JP2004226590A - Earthquake-resistant principle detection model for wooden building - Google Patents

Earthquake-resistant principle detection model for wooden building Download PDF

Info

Publication number
JP2004226590A
JP2004226590A JP2003013133A JP2003013133A JP2004226590A JP 2004226590 A JP2004226590 A JP 2004226590A JP 2003013133 A JP2003013133 A JP 2003013133A JP 2003013133 A JP2003013133 A JP 2003013133A JP 2004226590 A JP2004226590 A JP 2004226590A
Authority
JP
Japan
Prior art keywords
wooden
model
wooden building
earthquake
detection model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003013133A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuyama
規 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nice Corp
Original Assignee
Nice Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nice Corp filed Critical Nice Corp
Priority to JP2003013133A priority Critical patent/JP2004226590A/en
Publication of JP2004226590A publication Critical patent/JP2004226590A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instructional Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake-resistant principle detection model for a wooden building by which earthquake-resistant performance of a wooden beam structured residence is easily recognized, differences in shaking and destruction of the residence during an earthquake caused by various diagonal beams balances and weights of a roof are clearly understood, the model is easily transported, has small size and low cost and is set up at almost any place. <P>SOLUTION: A wooden building model 2 is constructed by simulating pin joints while the joints of wooden beam structure are connected by elastic extending and contracting members made of rubber or the like and the model 2 is arranged on a movable foundation table 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、住宅建築予定者が木造住宅を建築しようとする場合に、最も心配となる耐震性について説明する為の木造建築の耐震原理検知模型に関するものである。
【0002】
【従来の技術】
住宅建築予定者、いわゆるお施主様が木造住宅を建築しようとする場合に、設計者や工務店などは間取り等の打合せにおいて、最も心配となる耐震性について充分な補強がなされていることを説明する必要がある。
【0003】
しかし、木造軸組住宅の耐震性能に関しては、住宅が実際に完成されると、外壁材により周囲が被覆されてしまうので、内部の木造軸組の構成を確かめることができない。
【0004】
また、実際に目で確かめる方法としては、実物大の建物を大型の振動実験台の上に組み立て、人工的に地震を模した振動を与える方法や下記特許文献のものがある。
【0005】
【特許文献1】
特開平10−20758号公報
【特許文献2】
特開平10−143059号公報
【特許文献3】
特開平11−161148号公報
【0006】
前記特許文献1は、木造住宅の建築工法において、耐震性に対する充分の補強構造が成されていることを確認可能とすべく、木造軸組工法の躯体部分の補強材や補強金具等の耐震構造部品が露出した実物大の断面構造模型を構成し、この構造躯体と基礎との接続状態をも展示したことを特徴とする木造住宅建築工法の展示説明装置に関するもので、このような木造住宅建築工法の展示説明装置に付設して、当該木造住宅建築工法を説明する映像と音声を提供するビデオ画像映写装置を併置したものである。
【0007】
前記特許文献2は、住宅において、耐力壁の配置の相違により発生する揺れ方の相違が視認できるように、耐力壁の位置の相違する複数の住宅模型を構成し、この住宅模型を振動させるもので、住宅模型は2階建てとして、1階と2階で別々に耐力壁の配置を変更可能としたものである。なお、住宅模型は、耐力壁のバランスの良い住宅模型と、耐力壁が平面的にバランスの悪い住宅模型と、耐力壁が立面的にバランスの悪い模型の3種類の住宅模型を構成し、これらにそれぞれ起振装置を具備させて、振動させる。
【0008】
前記特許文献3は、地震の振動に類似した振動数により振動可能とした振動台の上に、免震構造や制震構造の建物模型を配置し、この振動台上に配置した免震構造、制震構造の建物に発生する振動を視認可能とする固定目盛を、振動台以外の固定台より突出させたもので、振動台の上には、一般構造の建物の、高さの異なるものを複数台配置し、振動台の周期又は振幅を変更可能としている。
【0009】
したがって、オペレーターは、振動台の振動の周期や振幅を変更しながら、各模型建物の振動の状態を目で確認することができて、免震構造と制震構造と一般構造の振動の相違等を理解することができるとある。
【0010】
【発明が解決しようとする課題】
前記実物大の建物を、大型の振動実験台の上に組み立てるものでは、非常に大掛りなものとなり、コスト高となるとともに、大型の振動実験台を設置した特定の場所でなければ、耐震性能を目視することができない。
【0011】
また、前記特許文献1のものでは、実際に振動を与えるものではなく、説明を受けることにより、木造軸組住宅の耐震性能を理解しなければならず、信憑性に乏しい。
【0012】
前記特許文献2のものでは、木造軸組住宅に関するものではないし、また、1階と2階で別々に耐力壁の配置を変更可能とした住宅模型を、これらにそれぞれ起振装置を具備させて、振動させたとしても、各模型の変形状態が少ないと、傍から見ただけで、揺れの違いが認識体験できないおそれもある。
【0013】
前記特許文献3のものでは、同じく木造軸組住宅に関するものではないし、また、建物模型の横に建物に発生する振動を視認可能とする固定目盛を建てることにより、オペレーターが、免震構造と一般構造の場合の、振動の相違を確認することができるもので、専門的でないものが、容易に耐震性能を理解できるものではない。
【0014】
この発明はかかる現状に鑑み、木造軸組住宅の耐震性能を容易に認識できるものであり、特に、筋交いのバランス、屋根の重さによる違いで地震発生時にどのような揺れが起こり崩壊するのかが一目瞭然に理解でき、しかも、容易に持ち運び可能で、小型で、安価であり、場所を限定せずに活用できる木造建築の耐震原理検知模型を提供せんとするものである。
【0015】
【課題を解決するための手段】
前記目的を達成するため、この発明の請求項1に記載の発明は、
木造軸組みの仕口を、ゴム紐等の弾性伸縮部材で締結してピン接合を模した木造建物模型を構築し、
この木造建物模型を可動地盤用台部上に設置したことを特徴とする木造建築の耐震原理検知模型である。
【0016】
より、具体的には、木造軸組みを構成する筋交部材を、その端部を面ファスナーで軸組内に固定可能として着脱自在に配設すること、弾性伸縮部材であるゴム紐は、軸組部材を太さ方向に貫通するピンに、その端部を係止して軸組部材相互間に掛け渡すことを特徴とする。
【0017】
