JP2004228346A - Device and method for mounting electronic component - Google Patents

Device and method for mounting electronic component Download PDF

Info

Publication number
JP2004228346A
JP2004228346A JP2003014510A JP2003014510A JP2004228346A JP 2004228346 A JP2004228346 A JP 2004228346A JP 2003014510 A JP2003014510 A JP 2003014510A JP 2003014510 A JP2003014510 A JP 2003014510A JP 2004228346 A JP2004228346 A JP 2004228346A
Authority
JP
Japan
Prior art keywords
electronic component
cleaning
joining
joined
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003014510A
Other languages
Japanese (ja)
Inventor
Toshiya Eguchi
俊哉 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2003014510A priority Critical patent/JP2004228346A/en
Publication of JP2004228346A publication Critical patent/JP2004228346A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized inexpensive electronic component mounting device that is high in productivity and free from the contamination of components and does not require frequent cleaning (can be maintained easily), and to provide a method of mounting electronic component. <P>SOLUTION: The electronic component mounting device which joins a joint object and an object to be joined to each other is provided with a plasma generating device which generates a plasma gas under the atmospheric pressure or its vicinity, a plasma supplying device which supplies the generated plasma gas to the junction between the joint object and object to be joined and injects the gas, and a cleaning/joining device which washes the surfaces of the junctions of both objects with the injected plasma gas under the atmospheric pressure or its vicinity and, almost simultaneously, joins the junctions to each other. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品等の接合物と、基板等の被接合物を洗浄しながら接合物と被接合物同士を接合する電子部品の実装装置および実装方法に関する。
【0002】
【従来の技術】
電子部品と基板との接合は当初金属溶融接合や超音波接合、導電性接着剤による接合方式が一般的であったが、設備が大型化する、接着剤の塗布量管理が困難等の理由で、▲1▼特開2001−351892号公報のような、減圧室でエネルギー波を電子部品等に照射し表面を洗浄後、内部を不活性ガスで置換した接合室に電子部品等を搬送し常温接合を行う実装装置:(特許文献1)、或いは▲2▼特開平7−26076号公報特許公報のような、所定の真空度に減圧されたチャンバー内でグロー放電により資料(接合物)の接合面を洗浄し、洗浄後に、加圧等により資料同士を接合する常温接合装置(実装装置):(特許文献2)が提案された。
【0003】
【特許文献1】
特開2001−351892号公報 (段落0016、0017、0
019、0020、図1)
【0004】
【特許文献2】
特開平7−26076号公報 (段落0007、図1)
【0005】
【発明が解決しようとする課題】
しかし、上記特許文献1に記載された装置・方法では洗浄室と接合室が別室となっているため電子部品等の室間移載装置が必要となり、装置が大型且つ複雑となる欠点、更に減圧(減圧装置)を必要としているため所定の圧力に減圧するための時間が長く生産性が低く、装置が大型且つ高価で複雑となってしまう、またプラズマが密封された洗浄室等の内壁に及ぶため内壁を構成する材料から不純物が生成し、或いは電子部品の汚れが分解・灰化された不純物質が内部に堆積し、これらの不純物が電子部品に付着して汚染される、また、連続生産を行う場合には密閉された減圧室内に不純物が堆積してしまうため清掃を頻繁に行わなくてはならない等の欠点があった。上記特許文献2に記載された装置でも室間移載装置等は不要となるが、減圧(真空排気装置)を必要としているため上述した減圧に係る欠点が解決されなかった。
【0006】
以上の問題点に鑑み、洗浄室と接合室間の電子部品室間移載装置を不要とし、更に洗浄・接合の為の減圧(真空排気装置)を不要とすることにより、小型で、安価な、高生産性を有する、更に部品の汚染等がなく、清掃を頻繁に行う必要がない(メンテナンスが容易な)電子部品の実装装置及び実装方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、所定の高周波電圧を印加した電極間に、所定のガスを供給すると大気圧又はその近傍でプラズマ化したガスが発生できること、又、プラズマ化したガス(プラズマガス)等で接合面の酸化物や有機物等が除去されること、又、活性化された表面同士を当接するのみで両者が原子間の高い結合力によって接合できること(常温接合方法)に着目し、大気圧又はその近傍で発生させたプラズマガスを接合物(電子部品)と被接合物(基板)の接合部に噴射して接合部の表面をプラズマにより洗浄しながら、電子部品と基板の清浄な接合部同士を当接することにより電子部品と基板を接合するようにしたものであります。
【0008】
ここで、接合物と被接合物の接合部とは、接合物(例えばベアチップ形態の電子部品)の電極等、と接合物の電極等が接合される被接合物(例えば基板)の電電極等を指すもので、電子部品とはベアチップ形態の半導体や抵抗やコンデンサ等の電子部品を指し、基板とはベアチップ形状の電子部品の電極等を接合する電極を有した基板を指すものであります。
【0009】
そして、洗浄とは接合物と被接合物の各接合部表面にプラズマガスを噴射して両表面を清浄にし且つ活性化させることを指すもので時間的にはプラズマガスの噴射開始から終了までを指すものであります。
【0010】
また接合とは接合物と被接合物の各接合部表面同士を当接させて一体的に結合(接合)させることを指し、時間的には当接直前から結合(接合)を完了して離間直後までを指すものであります。
【0011】
接合部表面の洗浄と接合部同士の接合とを略同時に行うとは、▲1▼洗浄の開始と同時に接合を行い接合完了後も洗浄を継続すること、▲2▼洗浄開始後に接合を行い接合完了後も洗浄を継続すること、▲3▼洗浄開始後に接合を行い接合完了と同時に洗浄を完了継続すること、▲4▼洗浄開始後に接合を行い洗浄完了後も接合を継続すること、▲5▼洗浄終了直後に接合を開始することを指し、少なくとも接合中の一時期は洗浄が継続して行われているものであります。
【0012】
具体的には、例えば▲3▼の場合、接合物の移動中に洗浄を開始し当接中(接合中)も洗浄を継続し、洗浄を行いながら接合を行ない、接合完了と同時に洗浄を完了させるものであります。
【0013】
ここで、被接合物を移動しても、或いは両者を移動しても良いことは言うまでもありません。
【0014】
また、大気圧又は大気圧近傍とは20〜110KPaの気圧で更に好ましくは90〜105KPaの気圧を指すものであります。
【0015】
そして、上記目的は下記の手段により達成されます。
(1)接合物と被接合物を接合する電子部品の実装装置において、
