JP2004227802A - Lithium manganese base composite oxide particle for nonaqueous lithium secondary battery , its manufacturing method, and nonaqueous lithium secondary battery - Google Patents

Lithium manganese base composite oxide particle for nonaqueous lithium secondary battery , its manufacturing method, and nonaqueous lithium secondary battery Download PDF

Info

Publication number
JP2004227802A
JP2004227802A JP2003011031A JP2003011031A JP2004227802A JP 2004227802 A JP2004227802 A JP 2004227802A JP 2003011031 A JP2003011031 A JP 2003011031A JP 2003011031 A JP2003011031 A JP 2003011031A JP 2004227802 A JP2004227802 A JP 2004227802A
Authority
JP
Japan
Prior art keywords
lithium
hours
particles
manganese
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003011031A
Other languages
Japanese (ja)
Inventor
Masumi Terauchi
真澄 寺内
Toshihiko Shiotani
俊彦 塩谷
Teruyuki Takahashi
輝行 高橋
Yutaka Umetsu
豊 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP2003011031A priority Critical patent/JP2004227802A/en
Publication of JP2004227802A publication Critical patent/JP2004227802A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide lithium manganese base composite oxide particles each having a uniform particle size for constituting a nonaqueous lithium secondary battery with a high initial capacity and high capacity-retention, and to provide its manufacturing method and the nonaqueous lithium secondary battery. <P>SOLUTION: The lithium manganese composite particles each having a mean particle size of 0.1-100 μm, a tap density of 1.6 g/cm<SP>3</SP>or more, and a specific surface area of 0.1-2 m<SP>2</SP>/g are prepared in such a way that under the existence of a dispersant selected from polycarboxylic acids or polycarboxylates having a neutralization degree of 0-80%, a lithium compound and a manganese compound are crushed and mixed in a wet process to prepare slurry, particles each having a mean secondary particle size of 0.1-100 μm are prepared from the slurry by a spray drying granulator, the particles are dried at 80-150 °C for 0.5 to 2 hours, baked at 350-600 °C for 1-15 hours, and furthermore baked at 600-1,000 °C for 1-70 hours in an oxygen current or an air current. and the nonaqueous lithium secondary battery is manufactured with the lithium manganese composite particles. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はリチウムマンガン系複酸化物粒子、その製造法及び二次電池に関し、より詳しくは、非水リチウム二次電池の正極材料として用いることにより初期容量及び容量保持率が改良され、室温及び高温における充放電サイクル特性に優れた非水リチウム二次電池を構成することができる均一で粒子径の揃ったリチウムマンガン系複酸化物粒子、その製造法及びそのようなリチウムマンガン系複酸化物粒子を正極材料として用いている非水リチウム二次電池に関する。
【0002】
【従来の技術】
非水リチウム二次電池の正極材料としては、これまでにチタンやモリブデンの硫化物や酸化物、並びにバナジウムやリンの酸化物等が提案されているが、これらは電池としての保存性が悪く、しかも高価であるため、未だ実用化されるまでには至っていない。
【0003】
一方、非水一次電池の正極活物質としては二酸化マンガンが既に実用化されており、非水一次電池においては二酸化マンガンが正極活物質として代表的に用いられている。
二酸化マンガンは、資源的にも豊富で安価であり、更に化学的に安定であるため電池としての保存性に優れている。しかしながら、二酸化マンガンは二次電池の可逆性に難があるため、非水系二次電池の正極活物質としては不適当であり、それで改質された種々のマンガン酸化物が提案されている。例えば、二酸化マンガンとリチウム化合物との混合物を熱処理して得られ、結晶構造中にリチウムを含有しているマンガン酸化物が提案されている(例えば、特許文献1、特許文献2、特許文献3参照。)。
【0004】
これらのリチウム含有マンガン酸化物は製造する際の熱処理温度の相違に起因して生成するリチウム含有マンガン酸化物の組成、結晶構造が異なり、例えば、熱処理温度が250〜300℃である場合には、X繰回折図において、2θ=22°、31.7°、37°、42°及び55°付近にピークを有する結晶構造のマンガン酸化物となり、300〜430℃である場合には、LiMnOを含有したマンガン酸化物となり、そして600〜900℃である場合には、スピネル型構造を有するマンガン酸化物となる。更に、900℃以上の高温で焼成すると高結晶性とはなるが、LiMnOが生成し、充放電サイクル特性を低下させることが分かっている。
【0005】
また、これらの改質法においては二酸化マンガンとリチウム化合物とを固相同志で反応させているため、二酸化マンガン粒子の内部までは改質が及ばず、従って高電流密度での充放電サイクルでは劣化が早いという欠点があった。
そこで、リチウム化合物を溶解した水溶液中に二酸化マンガンを浸漬し、蒸発乾固した後に熱処理して、二酸化マンガン粒子の細孔内部にまで改質反応を進める方法が提案されている(例えば、特許文献4参照。)。
【0006】
また、電池の作製に用いる正極活物質の粒子径が電池の初期容量及び容量保持率などに大きく影響を及ぼすことも知られている(例えば、特許文献5参照。)。
しかしながら、これまでに提案されているリチウム含有二酸化マンガンはその電気化学活性が二次電池用途に対しては不十分であり、それでそのようなリチウム含有二酸化マンガンを正極に用いて構成した非水リチウム二次電池では、初期容量及び容量保持率が不十分であり、充放電サイクル特性が不十分であった。
【0007】
二酸化マンガン又はマンガン塩とリチウム化合物との混合物を熱処理して得たリチウムとマンガンとの複酸化物をリチウム二次電池の正極材料として用いることが提案されている(例えば、特許文献6、特許文献7、特許文献8参照。)。しかしながら、何れの技術で得られたリチウムマンガン複酸化物も、高い初期容量及び長期の容量保持率を有する二次電池を提供することはできない。
【0008】
更に、水酸化リチウムと、二酸化マンガン及び炭酸マンガンから選ばれるマンガン化合物とを、水と、水酸基含有水溶性溶剤及び/又は分散剤とからなる混合溶媒で湿式混合し、得られたスラリーを乾燥した後、解砕し、350〜500℃で一次焼成し、45℃以下に冷却し、再度解砕した後、600〜800℃で二次焼成して得られたリチウムマンガン複酸化物をリチウム二次電池の正極として用いることが提案されている(例えば、特許文献9参照。)。しかしながら、そのようにして得たリチウムマンガン複酸化物を正極として用いたリチウム二次電池の長期の容量保持率は必ずしも十分なものではない。
【0009】
【特許文献1】
特開昭63−114064号公報
【特許文献2】
特開昭63−187569号公報
【特許文献3】
特開平1−235158号公報
【特許文献4】
特開平2−183963号公報
【特許文献5】
特開2000−58041号公報
【特許文献6】
特開平6−203834号公報
【特許文献7】
特開平7−245106号公報
【特許文献8】
特開平7−307155号公報
【特許文献9】
特開平10−289709号公報
【0010】
【発明が解決しようとする課題】
従って、本発明は、非水リチウム二次電池の正極材料として用いることにより初期容量及び容量保持率が改良され、室温及び高温における充放電サイクル特性に優れた非水リチウム二次電池を構成することができる均一で粒子径の揃ったリチウムマンガン複酸化物又は変性リチウムマンガン複酸化物(本明細書においては、この両者を包含してリチウムマンガン系複酸化物と記載する)の粒子、その製造法及びそのようなリチウムマンガン系複酸化物粒子を正極材料として用いており、優れた初期容量及び容量保持率を有し、特に高温での充放電サイクル特性に優れている非水リチウム二次電池を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために鋭意検討を行った結果、リチウム化合物とマンガン化合物とを湿式粉砕混合する際に、中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤を用いて低粘度の均一なスラリーを調製し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を特定の温度条件下で焼成することにより上記の目的が達成されることを見出し、本発明に到達した。