この請求項1に記載の発明によれば、可動地盤用台部を振動させ、地震を模した振動を木造建物模型に与えれば、この模型は、木造軸組みの仕口がピン接合を模した結合であるので、仕口を変形中心点として揺れによる変形を軸組み全体で容易に表現することができ、同時に筋交いのバランスの相違、屋根の重さによる違い等でどのような揺れが起こり、如何に崩壊するのかが一目瞭然でわかる。
【0018】
また、請求項2記載の発明によれば、前記作用に加えて、筋交部材を着脱自在に配設することができ、しかも、セットは面ファスナーで迅速に行なえ、筋交部材の位置や本数の変更で、揺れの違いを容易に現すことができる。
【0019】
さらに、請求項3記載の発明によれば、弾性伸縮部材としてゴム紐を利用することで、安価で、簡単に配設でき、しかも軸組部材を太さ方向に貫通するピンにその端部を係止するようにすれば、外側に露出せず、体裁がよいし、また、軸組部材の軸芯に近づけて配設することが可能となる。
【0020】
【発明の実施の形態】
以下、この発明にかかる木造建築の耐震原理検知模型の実施形態を、添付の図面に基づいてより詳細に説明する。
【0021】
図1はこの発明の木造建築の耐震原理検知模型の1実施形態を示す斜視図、図2は同上軸組み要部の一部切り欠いた正面図、図3は同上可動地盤用台部の一部切り欠いた正面図で、この発明の木造建築の耐震原理検知模型は、可動地盤用台部1と、その上に設ける木造建物模型2とからなる。
【0022】
可動地盤用台部1は、扁平な矩形ハウジング3内に駆動装置としての駆動モータ21と、これに連結するギヤ等の伝達機構5およびカム6を収め、前記矩形ハウジング3に蓋状の盤体を可動地盤4に模して、カム6からのカム軸6aを可動地盤4の裏面に形成する係合溝部7に挿入したもので、図示の例では、係合溝部7は、間隔を存して平行する桟木に取り付けた金属製アングル材を対向させて形成している。
【0023】
なお、駆動装置としての駆動モータ21には、市販の電動ドリルドライバーを利用し、また、伝達機構5には市販のハンドドリルを利用することもでき、このように可動地盤用台部1を構成する部材として、他用途に用いられている市販品を利用することで、安価に、かつ、簡単に製作することができる。
【0024】
図示の実施形態では、カム6による変心回転運動を可動地盤4に伝えるものとしたが、これに限定されるものでなく、直線的な往復運動による振動を伝えるようなものでもよく、また、伝達機構5には適宜減速機構を兼用させるとともに、ギヤ以外で、ラック、チェーン、ベルト等種々の部品の使用が考えられる。
【0025】
木造建物模型2は、通常の木造建築と同じく、基礎8とその上の軸組み9、小屋組10とで構成するが(なお、床組は設けてもよいが、省略することもできる)、基礎8と、上に載る土台11は、前記可動地盤用台部1の可動地盤4に固定して取り付ける部分であり、アンカーボルト17(図4参照)で可動地盤4に締結する。
【0026】
軸組み9は、前記土台11と、柱12、胴差し、けた(又ははり)13、筋交いおよびこれらの間にある構造部材(図示では(胴)ぬき22)からなるが、この発明は、かかる木造軸組みの仕口、例えば、土台11と柱12、柱12とけた13または胴差しの接合部を、ゴム紐14等の弾性伸縮部材で締結してピン接合を模したもので、この弾性伸縮部材としては、ゴム紐14以外では細いコイルバネ等が考えられる。
【0027】
図示の実施形態は、輪ゴムによるゴム紐14を使用する場合であり、このゴム紐14は、直接各軸組部材に太さ方向に貫通する孔を設けて挿通させることで係止してもよいが、図2に示すように、土台11や柱12やけた13等の軸組部材を太さ方向に貫通するピン15を設け、ゴム紐14の端部をこのピン15に係止して軸組部材相互間に掛け渡すようにしている。この場合、軸組部材(図示の例では土台11と柱12)には空所16を形成し、ゴム紐14はこの空所16内に収めて外部には露出しないようにすることで、ゴム紐14を軸組部材の軸芯に近づけて配設することが可能となる。
【0028】
図1に示す木造建物模型2は、小屋組10を形成するとともに、屋根板等を嵌め込んだ屋根18を設けたもので、この屋根18は、模型毎に重さや大きさの異なるものを設置することが好ましい。
【0029】
また、他の実施形態として、木造建物模型2は、図5、図6に示すように、たるき10aや棟木10b、方つえ10cのごとき小屋組10のみの状態を設けたものでもよい。
【0030】
図中19は、筋交部材であって、その端部と軸組み面内角部に、面ファスナーテープ20を設けたものである。この面ファスナー20は周知のごとく、テープ基材に剛性を備えた硬い糸で形成されるフックを植設した雄部材と、テープ基材に柔らかい糸で形成されるループを植設した雌部材とからなり、これら雄部材・雌部材のいずれか一方を筋交部材19に、他方を軸組み側(図示では土台11と柱12とけた13とによる枠内)に設ける。
【0031】
このようにして着脱自在に配設する筋交部材19は、面ファスナー20で軸組内に固定可能としたもので、筋交部材19としては、交差用または単独用いずれのものでもよい。さらに、筋交部材19は、図示のように端部をカットして軸組み角部との間に空間を確保すると、着脱自在し易いものとなる。
【0032】
以下、その使用法について説明する。
この発明の木造建築の耐震原理検知模型は、人間が可搬送できる大きさのものであり、一般の工務店等がお施主様と打ち合わせる際などに、使用することができる。
【0033】
まず、駆動モータ21を駆動すれば、カム6により可動地盤4が振動し、木造建物模型2に地震の振動が与えられた状態となるので、その結果、ゴム紐14等の弾性伸縮部材で締結してピン接合を模した仕口が自由に動き、図1に示すように木造建物模型2が揺れて変形する。
【0034】
例えば、先の述べたように屋根18を設ける場合は、大きさや重さの異なる屋根18を組込んだ木造建物模型2を並べてみると、建物の重心の違いによる揺れの相違を認識することができる。
【0035】
また、他の使用法として、図5は筋交部材19を配設しない場合、図6は筋交部材19を配設した場合であるが、このような筋交部材19の有無で、揺れの相違を一目瞭然に認識することができ、耐震要素としての筋交部材19の重要性が理解できる。
【0036】
なお、前記実施形態の他に、図示は省略するが、壁板パネルを耐震要素と付加する場合とこれがない場合など、もしくは(胴)ぬき22の数を変えるなどの相違なども出現させることが可能である。
【0037】
【発明の効果】
以上述べたように、この発明の木造建築の耐震原理検知模型は、木造軸組住宅の耐震性能を容易に認識できるものであり、特に、筋交いのバランス、屋根の重さによる違いで、地震発生時にどのような揺れが起こり崩壊するのかが一目瞭然に理解でき、しかも、容易に持ち運び可能で、小型で、安価であり、場所を限定せずに活用できるものである。
【0038】
このようにして、容易に持ち運びできることにより、一般のお客様に見て頂くことができ、工務店、資材販売店の建て替え受注と耐震補強工事の受注増大につなげることができる。
【図面の簡単な説明】
【図1】この発明の木造建築の耐震原理検知模型の1実施例を示す斜視図である。
【図2】木造建築の耐震原理検知模型における軸組み要部の一部切り欠いた正面図である。
【図3】木造建築の耐震原理検知模型における可動地盤用台部の一部切り欠いた正面図である。
【図4】木造建築の耐震原理検知模型における筋交部材の配設部分の正面図である。
【図5】木造建築の耐震原理検知模型における他の実施例を示す筋交部材未配設状態の正面図である。
【図6】木造建築の耐震原理検知模型における他の実施例を示す筋交部材配設状態の正面図である。
【符号の説明】
1 可動地盤用台部
2 木造建物模型
3 矩形ハウジング
4 可動地盤
5 伝達機構
6 カム
6a カム軸
7 係合溝部
8 基礎
9 軸組み
10 小屋組
10a たるき
10b 棟木
10c 方つえ
11 土台
12 柱
13 けた
14 ゴム紐
15 ピン
16 空所
17 アンカーボルト
18 屋根
19 筋交部材
20 面ファスナー
21 駆動モータ
22 ぬき
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a model for detecting the principle of seismic resistance of a wooden building for explaining the earthquake resistance, which is the most worrisome when a prospective house builder intends to build a wooden house.
[0002]
[Prior art]
If a prospective housebuilder, the owner, intends to build a wooden house, designers and contractors explain that sufficient reinforcement has been made regarding the anti-seismic properties, which are the most worrisome in meetings such as layouts. There is a need to.
