JP2004226531A - 電磁波強度変調器 - Google Patents

電磁波強度変調器 Download PDF

Info

Publication number
JP2004226531A
JP2004226531A JP2003012245A JP2003012245A JP2004226531A JP 2004226531 A JP2004226531 A JP 2004226531A JP 2003012245 A JP2003012245 A JP 2003012245A JP 2003012245 A JP2003012245 A JP 2003012245A JP 2004226531 A JP2004226531 A JP 2004226531A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
layer
intensity modulator
wave intensity
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003012245A
Other languages
English (en)
Inventor
Chiyoujitsuriyo Suzuki
朝実良 鈴木
Nobuyuki Otsuka
信之 大塚
Koichi Mizuno
紘一 水野
Shigeo Yoshii
重雄 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003012245A priority Critical patent/JP2004226531A/ja
Publication of JP2004226531A publication Critical patent/JP2004226531A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】テラヘルツ帯電磁波の単色性が良く効率の良い変調が可能な、固体素子を用いた固体テラヘルツ帯電磁波強度変調器を提供する。
【解決手段】絶対反射率が99%以上となるような反射スペクトルピーク中に少なくとも一つ以上のバレイを有し、その反射ピーク内でのバレイ位置を電界、磁界、光、応力等の外力を単一的もしくは複合的に用いて変化させることにより、エネルギーE、プランク定数h、波長λとしてE=2πh/λなるエネルギーで入射してきた電磁波の反射強度及び透過強度の変調を行う。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は超高速光通信や超高速無線通信システムにおいて重要な構成要素となる電磁波強度変調器に関するものであって、固体素子を用いた非常に高い周波数、特にテラヘルツ帯電磁波の発生装置に関するものである。
【0002】
【従来の技術】
固体素子を用いたテラヘルツ帯電磁波の変調方法としては、化合物半導体表面にフェムト秒程度の強い光パルスを照射して過渡的な電流を励起する方法や、電界を印加した半導体量子井戸にフェムト秒程度の強い光パルスを照射することにより、重い正孔と軽い正孔の準位間や複数の量子井戸のエネルギー固有値が異なる準位間の振動を励起する方法などが提案されている。
【0003】
【特許文献1】
特開平4−76519号公報
【0004】
【発明が解決しようとする課題】
前述の方法のうち、例えば化合物半導体表面にフェムト秒程度の強い光パルスを照射して過渡的な電流を励起する方法では、変調される電磁波のスペクトルが広がってしまい単色性の良い電磁波の変調は困難であった。また、前述の全ての方法において、照射した光パルス電力のうちの多くは半導体表面領域や量子井戸領域を透過してしまうため、効率の良い電磁波の変調が難しかった。
【0005】
そこで、本発明の目的は前述の課題を解決し、テラヘルツ帯電磁波の単色性が良く効率の良い変調が可能な、固体素子を用いた固体テラヘルツ帯電磁波強度変調器を提供せんとするものである。
【0006】
【課題を解決するための手段】この目標を達成するために本発明電磁波強度変調器は化合物半導体単結晶基板上に、この素子の励起子発生領域で励起され、時間軸上で周期的に生成・消滅を繰り返す励起子が生成・消滅に伴い発する光波の波長に実質的に等しい波長を有し、かつ、外部から照射されるフェムト秒オーダーの光パルスの光波に対し、互いに異なる屈折率を有する第一及び第二の化合物半導体層からなる多重積層で、
前記生成・消滅に伴い発生する光波及び前記光パルスの光波を反射する第一の分布ブラッグ反射器と、前記光パルスの光波を吸収して励起子の励起が可能な領域で、この領域で発生した励起子が前記光パルスの光波及び前記生成・消滅に伴い発する光波と強く結合してポラリトンと呼ばれる状態を形成する励起子発生領域と、
前記第一の分布ブラッグ反射器と同一構成で同一機能を有し、かつ、第一の分布ブラッグ反射器及び励起子発生領域と一体になって前記光パルスの光波及び前記生成・消滅に伴い発生する低在波を形成させる構造の固体素子を備えるとともに、前記励起子発生領域で発生した励起子を形成する電子と正孔を空間的に分離するための電界を印加する手段を備えることを特徴とする物である。
【0007】
また、本発明の構成は従来から光変調器で用いられてきた電界吸収型に変わる新たな方式の光変調器を提案している。従来、困難であるとされてきた反射スペクトルピークをシフトさせることによって変調を行う手法を反射スペクトルピーク中に形成したバレイの位置を変化させることによって実現し、これによって利用する材料や形態も半導体、ファイバー、導波路等、反射スペクトルピークを作りこむ事ができるものなら利用する事ができるという特徴を有している。