大気圧又はその近傍でプラズマガスを発生させるプラズマ発生装置と、発生した前記プラズマガスを接合物と被接合物の接合部に供給して噴射するプラズマ供給装置と、噴射されたプラズマガスにより大気圧又はその近傍で接合物と被接合物の接合部表面を洗浄し略同時に接合物と被接合物の接合部同士を接合する洗浄・接合装置と、を備えるものであることを特徴とする電子部品の実装装置。
【0016】
(2)接合物と被接合物を接合する電子部品の実装方法において、
接合物と被接合物の接合部表面にプラズマガスを噴射し、接合部表面の洗浄と接合部同士の接合とを略同時に行う洗浄・接合工程を有することを特徴とする電子部品の実装方法。
【0017】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照して説明する。なお、本欄の記載は請求項の技術的範囲や用語の意義を限定するものではない。
【0018】
図1は本発明の電子部品の実装装置の側面概念図である。
又、図2は本発明の電子部品の実装装置の平面概念図である。
【0019】
図3はプラズマ発生装置の概念図である。
図1及び2において、
電子部品の実装装置1は、大気圧又はその近傍でプラズマガスを発生させるプラズマ発生装置4と、
接合物であるベアチップ半導体または表面実装タイプの電子部品(以下電子部品とも記す)と被接合物であるシリコン、又はガラス、又はガラスエポキシ、又はセラミック、又はポリイミド等よりなる電子回路基板(以下基板とも記す)の接合部に、前記プラズマガスを供給して噴射するプラズマガス供給装置6と、
噴射するプラズマガスにより大気圧又はその近傍で電子部品と基板の接合部表面を洗浄し、洗浄と略同時に同一場所で電子部品と基板の接合部同士を接合する洗浄・接合装置5と、を備えている。
【0020】
又、511は洗浄・接合領域で、少なくとも接合物と被接合物との接合部に接する領域で、洗浄・接合が行われる領域である。
【0021】
以下プラズマ発生装置4と、プラズマ供給装置6と、洗浄・接合装置5とを詳細に説明する。
【0022】
以下の実施の形態の説明は説明をわかりやすくするため主に有機物と酸化物をアルゴンガスと水素ガスをプラズマ化させて洗浄し接合をする場合を例に取り説明するが、洗浄する物質によりガスの種類や後述する洗浄条件等を適時変更することにより洗浄・接合が可能となる。
【0023】
図3において、プラズマ発生装置4は洗浄に必要な不活性ガス(例えばアルゴンガス)を充填したガスボンベ41、と還元性ガス(例えば水素ガス)を充填したガスボンベ42等と、複数の各ボンベからのガス流量を調整する流量調整手段43と、プラズマ発生手段40を備え、プラズマ発生手段40は高周波電源44と、高周波電源44に接続された1対の電極45とを有している。
【0024】
1対の電極45はステンレス等の金属よりなり、それぞれ無機物からなる(例えば焼結性セラミックスの)比誘電率が6〜45の誘電体451が被覆され、電極間距離dが0.5〜20mm(好ましくは1±0.5mm)離間して配設されている。
【0025】
そして流量調整手段43により流量が調整されたガスが電極間を通過する時に大気圧又はその近傍でプラズマ化される構成となっている。
【0026】
ここで、使用するガスは電子部品及び基板の接合部と反応しないもので、還元性ガスは水素、一酸化炭素(好ましくは水素)でも良く、また、不活性ガスはアルゴン、ヘリウム、ネオン、クリプトン、キセノン、ラドンや窒素(好ましくはヘリウム、アルゴン、窒素)でも良い。
【0027】
そして、洗浄する物質に応じ、上述したガスの中から適当なガスを流量調整手段43により単一ガスとして、或いは混合ガスとして、順次ガスを切り替えて供給する。
【0028】
高周波電源44は高いプラズマ密度を得るため、高周波のある程度大きな電力を供給することが好ましく、具体的には、電極45間に100kHz〜800MHzの高周波数の電圧を印加することが好ましく、200kHz以上であればより一層好ましい。また、電極間に供給する電力の下限値は、放電が起こる範囲の面積(cm当たり)1W/cm以上50W/cm以下であることであることが好ましく、2W/cm以上であればより一層好ましい。
【0029】
このために高周波電源44にはON/OFFデューティー比を変化可能なパルス電源を用い、制御手段により使用するガスに応じON/OFFデューティー比を0.1〜10の範囲で変化させて印加エネルギーを変化させも良い。
【0030】
また、電極間に印加する高周波電圧は、パルス波であっても、サイン波であってもよい。
【0031】
ところで、大気圧又は大気圧近傍でアルゴン等の不活性ガスを導入してプラズマを発生させる場合は、還元ガス等を混合するとその分不活性ガス成分の割合が減少しプラズマが発生しにくくなる。
【0032】
このため、エネルギー線発生装置(図示せず)により、反応を促進させるエネルギー(例えば電子線、放射線、紫外線、レーザー光)をプラズマ発生部452を通過するガスに照射してプラズマ反応を抑制する効果を解消するようにしても良い。
【0033】
この場合は、電子線としては10V〜90kVの電圧で加速された電子線を好適に用いることができ、放射線としては、銅(Cu)、モリブデン(Mo)を放射線源として発せられた放射線を用いることができ、紫外線としては1〜360nm(特に150nm以下)の範囲を用いることができ、また、レーザー光としては例えばエキシマレーザやNd:YAGレーザを光源とする10〜900mJの照射エネルギーを発揮するものを用いることができ、プラズマを発生させるグロー放電が高い密度で安定して継続可能となる。
【0034】
図1、2に戻り、プラズマ供給装置6は、プラズマ発生装置4で発生したプラズマガスを洗浄・接合装置5の洗浄・接合領域511に導くガス供給路61とプラズマガスを電子部品2と基板3との接合部の表面に噴射するノズル62とを有している。
【0035】
洗浄・接合領域511の水平方向に、ノズル62を3〜10(好ましくは3〜5)分割し略均等に配設し、ノズル62からプラズマガスを接合物に均等に噴射するようにするとなお良い。
【0036】
また、プラズマ発生装置とプラズマ供給装置の全て又はその一部を搬送位置決め手段7に配設し、プラズマガスが電子部品と基板の接合部表面に噴射される向きにノズル62を後述する吸着手段73或いはアーム72に取り付けても良い。
【0037】
パーツフィーダ741、742は電子部品2及び基板3を後述する吸着手段73への受け渡し位置20、30まで搬送するコンベアである。
【0038】
洗浄・接合装置5は搬送・位置決め手段7と、基板保持手段52とを備え、
基板保持手段52は、搬送・位置決め手段7により搬送された基板3を基板固定部521の基板位置決め手段522により所定の位置に固定する。
【0039】
搬送・位置決め手段7は、部品搬送部512とゴム等の弾性体よりなる吸着パッドを有する吸着手段73を有し、吸着手段73は図示しない減圧手段により電子部品や基板を吸着して保持することができるようになっている。
【0040】
部品搬送部512は、後述するアーム72の先端に配設した吸着手段73を電子部品2や基板3の授受位置まで下降させ、アーム72の旋回位置まで上昇(図示Z方向)させ、且つ吸着手段73をパーツフィーダ741、742の電子部品2や基板3の受け渡し位置20及び30と、洗浄・接合領域511位置との間を旋回(図示θ方向)させる回転軸71と、回転軸71から延びるアーム72とを有している。
【0041】
そして、アーム72の先端に部品位置決め部513である吸着手段73が配設されており、吸着手段73は電子部品2や基板3の受け渡し位置20及び30で電子部品や基板を吸着し、洗浄・接合領域511位置で後述する電子部品と基板の接合部の位置情報に基づき電子部品と基板の接合部の精密位置合わせを行なう。
【0042】
そして、洗浄・接合領域511で基板と電子部品の接合部表面の洗浄を行なうとともに精密位置合わせが行われた状態で吸着手段73が下降する際に電子部品と基板の接合部同士を当接させて常温接合を行なう。
【0043】
ここで、洗浄・接合領域511近傍には、電子部品2及び基板3の接合部の位置を測定する位置決めカメラ(図示せず)が配設されており、位置決めカメラで測定した電子部品と基板の接合部の位置情報が制御手段に出力され、制御手段は電子部品と基板の接合部の位置情報に基づき基板の接合部に対し電子部品の接合部を一致させるように、電子部品2を吸着した状態で吸着手段73をX、Y、θ方向の位置調整を行い両者の精密位置出しを行う。
【0044】
常温接合の接合能力を補強するため、加圧手段(図示せず)を設けて吸着手段で吸着した電子部品2を基板3に当接時に加圧しても、或いは例えば基板固定部521にヒートステージ(図示せず)を配設し加熱しても、また電子部品上面から加熱手段(図示せず)を突き当てて基板と電子部品を加熱しても、或いは超音波振動子(図示せず)を設け電子部品2を基板3に当接時に電子部品2を超音波振動させて接合の補助としても良い。
【0045】
接合能力の補強は接合面の平滑度が不足している場合等接合条件が不十分な場合特に有効となる。
【0046】
以上、第1の実施の形態について説明したが以下に第2の実施の形態について説明する。