[0003]
However, regarding the seismic performance of the wooden framed house, when the house is actually completed, the surroundings are covered with the outer wall material, so that the configuration of the internal wooden framed structure cannot be confirmed.
[0004]
Further, as a method of actually confirming by visual observation, there are a method of assembling a full-scale building on a large-scale vibration test bench and artificially imitating vibrations simulating an earthquake, and the method of the following patent document.
[0005]
[Patent Document 1]
JP-A-10-20758 [Patent Document 2]
JP 10-143059 A [Patent Document 3]
JP-A-11-161148 [0006]
Patent Document 1 discloses an earthquake-resistant structure such as a reinforcing member or a reinforcing metal for a frame portion of a wooden frame construction method, in order to be able to confirm that a sufficient reinforcement structure for earthquake resistance is formed in a wooden house building method. It relates to an exhibition explanation device of a wooden house building construction method characterized by constituting a full-scale cross-sectional structure model with exposed parts and also exhibiting a connection state between the structural skeleton and a foundation. A video image projection device that provides video and audio explaining the wooden house building construction method is attached to a display explanation device of the construction method.
[0007]
Japanese Patent Application Laid-Open No. H11-163873 discloses a method in which a plurality of house models having different bearing wall positions are configured to vibrate the house model so that the difference in the shaking caused by the difference in the arrangement of the bearing walls can be visually recognized in the house. The model house is a two-story building in which the arrangement of the load-bearing walls can be changed separately on the first and second floors. In addition, the house model is composed of three types of house models: a well-balanced house model with a load-bearing wall, a housing model with a poorly balanced load-bearing wall, and a model with a poorly balanced load-bearing wall. These are each provided with a vibrating device and vibrated.
[0008]
Patent Document 3 discloses a seismic isolation structure in which a building model having a seismic isolation structure or a damping structure is arranged on a shaking table capable of vibrating at a frequency similar to the vibration of an earthquake, and the shaking table is arranged on the shaking table. The fixed scale that makes the vibration generated in the building with the vibration control structure visible can be made to protrude from the fixed table other than the shaking table. A plurality of vibration tables are arranged so that the period or amplitude of the vibration table can be changed.
[0009]
Therefore, the operator can visually check the vibration condition of each model building while changing the vibration period and amplitude of the shaking table, and can compare the vibration of the seismic isolation structure, the vibration control structure, and the general structure. You can understand.
[0010]
[Problems to be solved by the invention]
If the full-scale building is assembled on a large vibration test bench, it will be very large and costly, and if it is not a specific place where a large vibration test bench is installed, seismic performance Can not be seen.
[0011]
Further, in the case of the above-mentioned Patent Document 1, the vibration is not actually applied, and the user must understand the seismic performance of the wooden framed housing by receiving the explanation, which is poor in credibility.
[0012]