【0008】
【発明の実施の形態】
(実施の形態1) 図1は本発明の一実施例における電磁波強度変調用の反射多層膜の断面図である。図1において、101はn型不純物がドープされたn−InP基板、102はn型不純物がドープされたn−InGa1−yAs層、103はn型不純物がドープされたn−InAl1−xAs層でxおよびyは以下の(数1)の範囲にある。
(数1)
0.6≧x,y≧0.4
104はn−InGa1−yAs/InAl1−yAs多層膜である。このn−InAl1−yAs/InyGa1−yAs多層膜104は、n−InGa1−yAs層102で始まり、次にn−InAl1−yAs層103を積層し、その後n−InGa1−yAs層102およびn−InAl1−yAs層103の積層を繰り返し、最後にn−InGa1−yAs層102を積層することにより形成される。
【0009】
105は不純物のキャリア濃度が1015〜1016cm−3と極めて低いi−AlAsSb層、106はi−AlAsSb層105と同様に不純物のキャリア濃度が1015〜1016cm−3と極めて低いi−InGaAs層で、107は前記i−AlAsSb層105を障壁層、前記i−InGaAs層106を井戸層とするように構成されたi−AlAsSb/InGaAs多重量子井戸層である。この多重量子井戸作製時にi−AlAsSb層105とi−InGaAs層106との間にある格子定数の差によって転位などが生じないように各々の膜厚を設定しておく。
【0010】
108はp型不純物がドープされたp−InGa1−yAs層、109はp型不純物がドープされたp−InAl1−yAs層で、110はp−InGa1−yAs層108で始まり、p−InAl1−yAs層109で終わるp−InAl1−yAs/InGa1−yAs多層膜、111は下部電極、112は上部電極である。n−InGa1−yAs層102、p−InAl1−yAs層103、p−InGa1−yAs層108、n−InAl1−yAs層109はそれぞれ反射多層膜を形成する半導体層であり、それらの膜厚は光学長にしてλ/4の膜厚となるように設定する。また、上部電極112は円筒型または透明電極であり、p−InAl1−yAs/InGa1−yAs多層膜110の最上部において、入射電磁波113及び出射電磁波114が遮断及び吸収されずに多層膜内に侵入していける構造にする。下部電極111の形状は任意である。また、上部電極直下のp−InAl1−yAs層109はn型不純物濃度が1020cm−3程度のp++−InAl1−yAsであってもよい。以上のように構成された電磁波強度変調用反射多層膜について、図1を参照しながらその動作を説明する。
【0011】
まず、電圧印加が無い状態の多層膜内での電磁波の反射/透過の特性を説明する。p−InGa1−yAs/InAl1−yAs多層膜104及びn−InGa1−yAs/InAl1−yAs多層膜110においては、多層膜の電磁波波長に対する反射率変化、すなわち反射スペクトルの形状は複数のピーク及びバレイを持ち、目的波長付近におけるピークが最も反射率が高く、目的波長に対しては単純なミラーとして働く。なお、目的波長付近でのピークは二種類の材料の屈折率差に依存する幅を持つ。
【0012】
いま、i−AlAsSb層105とi−InGa1−zAs層106との膜厚の合計が実効目的波長の4分の1であれば、i−AlAsSb層105とi−InGa1−zAs層106は反射多層膜内の任意の一層であるにすぎないので、反射スペクトルの形状には影響を与えない。ところが、その合計の膜厚が0から実効目的波長の4分の3の間にあるとき、反射スペクトルにおける目的波長付近のメインピーク内にバレイが現れる。また、その位置とバレイの深さは合計の膜厚を任意に設定することによって一意的に決めることができる。このバレイを発現しているのはi−AlAsSb/InGaAs多重量子井戸層107の光学長であるのでその光学長を変化させること、すなわち屈折率並びに誘電率を変化させることによってバレイの位置を変えることができる。
【0013】
上部電極112と、下部電極111との間に素子全体としてのpn接合に対して逆方向電圧を印加する。p−InGa1−yAs/InAl1−yAs多層膜104にはp型の不純物が比較的多く含まれているため、この部位での抵抗は低く、n−InGa1−yAs/InAl1−yAs多層膜110においても同様であるため、印加した逆方向電圧のほとんどはi−AlAsSb/InGa1−zAs多重量子井戸層107にかかる。この逆方向電圧の印加によって、前述のi−AlAsSb/InzGa1−zAs多重量子井戸層107の吸収端が量子シュタルク効果によって長波長側にシフトする。このときの吸収端のシフトと同時にi−AlAsSb/InGa1−zAs多重量子井戸層107全体としての実効屈折率も大きく変化する。
【0014】
反射多層膜を構成している二種類の材料のうち、ある任意の一層の膜厚変化、すなわち実効光学長の変化は反射スペクトルに対して大きな影響を与える。前述のように量子シュタルク効果によって吸収端がシフトし、同時に実効屈折率が変化た場合、実効光学長が変わった事に等価となる。実効光学長の変化が反射スペクトルに与える影響は大きいので逆方向電圧の印加によって反射スペクトルの形状が大きく変化する。このとき、反射スペクトルにおける前述したようなバレイや鋭い立ち上がりを持った部分は変化の影響を受けやすいので、その部分の波長に相当する入射電磁波113はその強度を変えて反射電磁波114となる。この強度変化はi−AlAsSb/InGa1−zAs多重量子井戸層107における屈折率変化量に比例し、この屈折率変化量は印加電圧に依存する。以上によって、印加電圧の変化にともなった反射電磁波強度の制御が可能となる。このときの具体的な変調度としては、pn接合への印加電圧が15Vのとき、反射率は0.1%から30%まで変化する。その変化量は30%になり、変調伝達関数MTFは0.99が得られる。