【0047】
これは上述した実装装置に一部の追加を行うのみで接合部に非導電性の皮膜を形成させ、接合強度を上げようとするものであります。
【0048】
具体的には、上述した実装装置のプラズマ発生装置4に図1に示す原料ガスのボンベ46を追加して、接合が完了した後、流量調整手段43で洗浄するための水素やアルゴンガスから非導電性膜を形成するための原料ガス(例えばテトラエトキシシランを含有するガス)と不活性ガスの混合ガスに切り替えて、大気圧又はその近傍でプラズマ化して接合部に噴射することにより、接合を完了した電子部品と基板の接合部の周囲を覆うように非導電性膜を形成し接合強度の増強を図ることも可能とするものであります。
【0049】
原料ガスは形成したい膜の種類により異なるが、珪素化合物としてはジメチルシラン、テトラメチルシラン等のアルキルシラン、またテトラメトキシシラン、テトラエトキシシラン等の珪素アルコキシド等の有機珪素化合物、またモノシラン、ジシラン等の珪素化合物、またジクロルシラン、トリクロロシラン、テトラクロロシラン等のハロゲン化珪素化合物、またその他オルガノシラン等を挙げることができる。
【0050】
図4は実装方法のフロー図、図5は実装装置の制御ブロック図である。
以下図1、4(a)、5を参照して本発明の第1の実施の形態の、上述した実装装置を使用して電子部品と基板の接合部を洗浄と接合を略同時に行う方法について説明する。
【0051】
以下の説明は実現可能な一例を示したもので請求項に記載した内容は下記の工程の構成、工程の順番等説明に限定されるものではない。
【0052】
図5において、431は流量制御装置で、制御手段9からの指令により流量調整手段43に接続された各ガスボンベのガス流量を調整制御する。
【0053】
441は電源制御装置で、制御手段9からの指令により高周波電源44の出力電圧値やパルスのON/OFF比等を制御する。
【0054】
701は搬送位置決め制御装置で、制御手段9からの指令により搬送・位置決め手段7の回転軸71や吸着手段73を制御する。
【0055】
521は基板保持手段制御装置で、制御手段9からの指令により基板位置決め手段522の基板位置決め/解除動作等を制御する。
【0056】
801はカメラ制御装置で、位置決めカメラに電子部品及び基板の接合部を撮影させ、電子部品と基板の接合部の位置情報を制御装置に出力する。
【0057】
91は記憶手段で、内部のメモリに洗浄物(例えば有機物と酸化物)に対する各ガスの流量データや、各洗浄物に対する洗浄時間(プラズマガスの噴射時間)等のデータを予め記憶し、制御手段9にデータを出力する。
【0058】
9は制御手段で、上記制御を行う。
次に、説明をわかりやすくするため例えば還元性ガスとして水素ガスを、不活性ガスとしてアルゴンガスを使用して洗浄・接合を行う方法を例に取り、図4により説明を行う。
【0059】
ステップ1において、オペレータは操作パネルから洗浄・接合の起動操作を行う。
【0060】
次に搬送工程であるところのステップ2〜6を説明する。
ステップ2において、起動操作により制御手段は部品搬送部512の回転軸71を回転させて基板のパーツフィーダ742上を搬送される基板3の受け渡し位置30までアーム72を旋回させる。
【0061】
次いで制御手段は回転軸71をアーム72先端の吸着手段73がパーツフィーダ742上の基板3を吸着できるまで下げさせて、吸着手段73により基板3を吸着させる。
【0062】
ステップ3において、制御手段は回転軸71をアームの旋回位置まで上昇させた後アーム72を洗浄接合領域511に旋回させる。
【0063】
次いで、制御手段は回転軸71を下降させ吸着手段73に吸着された基板を基板固定部521に移載させ、移載された基板3は基板位置決め手段522により所定位置に位置決めさせて固定させる。
【0064】
ステップ5において、部品搬送部512と吸着手段73は制御手段により基板の吸着と搬送ステップと同様にして電子部品2のパーツフィーダ741上を搬送される電子部品2を洗浄接合領域511に搬送させる。
【0065】
ステップ6において、制御手段は電子部品及び基板の接合部の位置を測定する位置決めカメラ(図示せず)で測定した電子部品と基板の接合部の位置情報を取り込み、取り込んだ電子部品と基板の接合部の位置情報に基づき基板の接合部に対する電子部品の接合部の位置ずれ量を演算し、基板の接合部位置に電子部品の接合部位置を一致させるように(ずれ量を0とするように)、吸着手段73をX−Y−θ方向に作動させて両者の精密位置出しを行なわせる。
【0066】
次に洗浄・接合工程であるところのステップ7〜9を説明する。
ステップ7において、制御手段は予め記憶手段91に記憶された、洗浄物(例えば有機物と酸化物)に対する各ガスの流量データを読み出す。
【0067】
ここで、洗浄物に対する各ガスの流量データは実装装置のモデルにより各洗浄物に対する各ガスの洗浄に必要な流量実験を行い、良好な洗浄が行われる各ガスの流量を測定し、予め記憶手段に各洗浄物に対する各ガスの流量データとして記憶させておくことによって可能となる。
【0068】
また、良好な洗浄を行うためには洗浄・接合領域の電子部品と基板の接合部表面における不活性ガスに対する還元ガスの体積%が1〜10で、酸素濃度が100ppm以下となるようにすることが望ましい。
【0069】
そして、制御手段はガスボンベ41と42から供給される水素とアルゴンガスを各ガスの流量データに基づき流量調整手段43のバルブ(図示せず)を調整させて所定の混合ガスとしてプラズマ発生部へ供給させる。
【0070】
ここで、ガスの供給は洗浄物に応じ、例えば先ずアルゴンガスを供給し次いで水素ガスを供給する等単一ガスを順次切り替えても、或いは例えばアルゴンガスと水素ガスを混合して供給しても、それらを組み合わせて供給しても良い。
【0071】
次いで制御手段は高周波電源44をONにさせて電極45間に高周波電圧を印加させる。
【0072】
ここで、高周波電源は周波数と出力電圧が可変のものを使用し、制御手段により洗浄物により良好な洗浄を得る周波数と電圧に設定しても良い。
【0073】
高周波電圧の印加により、電極間にグロー放電が発生してプラズマ発生部を通過するガスがプラズマ化される。
【0074】
ステップ8において、ガス供給路61を経てノズル62から電子部品と基板の接合部表面に向けてプラズマ化された混合ガスが噴射する。
【0075】
そして、制御手段はプラズマ化されたガスの噴射開始と同時に回転軸71を下降開始させ、吸着手段73に吸着された接合部表面に向けてプラズマ化した混合ガスを噴射させる。
【0076】
これにより、電子部品と基板の接合部表面の有機物はプラズマ化されたアルゴンガスにより灰化され、酸化膜はプラズマ化された水素ガスにより還元され、電子部品と基板の接合部表面が活性化された面に浄化される。
【0077】
ガスの噴射時間は各種の洗浄物に対して所定の洗浄条件で洗浄実験を行い、各種の洗浄物に対する洗浄必要時間を予め記憶手段91に記憶させておく。
【0078】
制御手段は洗浄物に応じ必要洗浄時間を読み出して、この時間に応じ洗浄時間を変えても良い。
【0079】
そして、洗浄を行いながら電子部品の下降が継続し、下降端直前で電子部品と基板の接合部同士が当接し原子レベルの強固な常温接合が行なわれる。
【0080】
換言すると、ガスの噴射は洗浄開始から接合完了まで継続させる。
ステップ9において、制御手段は接合完了後に流量調整手段43のバルブ(図示せず)を閉じさせてガスの供給を停止させ、高周波電源をOFFさせる。
【0081】
次に回収工程であるところのステップ10を説明する。
ステップ10において、制御手段は回転軸71を上昇させ吸着手段73で接合完了した電子部品と基板を吸着して回収する。
【0082】
以下に図1、4(b)、5を参照して本発明の第2の実施の形態の、上述した実装装置を使用して電子部品と基板の接合部周囲に非導電性の膜を形成して接合強度を増強する方法について説明する。
【0083】
図1において、46は非導電性膜を形成する原料ガスを充填したボンベである。
【0084】
洗浄・接合に係るステップは第1の実施の形態と同様なので説明を割愛する。
図6において、
ステップ1において、基板制御手段は非導電性膜を形成する原料ガスと不活性ガスを充填したガスボンベ46と41が接続されている流量調整手段43のをバルブを開かせ原料ガスと不活性ガスをプラズマ発生手段に供給する。
【0085】
この場合不活ガスの割合は反応性ガス中90(好ましくは95)%体積以上とすると良い。
【0086】
ステップ2において、制御手段は第1の実施の形態と同様にして原料ガスと不活性ガスの混合ガスをプラズマ化する。
【0087】
ステップ3において、制御手段は第1の実施の形態と同様にして既に接合を完了した電子部品と基板の接合部に向けてプラズマ化した原料ガスと不活性ガスの混合ガスを噴射させて電子部品と基板の接合部周囲を覆うように非導電性の皮膜を形成させる。
【0088】
ステップ4において、被膜形成完了後プラズマガスの噴射を停止し、被膜形成完了済みの電子部品と基板を回収する。
【0089】
以上の実装装置、方法により、