The thing of the said patent document 2 does not relate to a wooden framed house, and also has a vibration model for each of the house models in which the arrangement of the load-bearing walls can be changed separately on the first floor and the second floor. However, even if the model is vibrated, if the deformation state of each model is small, there is a possibility that the user may not be able to perceive the difference in shaking only by looking from the side.
[0013]
Patent Document 3 does not relate to a wooden framed house, and furthermore, by building a fixed scale next to the building model so that vibrations generated in the building can be visually recognized, the operator can use a seismic isolation structure and a general structure. In the case of a structure, the difference in vibration can be confirmed, and a non-specialized person cannot easily understand the seismic performance.
[0014]
In view of this situation, the present invention can easily recognize the seismic performance of a wooden framed house, and in particular, what kind of shaking and collapse will occur when an earthquake occurs due to the balance of brace, the difference in roof weight. An object of the present invention is to provide a seismic principle detection model of a wooden building which can be easily understood at a glance, is easily portable, is small, inexpensive, and can be used in any place.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention
A wooden building model that imitates a pin joint by fastening the connection of the wooden frame with elastic elastic members such as rubber strings,
This is a model for detecting the principle of seismic resistance of a wooden building, wherein the wooden building model is set on a movable ground base.
[0016]
More specifically, the bracing member constituting the wooden frame is detachably disposed such that the end thereof can be fixed in the frame with a hook-and-loop fastener. It is characterized in that the ends of the pins are engaged with pins that penetrate the assembly member in the thickness direction, and the pins are bridged between the shaft assembly members.
[0017]
According to the first aspect of the present invention, if the movable ground base is vibrated and a vibration simulating an earthquake is given to the wooden building model, the connection of the wooden frame of the model imitates a pin joint. Because it is a joint, the deformation due to shaking can be easily expressed as the whole frame with the joint as the deformation center point, and at the same time, what kind of shaking occurs due to the difference in bracing balance, the difference due to the weight of the roof, etc. You can see at a glance how it collapses.
[0018]
According to the second aspect of the present invention, in addition to the above-described operation, the bracing member can be removably provided, and the set can be quickly performed with the hook-and-loop fastener. By changing the, it is possible to easily show the difference in shaking.
[0019]
Further, according to the third aspect of the present invention, the rubber string is used as the elastic expansion and contraction member, so that it is inexpensive and can be easily arranged, and the end of the pin is inserted into the pin which penetrates the frame member in the thickness direction. If it locks, it will not be exposed to the outside, it will be good in appearance, and it will be possible to arrange it close to the axis of the frame member.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a seismic principle detection model for a wooden building according to the present invention will be described in more detail with reference to the accompanying drawings.
[0021]
FIG. 1 is a perspective view showing an embodiment of a seismic principle detection model for a wooden building according to the present invention, FIG. 2 is a front view of a main part of the above-mentioned shaft assembly partially cut away, and FIG. In the partially cutaway front view, the seismic principle detection model for a wooden building of the present invention comprises a movable ground base 1 and a wooden building model 2 provided thereon.
[0022]