【0015】
上記実施例はp型領域とn型領域との配置を入れ替えても逆電圧の方向が変わるだけで動作原理は同じである。さらには、p−InGa1−yAs/InAl1−yAs多層膜層104とn−InGa1−yAs/InAl1−yAs多層膜110において、基本的には開始層と終端層との制約はない。
【0016】
また、i−AlAsSb/InzGa1−zAs多重量子井戸層107において、i−InzGa1−zAs層106はそのバンドギャップエネルギーがInPの格子不整合に対する膜厚の制限を越えていない半導体材料であればどんなものでもよく、二元、三元、四元、五元の混晶であっても良い。また基板にはGaAsやSiを用いることができ、その際にも同様に格子不整合に対する膜厚の制限を越えていない半導体材料であればどんなものでもよい。
【0017】
ここまでは変調の方式としてpn接合に対する電界印加のみを考慮に入れて説明してきた。これだけでも十分に高速な変調が可能であり、同時にバレイの幅を細くしてやることによって変調によって生じる側帯波をカットすることが可能となって変調による線幅の広がりを抑制することができる。さらにより高速な変調を行うために、外部から照射されるフェムト秒オーダーの光パルスを吸収させて励起子を励起させ、分極として電子と正孔からなる励起子が生じ、次にその励起子が光に変調される課程が連続的に起こり、この領域で発生した励起子が生成・消滅に伴い発する光波と強く結合してポラリトンと呼ばれる状態を形成するという現象を利用すればテラヘルツオーダーでの超高速変調が可能となる。この変換の周期は、光の振動数に対応する数フェムト秒(10−15秒)と非常に短く、このため、励起子ポラリトンでは励起子と光の位相が保存されて、コヒーレントな状態となって結晶中を伝搬する。
【0018】
励起子ポラリトンが共鳴している状態では、屈折率の異常分散が生じており、その屈折率は大きくなっている。すなわち、前術したように反射多層膜内のある一層の屈折率変化を超高速で発現させることができ、入射してきた電磁波の強度変調が実現できる。
【0019】
反射多層膜の膜厚設計について述べる。膜厚の設定は取り扱う電磁波の波長によって千差万別であり、波長領域が変わってしまえばそれに応じて膜厚と材料の選定が必要となってくる。いま、一例として入射してくる電磁波の波長が10μm(3テラヘルツ)であると仮定し、この電磁波強度を変調することを考える。
n−InGa1−yAs/InAl1−yAs多層膜104とp−InGa1−yAs/InAl1−yAs多層膜110に関しては単純に反射多層膜を決定すればよいので各層の膜厚dは材料の屈折率をnとして、以下の数2で表記される値に設定しておけばよい。
(数2) d=λ/4n
重要なのはi−AlAsSb/InGaAs多重量子井戸層107であって、i−AlAsSb層105をAlAs0.53Sb0.47、i−InGaAs層106をIn0.47Ga0.53Asとし、その膜厚比を7対3程度とした上でi−AlAsSb/InGaAs多重量子井戸層膜厚を光学長としてλ/4以外の値とすればよい。
【0020】
ここまでに述べてきた例は波長が極端に長い電磁波を仮定しているので吸収を考慮に入れる必要はなく、単に屈折率変化によってバレイの位置が変化することによって電磁波強度を変調することができる。
【0021】
もし、光通信などで用いられているような1.55μmの波長の光を扱う場合にはこのi−AlAsSb/InGaAs多重量子井戸層107はその実効バンドギャップエネルギーが入射光の波長に相当するエネルギーよりもわずかに大きくなるように井戸幅と障壁幅とを設定し、吸収を起こさないように考慮しておく必要がある。
【0022】
【発明の効果】
以上説明したように、本発明においては反射スペクトル中のバレイの移動を利用するため、所望の電磁波波長を自由に設定することができる。また反射スペクトルを作りこむ事ができる材料であれば、何であれ利用する事ができる。またその形態も面型半導体素子、ファイバー、導波路と様々な形態で実現できる。また、この電磁波強度変調器は共振器構造を必要としてないため、作成上の手間も同時に省くことができる。また、バレイが急峻であるため変調度も高く、消光比も大きいうえに変調によって生じる側帯波をカットできるため超高速での変調にも向いている。さらに、屈折率変化の手段として励起子ポラリトンを利用しているためミリ波に相当する波長(100μm)から光通信で利用している波長(1μm)まで利用する範囲を拡張することができるという利点も兼ね併せている。
【図面の簡単な説明】
【図1】本発明の第1の実施例にかかる変調器の断面図
【符号の説明】
101 n−InP基板
102 n−InyGa1−yAs層
103 n−InxAl1−xAs層
104 n−InyAl1−yAs/InyGa1−yAs多層膜
105 i−AlAsSb層
106 i−InGaAs層
107 i−AlAsSb/InGaAs多重量子井戸層
108 p−InyGa1−yAs層
109 p−InyAl1−yAs層
110 p−InyAl1−yAs/InyGa1−yAs多層膜
111 下部電極
112 上部電極
113 入射電磁波
114 出射電磁波

Claims (16)

  1. 絶対反射率が99%以上となるような反射スペクトルピーク中に少なくとも一つ以上のバレイを有し、その反射ピーク内での該バレイ位置を電界、磁界、光、応力等の外力を単一的もしくは複合的に用いて変化させることにより、
    エネルギーE、プランク定数h、波長λとしてE=2πh/λ
    なるエネルギーで入射してきた電磁波の反射強度及び透過強度の変調を行うことを特徴とする電磁波強度変調器。
  2. 請求項1記載の電磁波強度変調器において、絶対反射率が99%以上の反射スペクトルピーク中に少なくとも一つ以上のバレイを有する構造を複数の物質の交互積層によって構成し、
    電界、磁界、光、応力などの外部からの入力に対して屈折率値が変化し、その膜厚は任意であるような屈折率変化層を、
    屈折率が互いに異なる二つの物質を目的とする波長領域で使用できるよう適切な膜厚に設定して交互に積層してある第1の反射多層膜と、前記第1の反射多層膜と同様な条件で構成される第2の反射多層膜とで挟むような構成であって、
    前記第1の反射多層膜と屈折率変化層と第2の反射多層膜とを併せた該反射多層膜の中心付近に屈折率変化層が位置していて、屈折率変化層の屈折率が変化することによって反射ピーク内にあるバレイの位置が移動し、入射してくる電磁波および光の反射もしくは透過強度を変調することを特徴とする電磁波強度変調器。
  3. 請求項2記載の電磁波強度変調器において
    p型もしくはn型の半導体基板上に、基板と同一もしくは異なる材料である第1の半導体層と前記第1の半導体層とは屈折率もしくは誘電率が異なる第2の半導体層とを交互に積層し、p型もしくはn型の不純物を基板と同じ型になるように添加している第1の反射多層膜層と、
    不純物含有量が極めて低い半導体層であって、単一の材料もしくは超格子に代表されるような複数の材料によって構成されていて屈折率変化層としての機能を持つる第3の半導体層と、
    前記第1の反射多層膜層と同じ構成を有し、前記第1の反射多層膜層とは異なる型の不純物を添加してある第2の反射多層膜層とを前記第3の半導体層を前記第1の反射多層膜層と前記第2の反射多層膜層とで挟み込むように積層した反射多層膜で構成していることを特徴とする電磁波強度変調器。
  4. 請求項2から請求項3に記載の電磁波強度変調器において前記第1の反射多層膜と前記第2の反射多層膜層とを構成している前記が入射してくる電磁波の波長λに対し、材料固有の屈折率をn、mを自然数として、前記第1の半導体層と前記第2の半導体層の膜厚がλ(2m+1)/4nであることを特徴とする電磁波強度変調器。
  5. 請求項2から請求項4に記載の電磁波強度変調器における前記第3の半導体層内の光パルスの光波を吸収して励起子の励起が可能な領域で、この領域で発生した励起子が前記光パルスの光波及び生成・消滅に伴い発する光波と強く結合してポラリトンと呼ばれる状態を形成することによって高速に屈折率変化することを特徴とする電磁波強度変調器。
  6. 請求項2から請求項5に記載の電磁波強度変調器における化合物半導体基板、第1の化合物半導体、第2の化合物半導体層、量子井戸層及び量子井戸を挟むバリア層がそれぞれGaAs、AlAs、AlxGa1−xA、GaAsおよびAlAsであることを特徴とする電磁波強度変調器。
  7. 請求項2から請求項5に記載の電磁波強度変調器における化合物半導体基板、第1の化合物半導体、第2の化合物半導体層、量子井戸層及び量子井戸を挟むバリア層がそれぞれInP、InxAl1−xAsまたはAlAsxSb1−x、InxGa1−xAsyP1−y、InGa1−xAs1−y−zPyNzおよびInxAl1−xAsまたはAlAsxSb1−xであることを特徴とする電磁波強度変調器。
  8. 導波路中に周期構造を有し、且つ該周期構造に起因する反射スペクトルを持ち、請求項1および請求項2記載の特徴を用いて変調を行う電磁波強度変調器。
  9. 請求項8に記載された電磁波強度変調器において、導波路が光ファイバーであり、光ファイバー中のコア部分にエキシマレーザーなどで露光して周期構造を形成しているファイバーグレーティングである電磁波強度変調器。
  10. 請求項8および請求項9に記載の電磁波強度変調器において、ファイバーを適切な張力で引っ張ることによりその物理的長さを変化させてしまい、反射ピーク内でのバレイの位置を変化させることによって電磁波強度を変調することを特徴とする電磁波強度変調器。
  11. 請求項8に記載された電磁波強度変調器において、導波路の構成および/または周期構造の構成がフォトニッククリスタルで構成されていることを特徴とする電磁波強度変調器。
  12. 請求項11記載の電磁波強度変調器において、導波路内の周期構造を形成しているフォトニッククリスタルにおいて、屈折率変化を与えるべき任意の一部分のみの疑似結晶の大きさを変えてあることを特徴とする電磁波強度変調器。
  13. 請求項12記載の電磁波強度変調器において、フォトニッククリスタルによって構成され、屈折率変化を与えるべき任意の一部分のみの疑似結晶の大きさを変えてある屈折率変化疑似結晶に電界、磁界、光、応力等の外力を単一的もしくは複合的に用いて変化させることにより、
    エネルギーE、プランク定数h、波長λとしてE=2πh/λ
    なるエネルギーで入射してきた電磁波の反射強度及び透過強度の変調を行うことを特徴とする電磁波強度変調器。
  14. 請求項11から請求項13に記載の電磁波強度変調器において、導波路の断面構造がp型もしくはn型の半導体基板上に、基板と同一もしくは異なる材料であって、基板と同じ型の不純物が添加されている第1の半導体層と、
    不純物含有量が極めて低い半導体層であって、前記第1の半導体層よりも屈折率が低くなるように、単一の材料もしくは超格子に代表されるような複数の材料によって構成されている第2の半導体層と、
    不純物含有量が極めて低い半導体層であって、前記第2の半導体層よりもバンドギャップエネルギーが小さく、その膜厚が10nm以下である様な量子井戸層と、
    不純物含有量が極めて低い半導体層であって、前記第1の半導体層よりも屈折率が低くなるように、単一の材料もしくは超格子に代表されるような複数の材料によって構成されている第3の半導体層と、
    p型もしくはn型の半導体基板上に、基板と同一もしくは異なる材料であって、基板とは異なる型の不純物が添加されている第4の半導体層とを順次積層してあるような構造となっていることを特徴とする電磁波強度変調器。
  15. 請求項14に記載の電磁波強度変調器における化合物半導体基板、第1の化合物半導体、第2の化合物半導体層、量子井戸層、第3の化合物半導体層および第4の化合物半導体層がそれぞれGaAs、GaAs、AlxGa1−xA/GaAs超格子、GaAs、AlxGa1−xA/GaAs超格子およびGaAsであることを特徴とする電磁波強度変調器。
  16. 請求項14に記載の電磁波強度変調器における化合物半導体基板、第1の化合物半導体、第2の化合物半導体層、量子井戸層、第3の化合物半導体層および第4の化合物半導体層がそれぞれInP、In0.53Ga0.47As、InxAl1−xAsまたはAlAsxSb1−xとIn0.53Ga0.47Asで構成される超格子、InGa1−xAs1−y−zPyNzまたはInGaAsSb、InxAl1−xAsまたはAlAsxSb1−xとIn0.53Ga0.47Asで構成される超格子およびIn0.53Ga0.47Asであることを特徴とする電磁波強度変調器。
JP2003012245A 2003-01-21 2003-01-21 電磁波強度変調器 Pending JP2004226531A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012245A JP2004226531A (ja) 2003-01-21 2003-01-21 電磁波強度変調器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012245A JP2004226531A (ja) 2003-01-21 2003-01-21 電磁波強度変調器

Publications (1)

Publication Number Publication Date
JP2004226531A true JP2004226531A (ja) 2004-08-12

Family

ID=32900918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012245A Pending JP2004226531A (ja) 2003-01-21 2003-01-21 電磁波強度変調器

Country Status (1)

Country Link
JP (1) JP2004226531A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021259A1 (ja) * 2016-07-23 2018-02-01 国立大学法人千葉大学 赤外光素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021259A1 (ja) * 2016-07-23 2018-02-01 国立大学法人千葉大学 赤外光素子
JPWO2018021259A1 (ja) * 2016-07-23 2019-05-16 国立大学法人千葉大学 赤外光素子

Similar Documents

Publication Publication Date Title
US20120293854A1 (en) Non-linear materials and related devices
JP5207381B2 (ja) 結合量子井戸構造
Kitada et al. A GaAs/AlAs multilayer cavity with self-assembled InAs quantum dots embedded in strain-relaxed barriers for ultrafast all-optical switching applications
JP2004226531A (ja) 電磁波強度変調器
JP2007335686A (ja) 量子井戸サブバンド間遷移デバイス
FR2655433A1 (fr) Procede et dispositif de modulation electro-optique, utilisant la transition oblique a basse energie d'un super-reseau tres couple.
Smirnov et al. Photonic bandgap structures with nipi layers
EP3948409B1 (fr) Modulateur ultra-rapide de l'amplitude d'un rayonnement laser
JP4585171B2 (ja) 光変調器
Sadeghi et al. Coherent control of time delay and localized electromagnetic modes in active and passive one-dimensional photonic band gaps
US6768131B2 (en) Semiconductor device with gigantic photon-photon interactions
JPS62169115A (ja) 光変調器
JP2686219B2 (ja) 光子バンド構造のミラー
Nefedov et al. Optical gain in one-dimensional photonic band gap structures with nipi crystal layers
US11002996B2 (en) Metallic quantum wells
RU2477503C2 (ru) Полностью оптический модулятор лазерного излучения на основе многослойных гетероструктур (варианты)
JP2005208470A (ja) 光変調器
JP2010534868A (ja) 可飽和吸収体を用いた光論理デバイス
Qasaimeh Bistability characteristics of different types of optical modes amplified by quantum dot vertical cavity semiconductor optical amplifiers
Yasunaga et al. Strongly Enhanced Four-Wave Mixing Signal from GaAs/AlAs Cavity with InAs Quantnm Dots Embedded in Strain-Relaxed Barriers
Deyasi Electronic band structure of quantum cascade laser
Suzuki FDTD simulation of wavelength conversion of ultrashort pulses utilizing intersubband absorption in AlGaN/GaN quantum wells
JP3437372B2 (ja) 半導体空間光変調器用反射多層膜
JP2003195238A (ja) 半導体空間光変調器用反射多層膜
JPH07248511A (ja) 光半導体装置