洗浄と接合が同一箇所で同時に可能となるため生産性が向上できる。
【0090】
大気圧又はその近傍で洗浄・接合が可能となるため、真空ポンプ等の減圧設備や耐圧室が不要となり減圧時間が削減できると同時に生産設備の構成が簡単となり生産性の増加やコストダウンが可能となる。
【0091】
特に高温の加熱を必要とせずに洗浄・接合が可能となるため、加熱による部品間の熱膨張の不一致による残留応力の少ない(ストレスの少ない)接合が可能となり、歪みによる劣化・故障の発生が少ない電子部品の製造が可能となる。
【0092】
また、電子部品と基板の接合部周囲を非導電性皮膜で被覆するため接合強度が高い電子部品の製造が可能となる。
【0093】
本発明の洗浄・接合方法を、大量生産が要求される現実の実装工程に効率よく適合させることができ、実装工程全体のタクトタイムを大幅に短縮することができる。
【0094】
【発明の効果】
本発明によれば、実装装置の構成が簡単且つ小型となり、装置のコストダウンが可能となり、生産性が向上できるとともに、装置のメンテナンスが容易となる。
【0095】
また、電子部品の汚染もなく、熱歪みによる劣化・故障の発生が少なく、電子部品と基板間の接合強度の強い電子部品の製造が可能となる。という効果を奏することができる。
【図面の簡単な説明】
【図1】本発明の電子部品の実装装置の側面概念図である。
【図2】本発明の電子部品の実装装置の平面概念図である。
【図3】プラズマ発生装置の概念図である。
【図4】実装方法のフロー図である。
【図5】実装装置の制御ブロック図である。
【符号の説明】
1 実装装置
2 電子部品
3 基板
4 プラズマ発生装置
5 洗浄・接合装置
6 プラズマ供給装置
7 搬送位置決め手段
9 制御手段
40 プラズマ発生手段
43 流量調整手段
73 吸着手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mounting apparatus and a mounting method for an electronic component that joins a bonded object such as an electronic component and a bonded object such as a substrate while cleaning the bonded object such as a substrate.
[0002]
[Prior art]
At the beginning, electronic components and substrates were generally bonded by metal fusion, ultrasonic bonding, or conductive adhesives.However, equipment became larger and it was difficult to control the amount of adhesive applied. (1) As disclosed in Japanese Patent Application Laid-Open No. 2001-351892, an energy wave is applied to an electronic component or the like in a decompression chamber to clean the surface, and then the electronic component or the like is transported to a bonding chamber in which the inside is replaced with an inert gas, and is cooled to normal temperature Mounting device for bonding: (2) Bonding of material (bonded material) by glow discharge in a chamber reduced in pressure to a predetermined degree of vacuum as disclosed in JP-A-7-26076. A room-temperature bonding apparatus (mounting apparatus) for cleaning surfaces and bonding the materials by pressure or the like after cleaning has been proposed (Patent Document 2).
[0003]
[Patent Document 1]
JP 2001-351892 A (paragraphs 0016, 0017, 0
019, 0020, FIG. 1)
[0004]
[Patent Document 2]
JP-A-7-26076 (Paragraph 0007, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, in the apparatus and method described in Patent Document 1, since the cleaning chamber and the bonding chamber are separate rooms, an inter-room transfer device for electronic components and the like is required, which results in a disadvantage that the device becomes large and complicated, and furthermore, decompression. (Decompression device) requires a long time to reduce the pressure to a predetermined pressure and low productivity, and the device is large, expensive and complicated, and the plasma extends to the inner wall of a sealed cleaning room or the like. Therefore, impurities are generated from the material constituting the inner wall, or impurities that are decomposed and ashed from the electronic components are deposited inside, and these impurities adhere to the electronic components and become contaminated. In this case, there is a drawback that impurities are deposited in a closed decompression chamber, so that cleaning must be performed frequently. Although the apparatus described in Patent Document 2 does not require an inter-room transfer apparatus or the like, it does not solve the above-mentioned disadvantages related to the reduced pressure because the reduced pressure (evacuation device) is required.
[0006]
In view of the above problems, the need for a transfer device between the electronic component room between the cleaning room and the bonding room is eliminated, and the decompression (vacuum evacuation device) for cleaning and bonding is not required. It is an object of the present invention to provide an electronic component mounting apparatus and a mounting method that have high productivity, do not cause component contamination, and do not require frequent cleaning (easy maintenance).
