JP2006086311A - Component mounting method and apparatus - Google Patents

Component mounting method and apparatus Download PDF

Info

Publication number
JP2006086311A
JP2006086311A JP2004269067A JP2004269067A JP2006086311A JP 2006086311 A JP2006086311 A JP 2006086311A JP 2004269067 A JP2004269067 A JP 2004269067A JP 2004269067 A JP2004269067 A JP 2004269067A JP 2006086311 A JP2006086311 A JP 2006086311A
Authority
JP
Japan
Prior art keywords
substrate
electronic component
protective film
plasma
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004269067A
Other languages
Japanese (ja)
Inventor
Shinji Ishitani
伸治 石谷
Koichi Yoshida
浩一 吉田
Kazuji Azuma
和司 東
Tatsuo Sasaoka
達雄 笹岡
Naoki Suzuki
直樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004269067A priority Critical patent/JP2006086311A/en
Publication of JP2006086311A publication Critical patent/JP2006086311A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component mounting method and an apparatus capable of preventing a substrate and a component which have been cleaned from being contaminated, and capable of mounting the component while maintaining a clean state. <P>SOLUTION: The component mounting method comprises a step (S1) of plasma-cleaning the substrate and electronic component in a vacuum chamber; a step (S2) of forming protective films on the surfaces of the plasma-cleaned substrate and electronic component without opening the inside of a vacuum chamber to the atmosphere; a recleaning step (S3) of irradiating ultraviolet rays (or electric beams or atmosphere plasmas) to the substrate and electronic component, which are formed with the protective films thereon, to remove the protective films; and a step (S4) of mounting the electronic component on the substrate of which protective film has been removed. With this configuration, the protective films prevent contaminants in the atmosphere from depositing on the cleaned surfaces of the substrate and electronic component, and the removal of the protective films immediately before the mounting enables bonding while maintaining each surface of the substrate and electronic component in a clean state. Thus, satisfactory bonding can be achieved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子部品を基板上にフリップチップ実装する部品実装方法および装置に関し、特に実装に先立って行なう電子部品、基板の洗浄の効果を維持できる部品実装方法および装置に関するものである。   The present invention relates to a component mounting method and apparatus for flip-chip mounting electronic components on a substrate, and more particularly to an electronic component performed prior to mounting and a component mounting method and apparatus capable of maintaining the effect of cleaning the substrate.

従来のフリップチップ実装方法では、図4に示すように、ステップS11で基板、電子部品の表面をプラズマ洗浄し、その後のステップS12で実装している。その際のプラズマ洗浄工程では、基板、電子部品をチャンバ内に入れ、ArガスまたはO2ガスなどを導入した雰囲気中にてプラズマを発生させて、基板、電子部品の表面を洗浄している。実装工程では、洗浄した基板、電子部品を大気中に取り出し、実装機に装着して実装しており、清浄化された基板、電子部品を用いることで良好な接合を得ている。   In the conventional flip chip mounting method, as shown in FIG. 4, the surface of the substrate and the electronic component is plasma cleaned in step S11, and then mounted in the subsequent step S12. In the plasma cleaning process at that time, the surface of the substrate or electronic component is cleaned by placing the substrate and electronic component in the chamber and generating plasma in an atmosphere into which Ar gas or O 2 gas is introduced. In the mounting process, the cleaned substrate and electronic components are taken out into the atmosphere and mounted and mounted on a mounting machine, and good bonding is obtained by using the cleaned substrate and electronic components.

