Ltd.) 5 g was mixed with a reaction solvent composed of a mixture of 19.0 g of phenol (manufactured by Wako Pure Chemical Industries, Ltd.) and 2.1 g of water and slurried, poured, cooled, and returned to room temperature and normal pressure. After completion of the reaction, the mixture of the decomposition product and the reaction solvent was heated under normal pressure and reduced pressure conditions to remove the solvent (phenol, water) to obtain 118.4 g of the decomposition product. This product was dissolved in tetrahydrofuran (THF) (manufactured by Kishida Chemical Co., Ltd.) and then filtered through a filter having a pore size of 1.0 μm to make the filtrate soluble in THF. The THF-insoluble residue remaining on the filter after filtration was weighed after drying at 100 ° C. for 12 hours.
As a result, most of the THF-insoluble residue was an inorganic filler in the phenol resin molding material, and it was confirmed that almost 100% of the resin and the organic filler were decomposed to a THF soluble content. When the molecular weight and residual phenol monomer content of the decomposition product obtained with this THF-soluble component were measured using gel permeation chromatography (GPC), the resin component was Mn: 750 and Mw: 61000. I confirmed that there was. For GPC measurement, two Tosoh TSKgel GMHXL and two TSKgel G2000HXL are used for the column, a differential refractometer is used for the detector, THF is used as the eluent, the flow rate is 1 ml / min, and the temperature is 40 ° C. Calculated by polystyrene conversion. Furthermore, the decomposition product obtained as a measure of curability is pulverized, blended with 15 parts by weight of hexamethylenetetramine (manufactured by Wako Pure Chemical Industries, Ltd.), and time for gelation on a hot plate at 150 ° C. (Gel time) was measured and 102 seconds were obtained.
[0023]
[Example 2] Decomposition of cured phenol resin In Example 1, the decomposition treatment was performed in the same manner as in Example 1 except that the amount of paraform injected during the decomposition process was changed to 8 g. The decomposition treatment results are summarized in Table 1.
[0024]
[Example 3] Decomposition of cured phenolic resin In Example 1, the paraform to be injected in the decomposition process was previously charged together with a reaction solvent composed of a phenolic resin cured product and a mixture of phenol and water, and 10 ° C at 360 ° C and 9 MPa. The decomposition treatment was performed in the same manner as in Example 1 except that the reaction was performed for 1 minute. The decomposition treatment results are summarized in Table 1.
[0025]
[Comparative Example 1] Decomposition of cured phenolic resin In Example 1, the decomposition treatment was performed in the same manner as in Example 1 except that paraform was not added. The decomposition treatment results are summarized in Table 1.
[0026]
[Table 1]
Figure 0003888979
[0027]
[Example 4] Decomposition of phenol resin molding material In Example 1, the decomposition treatment was performed in the same manner as in Example 1 except that 45.8 g of phenol resin molding material was used as the thermosetting resin. Table 2 summarizes the results of the decomposition treatment.
Here, as the thermosetting resin, a phenol resin molding material (PM-8200: manufactured by Sumitomo Bakelite Co., Ltd.) was pulverized and screened, and the particle diameter was adjusted to 250 μm or less.
[0028]
[Example 5] Decomposition of phenol resin molding material In Example 4, the decomposition treatment was performed in the same manner as in Example 4 except that the amount of paraform added during the decomposition process was changed to 8 g. Table 2 summarizes the results of the decomposition treatment.
[0029]
[Example 6] Decomposition of phenol resin molding material In Example 4, the decomposition treatment was performed in the same manner as in Example 4 except that the reaction temperature was changed to 400 ° C. Table 2 summarizes the results of the decomposition treatment.
[0030]
[Example 7] Decomposition of phenol resin molding material In Example 4, except for changing to trioxane (manufactured by Kanto Chemical Co., Ltd.) instead of paraform to be injected in the decomposition step, the same operation as in Example 4 was performed. Decomposition was performed. Table 2 summarizes the results of the decomposition treatment.
[0031]
[Example 8] Decomposition of phenolic resin molding material In Example 4, the same procedure as in Example 4 was performed except that hexamethylenetetramine (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of paraform injected during the decomposition process. In the operation, decomposition treatment was performed. Table 2 summarizes the results of the decomposition treatment.
[0032]