[0007]
[Means for Solving the Problems]
According to the present invention, when a predetermined gas is supplied between electrodes to which a predetermined high-frequency voltage is applied, a gas that is turned into plasma at or near the atmospheric pressure can be generated. Focusing on the fact that oxides and organic substances are removed, and that the activated surfaces can be joined by a high bonding force between atoms simply by abutting the activated surfaces (room temperature joining method). The generated plasma gas is sprayed onto the joint between the joint (electronic component) and the article (substrate) to clean the surface of the joint with plasma while bringing the clean joint between the electronic component and the substrate into contact with each other. In this way, electronic components and substrates are joined together.
[0008]
Here, the joint between the joined object and the joined object refers to an electrode of the joined object (for example, an electronic component in the form of a bare chip) and an electrode of the joined object (for example, a substrate) to which the electrode of the joined object is joined. Electronic components refer to bare chip semiconductors and electronic components such as resistors and capacitors, and substrates refer to substrates that have electrodes that join the electrodes of bare chip shaped electronic components.
[0009]
Cleaning refers to injecting a plasma gas onto the surfaces of the joints of the article to be joined and the article to be joined to clean and activate both surfaces, and in terms of time, from the start to the end of the ejection of the plasma gas. Is what it points to.
[0010]
In addition, the term “joining” refers to bringing the surfaces of the joints of the object and the object to be joined into contact with each other and integrally joining (joining). In time, the joining (joining) is completed immediately before the contact and separated. It refers to immediately after.
[0011]
To perform the cleaning of the joint surface and the joining of the joints substantially simultaneously means (1) joining at the same time as the start of the washing and continuing the washing after the joining is completed, and (2) joining after the start of the washing and joining. (3) joining after the start of cleaning and continuing to complete the washing at the same time as completion of the joining; (4) joining after the start of the washing and continuing the joining after the completion of the washing; (5) ▼ Refers to the start of bonding immediately after cleaning is completed. Cleaning is performed continuously for at least one time during bonding.
[0012]
More specifically, for example, in the case of (3), cleaning is started during the movement of the bonded object, the cleaning is continued during the contact (during the bonding), the bonding is performed while performing the cleaning, and the cleaning is completed simultaneously with the completion of the bonding. It is what makes you.
[0013]
Here, it goes without saying that the workpiece may be moved or both may be moved.
[0014]
Atmospheric pressure or near atmospheric pressure means a pressure of 20 to 110 KPa, more preferably 90 to 105 KPa.
[0015]
And the above-mentioned purpose is achieved by the following means.
(1) In an electronic component mounting apparatus for joining a joined object and an object to be joined,
A plasma generator that generates a plasma gas at or near atmospheric pressure, a plasma supply device that supplies the generated plasma gas to a joint between a bonded object and a bonded object, and injects the plasma gas, and an atmospheric pressure generated by the injected plasma gas. Or a cleaning / joining device that cleans the joint surface of the joint and the article to be joined in the vicinity thereof and joins the joints of the article and the article almost simultaneously. Mounting equipment.
[0016]
(2) In a method of mounting an electronic component for joining a joined object and a joined object,
A method for mounting an electronic component, comprising: a cleaning / joining step of injecting a plasma gas onto a surface of a joint between an object to be joined and an object to be joined and performing cleaning of the surface of the joint and joining of the joints substantially simultaneously.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Note that the description in this column does not limit the technical scope of the claims and the meaning of terms.
[0018]
FIG. 1 is a schematic side view of an electronic component mounting apparatus according to the present invention.
FIG. 2 is a schematic plan view of an electronic component mounting apparatus according to the present invention.
[0019]
FIG. 3 is a conceptual diagram of the plasma generator.
In FIGS. 1 and 2,
The electronic component mounting apparatus 1 includes a plasma generator 4 that generates a plasma gas at or near atmospheric pressure,
An electronic circuit board (hereinafter also referred to as a substrate) made of a bare chip semiconductor or a surface mount type electronic component (hereinafter also referred to as an electronic component) as a bonded object and silicon, glass, glass epoxy, or ceramic, or a polyimide or the like as a bonded object. A) a plasma gas supply device 6 for supplying and injecting the plasma gas to the joint of
A cleaning / bonding device 5 for cleaning the surface of the joint between the electronic component and the substrate at or near atmospheric pressure by the plasma gas to be injected, and for bonding the joint between the electronic component and the substrate at the same place almost simultaneously with the cleaning; ing.
[0020]
Reference numeral 511 denotes a cleaning / joining area, at least an area in contact with a joint between the joined object and the article to be joined, where washing and joining are performed.
[0021]
Hereinafter, the plasma generator 4, the plasma supply device 6, and the cleaning / bonding device 5 will be described in detail.
[0022]
In the following description of the embodiment, for the sake of simplicity of description, an organic substance and an oxide will be mainly described as an example in which argon gas and hydrogen gas are converted into plasma for cleaning and bonding. Cleaning and bonding can be performed by appropriately changing the type of cleaning and the cleaning conditions described below.
[0023]
In FIG. 3, a plasma generator 4 includes a gas cylinder 41 filled with an inert gas (eg, argon gas) necessary for cleaning, a gas cylinder 42 filled with a reducing gas (eg, hydrogen gas), and the like. The plasma generator 40 includes a flow rate adjuster 43 that adjusts a gas flow rate, and a plasma generator 40. The plasma generator 40 includes a high-frequency power supply 44 and a pair of electrodes 45 connected to the high-frequency power supply 44.
[0024]
The pair of electrodes 45 is made of a metal such as stainless steel, and is covered with a dielectric 451 having a relative dielectric constant of 6 to 45 (for example, of sinterable ceramics) made of an inorganic material, and has a distance d between the electrodes of 0.5 to 20 mm. (Preferably 1 ± 0.5 mm).
[0025]
The gas whose flow rate has been adjusted by the flow rate adjusting means 43 is turned into plasma at or near the atmospheric pressure when passing between the electrodes.
[0026]
Here, the gas used does not react with the joint between the electronic component and the substrate, the reducing gas may be hydrogen or carbon monoxide (preferably hydrogen), and the inert gas is argon, helium, neon, krypton. , Xenon, radon or nitrogen (preferably helium, argon, nitrogen).
[0027]
Then, according to the substance to be cleaned, an appropriate gas from the above-mentioned gases is sequentially switched and supplied as a single gas or as a mixed gas by the flow rate adjusting means 43.
[0028]
In order to obtain a high plasma density, the high-frequency power supply 44 preferably supplies a high-frequency high power to some extent. Specifically, it is preferable to apply a high-frequency voltage of 100 kHz to 800 MHz between the electrodes 45, It is even more preferred if there is. Further, the lower limit value of the power supplied between the electrodes is preferably 1 W / cm 2 or more and 50 W / cm 2 or less, preferably 2 W / cm 2 or more, in an area (per cm 2 ) in which discharge occurs. It is even more preferred.
[0029]
For this purpose, a pulse power source capable of changing the ON / OFF duty ratio is used as the high frequency power supply 44, and the applied energy is changed by changing the ON / OFF duty ratio in the range of 0.1 to 10 according to the gas used by the control means. You can change it.
[0030]
The high-frequency voltage applied between the electrodes may be a pulse wave or a sine wave.
[0031]
By the way, when plasma is generated by introducing an inert gas such as argon at or near the atmospheric pressure, the proportion of the inert gas component is reduced by mixing the reducing gas or the like, and plasma is hardly generated.