The movable ground base 1 accommodates a driving motor 21 as a driving device, a transmission mechanism 5 such as a gear connected thereto and a cam 6 in a flat rectangular housing 3. Is imitated on the movable ground 4, and a cam shaft 6a from the cam 6 is inserted into an engaging groove 7 formed on the back surface of the movable ground 4. In the example shown in the figure, the engaging grooves 7 are spaced from each other. Metal angle members attached to parallel piers are formed so as to face each other.
[0023]
Note that a commercially available electric drill driver can be used for the drive motor 21 as a drive device, and a commercially available hand drill can be used for the transmission mechanism 5. By using a commercially available product used for another purpose as the member to be manufactured, it can be manufactured inexpensively and easily.
[0024]
In the illustrated embodiment, the eccentric rotational movement by the cam 6 is transmitted to the movable ground 4. However, the present invention is not limited to this, and may transmit vibration by linear reciprocating motion. The mechanism 5 may also be used as a reduction mechanism, and various components other than gears, such as a rack, a chain, and a belt, may be used.
[0025]
The wooden building model 2 is composed of a foundation 8 and a frame 9 and a hut 10 on the same as in a normal wooden building (a floor group may be provided but may be omitted). The base 8 and the base 11 placed thereon are fixed and attached to the movable ground 4 of the movable ground base 1 and fastened to the movable ground 4 with anchor bolts 17 (see FIG. 4).
[0026]
The shaft assembly 9 is composed of the base 11, the column 12, the body insert, the beam (or beam) 13, the braces, and the structural members (the (body) strip 22 in the drawing) between them. The joint of the wooden frame, for example, the joint between the base 11 and the pillar 12, the joint between the pillar 12 and the girder 13 or the body insertion is fastened by an elastic elastic member such as a rubber string 14 to simulate pin joining. As the elastic member, a thin coil spring or the like other than the rubber string 14 can be considered.
[0027]
The illustrated embodiment is a case where a rubber string 14 made of rubber band is used, and the rubber string 14 may be locked by directly providing a hole penetrating in a thickness direction in each shaft assembly member and inserting it. However, as shown in FIG. 2, a pin 15 that penetrates a frame member such as the base 11, the pillar 12, or the girder 13 in the thickness direction is provided, and an end of the rubber cord 14 is locked to the pin 15 so that the shaft 15 It is designed to bridge between the assembled members. In this case, a cavity 16 is formed in the frame member (the base 11 and the column 12 in the illustrated example), and the rubber string 14 is housed in the cavity 16 so as not to be exposed to the outside. The string 14 can be arranged close to the axis of the frame member.
[0028]
The wooden building model 2 shown in FIG. 1 forms a hut 10 and is provided with a roof 18 into which a roof plate or the like is fitted. The roof 18 has a different weight and size for each model. Is preferred.
[0029]
As another embodiment, as shown in FIGS. 5 and 6, the wooden building model 2 may be provided with only the hut set 10 such as a rafter 10a, a purlin 10b, and a sword 10c.
[0030]
In the figure, reference numeral 19 denotes a bracing member, in which a hook-and-loop fastener tape 20 is provided at an end portion and an inner corner portion of the shaft assembly surface. As is well known, the hook-and-loop fastener 20 includes a male member having a hook formed of a hard thread having rigidity on a tape base, and a female member having a loop formed of a soft thread formed on a tape base. One of the male member and the female member is provided on the bracing member 19, and the other is provided on the shaft assembly side (in the frame formed by the base 11 and the pillars 12 and 13 in the drawing).