しかしこの実装方法では、プラズマ洗浄後の基板、電子部品をチャンバから取り出して実装する間に大気中の汚染物が再吸着し、洗浄による効果が低減されてしまう。この問題を解決するために、洗浄後に保護膜を生成することが考えられる。この種の方法としては、光洗浄後に保護膜を生成する技術があり、たとえば図5に示すように、光洗浄装置21内のサンプルホルダー22にサンプル23を装着して、光源24からの光(紫外線、電子線、またはX線)により洗浄し、洗浄後のサンプル23の表面に仮保護膜用材料ガス25を噴霧して、前記光によって除去可能な保護膜を生成している(例えば、特許文献1参照)。
特開平11−214345号公報
However, in this mounting method, contaminants in the atmosphere are re-adsorbed while the substrate and electronic components after plasma cleaning are taken out from the chamber and mounted, and the effect of cleaning is reduced. In order to solve this problem, it is conceivable to form a protective film after cleaning. As this type of method, there is a technique for generating a protective film after light cleaning. For example, as shown in FIG. 5, a sample 23 is mounted on a sample holder 22 in a light cleaning device 21, and light from a light source 24 ( The protective film is cleaned by ultraviolet rays, electron beams, or X-rays, and the protective film material gas 25 is sprayed on the surface of the sample 23 after the cleaning to generate a protective film that can be removed by the light (for example, patent) Reference 1).
JP 11-214345 A

上記したように、従来の実装方法では、プラズマ洗浄後の基板、電子部品をチャンバから取り出して実装する間に大気中の汚染物が再吸着してしまい、洗浄による効果が低減されるという問題点があった。光洗浄後に保護膜を生成する方法でも、光洗浄の間に人体からの汗の成分(NaCL、KCLなど)のような無機物による汚染が発生するという問題点があった。   As described above, in the conventional mounting method, contaminants in the atmosphere are re-adsorbed while the substrate and electronic components after plasma cleaning are taken out from the chamber and mounted, and the effect of cleaning is reduced. was there. Even in the method of forming the protective film after the light cleaning, there is a problem that contamination by inorganic substances such as sweat components (NaCL, KCL, etc.) from the human body occurs during the light cleaning.

本発明は上記問題を解決するもので、洗浄後の基板および電子部品の汚染を防止し、清浄な状態を維持して実装できる部品実装方法および装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described problems, and an object of the present invention is to provide a component mounting method and apparatus capable of preventing contamination of a substrate and electronic components after cleaning and mounting them while maintaining a clean state.

上記課題を解決するために本発明の部品実装方法は、真空チャンバ内で基板および電子部品をプラズマ洗浄する工程と、前記真空チャンバ内を大気開放することなく、前記プラズマ洗浄された基板および電子部品の表面に保護膜を形成する工程と、前記保護膜が形成された基板および電子部品に紫外線、電子ビームまたは大気プラズマを照射して前記保護膜を除去する工程と、前記保護膜が除去された基板上に電子部品を実装する工程とを行なうことを特徴とする。   In order to solve the above-described problems, a component mounting method according to the present invention includes a step of plasma cleaning a substrate and an electronic component in a vacuum chamber, and the plasma cleaned substrate and electronic component without opening the vacuum chamber to the atmosphere. Forming a protective film on the surface, removing the protective film by irradiating the substrate and electronic components on which the protective film is formed with ultraviolet rays, an electron beam or atmospheric plasma, and removing the protective film And a step of mounting an electronic component on the substrate.

また本発明の部品実装装置は、真空チャンバと、基板と電子部品の少なくとも一方である処理対象物が設置された前記真空チャンバ内に、前記処理対象物の表面を洗浄するエッチングガスのプラズマと前記処理対象物の表面に保護膜を形成する反応性ガスのプラズマとを順次に発生させるプラズマ発生手段とを有したプラズマ処理装置と、前記保護膜を除去可能な紫外線、電子ビームまたは大気プラズマを照射する照射手段を有し、前記保護膜が形成された基板および電子部品を装着し実装する実装機とを備えたことを特徴とする。   The component mounting apparatus of the present invention includes a vacuum chamber, an etching gas plasma for cleaning a surface of the processing object in the vacuum chamber in which the processing object that is at least one of a substrate and an electronic component is installed, and the A plasma processing apparatus having plasma generating means for sequentially generating plasma of a reactive gas that forms a protective film on the surface of the object to be processed and irradiation with ultraviolet rays, electron beams or atmospheric plasma capable of removing the protective film And a mounting machine for mounting and mounting the substrate on which the protective film is formed and the electronic component.