[0032]
For this reason, the effect of suppressing the plasma reaction is achieved by irradiating the gas passing through the plasma generating unit 452 with energy (for example, electron beam, radiation, ultraviolet light, or laser light) that promotes the reaction by an energy ray generator (not shown). May be eliminated.
[0033]
In this case, an electron beam accelerated at a voltage of 10 V to 90 kV can be suitably used as the electron beam, and a radiation emitted using copper (Cu) or molybdenum (Mo) as a radiation source is used as the radiation. Ultraviolet rays can be used in the range of 1 to 360 nm (especially 150 nm or less), and the laser beam exhibits an irradiation energy of 10 to 900 mJ using, for example, an excimer laser or a Nd: YAG laser as a light source. A glow discharge for generating plasma can be stably continued at a high density.
[0034]
Returning to FIGS. 1 and 2, the plasma supply device 6 includes a gas supply path 61 that guides the plasma gas generated by the plasma generation device 4 to the cleaning / bonding region 511 of the cleaning / bonding device 5, and converts the plasma gas into the electronic component 2 and the substrate 3. And a nozzle 62 for jetting to the surface of the joint with the nozzle 62.
[0035]
It is more preferable that the nozzle 62 is divided into 3 to 10 (preferably 3 to 5) in the horizontal direction of the cleaning / joining region 511 and arranged substantially uniformly, so that the plasma gas is uniformly jetted from the nozzle 62 to the joined object. .
[0036]
In addition, all or a part of the plasma generating device and the plasma supply device are disposed in the transfer positioning device 7, and the nozzle 62 is moved in the direction in which the plasma gas is jetted to the surface of the joint between the electronic component and the substrate. Alternatively, it may be attached to the arm 72.
[0037]
The parts feeders 741 and 742 are conveyors for transporting the electronic component 2 and the substrate 3 to transfer positions 20 and 30 to suction means 73 described later.
[0038]
The cleaning / joining apparatus 5 includes a transfer / positioning unit 7 and a substrate holding unit 52,
The substrate holding unit 52 fixes the substrate 3 transported by the transport / positioning unit 7 at a predetermined position by the substrate positioning unit 522 of the substrate fixing unit 521.
[0039]
The transport / positioning means 7 has a component transport section 512 and a suction means 73 having a suction pad made of an elastic material such as rubber, and the suction means 73 sucks and holds electronic components and substrates by a pressure reducing means (not shown). Can be done.
[0040]
The component transport section 512 lowers the suction means 73 disposed at the tip of the arm 72 described later to the transfer position of the electronic component 2 or the board 3, raises the arm 72 to the turning position (Z direction in the drawing), and A rotating shaft 71 for rotating (rotating in the θ direction in the figure) 73 between the transfer positions 20 and 30 of the electronic components 2 and the substrate 3 of the parts feeders 741 and 742 and the position of the cleaning / joining area 511, and an arm extending from the rotating shaft 71 72.
[0041]
At the tip of the arm 72, a suction means 73, which is a component positioning unit 513, is provided. The suction means 73 sucks the electronic component or the board at the transfer positions 20 and 30 for the electronic component 2 or the board 3, and performs cleaning and cleaning. At the position of the joint region 511, precise alignment of the joint between the electronic component and the substrate is performed based on positional information of the joint between the electronic component and the substrate, which will be described later.
[0042]
Then, the surface of the joint between the substrate and the electronic component is cleaned in the cleaning / joining region 511, and the joint between the electronic component and the substrate is brought into contact with each other when the suction means 73 is lowered in a state where the precision alignment has been performed. At room temperature.
[0043]
Here, a positioning camera (not shown) for measuring the position of the joint between the electronic component 2 and the substrate 3 is provided near the cleaning / joining region 511, and the position of the electronic component and the substrate measured by the positioning camera is measured. The position information of the joint is output to the control unit, and the control unit sucks the electronic component 2 based on the position information of the joint between the electronic component and the board so that the joint of the electronic component matches the joint of the substrate. In this state, the position of the suction means 73 is adjusted in the X, Y, and θ 1 directions, and both are precisely positioned.
[0044]
In order to reinforce the bonding ability of the room temperature bonding, a pressing means (not shown) is provided to press the electronic component 2 sucked by the suction means at the time of abutting on the substrate 3 or, for example, a heat stage is mounted on the substrate fixing portion 521. (Not shown) and heating, or a heating means (not shown) abutted from the upper surface of the electronic component to heat the substrate and the electronic component, or an ultrasonic vibrator (not shown) When the electronic component 2 contacts the substrate 3, the electronic component 2 may be ultrasonically vibrated to assist the bonding.
[0045]
Reinforcement of the joining ability is particularly effective when joining conditions are insufficient, such as when the smoothness of the joining surface is insufficient.
[0046]
While the first embodiment has been described above, the second embodiment will be described below.
[0047]
This is intended to increase the bonding strength by forming a non-conductive film on the bonding part only by adding a part to the above mounting equipment.
[0048]
Specifically, the source gas cylinder 46 shown in FIG. 1 is added to the plasma generator 4 of the mounting apparatus described above, and after the joining is completed, hydrogen gas or hydrogen gas for cleaning by the flow rate adjusting means 43 is changed from non-hydrogen or argon gas. Switching to a mixed gas of a raw material gas for forming a conductive film (for example, a gas containing tetraethoxysilane) and an inert gas, forming a plasma at or near the atmospheric pressure, and injecting the plasma into the bonding portion to perform bonding. A non-conductive film is formed so as to cover the periphery of the completed joint between the electronic component and the board, and it is also possible to increase the joint strength.
[0049]
The source gas varies depending on the type of film to be formed. Examples of the silicon compound include alkylsilanes such as dimethylsilane and tetramethylsilane; organic silicon compounds such as silicon alkoxides such as tetramethoxysilane and tetraethoxysilane; and monosilane and disilane. And silicon halide compounds such as dichlorosilane, trichlorosilane and tetrachlorosilane, and other organosilanes.
[0050]
FIG. 4 is a flowchart of the mounting method, and FIG. 5 is a control block diagram of the mounting apparatus.
Referring to FIGS. 1, 4 (a) and 5, a method of cleaning and joining a joint between an electronic component and a substrate substantially simultaneously using the above-described mounting apparatus according to the first embodiment of the present invention. explain.
[0051]
The following description shows an example that can be realized, and the contents described in the claims are not limited to the description of the configuration of the following steps, the order of the steps, and the like.
[0052]
In FIG. 5, reference numeral 431 denotes a flow control device which adjusts and controls the gas flow rate of each gas cylinder connected to the flow rate adjusting means 43 in accordance with a command from the control means 9.
[0053]
Reference numeral 441 denotes a power supply control device which controls an output voltage value of the high frequency power supply 44, an ON / OFF ratio of a pulse, and the like in accordance with a command from the control means 9.
[0054]
Reference numeral 701 denotes a transport positioning control device which controls the rotating shaft 71 and the suction means 73 of the transport / positioning means 7 according to a command from the control means 9.
[0055]
Reference numeral 521 denotes a substrate holding unit control device, which controls a substrate positioning / releasing operation of the substrate positioning unit 522 according to a command from the control unit 9.
[0056]
Reference numeral 801 denotes a camera control device which causes a positioning camera to photograph the joint between the electronic component and the substrate, and outputs position information of the joint between the electronic component and the substrate to the control device.