【0012】
即ち、本発明のリチウムマンガン複酸化物粒子は、中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤の存在下で、リチウム化合物とマンガン化合物とを湿式粉砕混合して低粘度の均一なスラリーを調製し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を80〜150℃で30分〜2時間加熱し、温度を350〜600℃に上昇させて1〜15時間焼成し、更に温度を600〜1000℃に上昇させて酸素気流中又は空気気流中で1〜70時間焼成することにより得られ、平均二次粒子径が0.1〜100μmであり、タップ密度が1.6g/cm以上であり、且つ比表面積が0.1〜2m/gであるリチウムマンガン複酸化物粒子であって、正極材料として用いることにより初期容量及び容量保持率の改良された非水リチウム二次電池を構成することができるリチウムマンガン複酸化物粒子である。
【0013】
本発明の変性リチウムマンガン複酸化物粒子は、中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤の存在下で、B、Mg、Al、V、Cr、Co、Ni、Zn、Ga及びPの各々の水溶性化合物からなる群より選ばれる少なくとも1種とリチウム化合物とマンガン化合物とを湿式粉砕混合して低粘度の均一なスラリーを調製し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を80〜150℃で30分〜2時間加熱し、温度を350〜600℃に上昇させて1〜15時間焼成し、更に温度を600〜1000℃に上昇させて酸素気流中又は空気気流中で1〜70時間焼成することにより得られ、平均二次粒子径が0.1〜100μmであり、タップ密度が1.6g/cm以上であり、且つ比表面積が0.1〜2m/gである変性リチウムマンガン複酸化物粒子であって、正極材料として用いることにより初期容量及び容量保持率の改良された非水リチウム二次電池を構成することができる変性リチウムマンガン複酸化物粒子である。
【0014】
本発明の非水リチウム二次電池用のリチウムマンガン複酸化物粒子の製造方法は、中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤の存在下で、リチウム化合物とマンガン化合物とを湿式粉砕混合して低粘度の均一なスラリーを調製し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を80〜150℃で30分〜2時間加熱し、温度を350〜600℃に上昇させて1〜15時間焼成し、更に温度を600〜1000℃に上昇させて酸素気流中又は空気気流中で1〜70時間焼成して、平均二次粒子径が0.1〜100μmであり、タップ密度が1.6g/cm以上であり、且つ比表面積が0.1〜2m/gであるリチウムマンガン複酸化物粒子を得ることを特徴とする。
【0015】
本発明の非水リチウム二次電池用の変性リチウムマンガン複酸化物粒子の製造方法は、中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤の存在下で、B、Mg、Al、V、Cr、Co、Ni、Zn、Ga及びPの各々の水溶性化合物からなる群より選ばれる少なくとも1種とリチウム化合物とマンガン化合物とを湿式粉砕混合して低粘度の均一なスラリーを調製し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を80〜150℃で30分〜2時間加熱し、温度を350〜600℃に上昇させて1〜15時間焼成し、更に温度を600〜1000℃に上昇させて酸素気流中又は空気気流中で1〜70時間焼成して、平均二次粒子径が0.1〜100μmであり、タップ密度が1.6g/cm以上であり、且つ比表面積が0.1〜2m/gである変性リチウムマンガン複酸化物粒子を得ることを特徴とする。
【0016】
本発明の非水リチウム二次電池は、正極材料として上記のリチウムマンガン複酸化物粒子又は変性リチウムマンガン複酸化物粒子を用い、負極材料として金属リチウム、リチウム合金、又はリチウムの吸蔵・放出が可能な炭素材料若しくは金属酸化物を用いて構成されていることを特徴とする。
【0017】
【発明の実施の形態】
以下に、本発明について更に詳細に説明する。
本発明で出発原料として用いることのできるリチウム化合物としてLiOH、LiF、LiCO、LiNO、LiSO等を挙げることができるが、これらに限定されるものではない。
【0018】
本発明で出発原料として用いることのできるマンガン化合物として、二酸化マンガン、炭酸マンガン等を挙げることができ、これらの二酸化マンガン、炭酸マンガンとして種々のものを使用することができる。例えば、二酸化マンガンとして、マンガン鉱石を400℃以上の温度で焼成して得られるMn、Mn等の低級マンガン酸化物を硫酸や硝酸、又はこれらの混合物等の鉱酸により不均化反応させることによって得られる化学合成二酸化マンガンを使用することができる。また、電解によって得られる電解二酸化マンガンを使用することもできる。
【0019】
本発明で出発原料として用いることのできるB、Mg、Al、V、Cr、Co、Ni、Zn、Ga及びPの水溶性化合物として、B、Mg、Al、V、Cr、Co、Ni、Zn、Ga及びPの各々の硫酸塩、硝酸塩、酢酸塩、蓚酸塩、炭酸塩、ハロゲン化物、水酸化物、酸化物等のうちで水溶性のものを挙げることができる。例えば、硫酸マグネシウム、硝酸マグネシウム、酢酸マグネシウム、塩化マグネシウム、硫酸アルミニウム、硝酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、ヨウ化アルミニウム、アルミン酸ナトリウム等を用いることができる。
【0020】
本発明においてはリチウム化合物とマンガン化合物とを湿式で粉砕混合してスラリーを形成するか、又はB、Mg、Al、V、Cr、Co、Ni、Zn、Ga及びPの各々の水溶性化合物からなる群より選ばれる少なくとも1種とリチウム化合物とマンガン化合物とを湿式粉砕混合してスラリーを形成するが、この際に分散剤を存在させて低粘度の均一なスラリーを形成させる必要がある。リチウム化合物を含有するスラリーのpHが高いので、分散剤として完全中和のポリカルボン酸塩を用いるとポリカルボン酸塩の分解が起こり、それで低粘度の均一なスラリーを調製するためには一定量以上の比較的多量の分散剤の添加が必要となる。しかしながら、中和度が80%以下、好ましくは70%以下のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤を添加すると、高いpHでもポリカルボン酸、ポリカルボン酸塩の分解が低下するので、比較的少量の添加で低粘度の均一なスラリーを調製することができる。
【0021】
本発明で用いることができる中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤として、置換されていない遊離ポリカルボン酸、中和度が80%以下でアンモニア、水酸化ナトリウム、水酸化リチウム等で中和されたポリカルボン酸塩を挙げることができ、それらは1種単独で使用することも、2種以上を併用することも可能である。
【0022】
上記の分散剤の存在下での湿式粉砕混合においては、リチウム化合物がスラリーを構成する水に溶解した状態になり、この溶解したリチウム化合物がマンガン化合物中に高度に分散した状態になり、低粘度で均一なスラリーとなる。このような状態にすることにより、後述する工程を経て得られるリチウムマンガン系複酸化物粒子は組成的に非常に均一となり、従って、正極材料として用いることにより初期容量及び容量保持率の改良された非水リチウム二次電池を構成することができる。
【0023】
湿式粉砕混合においては、例えば、水酸化リチウム(LiOH・HO)とマンガン化合物とを、通常、Li:Mnのモル比が0.7:2〜1.3:2、好ましくは、1:2〜1.1:2となるように配合し、水と上記の分散剤とを加えてスラリー状とし、これをポットミル、アトライター等の湿式粉砕混合機を用いて湿式粉砕混合する。この湿式粉砕混合機は次工程での噴霧乾燥造粒装置による造粒が可能な二次粒子径まで粉砕できる機種であればいかなるものでもよい。
【0024】
水の添加量は、水酸化リチウムとマンガン化合物との合計量を基準にして、好ましくは10〜40質量%、より好ましくは15〜25質量%に相当する量とする。水の添加量が10質量%未満の場合には、得られる含水混合物において水酸化リチウムの溶解量が十分ではなく、かつ粘度が高くて分散が困難となる傾向がある。一方、水の添加量が40質量%を超える場合には、得られる含水混合物の乾燥に比較的長時間を要し(乾燥速度が遅くなり)、また乾燥中に生じる固液分離が大きくなり、従ってリチウムの均一分散が大きく阻害される傾向がある。
【0025】
上記の分散剤の添加量は、水100質量部あたり、好ましくは0.01〜5質量部、より好ましくは0.05〜2質量部に相当する量とする。分散剤の添加量が水100質量部あたり0.01質量部未満である場合には分散剤の添加効果が不十分であり、一方、分散剤の添加量が水100質量部あたり5質量部を超える場合には、過分散による再凝集を促進したり、焼成時の分散剤分解物が多くなり、反応を阻害するため、好ましくない。
【0026】
また、B、Mg、Al、V、Cr、Co、Ni、Zn、Ga及びPの各々の水溶性化合物からなる群より選ばれる少なくとも1種とリチウム化合物とマンガン化合物とを用いて本発明の製造方法を実施した場合には、LiMnのマンガンイオンのサイトの一部がB、Mg、Al、V、Cr、Co、Ni、Zn、Ga又はPのイオンで置換された変性リチウムマンガン複酸化物粒子が得られる。このことは当業界において公知であり、上記の各々の水溶性化合物は公知の量で添加される。また、このような変性リチウムマンガン複酸化物粒子を非水リチウム二次電池の正極材料として用いた場合には充放電サイクル特性が更に改善されることが多い。
【0027】
このようにして得られたスラリーから噴霧乾燥造粒装置を用いて造粒する。この噴霧乾燥造粒工程を採用することにより、最終製品であるリチウムマンガン系複酸化物粒子について二次粒子径のコントロールができ、リチウムマンガン系複酸化物粒子におけるマンガン酸リチウムの組成が非常に均一となり、従って、非水リチウム二次電池の正極材料として用いた場合には放電容量の高い二次電池となる。これに対して、噴霧乾燥造粒工程を採用しない場合には、最終製品であるリチウムマンガン系複酸化物粒子について二次粒子径のコントロールができず、不揃いの二次粒子となり、リチウムマンガン系複酸化物粒子におけるマンガン酸リチウムの組成が部分的に不均一となり、非水リチウム二次電池の正極材料として用いた場合には放電容量の低下した二次電池となる。