上記した部品実装方法、部品実装装置によれば、プラズマ洗浄後の基板表面、電子部品表面への大気中の汚染物の付着を保護膜によって防止することができ、この保護膜を実装直前に除去することで、各々の表面が清浄な状態での接合が可能である。よって良好な接合が得られる。   According to the component mounting method and the component mounting apparatus described above, adhesion of atmospheric contaminants to the substrate surface and electronic component surface after plasma cleaning can be prevented by the protective film, and this protective film is removed immediately before mounting. By doing so, each surface can be joined in a clean state. Therefore, good bonding can be obtained.

フリップチップ実装機を用いる実装においては、紫外線、電子ビームまたは大気プラズマを、ツールなどの妨害物なく、実装直前まで照射することができ、接合部(電極)をより清浄な状態に維持できる。   In mounting using a flip chip mounting machine, it is possible to irradiate ultraviolet rays, electron beams, or atmospheric plasma until just before mounting without obstructions such as tools, so that the joint (electrode) can be maintained in a cleaner state.

本発明の部品実装方法および装置は、基板および電子部品をプラズマ洗浄し、洗浄後の基板および電子部品の表面に、大気に曝すことなく、保護膜を形成する構成を有しているため、洗浄後の基板表面、電子部品表面への大気中の汚染物の付着を保護膜によって防止することができ、この保護膜を実装直前に除去することで、各々の表面が清浄な状態での接合が可能である。よって良好な接合を得ることができる。   Since the component mounting method and apparatus of the present invention have a configuration in which a substrate and an electronic component are plasma-cleaned and a protective film is formed on the surface of the cleaned substrate and electronic component without being exposed to the atmosphere. The protective film can prevent the adhesion of contaminants in the air to the subsequent substrate surface and electronic component surface. By removing this protective film immediately before mounting, each surface can be bonded in a clean state. Is possible. Therefore, good bonding can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は本発明の一実施形態における部品実装方法の流れを示すフローチャート、図2は同部品実装方法に使用される部品実装装置を構成するプラズマ処理装置の概略構成図、図3は同部品実装装置を構成する実装機の一部拡大図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing a flow of a component mounting method according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a plasma processing apparatus constituting a component mounting apparatus used in the component mounting method, and FIG. It is a partial enlarged view of the mounting machine which comprises an apparatus.

この部品実装方法では、図1に示したように、まず、基板、電子部品をチャンバ内に入れてプラズマ洗浄し(ステップS1)、同じチャンバ内で大気開放することなく、洗浄された基板、電子部品の表面に保護膜を形成する(ステップS2)。   In this component mounting method, as shown in FIG. 1, first, a substrate and electronic components are put in a chamber and plasma cleaned (step S1), and the cleaned substrate and electronic components are released in the same chamber without opening to the atmosphere. A protective film is formed on the surface of the component (step S2).

次いで、基板、電子部品をチャンバから取り出し、実装機に装着し、その状態で再洗浄する(ステップS3)。この場合、大気中の汚染物は保護膜上に付着するだけで、基板、電子部品が汚染されることはないので、再洗浄は、保護膜を除去することを意味する。そして、清浄化された電子部品を基板上に実装する(ステップS4)。このようにして、基板、電子部品を実装直前に再洗浄し、清浄化された状態で実装する結果、良好な接合を得ることができる。   Next, the substrate and electronic components are taken out of the chamber, mounted on the mounting machine, and cleaned again in that state (step S3). In this case, since contaminants in the atmosphere only adhere on the protective film and the substrate and electronic components are not contaminated, re-cleaning means removing the protective film. Then, the cleaned electronic component is mounted on the substrate (step S4). In this way, as a result of re-cleaning the substrate and electronic components immediately before mounting and mounting them in a cleaned state, good bonding can be obtained.

以下、詳細に説明する。
図2に示すプラズマ処理装置において、チャンバ1には、絶縁物2で絶縁された下部電極3と、この下部電極3に対向する開閉自在蓋4とが設けられるとともに、排気ダクト5、ガス供給用のノズル6、7が側部に開口していて、開閉自在蓋4を接地し、下部電極3に高周波電源8を接続し、排気ダクト5、ノズル6、7をそれぞれ、真空ポンプ、ガスタンク等(図示せず)に接続した状態で、チャンバ1内でプラズマを発生可能である。
Details will be described below.
In the plasma processing apparatus shown in FIG. 2, the chamber 1 is provided with a lower electrode 3 insulated by an insulator 2 and an openable / closable cover 4 facing the lower electrode 3, and an exhaust duct 5 and gas supply The nozzles 6 and 7 are open to the side, the openable / closable lid 4 is grounded, the high frequency power supply 8 is connected to the lower electrode 3, and the exhaust duct 5 and the nozzles 6 and 7 are respectively connected to a vacuum pump, a gas tank, etc. Plasma can be generated in the chamber 1 in a state of being connected to an unillustrated).

プラズマ洗浄に際しては、下部電極3上に洗浄対象の基板9、電子部品10を設置し、その後に排気ダクト5を通じて真空引きする。このときのチャンバ1内圧力は望ましくは10Pa以下である。   At the time of plasma cleaning, the substrate 9 and the electronic component 10 to be cleaned are placed on the lower electrode 3 and then evacuated through the exhaust duct 5. The pressure in the chamber 1 at this time is desirably 10 Pa or less.

次に、洗浄ガスとしてのArガスをノズル6からチャンバ1内に流量7sccmにて噴霧し、チャンバ1内圧力10Paを維持しながら、高周波電源8より下部電極3に高周波電力をたとえば出力7mW/mmで供給することにより、チャンバ1内でArのプラズマを発生させ、基板9、電子部品10の電極表面を数nmエッチングする表面洗浄を行う。洗浄終了後に、洗浄ガスの供給を止め、Arガスを排気する。 Next, Ar gas as a cleaning gas is sprayed from the nozzle 6 into the chamber 1 at a flow rate of 7 sccm, and high-frequency power is output from the high-frequency power source 8 to the lower electrode 3 while maintaining the pressure in the chamber 1 at 10 Pa, for example, output 7 mW / mm. 2 , Ar plasma is generated in the chamber 1, and surface cleaning is performed by etching the electrode surfaces of the substrate 9 and the electronic component 10 by several nm. After the cleaning is completed, the supply of the cleaning gas is stopped and the Ar gas is exhausted.

保護膜形成に際しては、チャンバ1を大気開放することなく、保護膜用の反応性ガスとしてのCHFガスをノズル6から流量20sccmにて噴霧し、チャンバ1内圧力80Paを維持しながら、高周波電源8より下部電極3に高周波電力をたとえば出力4mW/mmで供給することにより、チャンバ1内でCHFガスのプラズマを発生させ、先に洗浄された基板9、電子部品10の表面に、数nmの単分子層、もしくは数分子層の炭化水素およびフッ化水素からなる保護膜を形成する。膜形成終了後に、反応性ガスの供給を止め、排気を停止し、大気開放を行う。そして、基板9、電子部品10をチャンバ1から取り出す。 In forming the protective film, CHF 3 gas as a reactive gas for the protective film is sprayed from the nozzle 6 at a flow rate of 20 sccm without opening the chamber 1 to the atmosphere, and the high-frequency power source is maintained while maintaining the internal pressure of the chamber 1 at 80 Pa. By supplying high-frequency power to the lower electrode 3 from 8 at an output of 4 mW / mm 2 , for example, plasma of CHF 3 gas is generated in the chamber 1, and the substrate 9 and the electronic component 10 previously cleaned have several A protective film made of a monomolecular layer of nm or several molecular layers of hydrocarbon and hydrogen fluoride is formed. After the film formation is completed, the supply of reactive gas is stopped, the exhaust is stopped, and the atmosphere is released. Then, the substrate 9 and the electronic component 10 are taken out from the chamber 1.

図3に示す実装機において、11は基板9が設置されるステージであり、12は電子部品10を吸着可能なボンディングツールであって、上下動作の機構としてモータ、シリンダなどを備え、電気、エアーによって制御されるものである。13、14はそれぞれ、基板側光源、電子部品側光源であり、ステージ11上の基板9、ボンディングツール12上の電子部品10に対して実装直前から実装まで紫外線(または電子ビームあるいは大気プラズマ)が照射できるような角度で実装機本体(図示せず)に取り付けられている。   In the mounting machine shown in FIG. 3, 11 is a stage on which a substrate 9 is installed, 12 is a bonding tool capable of adsorbing an electronic component 10, and includes a motor, a cylinder, etc. as a mechanism for vertical movement, It is controlled by. Reference numerals 13 and 14 denote a substrate-side light source and an electronic component-side light source, respectively, and ultraviolet rays (or electron beams or atmospheric plasma) are emitted from just before mounting to mounting on the substrate 9 on the stage 11 and the electronic component 10 on the bonding tool 12. It is attached to the mounting machine body (not shown) at an angle that allows irradiation.

この実装機において、図示したように、基板9をステージ11上に設置し、電子部品10をボンディングツール12に吸着し、互いに位置合わせした後に、基板側光源13、電子部品側光源14のそれぞれより紫外線(または電子ビームあるいは大気プラズマ)を照射するとともに、ボンディングツール12を下降させることにより、基板9、電子部品10の表面の保護膜を除去しつつ、電子部品10を基板9上に実装する。   In this mounting machine, as shown in the drawing, after the substrate 9 is placed on the stage 11 and the electronic component 10 is attracted to the bonding tool 12 and aligned with each other, the substrate side light source 13 and the electronic component side light source 14 respectively. While irradiating ultraviolet rays (or electron beam or atmospheric plasma) and lowering the bonding tool 12, the electronic component 10 is mounted on the substrate 9 while removing the protective film on the surface of the substrate 9 and the electronic component 10.

このときの紫外線による保護膜の除去は、紫外線発生装置としての基板側光源13、電子部品側光源14からの紫外線が保護膜に照射されることで、フォトンエネルギーにより保護膜の化学結合が切断され、この状態の保護膜と紫外線により生成された励起酸素原子が化学反応を起こし、C、H、F、Oを成分とする保護膜はCO、HO、Fなどに分解され除去される。同様に、大気プラズマを用いる場合、大気プラズマ発生装置で発生した大気プラズマにより生成された励起酸素原子がC、H、F、Oを成分とする保護膜と化学反応し、保護膜はCO、HO、Fなどに分解され除去される。電子ビームを用いる場合も、電子ビーム発生装置で発生した電子ビームによって、C、H、F、Oを成分とする保護膜がCO、HO、Fなどに分解され除去される。 At this time, the protective film is removed by ultraviolet rays. The protective film is irradiated with ultraviolet rays from the substrate-side light source 13 and the electronic component-side light source 14 as ultraviolet ray generators, so that the chemical bonds of the protective film are broken by photon energy. The protective film in this state and the excited oxygen atoms generated by the ultraviolet rays cause a chemical reaction, and the protective film containing C, H, F, and O as components is decomposed and removed into CO 2 , H 2 O, F 2, and the like. The Similarly, when atmospheric plasma is used, excited oxygen atoms generated by atmospheric plasma generated by the atmospheric plasma generator chemically react with a protective film containing C, H, F, and O as components, and the protective film is CO 2 , It is decomposed and removed into H 2 O, F 2 and the like. Even in the case of using an electron beam, the protective film containing C, H, F, and O as components is removed by being decomposed into CO 2 , H 2 O, F 2, and the like by the electron beam generated by the electron beam generator.

このようにして、基板側発生源13、電子部品側発生源14による紫外線、電子ビームまたは大気プラズマを用いて電子部品10、基板9の保護膜を除去する工程と、その電子部品10を基板9上に実装する工程とを同時に行うことにより、保護膜が除去された基板9、電子部品10の表面を大気に曝すことなく、したがって基板電極9aと電子部品電極10aとを清浄な状態で、接合させることができる。よって、従来の工法と比較して良好な接合状態を得ることができる。   In this way, the step of removing the protective film from the electronic component 10 and the substrate 9 using ultraviolet rays, electron beams or atmospheric plasma generated by the substrate-side generation source 13 and the electronic component-side generation source 14, and the electronic component 10 to the substrate 9 By simultaneously performing the process of mounting on the substrate 9 and the surface of the electronic component 10 from which the protective film has been removed, the substrate electrode 9a and the electronic component electrode 10a are bonded in a clean state without being exposed to the atmosphere. Can be made. Therefore, a favorable joining state can be obtained as compared with the conventional method.

なお、上記した実施形態では、基板9、電子部品10のプラズマ洗浄に高周波出力として7mW/mmを使用したが、プラズマ処理工程では、基板9、電子部品10の電極表面を数nmエッチングすることに意味があり、出力に関しては特に限定はない。 In the above-described embodiment, 7 mW / mm 2 is used as a high-frequency output for plasma cleaning of the substrate 9 and the electronic component 10. However, in the plasma processing step, the electrode surfaces of the substrate 9 and the electronic component 10 are etched by several nm. There is no particular limitation on the output.

洗浄ガスとしてArガスを使用したが、その他Nガス、Krガスなどの不活性ガスを用いての物理洗浄でも同様の洗浄効果を得ることが可能である。ガスの流量は特に限定されない。予想される汚染物の種類に応じて適当なガス種を選択することで、より効果的な洗浄を行うことが可能であり、たとえば洗浄ガスにOガスを含ませることにより、物理洗浄だけでなく化学洗浄によって汚染物を除去できる。チャンバ1内圧力は10Paを使用したが、0.1Paから100Paの圧力下で同様の洗浄効果を得ることが可能である。 Although Ar gas is used as the cleaning gas, the same cleaning effect can be obtained by physical cleaning using an inert gas such as N 2 gas or Kr gas. The gas flow rate is not particularly limited. It is possible to perform more effective cleaning by selecting an appropriate gas type according to the expected type of contaminant. For example, by including O 2 gas in the cleaning gas, only physical cleaning can be performed. And contaminants can be removed by chemical cleaning. Although the pressure inside the chamber 1 is 10 Pa, it is possible to obtain the same cleaning effect under a pressure of 0.1 Pa to 100 Pa.

保護膜用の反応ガスとしてCHFガスを使用したが、フッ化炭素または炭化水素を主鎖に含み、基板9や電子部品10の最上層に化学的または物理的に吸着する分子(保護膜のこと;構造は問わない)を形成する反応ガスであれば特に限定なく使用することができ、同様の効果を得ることが可能である。 Although CHF 3 gas was used as a reaction gas for the protective film, molecules containing fluorocarbon or hydrocarbon in the main chain and chemically or physically adsorbed on the uppermost layer of the substrate 9 or the electronic component 10 (of the protective film) Any structure can be used without particular limitation, and the same effect can be obtained.

保護膜形成時の高周波プラズマ出力は4mW/mmとしたが、7mW/mmから12mW/mmの範囲が好ましく、12mW/mmを超えた出力ではエッチング領域に入り、保護膜を生成することが困難である。 RF plasma power when the protective film formation was set to 4 mW / mm 2, it is preferably in the range of 12 mW / mm 2 from 7 mW / mm 2, enters the etched region in the output in excess of 12 mW / mm 2, to generate a protective film Is difficult.

保護膜生成時のチャンバ内圧力は80Paとしたが、50Paから120Paの範囲内の圧力であれば同様の保護膜を生成することができる。反応ガスの流量は特に限定されない。   Although the pressure in the chamber at the time of generating the protective film is 80 Pa, a similar protective film can be generated if the pressure is in the range of 50 Pa to 120 Pa. The flow rate of the reaction gas is not particularly limited.

保護膜の厚さは、再洗浄工程で容易に除去することを考慮すると数nm程度の膜厚が理想であり、単分子層以上の膜厚であれば保護膜としての働きを得ることができる。保護膜除去工程を考慮すると、1μ以下の膜厚であれば利用可能な厚さである。   The thickness of the protective film is ideal when it is easily removed in the re-cleaning step, and a film thickness of about several nanometers is ideal. If the film thickness is equal to or larger than the monomolecular layer, it can function as a protective film. . In consideration of the protective film removal step, the thickness can be used as long as the film thickness is 1 μm or less.

本発明の一実施形態における部品実装方法の流れを示すフローチャートThe flowchart which shows the flow of the component mounting method in one Embodiment of this invention. 図1に示した部品実装方法を実施する部品実装装置を構成するプラズマ処理装置の概略断面図1 is a schematic cross-sectional view of a plasma processing apparatus constituting a component mounting apparatus that performs the component mounting method shown in FIG. 図1に示した部品実装方法を実施する部品実装装置を構成する実装機の一部拡大図FIG. 1 is a partially enlarged view of a mounting machine constituting a component mounting apparatus that performs the component mounting method shown in FIG. 従来の部品実装方法の流れを示すフローチャートA flowchart showing the flow of a conventional component mounting method 部品実装に適用可能な従来の光洗浄装置の概略断面図Schematic cross-sectional view of a conventional optical cleaning device applicable to component mounting

符号の説明Explanation of symbols

1 チャンバ
3 下部電極
4 開閉自在蓋
5 排気ダクト
6、7 ガス供給用ノズル
8 高周波電源
9 基板
10 電子部品
11 ステージ
12 ボンディングツール
13 基板側光源
14 電子部品側光源
DESCRIPTION OF SYMBOLS 1 Chamber 3 Lower electrode 4 Openable / closable lid 5 Exhaust duct 6, 7 Gas supply nozzle 8 High frequency power supply 9 Substrate 10 Electronic component 11 Stage 12 Bonding tool 13 Substrate side light source 14 Electronic component side light source

Claims (3)

真空チャンバ内で基板および電子部品をプラズマ洗浄する工程と、
前記真空チャンバ内を大気開放することなく、前記プラズマ洗浄された基板および電子部品の表面に保護膜を形成する工程と、
前記保護膜が形成された基板および電子部品に紫外線、電子ビームまたは大気プラズマを照射して前記保護膜を除去する工程と、
前記保護膜が除去された基板上に電子部品を実装する工程と
を行なう部品実装方法。
Plasma cleaning the substrate and electronic components in a vacuum chamber;
Forming a protective film on the surface of the plasma-cleaned substrate and electronic component without opening the vacuum chamber to the atmosphere;
Irradiating the substrate on which the protective film is formed and the electronic component with ultraviolet rays, an electron beam or atmospheric plasma, and removing the protective film;
And a step of mounting an electronic component on the substrate from which the protective film has been removed.
真空チャンバと、基板と電子部品の少なくとも一方である処理対象物が設置された前記真空チャンバ内に、前記処理対象物の表面を洗浄するエッチングガスのプラズマと前記処理対象物の表面に保護膜を形成する反応性ガスのプラズマとを順次に発生させるプラズマ発生手段とを有したプラズマ処理装置と、
前記保護膜を除去可能な紫外線、電子ビームまたは大気プラズマを照射する照射手段を有し、前記保護膜が形成された基板および電子部品を装着し実装する実装機と
を備えた部品実装装置。
A plasma of an etching gas for cleaning the surface of the processing object and a protective film on the surface of the processing object in the vacuum chamber in which the processing object that is at least one of the substrate and the electronic component is installed. A plasma processing apparatus having plasma generating means for sequentially generating plasma of reactive gas to be formed;
A component mounting apparatus comprising: an irradiating unit configured to irradiate ultraviolet rays, an electron beam, or atmospheric plasma capable of removing the protective film; and a mounting device for mounting and mounting the substrate on which the protective film is formed and the electronic component.
実装機がフリップチップ実装機である請求項2記載の部品実装装置。   The component mounting apparatus according to claim 2, wherein the mounting machine is a flip chip mounting machine.
JP2004269067A 2004-09-16 2004-09-16 Component mounting method and apparatus Pending JP2006086311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269067A JP2006086311A (en) 2004-09-16 2004-09-16 Component mounting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004269067A JP2006086311A (en) 2004-09-16 2004-09-16 Component mounting method and apparatus

Publications (1)

Publication Number Publication Date
JP2006086311A true JP2006086311A (en) 2006-03-30

Family

ID=36164565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269067A Pending JP2006086311A (en) 2004-09-16 2004-09-16 Component mounting method and apparatus

Country Status (1)

Country Link
JP (1) JP2006086311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004722A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Electrode connecting method and part mounting device
JP2009141211A (en) * 2007-12-07 2009-06-25 Shinkawa Ltd Bonding device and bonding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004722A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Electrode connecting method and part mounting device
JP4697066B2 (en) * 2006-06-22 2011-06-08 パナソニック株式会社 Electrode bonding method and component mounting apparatus
US8449712B2 (en) 2006-06-22 2013-05-28 Panasonic Corporation Electrode bonding method and part mounting apparatus
JP2009141211A (en) * 2007-12-07 2009-06-25 Shinkawa Ltd Bonding device and bonding method

Similar Documents

Publication Publication Date Title
JP5776397B2 (en) Cleaning method, processing apparatus and storage medium
JP2701709B2 (en) Method and apparatus for directly joining two materials
US7921859B2 (en) Method and apparatus for an in-situ ultraviolet cleaning tool
JP5989642B2 (en) Method of deconducting silicon-on-insulator wafers in situ
KR101167355B1 (en) Substrate treatment method and substrate treatment apparatus
US20090258159A1 (en) Novel treatment for mask surface chemical reduction
JP3901156B2 (en) Mask forming method and removing method, and semiconductor device, electric circuit, display module, color filter, and light emitting element manufactured by the method
TWI501312B (en) A method for electron beam induced etching of layers contaminated with gallium
US6494217B2 (en) Laser cleaning process for semiconductor material and the like
JP2003171757A (en) Dry type surface cleaning apparatus using laser
US6627846B1 (en) Laser-driven cleaning using reactive gases
KR100870997B1 (en) Method for recovering damage of insulating film with low dielectric constant, semiconductor manufacturing apparatus, and storage medium
JPWO2007063987A1 (en) Processing and cleaning method and apparatus using ultrapure water plasma bubbles
JP4889562B2 (en) Joining apparatus and joining method
JP2006520088A (en) Method and apparatus for pretreatment of substrates to be bonded
JP2006086311A (en) Component mounting method and apparatus
WO2007091726A1 (en) Method for removing surface layer of silicon wafer
JP2008000661A (en) Cleaning device and method of ultraviolet ray irradiation window
KR100593441B1 (en) Method for cleaning reaction chamber using substrate on which catalyst layer is formed
JP5372966B2 (en) Method for producing photomask and apparatus for carrying out the method
KR20090005837A (en) Cleaning device using a laser
JPS6191930A (en) Cleaning method of semiconductor substrate
JP2002252212A (en) Surface processing method, and method and apparatus for manufacturing photovoltaic power generator
JPH0610361U (en) Film forming equipment
JPH09142999A (en) Laser annealing treatment device