[0031]
The bracing member 19 that is detachably provided in this manner can be fixed in the shaft assembly by the hook-and-loop fastener 20, and the bracing member 19 may be either a crossing member or a single member. Further, the bracing member 19 can be easily attached and detached by cutting the ends as shown to secure a space between the bracing member 19 and the shaft assembly corner.
[0032]
Hereinafter, its usage will be described.
The seismic principle detection model of the wooden building of the present invention is of a size that can be transported by humans, and can be used when a general contractor or the like meets with the owner.
[0033]
First, when the drive motor 21 is driven, the movable ground 4 is vibrated by the cam 6 and the wooden building model 2 is brought into a state where earthquake vibration is given. As a result, the wooden building model 2 is fastened by the elastic elastic member such as the rubber string 14. As a result, the connection imitating the pin joint moves freely, and the wooden building model 2 shakes and deforms as shown in FIG.
[0034]
For example, when the roof 18 is provided as described above, when the wooden building models 2 incorporating the roofs 18 having different sizes and weights are arranged side by side, it is possible to recognize a difference in shaking due to a difference in the center of gravity of the building. it can.
[0035]
FIG. 5 shows a case where the bracing member 19 is not provided, and FIG. 6 shows a case where the bracing member 19 is provided. The difference can be recognized at a glance, and the importance of the bracing member 19 as an earthquake-resistant element can be understood.
[0036]
In addition to the above-described embodiment, although not shown in the drawings, a difference such as a case where a wall plate panel is added to an earthquake-resistant element and a case where it is not provided, or a case where the number of (barrel) strips 22 is changed may appear. It is possible.
[0037]
【The invention's effect】
As described above, the model for detecting the principle of seismic resistance of a wooden building according to the present invention can easily recognize the seismic performance of a wooden framed house. It can be easily understood at a glance what kind of shaking and collapse sometimes occurs, and it can be easily carried, small, inexpensive, and can be used without limitation in place.
[0038]
In this way, it can be easily carried, so that it can be seen by ordinary customers, which can lead to an increase in orders for rebuilding of construction shops and material dealers and an increase in orders for seismic reinforcement work.
[Brief description of the drawings]
FIG. 1 is a perspective view showing one embodiment of a model for detecting the principle of earthquake resistance of a wooden building according to the present invention.
FIG. 2 is a front view, partially cut away, of a main part of a shaft assembly in a seismic principle detection model of a wooden building.
FIG. 3 is a partially cutaway front view of a movable ground base in a seismic principle detection model of a wooden building.
FIG. 4 is a front view of an arrangement portion of a bracing member in a seismic principle detection model of a wooden building.
FIG. 5 is a front view of another example of a seismic principle detection model of a wooden building in a state where bracing members are not provided.
FIG. 6 is a front view of another embodiment of a seismic principle detection model of a wooden building in a state in which bracing members are provided.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Movable ground base part 2 Wooden building model 3 Rectangular housing 4 Movable ground 5 Transmission mechanism 6 Cam 6a Cam shaft 7 Engagement groove part 8 Foundation 9 Framing set 10 Shed set 10a Folding 10b Ridge 10c Holder 11 Base 12 Pillar 13 14 Rubber cord 15 Pin 16 Void 17 Anchor bolt 18 Roof 19 Brace member 20 Surface fastener 21 Drive motor 22 Nuki