[Example 9] Decomposition of phenol resin molding material In Example 4, a reaction solvent composed of a mixture of 45.8 g of the cured phenol resin, 96.0 g of phenol (manufactured by Wako Pure Chemical Industries, Ltd.), and 10.7 g of water. The decomposition process was performed in the same manner as in Example 4 except that 19 g of formalin (containing 37% formaldehyde) (manufactured by Wako Pure Chemical Industries, Ltd.) was injected during the decomposition process. Table 2 summarizes the results of the decomposition treatment.
[0033]
[Example 10] Decomposition of phenol resin molding material In Example 4, except that ortho-cresol (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the reaction solvent instead of phenol, the same operation as in Example 4 was performed. The decomposition process was performed. Table 2 summarizes the results of the decomposition treatment.
[0034]
[Example 11] Decomposition of phenol resin molding material In Example 4, except that 2,5-xylenol (manufactured by Kanto Chemical Co., Inc.) was used instead of phenol as the reaction solvent, the same as in Example 4 In the operation, decomposition treatment was performed. Table 2 summarizes the results of the decomposition treatment.
[0035]
[Example 12] Decomposition of phenol resin molding material In Example 4, except that resorcinol (manufactured by Kanto Chemical Co., Inc.) was used as a reaction solvent instead of phenol, decomposition was performed in the same manner as in Example 4. Processed. Table 2 summarizes the results of the decomposition treatment.
[0036]
[Example 13] Decomposition of phenol resin molding material In Example 4, except that p-tert-butylphenol (manufactured by Kanto Chemical Co., Inc.) was used instead of phenol as the reaction solvent, the same as in Example 4 In the operation, decomposition treatment was performed. Table 2 summarizes the results of the decomposition treatment.
[0037]
[Example 14] Decomposition of phenol resin molding material In Example 4, instead of phenol as a reaction solvent, a recovery product (mainly phenol) from a mixture of the decomposition product obtained in Example 4 and the reaction solvent was used. The decomposition treatment was performed in the same manner as in Example 4 except that it was used. Table 2 summarizes the results of the decomposition treatment.
[0038]
[Example 15] Decomposition of phenol resin molding material In Example 4, the paraform to be injected in the decomposition process was previously charged with a phenol resin cured product (same as above) and a reaction solvent composed of a mixture of phenol and water, 360 ° C, The decomposition treatment was performed in the same manner as in Example 1 except that the reaction was performed at 9 MPa for 10 minutes. Table 2 summarizes the results of the decomposition treatment.
[0040]
[Example 17] Decomposition of melamine resin molding material In Example 1, the same operation as in Example 1 except that 45.8 g of melamine resin molding material (ME-J manufactured by Matsushita Electric Works) was used as the thermosetting resin. Then, decomposition treatment was performed to obtain 75.0 g of a resin component.
[0041]
[Example 18] Decomposition of urea resin molding material The same operation as in Example 1 except that 45.8 g of urea resin molding material (CU-A manufactured by Matsushita Electric Works) was used as the thermosetting resin in Example 1. Then, decomposition treatment was performed to obtain 70.6 g of a resin component.
[0042]
[Comparative Example 2] Decomposition of phenol resin molding material In Example 4, a decomposition treatment was performed in the same manner as in Example 4 except that paraform was not added. Table 2 summarizes the results of the decomposition treatment.
[0043]
[Table 2]
Figure 0003888979
[0044]
As can be seen from the results shown in Tables 1 and 2, in the decomposition treatment methods shown in Examples 1 to 8, a high molecular weight compound similar to that of Comparative Examples 1 and 2 was obtained in a shorter time. . Furthermore, since the reaction point remained due to the shortening of the reaction time, the gel time was shortened and the curability was improved.
[0045]
【The invention's effect】
According to the present invention, a thermosetting resin is decomposed into a high molecular weight compound from a low molecular weight mainly composed of a resin component having a molecular weight of 200 to 100,000, which is a higher molecular weight than the conventional method, in a shorter time and efficiently. And can be recycled as a raw material for the thermosetting resin.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram in which formalin is added to decompose a thermosetting resin.
FIG. 2 is a conceptual view of decomposing a thermosetting resin by adding formalin according to the present invention.