[0057]
Reference numeral 91 denotes a storage unit which previously stores in the internal memory data such as flow rate data of each gas with respect to the cleaning object (for example, organic substance and oxide) and cleaning time (plasma gas injection time) for each cleaning object. 9 is output.
[0058]
Reference numeral 9 denotes control means for performing the above control.
Next, in order to make the description easy to understand, for example, a method of performing cleaning and bonding using hydrogen gas as a reducing gas and argon gas as an inert gas will be described with reference to FIG.
[0059]
In step 1, the operator performs a cleaning / joining start operation from the operation panel.
[0060]
Next, steps 2 to 6, which are the transporting steps, will be described.
In step 2, the control means rotates the rotating shaft 71 of the component transfer unit 512 by the start operation, and turns the arm 72 to the transfer position 30 of the board 3 transferred on the board parts feeder 742.
[0061]
Next, the control means lowers the rotating shaft 71 until the suction means 73 at the tip of the arm 72 can suck the substrate 3 on the parts feeder 742, and causes the suction means 73 to suck the substrate 3.
[0062]
In step 3, the control means raises the rotating shaft 71 to the turning position of the arm, and then turns the arm 72 to the cleaning joining area 511.
[0063]
Next, the control unit lowers the rotating shaft 71 to transfer the substrate sucked by the suction unit 73 to the substrate fixing unit 521, and the transferred substrate 3 is positioned and fixed at a predetermined position by the substrate positioning unit 522.
[0064]
In step 5, the component transport unit 512 and the suction unit 73 cause the control unit to transport the electronic component 2 transported on the parts feeder 741 of the electronic component 2 to the cleaning joining area 511 in the same manner as in the substrate suction and transport steps.
[0065]
In step 6, the control means fetches positional information of the joint between the electronic component and the board measured by a positioning camera (not shown) for measuring the position of the joint between the electronic component and the board, and joins the acquired electronic component and the board. Based on the positional information of the part, the displacement of the joint of the electronic component with respect to the joint of the substrate is calculated, and the joint of the electronic component is matched with the joint of the substrate (so that the displacement is zero). ), to perform a precise positioning of both by operating the suction means 73 to the X-Y-θ 1 direction.
[0066]
Next, steps 7 to 9, which are cleaning / joining steps, will be described.
In step 7, the control unit reads the flow rate data of each gas with respect to the cleaning object (for example, organic substance and oxide) stored in the storage unit 91 in advance.
[0067]
Here, for the flow rate data of each gas with respect to the cleaning object, a flow rate experiment necessary for cleaning each gas with respect to each cleaning object is performed by a mounting device model, and the flow rate of each gas at which good cleaning is performed is measured. This is made possible by storing the flow rate data of each gas for each cleaning object.
[0068]
In order to perform good cleaning, the volume% of the reducing gas with respect to the inert gas on the surface of the joint between the electronic component and the substrate in the cleaning / bonding region should be 1 to 10 and the oxygen concentration should be 100 ppm or less. Is desirable.
[0069]
Then, the control means adjusts a valve (not shown) of the flow rate adjustment means 43 based on the flow rate data of each gas to supply hydrogen and argon gas supplied from the gas cylinders 41 and 42 to the plasma generation unit as a predetermined mixed gas. Let it.
[0070]
Here, the supply of the gas may be switched according to the cleaning object, for example, a single gas may be sequentially switched such as first supplying an argon gas and then supplying a hydrogen gas, or a mixture of an argon gas and a hydrogen gas may be supplied. May be supplied in combination.
[0071]
Next, the control unit turns on the high frequency power supply 44 to apply a high frequency voltage between the electrodes 45.
[0072]
Here, a high-frequency power supply having a variable frequency and output voltage may be used, and the control means may set the frequency and the voltage to obtain better cleaning of the cleaning object.
[0073]
By the application of the high-frequency voltage, a glow discharge is generated between the electrodes, and the gas passing through the plasma generating unit is turned into plasma.
[0074]
In step 8, the plasma-mixed gas is injected from the nozzle 62 toward the joint surface between the electronic component and the substrate via the gas supply path 61.
[0075]
Then, the control means starts the lowering of the rotating shaft 71 at the same time as the start of the injection of the plasma-converted gas, and injects the plasma-mixed gas toward the joint surface adsorbed by the adsorption unit 73.
[0076]
As a result, the organic matter on the surface of the joint between the electronic component and the substrate is ashed by the plasma-converted argon gas, the oxide film is reduced by the plasma-converted hydrogen gas, and the surface of the joint between the electronic component and the substrate is activated. The surface is purified.
[0077]
For the gas injection time, a cleaning experiment is performed on the various cleaning objects under predetermined cleaning conditions, and the required cleaning time for the various cleaning objects is stored in the storage unit 91 in advance.
[0078]
The control means may read out the necessary cleaning time according to the cleaning object and change the cleaning time according to this time.
[0079]
Then, the lowering of the electronic component continues while the cleaning is performed, and the bonding portions of the electronic component and the substrate come into contact with each other immediately before the lowering end, so that a strong room-temperature bonding at the atomic level is performed.
[0080]
In other words, gas injection is continued from the start of cleaning to the completion of joining.
In step 9, after the joining is completed, the control means closes a valve (not shown) of the flow rate adjusting means 43 to stop the gas supply and turns off the high frequency power supply.
[0081]
Next, step 10 which is a collection process will be described.
In step 10, the control means raises the rotating shaft 71 and sucks and collects the electronic component and the substrate which have been joined by the suction means 73.
[0082]
Referring to FIGS. 1, 4 (b) and 5, a non-conductive film is formed around a joint between an electronic component and a substrate using the above-described mounting apparatus according to the second embodiment of the present invention. The method for increasing the bonding strength will be described.
[0083]
In FIG. 1, reference numeral 46 denotes a cylinder filled with a source gas for forming a non-conductive film.
[0084]
The steps relating to the cleaning and joining are the same as those in the first embodiment, and a description thereof will be omitted.
In FIG.
In step 1, the substrate control means opens the valve of the flow rate adjustment means 43 to which the gas cylinders 46 and 41 filled with the inert gas and the source gas forming the non-conductive film are opened, and the source gas and the inert gas are opened. Supply to plasma generation means.
[0085]
In this case, the ratio of the inert gas is preferably 90% (preferably 95)% by volume or more in the reactive gas.
[0086]
In step 2, the control means converts the mixed gas of the source gas and the inert gas into plasma in the same manner as in the first embodiment.
[0087]
In step 3, the control means injects a mixed gas of a source gas and an inert gas into a plasma toward the joint between the electronic component and the substrate which have already been joined in the same manner as in the first embodiment, A non-conductive film is formed so as to cover the periphery of the joint between the substrate and the substrate.
[0088]
In step 4, after the film formation is completed, the injection of the plasma gas is stopped, and the electronic component and the substrate on which the film formation has been completed are collected.
[0089]
With the above mounting device and method,
Since cleaning and joining can be simultaneously performed at the same place, productivity can be improved.
[0090]
Since cleaning and joining can be performed at or near atmospheric pressure, decompression equipment such as vacuum pumps and pressure-resistant chambers are not required, and decompression time can be reduced. At the same time, the configuration of production equipment is simplified, and productivity can be increased and costs can be reduced. It becomes.
[0091]
In particular, since cleaning and joining can be performed without the need for high-temperature heating, joining with less residual stress (less stress) due to mismatch of thermal expansion between components due to heating becomes possible, and deterioration and failure due to distortion can occur. It is possible to manufacture a small number of electronic components.
[0092]
In addition, since the periphery of the joint between the electronic component and the substrate is covered with the non-conductive film, it is possible to manufacture an electronic component having high joining strength.
[0093]
The cleaning / joining method of the present invention can be efficiently adapted to an actual mounting process requiring mass production, and the tact time of the entire mounting process can be significantly reduced.
[0094]
【The invention's effect】
According to the present invention, the configuration of the mounting apparatus is simple and small, the cost of the apparatus can be reduced, the productivity can be improved, and the maintenance of the apparatus is easy.
[0095]
In addition, there is no contamination of the electronic component, there is little occurrence of deterioration and failure due to thermal distortion, and it is possible to manufacture an electronic component having a high bonding strength between the electronic component and the substrate. The effect described above can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic side view of an electronic component mounting apparatus according to the present invention.
FIG. 2 is a conceptual plan view of an electronic component mounting apparatus according to the present invention.
FIG. 3 is a conceptual diagram of a plasma generator.
FIG. 4 is a flowchart of a mounting method.
FIG. 5 is a control block diagram of the mounting apparatus.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 mounting device 2 electronic component 3 substrate 4 plasma generating device 5 cleaning / bonding device 6 plasma supply device 7 transfer positioning device 9 control device 40 plasma generating device 43 flow rate adjusting device 73 suction device

Claims (6)

接合物と被接合物を接合する電子部品の実装装置において、大気圧又はその近傍でプラズマガスを発生させるプラズマ発生装置と、発生した前記プラズマガスを接合物と被接合物の接合部に供給して噴射するプラズマ供給装置と、噴射されたプラズマガスにより大気圧又はその近傍で接合物と被接合物の接合部表面を洗浄し略同時に接合物と被接合物の接合部同士を接合する洗浄・接合装置と、を備えるものであることを特徴とする電子部品の実装装置。In an electronic component mounting apparatus for joining a joined object and an object to be joined, a plasma generator for generating a plasma gas at or near atmospheric pressure, and the generated plasma gas is supplied to a joint between the joined object and the object to be joined. And a plasma supply device for spraying and joining the joints of the article and the article to be joined at or near the atmospheric pressure with the ejected plasma gas and joining the joints of the article and the article almost simultaneously. An electronic component mounting device, comprising: a joining device. 前記接合物と被接合物の接合部同士の接合は、常温接合法で行うものであることを特徴とする請求項1に記載の電子部品の実装装置。The electronic component mounting apparatus according to claim 1, wherein the bonding between the bonded parts of the bonded object and the bonded object is performed by a normal temperature bonding method. 接合物と被接合物の供給手段から接合物と被接合物を前記洗浄・接合装置に搬送し、洗浄・接合が完了した前記接合物と被接合物を回収する搬送手段を備えるものであることを特徴とする請求項1又は2に記載の電子部品の実装装置。It is provided with a transport means for transporting the joint and the article to be joined from the supply means of the article and the article to be joined to the cleaning / joining apparatus, and collecting the joined article and the article to be washed and joined. The electronic component mounting apparatus according to claim 1, wherein: 前記接合物はベアチップ半導体または表面実装タイプの電子部品で、前記被接合物は電子回路基板であることを特徴とする請求項1〜3のいずれか1項に記載の電子部品の実装装置。4. The electronic component mounting apparatus according to claim 1, wherein the bonded object is a bare chip semiconductor or a surface mount type electronic component, and the bonded object is an electronic circuit board. 5. 接合物と被接合物を接合する電子部品の実装方法において、接合物と被接合物の接合部表面にプラズマガスを噴射し、接合部表面の洗浄と接合部同士の接合とを略同時に行う洗浄・接合工程を有することを特徴とする電子部品の実装方法。In a method for mounting an electronic component that joins a joint and a workpiece, plasma gas is sprayed onto a surface of the joint between the joint and the workpiece, and cleaning is performed so that the cleaning of the joint surface and the joining of the joints are performed substantially simultaneously. An electronic component mounting method characterized by having a joining step. 接合物と被接合物を洗浄・接合装置に搬送する搬送工程と、接合された接合物と被接合物を回収する回収工程を有することを特徴とする請求項5記載の電子部品の実装方法。6. The electronic component mounting method according to claim 5, further comprising a transporting step of transporting the bonded article and the article to the cleaning / joining apparatus, and a collecting step of collecting the joined article and the article.
JP2003014510A 2003-01-23 2003-01-23 Device and method for mounting electronic component Pending JP2004228346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014510A JP2004228346A (en) 2003-01-23 2003-01-23 Device and method for mounting electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014510A JP2004228346A (en) 2003-01-23 2003-01-23 Device and method for mounting electronic component

Publications (1)

Publication Number Publication Date
JP2004228346A true JP2004228346A (en) 2004-08-12

Family

ID=32902540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014510A Pending JP2004228346A (en) 2003-01-23 2003-01-23 Device and method for mounting electronic component

Country Status (1)

Country Link
JP (1) JP2004228346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148836A2 (en) * 2006-06-22 2007-12-27 Panasonic Corporation Electrode bonding method and part mounting apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148836A2 (en) * 2006-06-22 2007-12-27 Panasonic Corporation Electrode bonding method and part mounting apparatus
WO2007148836A3 (en) * 2006-06-22 2008-04-17 Matsushita Electric Ind Co Ltd Electrode bonding method and part mounting apparatus
DE112007001365T5 (en) 2006-06-22 2009-05-20 Panasonic Corporation, Kadoma-shi Electrode bonding method and partial assembly device
US8449712B2 (en) 2006-06-22 2013-05-28 Panasonic Corporation Electrode bonding method and part mounting apparatus

Similar Documents

Publication Publication Date Title
CN101897012B (en) Bonding apparatus and bonding method
JP4697066B2 (en) Electrode bonding method and component mounting apparatus
CN1703138B (en) Joint unit and joint method
US20080023525A1 (en) Bonding apparatus
JP3206142B2 (en) Wire bonding apparatus and wire bonding method
JP2006339363A (en) Method and apparatus for surface activation
US10399170B2 (en) Die attachment apparatus and method utilizing activated forming gas
JP3582196B2 (en) Surface treatment apparatus using creeping discharge and method therefor
KR20040012951A (en) Method and device for installation
CN1081835C (en) Piezoelectric element and manufacturing method thereof
JP4425190B2 (en) Bonding equipment
JP2002316112A (en) Cleaning method and cleaning apparatus
JP2004228346A (en) Device and method for mounting electronic component
JP4584031B2 (en) Joining apparatus and joining method
JP3931793B2 (en) Resin supply system
JP4575839B2 (en) Joining apparatus and joining method
JP2000117213A (en) Plasma washing method and device
JP4186495B2 (en) Electronic component mounting device
JP2003303854A (en) Chip mounting method and apparatus using it
JP4687613B2 (en) Circuit body mounting method and apparatus on display panel
JP3706414B2 (en) Processing apparatus and processing method using radical reaction
KR100837734B1 (en) Method of bonding solder ball using ultra sonic
JP2008047740A (en) Method of and apparatus for mounting component on substrate
JP2004119664A (en) Method and device for joining
JP2006086311A (en) Component mounting method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A02