Claims (3)

木造軸組みの仕口を、ゴム紐等の弾性伸縮部材で締結してピン接合を模した木造建物模型を構築し、
この木造建物模型を、可動地盤用台部上に設置したことを特徴とする木造建築の耐震原理検知模型。
A wooden building model that imitates a pin joint by fastening the connection of the wooden frame with elastic elastic members such as rubber strings,
This wooden building model is set on a movable ground base, and is a seismic principle detection model for wooden buildings.
前記木造軸組みにおいて、筋交部材は、その端部を面ファスナーで軸組内に固定可能として着脱自在に配設することを特徴とする請求項1に記載の木造建築の耐震原理検知模型。The seismic principle detection model of a wooden building according to claim 1, wherein in the wooden frame, the bracing member is detachably disposed with its end portion being fixable in the frame by a hook-and-loop fastener. 弾性伸縮部材であるゴム紐は、
軸組部材を太さ方向に貫通するピンに、その端部を係止して軸組部材相互間に掛け渡すことを特徴とする請求項1又は2に記載の木造建築の耐震原理検知模型。
The elastic cord, which is an elastic elastic member,
The seismic principle detection model of a wooden building according to claim 1 or 2, wherein an end of the pin is penetrated by a pin penetrating the frame member in the thickness direction, and the end is hooked between the frame members.
JP2003013133A 2003-01-22 2003-01-22 Earthquake-resistant principle detection model for wooden building Pending JP2004226590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013133A JP2004226590A (en) 2003-01-22 2003-01-22 Earthquake-resistant principle detection model for wooden building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013133A JP2004226590A (en) 2003-01-22 2003-01-22 Earthquake-resistant principle detection model for wooden building