Claims (9)

超臨界又は亜臨界状態の、単核フェノール類化合物又は水と単核フェノール類化合物との混合物を反応溶媒として、熱硬化性樹脂を分解する分解処理方法において、熱硬化性樹脂は、フェノール樹脂、メラミン樹脂、及びユリア樹脂の中から選択された1種又は2種以上であり、さらにホルムアルデヒド類化合物を添加することを特徴とする、熱硬化性樹脂の分解処理方法。  In a supercritical or subcritical state mononuclear phenolic compound or a mixture of water and a mononuclear phenolic compound as a reaction solvent, in the decomposition treatment method for decomposing the thermosetting resin, the thermosetting resin is a phenol resin, A method for decomposing a thermosetting resin, comprising one or more selected from melamine resin and urea resin, and further adding a formaldehyde compound. ホルムアルデヒド類化合物を、熱硬化性樹脂の分解工程中で添加する、請求項1に記載の熱硬化性樹脂の分解処理方法。  The method for decomposing a thermosetting resin according to claim 1, wherein the formaldehyde compound is added during the decomposition step of the thermosetting resin. ホルムアルデヒド類化合物が、ホルムアルデヒド、パラホルム、トリオキサン、ヘキサメチレンテトラミン及びそれらの水溶液の中から選ばれる、請求項1又は2に記載の熱硬化性樹脂の分解処理方法。  The method for decomposing a thermosetting resin according to claim 1 or 2, wherein the formaldehyde compound is selected from formaldehyde, paraform, trioxane, hexamethylenetetramine, and an aqueous solution thereof. ホルムアルデヒド類化合物が、ホルムアルデヒドまたはパラホルムである請求項3記載の熱硬化性樹脂の分解処理方法。  The method for decomposing a thermosetting resin according to claim 3, wherein the formaldehyde compound is formaldehyde or paraform. 単核フェノール類化合物が、フェノール、クレゾール、キシレノール、レゾルシノール、及びアルキル置換フェノールの中から選ばれる、請求項1〜4のいずれかに記載の熱硬化性樹脂の分解処理方法。  The method for decomposing a thermosetting resin according to any one of claims 1 to 4, wherein the mononuclear phenol compound is selected from phenol, cresol, xylenol, resorcinol, and alkyl-substituted phenol. 単核フェノール類化合物が、フェノールである請求項5記載の熱硬化性樹脂の分解処理方法。  The method for decomposing a thermosetting resin according to claim 5, wherein the mononuclear phenol compound is phenol. 単核フェノール類化合物が、前記熱硬化性樹脂の分解処理方法により得られた200〜100,000の分子量を有する樹脂成分を主体とする低分子量から高分子量の化合物より分離、精製して得られたものである、請求項1〜6のいずれかに記載の熱硬化性樹脂の分解処理方法。  A mononuclear phenol compound is obtained by separation and purification from a low molecular weight to high molecular weight compound mainly composed of a resin component having a molecular weight of 200 to 100,000 obtained by the method for decomposing a thermosetting resin. The method for decomposing a thermosetting resin according to claim 1, wherein the thermosetting resin is decomposed. 熱硬化性樹脂が、フェノール樹脂である請求項1〜7のいずれかに記載の熱硬化性樹脂の分解処理方法。  A thermosetting resin is a phenol resin, The decomposition processing method of the thermosetting resin in any one of Claims 1-7. フェノール樹脂、メラミン樹脂、及びユリア樹脂の中から選択された1種又は2種以上である熱硬化性樹脂を請求項1〜8のいずれかに記載の分解処理方法により分解して200〜100,000の分子量を有する樹脂成分を主体とする低分子量から高分子量の化合物を得た後、前記の低分子量から高分子量の化合物を熱硬化性樹脂の原料として再利用する熱硬化性樹脂のリサイクル方法。 Phenolic resins, melamine resins, and then by Ri decomposed in the decomposition treatment method according to one or more in the thermosetting resin is selected from among urea resin to claim 1, after obtaining the high molecular weight compounds from low molecular weight mainly comprising a resin component having a molecular weight of 200 to 100,000, reusing high molecular weight compound as a raw material of the thermosetting resin of a low molecular weight of the thermoset Recycling method for functional resin.
JP2003065884A 2002-09-27 2003-03-12 Method for decomposing and recycling thermosetting resin Expired - Fee Related JP3888979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065884A JP3888979B2 (en) 2002-09-27 2003-03-12 Method for decomposing and recycling thermosetting resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002284531 2002-09-27
JP2003065884A JP3888979B2 (en) 2002-09-27 2003-03-12 Method for decomposing and recycling thermosetting resin