【0028】
噴霧乾燥造粒工程においては、通常、平均二次粒子径が0.1〜100μm、好ましくは1〜30μmの粒子を形成する。平均二次粒子径が100μmを越える場合には、非水リチウム二次電池の正極材料として用いて電池を製造する際に作業性が悪くなる。逆に、平均二次粒子径が0.1μm未満の場合には、非常に微粒子であるので、非水リチウム二次電池の正極材料として用いて電池にした後で、Mnが電解液中へ溶出する懸念がある。更に、リチウムマンガン系複酸化物粒子の製造において作業者が徴粉を吸入する危険性にさらされることになる。
【0029】
このようにして得られた粒状物を80〜150℃で30分〜2時間加熱して乾燥させ、引き続いて温度を350〜600℃、好ましくは400〜550℃に上昇させてその温度で空気気流中または酸素気流中で1〜15時間焼成する。水酸化リチウムの融点は445℃であるので、特に450〜500℃の温度で焼成することにより、リチウムイオンがマンガン化合物の細孔内部に浸透し、均一なマンガン酸リチウムを得ることができる。
【0030】
引き続いて、温度を650〜1000℃、好ましくは750〜950℃に上昇させてその温度で酸素気流中又は空気気流中で1〜70時間焼成する。この焼成により、組成の均一化及び未反応物の反応促進を効率良く達成することができ、反応は完結するので、得られるリチウムマンガン系複酸化物粒子を正極材料として用いることにより初期容量及び容量保持率の改良された非水リチウム二次電池を構成することができる。この焼成を650℃未満で実施すると、反応が不十分のため、リチウムマンガン系複酸化物の結晶性は不十分となるだけでなく、未反応物の残留や、副生成物が生じ、正極活物質として十分な特性を達成することができない。
【0031】
このようにして得られたリチウムマンガン系複酸化物粒子は、平均二次粒子径が0.1〜100μmであり、タップ密度が1.6g/cm以上であり、且つ比表面積が0.1〜2m/gである粒子であって、正極材料として用いることにより初期容量及び容量保持率の改良された非水リチウム二次電池を構成することができるリチウムマンガン系複酸化物粒子である。
【0032】
本発明の非水リチウム二次電池は、正極材料として上記のリチウムマンガン系複酸化物を用い、負極材料として従来より使用されている金属リチウム又はリチウム合金を用いるか、又はリチウムの吸蔵・放出が可能な炭素材料若しくは金属酸化物を用いて構成される。無論、織布、硝子繊維、多孔性合成樹脂膜等のセパレーターを用いるが、その材質については特には限定されない。例えば、ポリプロピレン、ポリエチレン系の多孔膜は薄膜でかつ大面積化でき、また膜強度や膜抵抗の面で適当である。
【0033】
本発明の非水リチウム二次電池で用いる非水電解液の溶媒は、通常用いられている物で良く、例えばカーボネート類、塩素化炭化水素、エーテル類、ケトン類、ニトリル類等を用いることが出来る。高誘電率溶媒であるエチレンカーボネート、プロピレンカーボネート、γーブチロラクトン等から少なくとも1種類を選択し、低粘度溶媒であるジエチルカーボネート、ジメチルカーボネート、エステル類等から少なくとも1種類を選択し、その混合液を用いることが好ましい。
【0034】
支持塩としてはLiClO、LiI、LiPF、LiAlCl、LiBF、CFSOLi等の少なくとも1種類を用いる。電池を使用する環境、電池用途への最適化を考慮して電解液、支持塩は適宜選定・調整すればよいが、0.8〜1.5MのLiPF、LiBF、LiClOを支持塩として用い、EC+DEC、PC+DMC、PC+EMCのうちの少なくとも1種類を溶媒として用いることが望ましい。
【0035】
電池の構造としては角形、ペーパー型、積層型、円筒型、コイン型など様々な形状を採用することが出来る。また、その他の構成部品としては集電帯、絶縁板等があるが、これらは特に限定されるものではなく、上記の形状に応じて適宜選定すればよい。
【0036】
【実施例】
以下に、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらによって限定されることはない。
実施例1
水酸化リチウム(LiOH・HO)と電解二酸化マンガンとを、Li:Mnのモル比が1.1:2となるように配合し、その配合物の合計量の20質量%に相当する量の脱イオン水と分散剤として該脱イオン水の量の0.1質量%に相当する量の未中和ポリカルボン酸とを添加してスラリーを形成した。このスラリーをポットミル中で湿式粉砕混合した。次いで、噴霧乾燥造粒装置によりその熱風入口温度200℃、出口温度100℃に設定して造粒を行った。得られた造粒粉を100メッシュの篩にかけ、粗粒子を除去して平均二次粒子径が10μmの造粒粉を得た。この造粒粉を100℃で1時間加熱して乾燥させ、引き続いて温度を500℃に上昇させてその温度で酸素気流中で12時間焼成した。引き続いて、温度を900℃に上昇させてその温度で酸素気流中で48時間焼成した。
【0037】
得られた焼成物について実施したX繰回折及び化学分析の結果から、その組成はLiMnであるマンガン酸リチウムであることが確認できた。また、得られたマンガン酸リチウム粒子の平均二次粒子径、比表面積及びタップ密度は第1表に示す通りであった。
【0038】
正極活物質としてこの焼成物82質量部を用い、更に、アセチレンブラック10質量部を用い、バインダーとしてポリ弗化ビニリデン8質量部を予めN−メチルー2−ピロリドン58質量部に溶解したものを用い、これらを十分に混合してペーストを得た。
【0039】
このペーストをアルミニウム綱に塗布し、圧着し、乾燥させることによって正極板を作製した。対極には、正極と同じ大きさの金属リチウム板を使用し、正極電位測定には金属リチウム基準電極を用いた。
電解液として1mol/dmの濃度でLiPFを溶解したエチレンカーボネートとジエチルカーボネートとの1:1の混合溶媒を用いることによって試験電池を作製した。
【0040】
上記のようにして作製した試験電池を電流密度0.5mA/cmの定電流で4.3Vまで充電した後、3.0Vまで放電する充放電サイクルを繰り返すことによって放電特性を評価した。その際、1充放電サイクル目の放電容量を初期容量(mAh/g)とし、初期容量に対する10充放電サイクル目及び50充放電サイクル目の放電容量の割合をそれぞれ10サイクル目保持率(%)及び50サイクル目保持率(%)とした。それらの結果は第1表に示す通りであった。
【0041】
実施例2
分散剤として脱イオン水の量の0.1質量%に相当する量の10%アンモニウム中和のポリカルボン酸を用いた以外は実施例1と同様にしてリチウムマンガン複酸化物粒子を製造し、実施例1と同様にして試験電池を作製した。リチウムマンガン複酸化物粒子の平均二次粒子径、比表面積及びタップ密度、並びに実施例1と同様に測定した試験電池の放電容量及び保持率は第1表に示す通りであった。
【0042】
実施例3
分散剤として脱イオン水の量の0.1質量%に相当する量の50%アンモニウム中和のポリカルボン酸を用いた以外は実施例1と同様にしてリチウムマンガン複酸化物粒子を製造し、実施例1と同様にして試験電池を作製した。リチウムマンガン複酸化物粒子の平均二次粒子径、比表面積及びタップ密度、並びに実施例1と同様に測定した試験電池の放電容量及び保持率は第1表に示す通りであった。
【0043】
実施例4
分散剤として脱イオン水の量の0.1質量%に相当する量の70%アンモニウム中和のポリカルボン酸を用いた以外は実施例1と同様にしてリチウムマンガン複酸化物粒子を製造し、実施例1と同様にして試験電池を作製した。リチウムマンガン複酸化物粒子の平均二次粒子径、比表面積及びタップ密度、並びに実施例1と同様に測定した試験電池の放電容量及び保持率は第1表に示す通りであった。
【0044】
比較例1
分散剤として脱イオン水の量の0.1質量%に相当する量の100%アンモニウム中和のポリカルボン酸を用いた以外は実施例1と同様にしてリチウムマンガン複酸化物粒子を製造し、実施例1と同様にして試験電池を作製した。リチウムマンガン複酸化物粒子の平均二次粒子径、比表面積及びタップ密度、並びに実施例1と同様に測定した試験電池の放電容量及び保持率は第1表に示す通りであった。
【0045】
得られた焼成物粒子の平均二次粒子径、比表面積及びタップ密度は第1表に示す通りであった。その焼成物粒子を用いて実施例1と同様にして試験電池を作製し、実施例1と同様に測定した試験電池の放電容量及び保持率は第1表に示す通りであった。
【0046】
比較例2
水酸化リチウム(LiOH・HO)と電解二酸化マンガンとを、LiとMnとのモル比が1.1:2となるように配合し、その配合物の合計量の20質量%に相当する量の脱イオン水を加えてスラリーを調製した。このスラリーをポットミル中で湿式粉砕混合した。次いで、噴霧乾燥造粒装置によりその熱風入口温度200℃、出口温度100℃に設定して造粒を行った。得られた造粒粉を#100の篩にかけ、粗粒子を除去して平均二次粒子径が10μmの造粒粉を得た。この造粒粉を酸素気流中で900℃で48時間焼成した。
【0047】
得られた焼成物粒子の平均二次粒子径、比表面積及びタップ密度は第1表に示す通りであった。その焼成物粒子を用いて実施例1と同様にして試験電池を作製し、実施例1と同様に測定した試験電池の放電容量及び保持率は第1表に示す通りであった。
【0048】
【表1】

Figure 2004227802
【0049】
第1表のデータからも明らかなように、本発明の製造方法である実施例1〜3で得られた電池については、所定の充放電条件下で、高い初期容量及び容量保持率が得られた。一方、正極活物質を生成するに際し、完全中和した分散剤を使用した比較例1、分散剤を使用しなかった比較例2で得られた電池については、初期容量及び容量保持率が低く、サイクル特性が悪かった。
【0050】
【発明の効果】
本発明の製造方法によって得られる本発明のリチウムマンガン系複酸化物は、非水リチウム二次電池の正極材料として用いることにより初期容量及び容量保持率が改良され、室温及び高温における充放電サイクル特性に優れた非水リチウム二次電池を構成することができる均一で粒子径の揃ったリチウムマンガン複酸化物又は変性リチウムマンガン複酸化物である。また、そのようなリチウムマンガン系複酸化物を正極材料として用いている本発明の非水リチウム二次電池は優れた初期容量及び容量保持率を有し、特に高温での充放電サイクル特性に優れている。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to lithium manganese-based composite oxide particles, a method for producing the same, and a secondary battery. Lithium manganese-based composite oxide particles having uniform and uniform particle diameters capable of constituting a non-aqueous lithium secondary battery having excellent charge-discharge cycle characteristics in, a method for producing the same, and such lithium manganese-based composite oxide particles The present invention relates to a non-aqueous lithium secondary battery used as a positive electrode material.
[0002]
[Prior art]
As positive electrode materials for nonaqueous lithium secondary batteries, sulfides and oxides of titanium and molybdenum, and oxides of vanadium and phosphorus have been proposed so far, but these have poor storage stability as batteries, Moreover, since it is expensive, it has not yet been put to practical use.
[0003]
On the other hand, manganese dioxide has already been put into practical use as a positive electrode active material of a nonaqueous primary battery, and manganese dioxide is typically used as a positive electrode active material in a nonaqueous primary battery.
Manganese dioxide is abundant and inexpensive in terms of resources, and is also chemically stable and thus has excellent storage stability as a battery. However, manganese dioxide is not suitable as a positive electrode active material for non-aqueous secondary batteries due to the difficulty in reversibility of secondary batteries, and various manganese oxides modified therewith have been proposed. For example, manganese oxides obtained by heat-treating a mixture of manganese dioxide and a lithium compound and containing lithium in the crystal structure have been proposed (see, for example, Patent Documents 1, 2, and 3). .).
[0004]
These lithium-containing manganese oxides have different compositions and crystal structures of the lithium-containing manganese oxides generated due to the difference in the heat treatment temperature during production. For example, when the heat treatment temperature is 250 to 300 ° C., In the X-ray diffraction pattern, a manganese oxide having a crystal structure having peaks around 2θ = 22 °, 31.7 °, 37 °, 42 °, and 55 ° is obtained. When the temperature is 300 to 430 ° C., Li 2 MnO 3 and a manganese oxide having a spinel structure when the temperature is 600 to 900 ° C. Further, it has been found that firing at a high temperature of 900 ° C. or higher results in high crystallinity, but LiMnO 2 is generated and the charge / discharge cycle characteristics are reduced.
[0005]
In these reforming methods, manganese dioxide and a lithium compound are reacted with each other in a solid phase, so that the modification does not reach the inside of the manganese dioxide particles, and thus deteriorates in a charge / discharge cycle at a high current density. Had the disadvantage of being fast.
Therefore, a method has been proposed in which manganese dioxide is immersed in an aqueous solution in which a lithium compound is dissolved, evaporated to dryness, and then heat-treated to advance the reforming reaction to the inside of the pores of the manganese dioxide particles (for example, Patent Documents). 4).
[0006]
It is also known that the particle size of the positive electrode active material used for producing a battery greatly affects the initial capacity and the capacity retention of the battery (for example, see Patent Document 5).
However, the lithium-containing manganese dioxide that has been proposed so far has insufficient electrochemical activity for secondary battery applications, and therefore, non-aqueous lithium composed of such a lithium-containing manganese dioxide as a positive electrode In the secondary battery, the initial capacity and the capacity retention were insufficient, and the charge / discharge cycle characteristics were insufficient.
[0007]
It has been proposed to use a composite oxide of lithium and manganese obtained by heat-treating a mixture of manganese dioxide or a manganese salt and a lithium compound as a positive electrode material of a lithium secondary battery (for example, Patent Document 6, Patent Document 6). 7, see Patent Document 8.). However, the lithium manganese double oxide obtained by any of the techniques cannot provide a secondary battery having high initial capacity and long-term capacity retention.
[0008]
Further, lithium hydroxide and a manganese compound selected from manganese dioxide and manganese carbonate were wet-mixed with a mixed solvent of water and a hydroxyl group-containing water-soluble solvent and / or a dispersant, and the obtained slurry was dried. Thereafter, it is crushed, fired first at 350 to 500 ° C., cooled to 45 ° C. or less, crushed again, and fired again at 600 to 800 ° C. It has been proposed to use it as a positive electrode of a battery (for example, see Patent Document 9). However, the long-term capacity retention of a lithium secondary battery using the thus obtained lithium manganese double oxide as a positive electrode is not always sufficient.
[0009]
[Patent Document 1]
JP-A-63-114064 [Patent Document 2]
JP-A-63-187569 [Patent Document 3]
JP-A-1-235158 [Patent Document 4]
Japanese Patent Application Laid-Open No. Hei 2-183963 [Patent Document 5]
JP 2000-58041 A [Patent Document 6]
JP-A-6-203834 [Patent Document 7]
JP-A-7-245106 [Patent Document 8]
JP-A-7-307155 [Patent Document 9]
JP-A-10-289709
[Problems to be solved by the invention]
Therefore, the present invention provides a non-aqueous lithium secondary battery having improved initial capacity and capacity retention by using it as a positive electrode material of a non-aqueous lithium secondary battery, and having excellent charge-discharge cycle characteristics at room temperature and high temperature. Lithium manganese double oxide or modified lithium manganese double oxide (in this specification, both are described as lithium manganese double oxide) having uniform and uniform particle diameter, and a method for producing the same And a non-aqueous lithium secondary battery that uses such lithium manganese-based double oxide particles as a cathode material, has an excellent initial capacity and capacity retention, and is particularly excellent in charge-discharge cycle characteristics at high temperatures. It is intended to provide.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object. As a result, when a lithium compound and a manganese compound are wet-pulverized and mixed, a polycarboxylic acid and a polycarboxylic acid having a neutralization degree of 0 to 80% are used. A low-viscosity uniform slurry is prepared using a dispersant selected from the group consisting of acid salts, and particles having an average secondary particle diameter of 0.1 to 100 μm are obtained from the obtained slurry using a spray-drying granulator. It has been found that the above-mentioned object is achieved by forming and sintering the particles under specific temperature conditions, and arrived at the present invention.
[0012]
That is, the lithium manganese compound oxide particles of the present invention are prepared by mixing a lithium compound and a manganese compound in the presence of a dispersant selected from the group consisting of polycarboxylic acids and polycarboxylates having a degree of neutralization of 0 to 80%. A uniform slurry having a low viscosity is prepared by wet pulverization and mixing, and particles having an average secondary particle diameter of 0.1 to 100 μm are formed from the obtained slurry by using a spray-drying granulation apparatus. Heat at 150 ° C. for 30 minutes to 2 hours, raise the temperature to 350 to 600 ° C., bake for 1 to 15 hours, further raise the temperature to 600 to 1000 ° C., and place in the oxygen stream or air stream for 1 to 70 hours. Lithium having a mean secondary particle diameter of 0.1 to 100 μm, a tap density of 1.6 g / cm 3 or more, and a specific surface area of 0.1 to 2 m 2 / g, obtained by calcining for an hour. Manganese double oxide Lithium-manganese double oxide particles that can form a non-aqueous lithium secondary battery having improved initial capacity and capacity retention by being used as a positive electrode material.
[0013]
The modified lithium manganese composite oxide particles of the present invention are prepared by mixing B, Mg, Al, V, and B in the presence of a dispersant selected from the group consisting of polycarboxylic acids and polycarboxylates having a degree of neutralization of 0 to 80%. Cr, Co, Ni, Zn, Ga, and at least one selected from the group consisting of water-soluble compounds of each, a lithium compound and a manganese compound are wet-pulverized and mixed to prepare a low-viscosity uniform slurry. Particles having an average secondary particle diameter of 0.1 to 100 μm are formed from the obtained slurry using a spray drying granulator, and the particles are heated at 80 to 150 ° C. for 30 minutes to 2 hours, and the temperature is increased to 350 to 600 ° C. C. and baked for 1 to 15 hours, and further raised to a temperature of 600 to 1000 ° C. and baked for 1 to 70 hours in an oxygen stream or an air stream. 1 ~ 100μm A modified lithium manganese double oxide particle having a tap density of 1.6 g / cm 3 or more and a specific surface area of 0.1 to 2 m 2 / g, and having an initial capacity and a capacity when used as a positive electrode material. Modified lithium manganese double oxide particles that can constitute a non-aqueous lithium secondary battery with improved retention.
[0014]
The method for producing lithium manganese double oxide particles for a non-aqueous lithium secondary battery according to the present invention is characterized in that the degree of neutralization is from 0 to 80% in the presence of a dispersant selected from the group consisting of polycarboxylic acids and polycarboxylates. In, a lithium compound and a manganese compound are wet-pulverized and mixed to prepare a low-viscosity uniform slurry, and particles having an average secondary particle diameter of 0.1 to 100 μm are obtained from the obtained slurry by using a spray-drying granulator. And heating the particles at 80 to 150 ° C. for 30 minutes to 2 hours, raising the temperature to 350 to 600 ° C., firing for 1 to 15 hours, and further raising the temperature to 600 to 1000 ° C. Baking for 1 to 70 hours in a medium or air stream, the average secondary particle diameter is 0.1 to 100 μm, the tap density is 1.6 g / cm 3 or more, and the specific surface area is 0.1 to 2 m. 2 / g lithium man It is characterized in that gun double oxide particles are obtained.
[0015]
The method for producing modified lithium manganese double oxide particles for a non-aqueous lithium secondary battery according to the present invention is characterized in that a neutralization degree of 0 to 80% is selected from the group consisting of polycarboxylic acids and polycarboxylates. Below, at least one selected from the group consisting of water-soluble compounds of B, Mg, Al, V, Cr, Co, Ni, Zn, Ga and P, a lithium compound and a manganese compound are wet-pulverized and mixed. A uniform slurry having a low viscosity is prepared, and particles having an average secondary particle diameter of 0.1 to 100 μm are formed from the obtained slurry by using a spray-drying granulator, and the particles are formed at 80 to 150 ° C. for 30 minutes. Heating for 2 to 2 hours, raising the temperature to 350 to 600 ° C and firing for 1 to 15 hours, further raising the temperature to 600 to 1000 ° C and firing for 1 to 70 hours in an oxygen stream or an air stream, Average secondary particle size A .1~100Myuemu, tap density is at 1.6 g / cm 3 or more, and specific surface area and obtaining a modified lithium manganese composite oxide particles is 0.1~2m 2 / g.
[0016]
The non-aqueous lithium secondary battery of the present invention uses the above-described lithium manganese double oxide particles or modified lithium manganese double oxide particles as a positive electrode material, and can absorb and release metallic lithium, a lithium alloy, or lithium as a negative electrode material. It is characterized by using a carbon material or a metal oxide.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
Examples of lithium compounds that can be used as a starting material in the present invention include, but are not limited to, LiOH, LiF, Li 2 CO 3 , LiNO 3 , and Li 2 SO 4 .
[0018]
Manganese compounds, manganese carbonate, and the like can be given as manganese compounds that can be used as starting materials in the present invention, and various manganese dioxides and manganese carbonates can be used. For example, as manganese dioxide, lower manganese oxides such as Mn 2 O 3 and Mn 3 O 4 obtained by calcining a manganese ore at a temperature of 400 ° C. or more cannot be impaired by a mineral acid such as sulfuric acid, nitric acid, or a mixture thereof. Chemically synthesized manganese dioxide obtained by a leveling reaction can be used. Also, electrolytic manganese dioxide obtained by electrolysis can be used.
[0019]
As water-soluble compounds of B, Mg, Al, V, Cr, Co, Ni, Zn, Ga and P which can be used as starting materials in the present invention, B, Mg, Al, V, Cr, Co, Ni, Zn , Ga and P, water-soluble ones among sulfates, nitrates, acetates, oxalates, carbonates, halides, hydroxides, oxides and the like. For example, magnesium sulfate, magnesium nitrate, magnesium acetate, magnesium chloride, aluminum sulfate, aluminum nitrate, basic aluminum acetate, aluminum chloride, aluminum iodide, sodium aluminate and the like can be used.
[0020]
In the present invention, a lithium compound and a manganese compound are wet-pulverized and mixed to form a slurry, or from a water-soluble compound of each of B, Mg, Al, V, Cr, Co, Ni, Zn, Ga and P. At least one selected from the group consisting of a lithium compound and a manganese compound is wet-pulverized and mixed to form a slurry. At this time, it is necessary to form a low-viscosity uniform slurry in the presence of a dispersant. Since the pH of the slurry containing the lithium compound is high, when a completely neutralized polycarboxylate is used as a dispersant, decomposition of the polycarboxylate occurs, and therefore a certain amount is required to prepare a low-viscosity uniform slurry. It is necessary to add a relatively large amount of the above dispersant. However, when a dispersing agent selected from the group consisting of polycarboxylic acids and polycarboxylates having a degree of neutralization of 80% or less, preferably 70% or less, the decomposition of polycarboxylic acids and polycarboxylates is increased even at a high pH. As the amount decreases, a uniform slurry having a low viscosity can be prepared with a relatively small amount of addition.
[0021]
As a dispersant selected from the group consisting of polycarboxylic acids and polycarboxylates having a degree of neutralization of 0 to 80% that can be used in the present invention, unsubstituted free polycarboxylic acids, and a degree of neutralization of 80% or less And polycarboxylic acid salts neutralized with ammonia, sodium hydroxide, lithium hydroxide or the like. These can be used alone or in combination of two or more.
[0022]
In the wet milling and mixing in the presence of the above dispersant, the lithium compound is in a state of being dissolved in the water constituting the slurry, and the dissolved lithium compound is in a state of being highly dispersed in the manganese compound, and has a low viscosity. To form a uniform slurry. By adopting such a state, the lithium manganese-based double oxide particles obtained through the steps described below are extremely uniform in composition, and therefore, the initial capacity and the capacity retention are improved by using as a positive electrode material. A non-aqueous lithium secondary battery can be configured.
[0023]
In the wet pulverization mixing, for example, lithium hydroxide (LiOH.H 2 O) and a manganese compound are usually mixed at a molar ratio of Li: Mn of 0.7: 2 to 1.3: 2, preferably 1: 2. 2 to 1.1: 2, and water and the above dispersant are added to form a slurry, which is wet-pulverized and mixed using a wet-pulverizer such as a pot mill or an attritor. This wet pulverizer / mixer may be of any type as long as it can be pulverized to a secondary particle size that can be granulated by a spray drying granulator in the next step.
[0024]
The amount of water added is preferably 10 to 40% by mass, more preferably 15 to 25% by mass, based on the total amount of lithium hydroxide and the manganese compound. If the amount of water added is less than 10% by mass, the resulting aqueous mixture tends to have an insufficient amount of lithium hydroxide to dissolve and has a high viscosity, making dispersion difficult. On the other hand, when the addition amount of water exceeds 40% by mass, it takes a relatively long time to dry the obtained water-containing mixture (the drying speed becomes slow), and solid-liquid separation that occurs during drying becomes large, Therefore, the uniform dispersion of lithium tends to be greatly hindered.
[0025]
The amount of the dispersant added is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 2 parts by mass, per 100 parts by mass of water. When the amount of the dispersant is less than 0.01 part by mass per 100 parts by mass of water, the effect of adding the dispersant is insufficient, while the amount of the dispersant is 5 parts by mass per 100 parts by mass of water. If the amount exceeds the above range, reagglomeration due to overdispersion is promoted, and a dispersant decomposed product at the time of baking increases, which is not preferable because the reaction is inhibited.
[0026]
Further, the production of the present invention using at least one selected from the group consisting of water-soluble compounds of B, Mg, Al, V, Cr, Co, Ni, Zn, Ga and P, a lithium compound and a manganese compound. When the method is carried out, a modified lithium manganese complex in which a part of the manganese ion site of LiMn 2 O 4 is substituted with B, Mg, Al, V, Cr, Co, Ni, Zn, Ga or P ions. Oxide particles are obtained. This is known in the art, and each of the above water-soluble compounds is added in known amounts. When such modified lithium manganese double oxide particles are used as a positive electrode material of a nonaqueous lithium secondary battery, the charge / discharge cycle characteristics are often further improved.
[0027]
The slurry thus obtained is granulated using a spray drying granulator. By employing this spray-drying granulation process, the secondary particle size of the final product, lithium manganese-based composite oxide particles, can be controlled, and the composition of lithium manganate in the lithium-manganese-based composite oxide particles is very uniform. Therefore, when used as a positive electrode material of a non-aqueous lithium secondary battery, the secondary battery has a high discharge capacity. On the other hand, if the spray-drying granulation step is not adopted, the secondary particle size of the lithium manganese composite oxide particles as the final product cannot be controlled, resulting in irregular secondary particles and lithium manganese composite oxide particles. The composition of lithium manganate in the oxide particles becomes partially nonuniform, and when used as a positive electrode material of a nonaqueous lithium secondary battery, a secondary battery having a reduced discharge capacity is obtained.
[0028]
In the spray drying granulation step, particles having an average secondary particle diameter of usually 0.1 to 100 μm, preferably 1 to 30 μm are formed. When the average secondary particle diameter exceeds 100 μm, workability is deteriorated when a battery is manufactured using the positive electrode material of a nonaqueous lithium secondary battery. Conversely, when the average secondary particle size is less than 0.1 μm, since the particles are very fine particles, Mn elutes into the electrolyte after being used as a positive electrode material of a non-aqueous lithium secondary battery to form a battery. There is a concern. Furthermore, in the production of the lithium manganese-based composite oxide particles, the worker is exposed to the danger of inhaling the dust.
[0029]
The granules thus obtained are dried by heating at 80 to 150 ° C. for 30 minutes to 2 hours, followed by raising the temperature to 350 to 600 ° C., preferably 400 to 550 ° C. Bake for 1 to 15 hours in a medium or oxygen stream. Since the melting point of lithium hydroxide is 445 ° C., by firing at a temperature of particularly 450 to 500 ° C., lithium ions penetrate into the pores of the manganese compound and uniform lithium manganate can be obtained.
[0030]
Subsequently, the temperature is raised to 650 to 1000 ° C., preferably 750 to 950 ° C., and firing is performed at that temperature in an oxygen stream or an air stream for 1 to 70 hours. By this calcination, uniformization of the composition and promotion of the reaction of unreacted substances can be efficiently achieved, and the reaction is completed. Therefore, by using the obtained lithium manganese-based double oxide particles as a positive electrode material, the initial capacity and capacity can be improved. A non-aqueous lithium secondary battery having an improved retention can be formed. If this calcination is carried out at a temperature lower than 650 ° C., not only the reaction is insufficient, so that the crystallinity of the lithium manganese-based composite oxide becomes insufficient, but also unreacted substances remain and by-products are generated, and the positive electrode Insufficient properties can be achieved as a substance.
[0031]
The lithium manganese-based composite oxide particles thus obtained have an average secondary particle diameter of 0.1 to 100 μm, a tap density of 1.6 g / cm 3 or more, and a specific surface area of 0.1. a particle is to 2 m 2 / g, the initial capacity and the lithium-manganese-based composite oxide particles which may constitute an improved non-aqueous rechargeable lithium battery having a capacity retention by the use as a positive electrode material.
[0032]
The non-aqueous lithium secondary battery of the present invention uses the above-mentioned lithium manganese-based double oxide as a positive electrode material, and uses metal lithium or a lithium alloy conventionally used as a negative electrode material, or has a function of absorbing and releasing lithium. It is configured using a possible carbon material or metal oxide. Needless to say, a separator such as a woven fabric, a glass fiber, or a porous synthetic resin film is used, but the material is not particularly limited. For example, a polypropylene or polyethylene porous film can be formed into a thin film and can have a large area, and is suitable in terms of film strength and film resistance.
[0033]
The solvent of the nonaqueous electrolyte used in the nonaqueous lithium secondary battery of the present invention may be a commonly used solvent, for example, carbonates, chlorinated hydrocarbons, ethers, ketones, nitriles and the like. I can do it. High dielectric constant solvent ethylene carbonate, propylene carbonate, at least one selected from γ-butyrolactone, etc., low-viscosity solvent diethyl carbonate, dimethyl carbonate, at least one selected from esters, etc. Preferably, it is used.
[0034]
As the supporting salt, at least one of LiClO 4 , LiI, LiPF 6 , LiAlCl 4 , LiBF 4 , CF 3 SO 3 Li and the like is used. The electrolytic solution and the supporting salt may be appropriately selected and adjusted in consideration of the environment in which the battery is used and the optimization for the battery application, but 0.8 to 1.5 M of LiPF 6 , LiBF 4 , and LiClO 4 are used as the supporting salt. And at least one of EC + DEC, PC + DMC and PC + EMC is desirably used as a solvent.
[0035]
As the structure of the battery, various shapes such as a square shape, a paper type, a laminated type, a cylindrical type, and a coin type can be adopted. Other components include a current collector band, an insulating plate, and the like, but these are not particularly limited, and may be appropriately selected according to the shape described above.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
Example 1
Lithium hydroxide (LiOH.H 2 O) and electrolytic manganese dioxide are blended so that the molar ratio of Li: Mn is 1.1: 2, and an amount corresponding to 20% by mass of the total amount of the blend. Of deionized water and an unneutralized polycarboxylic acid in an amount corresponding to 0.1% by mass of the deionized water as a dispersant were added to form a slurry. This slurry was wet-pulverized and mixed in a pot mill. Next, granulation was performed by setting the hot air inlet temperature to 200 ° C. and the outlet temperature to 100 ° C. using a spray drying granulator. The obtained granulated powder was sieved through a 100-mesh sieve to remove coarse particles to obtain a granulated powder having an average secondary particle diameter of 10 μm. The granulated powder was dried by heating at 100 ° C. for 1 hour, and subsequently, the temperature was increased to 500 ° C. and calcined at that temperature in an oxygen stream for 12 hours. Subsequently, the temperature was increased to 900 ° C. and calcination was performed at that temperature for 48 hours in an oxygen stream.
[0037]
From the results of X-ray diffraction and chemical analysis performed on the obtained fired product, it was confirmed that the composition was lithium manganate, which was LiMn 2 O 4 . The average secondary particle diameter, specific surface area and tap density of the obtained lithium manganate particles were as shown in Table 1.
[0038]
Using 82 parts by mass of this calcined material as a positive electrode active material, further, using 10 parts by mass of acetylene black, using 8 parts by mass of polyvinylidene fluoride dissolved in 58 parts by mass of N-methyl-2-pyrrolidone in advance as a binder, These were sufficiently mixed to obtain a paste.
[0039]
This paste was applied to an aluminum rope, pressed and dried to produce a positive electrode plate. As a counter electrode, a metal lithium plate having the same size as the positive electrode was used, and a metal lithium reference electrode was used for positive electrode potential measurement.
A test battery was prepared by using a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate in which LiPF 6 was dissolved at a concentration of 1 mol / dm 3 as an electrolytic solution.
[0040]
The test battery prepared as described above was charged at a constant current of 0.5 mA / cm 2 at a current density of 4.3 V and then repeatedly discharged and charged to 3.0 V to evaluate the discharge characteristics. At this time, the discharge capacity at the first charge / discharge cycle is defined as the initial capacity (mAh / g), and the ratio of the discharge capacity at the 10th charge / discharge cycle and the 50th charge / discharge cycle to the initial capacity is the retention rate (%) at the 10th cycle. And the 50th cycle retention (%). The results were as shown in Table 1.
[0041]
Example 2
Lithium-manganese double oxide particles were produced in the same manner as in Example 1, except that 10% ammonium-neutralized polycarboxylic acid was used in an amount corresponding to 0.1% by mass of the amount of deionized water as a dispersant. A test battery was produced in the same manner as in Example 1. The average secondary particle diameter, specific surface area and tap density of the lithium manganese double oxide particles, and the discharge capacity and retention of the test battery measured in the same manner as in Example 1 were as shown in Table 1.
[0042]
Example 3
Lithium manganese double oxide particles were produced in the same manner as in Example 1 except that a 50% ammonium-neutralized polycarboxylic acid was used in an amount equivalent to 0.1% by mass of the amount of deionized water as a dispersant, A test battery was produced in the same manner as in Example 1. The average secondary particle diameter, specific surface area and tap density of the lithium manganese double oxide particles, and the discharge capacity and retention of the test battery measured in the same manner as in Example 1 were as shown in Table 1.
[0043]
Example 4
Lithium-manganese double oxide particles were produced in the same manner as in Example 1, except that 70% ammonium-neutralized polycarboxylic acid was used in an amount equivalent to 0.1% by mass of the amount of deionized water as a dispersant. A test battery was produced in the same manner as in Example 1. The average secondary particle diameter, specific surface area and tap density of the lithium manganese double oxide particles, and the discharge capacity and retention of the test battery measured in the same manner as in Example 1 were as shown in Table 1.
[0044]
Comparative Example 1
Lithium manganese double oxide particles were produced in the same manner as in Example 1, except that 100% ammonium-neutralized polycarboxylic acid was used in an amount corresponding to 0.1% by mass of the amount of deionized water as a dispersant. A test battery was produced in the same manner as in Example 1. The average secondary particle diameter, specific surface area and tap density of the lithium manganese double oxide particles, and the discharge capacity and retention of the test battery measured in the same manner as in Example 1 were as shown in Table 1.
[0045]
The average secondary particle diameter, specific surface area and tap density of the obtained fired product particles were as shown in Table 1. A test battery was prepared using the fired particles in the same manner as in Example 1, and the discharge capacity and the retention of the test battery measured in the same manner as in Example 1 were as shown in Table 1.
[0046]
Comparative Example 2
Lithium hydroxide (LiOH.H 2 O) and electrolytic manganese dioxide are blended so that the molar ratio of Li and Mn is 1.1: 2, which corresponds to 20% by mass of the total amount of the blend. A slurry was prepared by adding an amount of deionized water. This slurry was wet-pulverized and mixed in a pot mill. Next, granulation was performed by setting the hot air inlet temperature to 200 ° C. and the outlet temperature to 100 ° C. using a spray drying granulator. The obtained granulated powder was passed through a # 100 sieve to remove coarse particles to obtain a granulated powder having an average secondary particle diameter of 10 μm. The granulated powder was fired at 900 ° C. for 48 hours in an oxygen stream.
[0047]
The average secondary particle diameter, specific surface area and tap density of the obtained fired product particles were as shown in Table 1. A test battery was prepared using the fired particles in the same manner as in Example 1, and the discharge capacity and the retention of the test battery measured in the same manner as in Example 1 were as shown in Table 1.
[0048]
[Table 1]
Figure 2004227802
[0049]
As is clear from the data in Table 1, the batteries obtained in Examples 1 to 3, which are the production methods of the present invention, have a high initial capacity and a high capacity retention under predetermined charge and discharge conditions. Was. On the other hand, when producing the positive electrode active material, the batteries obtained in Comparative Example 1 using a completely neutralized dispersant and Comparative Example 2 not using a dispersant had low initial capacity and low capacity retention, Cycle characteristics were poor.
[0050]
【The invention's effect】
The lithium manganese-based composite oxide of the present invention obtained by the production method of the present invention has improved initial capacity and capacity retention by being used as a positive electrode material of a non-aqueous lithium secondary battery, and has charge-discharge cycle characteristics at room temperature and high temperature. It is a lithium manganese double oxide or a modified lithium manganese double oxide having a uniform and uniform particle size that can constitute a non-aqueous lithium secondary battery having excellent characteristics. Further, the non-aqueous lithium secondary battery of the present invention using such a lithium manganese-based composite oxide as a positive electrode material has excellent initial capacity and capacity retention, and is particularly excellent in charge-discharge cycle characteristics at high temperatures. ing.

Claims (5)

中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤の存在下で、リチウム化合物とマンガン化合物とを湿式粉砕混合して低粘度の均一なスラリーを調製し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を80〜150℃で30分〜2時間加熱し、温度を350〜600℃に上昇させて1〜15時間焼成し、更に温度を600〜1000℃に上昇させて酸素気流中又は空気気流中で1〜70時間焼成することにより得られ、平均二次粒子径が0.1〜100μmであり、タップ密度が1.6g/cm以上であり、且つ比表面積が0.1〜2m/gであるリチウムマンガン複酸化物粒子であって、正極材料として用いることにより初期容量及び容量保持率の改良された非水リチウム二次電池を構成することができるリチウムマンガン複酸化物粒子。In the presence of a dispersant selected from the group consisting of polycarboxylic acids and polycarboxylates having a degree of neutralization of 0 to 80%, a lithium compound and a manganese compound are wet-pulverized and mixed to prepare a uniform slurry having a low viscosity. The resulting slurry is used to form particles having an average secondary particle diameter of 0.1 to 100 μm using a spray-drying granulator, and the particles are heated at 80 to 150 ° C. for 30 minutes to 2 hours to reduce the temperature. It is obtained by raising the temperature to 350 to 600 ° C. and firing for 1 to 15 hours, and further raising the temperature to 600 to 1000 ° C. and firing for 1 to 70 hours in an oxygen stream or an air stream. Is 0.1 to 100 μm, the tap density is 1.6 g / cm 3 or more, and the specific surface area is 0.1 to 2 m 2 / g. First by Lithium manganese double oxide particles capable of constituting a nonaqueous lithium secondary battery having improved initial capacity and capacity retention. 中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤の存在下で、B、Mg、Al、V、Cr、Co、Ni、Zn、Ga及びPの各々の水溶性化合物からなる群より選ばれる少なくとも1種とリチウム化合物とマンガン化合物とを湿式粉砕混合して低粘度の均一なスラリーを調製し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を80〜150℃で30分〜2時間加熱し、温度を350〜600℃に上昇させて1〜15時間焼成し、更に温度を600〜1000℃に上昇させて酸素気流中又は空気気流中で1〜70時間焼成することにより得られ、平均二次粒子径が0.1〜100μmであり、タップ密度が1.6g/cm以上であり、且つ比表面積が0.1〜2m/gである変性リチウムマンガン複酸化物粒子であって、正極材料として用いることにより初期容量及び容量保持率の改良された非水リチウム二次電池を構成することができる変性リチウムマンガン複酸化物粒子。In the presence of a dispersant selected from the group consisting of polycarboxylic acids and polycarboxylates having a degree of neutralization of 0 to 80%, B, Mg, Al, V, Cr, Co, Ni, Zn, Ga and P At least one selected from the group consisting of water-soluble compounds, a lithium compound and a manganese compound are wet-pulverized and mixed to prepare a low-viscosity uniform slurry, and the obtained slurry is spray-dried using a spray-drying granulator. The particles having an average secondary particle diameter of 0.1 to 100 μm are formed, and the particles are heated at 80 to 150 ° C. for 30 minutes to 2 hours, and the temperature is increased to 350 to 600 ° C. and baked for 1 to 15 hours, The temperature is further raised to 600 to 1000 ° C., and the mixture is calcined in an oxygen stream or an air stream for 1 to 70 hours. The average secondary particle diameter is 0.1 to 100 μm, and the tap density is 1.6 g. der / cm 3 or more And the specific surface area is a modified lithium manganese composite oxide particles is 0.1~2m 2 / g, constituting the initial capacity and improved non-aqueous rechargeable lithium battery having a capacity retention by the use as a positive electrode material Modified lithium manganese compound oxide particles. 中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤の存在下で、リチウム化合物とマンガン化合物とを湿式粉砕混合して低粘度の均一なスラリーを調製し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を80〜150℃で30分〜2時間加熱し、温度を350〜600℃に上昇させて1〜15時間焼成し、更に温度を600〜1000℃に上昇させて酸素気流中又は空気気流中で1〜70時間焼成して、平均二次粒子径が0.1〜100μmであり、タップ密度が1.6g/cm以上であり、且つ比表面積が0.1〜2m/gであるリチウムマンガン複酸化物粒子を得ることを特徴とする非水リチウム二次電池用のリチウムマンガン複酸化物粒子の製造方法。In the presence of a dispersant selected from the group consisting of polycarboxylic acids and polycarboxylates having a degree of neutralization of 0 to 80%, a lithium compound and a manganese compound are wet-pulverized and mixed to prepare a uniform slurry having a low viscosity. The resulting slurry is used to form particles having an average secondary particle diameter of 0.1 to 100 μm using a spray-drying granulator, and the particles are heated at 80 to 150 ° C. for 30 minutes to 2 hours to reduce the temperature. The temperature is raised to 350 to 600 ° C., and the firing is performed for 1 to 15 hours. The temperature is further increased to 600 to 1000 ° C., and the firing is performed for 1 to 70 hours in an oxygen stream or an air stream. 1 to 100 μm, a tap density of 1.6 g / cm 3 or more, and a specific surface area of 0.1 to 2 m 2 / g. Lithium man for secondary battery A method for producing gun double oxide particles. 中和度が0〜80%のポリカルボン酸及びポリカルボン酸塩からなる群より選ばれる分散剤の存在下で、B、Mg、Al、V、Cr、Co、Ni、Zn、Ga及びPの各々の水溶性化合物からなる群より選ばれる少なくとも1種とリチウム化合物とマンガン化合物とを湿式粉砕混合して低粘度の均一なスラリーを調製し、得られたスラリーから噴霧乾燥造粒装置を用いて平均二次粒子径が0.1〜100μmの粒子を形成し、その粒子を80〜150℃で30分〜2時間加熱し、温度を350〜600℃に上昇させて1〜15時間焼成し、更に温度を600〜1000℃に上昇させて酸素気流中又は空気気流中で1〜70時間焼成して、平均二次粒子径が0.1〜100μmであり、タップ密度が1.6g/cm以上であり、且つ比表面積が0.1〜2m/gである変性リチウムマンガン複酸化物粒子を得ることを特徴とする非水リチウム二次電池用の変性リチウムマンガン複酸化物粒子の製造方法。In the presence of a dispersant selected from the group consisting of polycarboxylic acids and polycarboxylates having a degree of neutralization of 0 to 80%, B, Mg, Al, V, Cr, Co, Ni, Zn, Ga and P At least one selected from the group consisting of water-soluble compounds, a lithium compound and a manganese compound are wet-pulverized and mixed to prepare a low-viscosity uniform slurry, and the obtained slurry is spray-dried using a spray-drying granulator. The particles having an average secondary particle diameter of 0.1 to 100 μm are formed, and the particles are heated at 80 to 150 ° C. for 30 minutes to 2 hours, and the temperature is increased to 350 to 600 ° C. and baked for 1 to 15 hours, The temperature is further increased to 600 to 1000 ° C., and the mixture is fired in an oxygen stream or an air stream for 1 to 70 hours to have an average secondary particle diameter of 0.1 to 100 μm and a tap density of 1.6 g / cm 3. And the specific surface area Method for producing 0.1~2m 2 / g and a modified lithium manganese composite oxide particles for a non-aqueous lithium secondary battery, characterized by obtaining a modified lithium manganese composite oxide particles. 正極材料として請求項1記載のリチウムマンガン複酸化物粒子又は請求項2記載の変性リチウムマンガン複酸化物粒子を用い、負極材料として金属リチウム、リチウム合金、又はリチウムの吸蔵・放出が可能な炭素材料若しくは金属酸化物を用いて構成されていることを特徴とする非水リチウム二次電池。The lithium manganese double oxide particles according to claim 1 or the modified lithium manganese double oxide particles according to claim 2 are used as a positive electrode material, and metal lithium, a lithium alloy, or a carbon material capable of inserting and extracting lithium is used as a negative electrode material. Alternatively, a non-aqueous lithium secondary battery is formed using a metal oxide.
JP2003011031A 2003-01-20 2003-01-20 Lithium manganese base composite oxide particle for nonaqueous lithium secondary battery , its manufacturing method, and nonaqueous lithium secondary battery Pending JP2004227802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011031A JP2004227802A (en) 2003-01-20 2003-01-20 Lithium manganese base composite oxide particle for nonaqueous lithium secondary battery , its manufacturing method, and nonaqueous lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011031A JP2004227802A (en) 2003-01-20 2003-01-20 Lithium manganese base composite oxide particle for nonaqueous lithium secondary battery , its manufacturing method, and nonaqueous lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2004227802A true JP2004227802A (en) 2004-08-12

Family

ID=32900053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011031A Pending JP2004227802A (en) 2003-01-20 2003-01-20 Lithium manganese base composite oxide particle for nonaqueous lithium secondary battery , its manufacturing method, and nonaqueous lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2004227802A (en)

Similar Documents

Publication Publication Date Title
JP5418664B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP2003051311A (en) Lithium transition metal compound oxide, manufacturing method of positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2003034538A (en) Method for producing lithium nickel manganese complex oxide
JP2015122269A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2006151707A (en) Anhydride of lithium hydroxide for manufacturing lithium transition metal complex oxide and its manufacturing method, and method for manufacturing lithium transition metal complex oxide using it
JP2006117517A (en) Method for manufacturing lithium-transition metal complex oxide and lithium cell using the lithium-transition metal complex oxide
JP4329434B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2009263176A (en) Spinel type lithium manganate surface-coated with magnesium-aluminum multiple oxide, method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using the same
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2001206722A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode, lithium secondary cell, and manufacturing method of lithium manganese multiple oxide
JP2003123742A (en) Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP2001243954A (en) Positive electrode material for lithium secondary battery
JP2006273620A (en) Lithium transition metal complex oxide, its manufacturing method, fired precursor for lithium transition metal complex oxide and lithium secondary battery
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2002068747A (en) Lithium manganese complex oxide, positive electrode material for lithium secondary battery, positive electrode, and lithium secondary battery
JP2001328814A (en) Lithium-manganese composite oxide, method for producing the same and secondary battery
JP2003002663A (en) Layered lithium nickel manganese composite oxide
JP2002343356A (en) Lithium manganese double oxide particle, its manufacturing method and secondary battery
KR20170118775A (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, positive electrode and non-aqueous electrolyte secondary battery
JP2002338247A (en) Lithium manganese based compound oxide particle, manufacturing method therefor and secondary battery

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081119