Publications (1)

Publication Number Publication Date
JP2004226590A true JP2004226590A (en) 2004-08-12

Family

ID=32901544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013133A Pending JP2004226590A (en) 2003-01-22 2003-01-22 Earthquake-resistant principle detection model for wooden building

Country Status (1)

Country Link
JP (1) JP2004226590A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185770A (en) * 2007-01-30 2008-08-14 Sekisui House Ltd Structure model of building, and vibration control structure description method using the same
CN102866028A (en) * 2012-09-06 2013-01-09 中国能源建设集团广东省电力设计研究院 Cooling tower collapse analog experiment device
CN105931518A (en) * 2016-06-27 2016-09-07 江苏建筑职业技术学院 Formwork hazard source identification and experience area and base template mounting and operation method
CN106128203A (en) * 2016-06-27 2016-11-16 江苏建筑职业技术学院 Scaffolding work dangerous matter sources identification and experience district and method of construction thereof
CN110542526A (en) * 2019-08-13 2019-12-06 河南工业职业技术学院 Civil engineering structure shock resistance test device
CN111540267A (en) * 2020-06-19 2020-08-14 袁野 Architectural model inner structure display device for architectural design
CN116337383A (en) * 2023-05-29 2023-06-27 安特利智能科技有限公司 Anti-seismic performance detection device of anti-seismic support

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185770A (en) * 2007-01-30 2008-08-14 Sekisui House Ltd Structure model of building, and vibration control structure description method using the same
CN102866028A (en) * 2012-09-06 2013-01-09 中国能源建设集团广东省电力设计研究院 Cooling tower collapse analog experiment device
CN102866028B (en) * 2012-09-06 2015-11-18 中国能源建设集团广东省电力设计研究院有限公司 Cooling tower collapse analog experiment device
CN105931518A (en) * 2016-06-27 2016-09-07 江苏建筑职业技术学院 Formwork hazard source identification and experience area and base template mounting and operation method
CN106128203A (en) * 2016-06-27 2016-11-16 江苏建筑职业技术学院 Scaffolding work dangerous matter sources identification and experience district and method of construction thereof
CN110542526A (en) * 2019-08-13 2019-12-06 河南工业职业技术学院 Civil engineering structure shock resistance test device
CN110542526B (en) * 2019-08-13 2021-04-02 河南工业职业技术学院 Civil engineering structure shock resistance test device
CN111540267A (en) * 2020-06-19 2020-08-14 袁野 Architectural model inner structure display device for architectural design
CN116337383A (en) * 2023-05-29 2023-06-27 安特利智能科技有限公司 Anti-seismic performance detection device of anti-seismic support
CN116337383B (en) * 2023-05-29 2023-07-21 安特利智能科技有限公司 Anti-seismic performance detection device of anti-seismic support

Similar Documents

Publication Publication Date Title
US9109356B2 (en) Relocatable habitat unit and method of assembly
JP2004226590A (en) Earthquake-resistant principle detection model for wooden building
JP2011074566A (en) Aseismatic reinforcing structure of building, and aseismatic reinforcing method of building
JP2008185770A (en) Structure model of building, and vibration control structure description method using the same
JP6315253B2 (en) Suspended ceiling structure
JP2007056623A (en) Unit type building
JP2004184600A (en) Illustration device for earthquake-resisting wall
JP3990497B2 (en) Building structure
JP2000148004A (en) Method for learning house structure
JPS6015790B2 (en) Construction method of structure
JPH09165830A (en) Joint device for building member
JP2000234407A (en) Earthquake resisting wall structure making use of wooden portal frame
JP3203557B2 (en) Joint equipment for building components
JP2007071000A (en) Wooden framework structure
JPH03212551A (en) Ceiling structure of residence unit
JP3181572B2 (en) Auxiliary device for attic connection in wooden framed building
JPH01295953A (en) Pc slab floor capable of bearing horizontal load
JP2000226897A (en) Gate-shaped frame
JP2532735B2 (en) Housing unit mounting method
JP2002317496A (en) Tenoned fitting for connecting column
JP4945349B2 (en) House and house wall construction method
JPH10102818A (en) Vibration control frame among column beam
JP5589565B2 (en) Steel beam and wooden beam joint structure, steel beam and wooden beam joint method and joint member
JP2001003449A (en) Framework reinforcing hardware
JP2004244965A (en) Rigid frame for wooden structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060314

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410