Publications (2)

Publication Number Publication Date
JP2004161983A JP2004161983A (en) 2004-06-10
JP3888979B2 true JP3888979B2 (en) 2007-03-07

Family

ID=32827859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065884A Expired - Fee Related JP3888979B2 (en) 2002-09-27 2003-03-12 Method for decomposing and recycling thermosetting resin

Country Status (1)

Country Link
JP (1) JP3888979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318495B1 (en) 2004-11-09 2013-10-16 스미토모 베이클리트 컴퍼니 리미티드 Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article
CA2622117C (en) * 2005-09-12 2013-01-29 Sumitomo Bakelite Co., Ltd. Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition

Also Published As

Publication number Publication date
JP2004161983A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
KR101318495B1 (en) Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article
JP5874692B2 (en) Collection method of inorganic filler
JP5007671B2 (en) Manufacturing method of recycled resin
JP3693869B2 (en) Method for decomposing and recycling thermosetting resin
JP3888979B2 (en) Method for decomposing and recycling thermosetting resin
JP3922625B2 (en) Method for decomposing and recycling thermosetting resin
JP4317696B2 (en) Method for decomposing thermosetting resin and / or cured product thereof and method for producing thermosetting resin using decomposition product obtained thereby
JPH11302442A (en) Decomposition of thermosetting resin
JP2006233141A (en) Phenolic resin molding material
JP4792750B2 (en) Manufacturing method of recycled resin
JP4090645B2 (en) Method for decomposing thermosetting resin
JP2005113096A (en) Method for solubilization-treating plastic material, method of recycling and plastic-forming material
JP2005126667A (en) Method for treating and recycling plastic, treated and recovered plastic material, and recycled plastic
JP2006124480A (en) Plastic regeneration method, regenerated product, recycling method, and recycled plastic
JPH10287766A (en) Decomposing and recycling methods for thermosetting resin
JP2006160794A (en) Method for treating plastic, recycling method, treated and recovered material and recycled plastic
JP4581607B2 (en) Plastic processing method, recycling method, plastic processing collection and recycled plastic
JP2004115744A (en) Method for producing phenolic resin composite material
JP2005126669A (en) Method for recycling plastic, treated and recovered plastic, thermosetting resin-forming material and recycled plastic
JP2015048359A (en) Lignin resin composition, resin molded article, and molding material
JP2003183475A (en) Recycled phenol resin composition
JP2005281429A (en) Processing method of plastic, processed and recovered matter, recycling method and recycled plastic
JP2005281427A (en) Method for treating plastic, recycling method, treated and recovered material and recycled plastic
JP2015048360A (en) Lignin resin composition, resin molded article, and molding material
JPH0463834A (en) Production of resin powder from wood flour

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051031

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees