JP2004226242A - Water detector - Google Patents

Water detector Download PDF

Info

Publication number
JP2004226242A
JP2004226242A JP2003014579A JP2003014579A JP2004226242A JP 2004226242 A JP2004226242 A JP 2004226242A JP 2003014579 A JP2003014579 A JP 2003014579A JP 2003014579 A JP2003014579 A JP 2003014579A JP 2004226242 A JP2004226242 A JP 2004226242A
Authority
JP
Japan
Prior art keywords
pulse generating
generating means
water
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003014579A
Other languages
Japanese (ja)
Inventor
Shinji Taketsu
伸治 武津
Minami Yamada
美波 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003014579A priority Critical patent/JP2004226242A/en
Publication of JP2004226242A publication Critical patent/JP2004226242A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an electrolysis amount of water while preventing corrosion of an electrode in a water detector. <P>SOLUTION: This detector is constituted of two electrodes 1, 2 provided under water, a positive pulse generating means 3 and a negative pulse generating means 4 for impressing alternately positive and negative voltages between the two electrodes, an electric continuity detecting means 6 for detecting a current flowing between the two electrodes, and a timer means 7 for driving intermittently and alternately the positive pulse generating means 3 and the negative pulse generating means 4. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、導電性の水の有無を検知する水検知装置に関するものである。
【0002】
【従来の技術】
従来の水検知装置は、2本の電極に交流の電圧を印加し、流れる電流を検知することで水の有無を検知するものがある(例えば、特許文献1、特許文献2参照)。このような水検知装置は、温水暖房ボイラーによく使用される。温水暖房ボイラーは、寒冷地で家全体を暖房するセントラルヒーティングの熱源機として用いられてきた。温水暖房ボイラーで温水を作り、その温水を各部屋の放熱器に循環させることで暖房を行うものである。このようなシステムにおいてボイラーの空焚きを防止するために、循環水の有無を検知する必要があり、水検知装置を設けていた。
【0003】
【特許文献1】
特公平2−8247号公報
【特許文献2】
特開平4−125233号公報
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の水検知装置では、交流印加により電極の腐蝕は防止されるものの、水の電気分解による酸素ガス、水素ガスの発生は避けられなかった。水が電気分解されガスが発生すると、その分、循環水の補充が必要であった。
【0005】
本発明は上記課題を解決するもので、電極の腐蝕を防止しつつ、水の電気分解を極めて少量に抑制できる水検知装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するため、水中に設けた2本の電極と、前記2本の電極間に交互に正負の電圧を印加するための正パルス発生手段と、負パルス発生手段と、前記2本の電極間に流れる電流を検知する導通検知手段と、前記正パルス発生手段と前記負パルス発生手段とを間欠的に交互に駆動するタイマー手段で構成したものである。
【0007】
上記発明によれば、タイマー手段により、正パルス発生手段と負パルス発生手段の駆動を交互に行っているので、電位のかたよりが無く、電極の腐蝕を防止できる。また、前記タイマー手段により、正パルス発生手段と負パルス発生手段を間欠的に駆動しているので、連続的に駆動する場合に比べて、電極に流す電流を削減でき、水の電気分解の量を抑えることができる。
【0008】
【発明の実施の形態】
請求項1に記載の発明は、水中に設けた2本の電極と、前記2本の電極間に交互に正負の電圧を印加するための正パルス発生手段と、負パルス発生手段と、前記2本の電極間に流れる電流を検知する導通検知手段と、前記正パルス発生手段と前記負パルス発生手段とを間欠的に交互に駆動するタイマー手段で構成したものである。
【0009】
そして、タイマー手段により、正パルス発生手段と負パルス発生手段の駆動を交互に行っているので、電位のかたよりが無く、電極の腐蝕を防止できる。また、タイマー手段により、正パルス発生手段と負パルス発生手段を間欠的に駆動しているので、連続的に駆動する場合に比べて、電極に流す電流を削減でき、水の電気分解の量を抑えることができる。
【0010】
請求項2に記載の発明は、導通検知手段は、タイマー手段と同期したタイミングで検知を行うよう構成したものである。
【0011】
そして、導通検知手段で水の導通を検知できるのは電極に電流を流している期間だけである。しかしながら、タイマー手段で、正パルス発生手段または負パルス発生手段を駆動する時間と、駆動停止する時間を設定しているが、駆動停止する時間の比率を高くすればするほど、電極に流す単位時間当たりの電流を削減できる。したがって、水の電気分解の量を抑えるために、電極に電流を流す期間を短くすると、導通検知手段の検知結果電圧をコンデンサなどにより保持するのが困難になる。
【0012】
しかし、タイマー手段で正パルス発生手段または負パルス発生手段を駆動するタイミングに合わせて、導通検知手段で水の導通を検知すれば、駆動停止時間を長く設定しても、導通検知手段の検知結果電圧をコンデンサなどにより保持することなく、水の導通検知することができる。
【0013】
【実施例】
以下、本発明の一実施例について図面を用いて説明する。図1は水検知装置の回路ブロック図、図2は詳細な回路図、図3は各部の電圧波形を示した図である。
【0014】
まず、図1において、1と2は電極、3は電極1に正のパルス電圧を印加するための正パルス発生手段、4は電極1に負のパルス電圧を印加するための負パルス発生手段、6は電極1と電極2間の導通を検知する導通検知手段、7は正パルス発生手段3と負パルス発生手段4の駆動と停止の時間を設定するタイマー手段、8は制御部である。続いて、具体的な回路図である図2において、1と2は電極、9と10はトランジスタで、前記トランジスタ9と10は正パルス発生手段3の構成要素となっている。11はトランジスタで、負パルス発生手段4の構成要素となっている。12はコンデンサで、直流から交流を作るために設けている。13と14はトランジスタである。15は抵抗で、前記トランジスタ13のエミッタ−ベース間に接続される。16は抵抗で、一端はトランジスタ13のベースに、他端は電極1に接続される。トランジスタ13と14、抵抗15と16は、導通検知手段6の構成要素となっている。17はマイクロコンピュータ(以下、マイコンと省略する)で、トランジスタ9と11の駆動、停止を行い、タイマー手段7の機能と、制御部8の機能を併せ持つ。18と19はマイコン17の出力、20はコンデンサ12の電極1側の電圧測定端子、21はマイコン17の入力端子である。22はダイオードで、トランジスタ13のベースにアノードを接続し、トランジスタ13のエミッタにカソードを接続している。
【0015】
このように構成された水検知回路を図3の電圧波形図を用いて、その動作を説明する。図3において、aは出力18の電圧波形で、正パルス発生手段3に対する駆動波形を示す。bは出力19の電圧波形で、負パルス発生手段4に対する駆動波形を示す。出力18と19は0.5秒ごとに交互に出力されている。また、正パルス発生手段3と負パルス発生手段4の駆動時間は、0.05秒となっている。
【0016】
まず、図3のaのように、出力18にH電圧が出力されると、トランジスタ9がオンし、続いてトランジスタ10がオンする。コンデンサ12の+極が、Vcc電圧(例えば5V)に引き上げられる。よって、コンデンサ12の−極もVcc電圧まで引き上げられる。コンデンサ12の−極は、電圧測定端子20と同じである。この時の電圧波形は、図3のcである。電圧測定端子20の電圧が高いとき、電極1と電極2の間に水が存在すると、電圧測定端子20から抵抗15、抵抗16を経由して、電極2へ電流が流れる。抵抗15を流れる電流で電圧降下が発生し、トランジスタ13のベース−エミッタ間電圧が約0.6V程度になると、トランジスタ13がオンする。続いて、トランジスタ14もオンし、マイコン17の入力端子21はL電圧となる。図3のdが入力端子21の電圧波形である。出力端子18がオンした直後に入力端子21の状態を検知し、L電圧であれば、電極1と電極2間の導通があると判断できる。このタイミングで、入力端子21がH電圧で有れば、導通無しと判断できる。出力端子18がオフする直前では、コンデンサ12に充電ができているので、コンデンサ12の+極は、Vcc電圧に上昇している。また、−極はGNDレベルになっている。
【0017】
次に、出力端子19がオンしたときは、トランジスタ11がオンし、コンデンサ12の+極は、GNDレベルになる。コンデンサ12にはVcc電圧が充電されていたので、+極がGNDレベルになると、コンデンサ12の−極は、−Vccレベルに引き下げられる。このようにして、負パルスが発生される。この時は、電極2から電極1に向かって電流が流れる。その電流は、抵抗16、ダイオード22を経由して、コンデンサ12の−極に流れ込み、コンデンサ12を放電させる。この負パルスを発生しているときには、トランジスタ13はオンしないので、導通検知は行われない。
【0018】
以上のように、電極1に対して、正パルス発生手段3と負パルス発生手段4を交互に駆動することにより、交流電圧を電極1に印加することができ、電位のかたよりがなく、電極を腐蝕させることがない。また、正パルス発生手段3と負パルス発生手段4の駆動の間に、停止期間を設け、間欠的に駆動することにより、電極1と電極2の間に流す単位時間当たりの電流を削減することができる。本実施例では正パルス発生手段3の駆動時間が0.05秒で、次に負パルス発生手段4を駆動するまでの停止期間が0.45秒である。よって、停止期間がない従来例よりも、10分の1に電流を減らすことができ、水の電気分解の量も10分の1に低減できる。
【0019】
なお、タイマー手段7は、マイコン17で構成したが、ディスクリート部品で構成してもよいことはい言うまでもない。
【0020】
なお、本実施例では、正パルス発生手段3と負パルス発生手段4の駆動間隔を0.5秒としたが、間隔を伸ばせば伸ばすほど、電極1と電極2間に流れる単位時間当たりの電流を低減でき、水の電気分解量を低減できる。
【0021】
なお、電極2は、水を入れるタンクで兼用してもよい。
【0022】
なお、図2の回路図上で示したVccは、電極1に印加する最大電圧を考慮して設定すればよい。
【0023】
なお、本実施例では、マイコン17を使用し、導通検知手段6の検知タイミングを、タイマー手段7と同期したタイミングで検知している。しかしながら、トランジスタ14のコレクタ−エミッタ間に静電容量の大きなコンデンサを接続し、トランジスタ14のコレクタに接続されている抵抗の抵抗値を大きくすることにより、前記コンデンサへの充電時定数が大きくなり、検知タイミングを同期させる必要はなくなる。例えば、コンデンサの静電容量を100μF、抵抗の抵抗値を100kΩとすれば、トランジスタ14がオンして、コンデンサの放電が行われた後、トランジスタ14がオフして、コンデンサの充電が始まり、次のトランジスタ14のオンまでの1秒間に充電される電圧は、約0.5Vであり、マイコンのL電圧の判定範囲である。このように、導通検知手段のタイミングを同期させなくてもよいが、同期させることにより、コンデンサなどを設ける必要がなく、安価に構成できる。また、同期させることにより、正パルス発生手段3と負パルス発生手段4の駆動間隔を自由に設定することができる。例えば、間隔を1時間であるとか、1日であるとか長時間に設定することができ、水の電気分解を極めて少量に抑制することもできる。
【0024】
【発明の効果】
以上のように本発明によれば、電極に印加される電位のかたよりがなく、電極の腐蝕を防止できる。また、単位時間に流れる電流を低減できるので、水の電気分解を極めて少量に抑制できる。
【図面の簡単な説明】
【図1】本発明の一実施例における水検知装置の回路ブロック図
【図2】同装置における水検知回路の回路図
【図3】同装置における水検知回路の電圧波形図
【符号の説明】
1 電極
2 電極
3 正パルス発生手段
4 負パルス発生手段
6 導通検知手段
7 タイマー手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water detection device that detects the presence or absence of conductive water.
[0002]
[Prior art]
2. Description of the Related Art Some conventional water detection devices detect the presence or absence of water by applying an AC voltage to two electrodes and detecting a flowing current (for example, see Patent Documents 1 and 2). Such a water detection device is often used for a hot water heating boiler. Hot water heating boilers have been used as a central heating heat source to heat the entire house in cold climates. Heating is performed by making hot water with a hot water heating boiler and circulating the hot water through a radiator in each room. In such a system, it is necessary to detect the presence or absence of circulating water in order to prevent the boiler from burning in an empty state, and a water detecting device is provided.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 2-8247 [Patent Document 2]
JP-A-4-125233
[Problems to be solved by the invention]
However, in the above-described conventional water detecting device, although the electrode is prevented from being corroded by applying an alternating current, generation of oxygen gas and hydrogen gas due to electrolysis of water cannot be avoided. When water was electrolyzed to generate gas, circulating water had to be refilled accordingly.
[0005]
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a water detection device capable of suppressing the electrolysis of water to a very small amount while preventing corrosion of an electrode.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides two electrodes provided in water, a positive pulse generating means for alternately applying a positive and negative voltage between the two electrodes, a negative pulse generating means, It comprises a conduction detecting means for detecting a current flowing between two electrodes, and a timer means for intermittently driving the positive pulse generating means and the negative pulse generating means alternately.
[0007]
According to the invention, since the positive pulse generating means and the negative pulse generating means are alternately driven by the timer means, there is no bias in the potential and the electrode can be prevented from being corroded. Further, since the positive pulse generating means and the negative pulse generating means are intermittently driven by the timer means, it is possible to reduce the current flowing through the electrodes and reduce the amount of Can be suppressed.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 includes two electrodes provided in water, positive pulse generating means for alternately applying positive and negative voltages between the two electrodes, negative pulse generating means, It comprises a conduction detecting means for detecting a current flowing between the electrodes and a timer means for intermittently driving the positive pulse generating means and the negative pulse generating means alternately.
[0009]
Since the positive pulse generating means and the negative pulse generating means are alternately driven by the timer means, there is no bias in the potential and the electrode can be prevented from being corroded. Also, since the positive pulse generating means and the negative pulse generating means are intermittently driven by the timer means, the current flowing through the electrodes can be reduced compared to the case of continuous driving, and the amount of water electrolysis can be reduced. Can be suppressed.
[0010]
According to a second aspect of the present invention, the conduction detecting means is configured to perform the detection at a timing synchronized with the timer means.
[0011]
The conduction detection means can detect the conduction of water only during the period when the current is flowing through the electrodes. However, the time for driving the positive pulse generating means or the negative pulse generating means and the time for stopping the driving are set by the timer means. Per unit current can be reduced. Therefore, if the period during which a current is applied to the electrodes is shortened in order to suppress the amount of water electrolysis, it becomes difficult to hold the detection result voltage of the conduction detecting means by a capacitor or the like.
[0012]
However, if the conduction detecting means detects the conduction of water in accordance with the timing of driving the positive pulse generating means or the negative pulse generating means by the timer means, the detection result of the conduction detecting means can be obtained even if the drive stop time is set long. The conduction of water can be detected without holding the voltage by a capacitor or the like.
[0013]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit block diagram of the water detecting device, FIG. 2 is a detailed circuit diagram, and FIG. 3 is a diagram showing voltage waveforms of respective parts.
[0014]
First, in FIG. 1, 1 and 2 are electrodes, 3 is a positive pulse generating means for applying a positive pulse voltage to the electrode 1, 4 is a negative pulse generating means for applying a negative pulse voltage to the electrode 1, Reference numeral 6 denotes conduction detecting means for detecting conduction between the electrode 1 and the electrode 2, reference numeral 7 denotes timer means for setting the time for driving and stopping the positive pulse generating means 3 and negative pulse generating means 4, and reference numeral 8 denotes a control unit. Subsequently, in FIG. 2 which is a specific circuit diagram, 1 and 2 are electrodes, 9 and 10 are transistors, and the transistors 9 and 10 are components of the positive pulse generating means 3. Reference numeral 11 denotes a transistor, which is a component of the negative pulse generating means 4. Reference numeral 12 denotes a capacitor provided to generate an alternating current from a direct current. 13 and 14 are transistors. A resistor 15 is connected between the emitter and the base of the transistor 13. A resistor 16 has one end connected to the base of the transistor 13 and the other end connected to the electrode 1. The transistors 13 and 14 and the resistors 15 and 16 are components of the conduction detecting means 6. Reference numeral 17 denotes a microcomputer (hereinafter abbreviated as a microcomputer) which drives and stops the transistors 9 and 11, and has both the function of the timer means 7 and the function of the control unit 8. Reference numerals 18 and 19 denote outputs of the microcomputer 17, reference numeral 20 denotes a voltage measuring terminal on the electrode 1 side of the capacitor 12, and reference numeral 21 denotes an input terminal of the microcomputer 17. A diode 22 has an anode connected to the base of the transistor 13 and a cathode connected to the emitter of the transistor 13.
[0015]
The operation of the water detection circuit thus configured will be described with reference to the voltage waveform diagram of FIG. In FIG. 3, a is a voltage waveform of the output 18 and shows a driving waveform for the positive pulse generating means 3. b is a voltage waveform of the output 19, and shows a driving waveform for the negative pulse generating means 4. Outputs 18 and 19 are output alternately every 0.5 seconds. The driving time of the positive pulse generating means 3 and the negative pulse generating means 4 is 0.05 seconds.
[0016]
First, as shown in FIG. 3A, when the H voltage is output to the output 18, the transistor 9 turns on, and then the transistor 10 turns on. The positive pole of the capacitor 12 is pulled up to the Vcc voltage (for example, 5V). Therefore, the negative pole of the capacitor 12 is also pulled up to the Vcc voltage. The negative pole of the capacitor 12 is the same as the voltage measuring terminal 20. The voltage waveform at this time is shown in FIG. When water is present between the electrode 1 and the electrode 2 when the voltage of the voltage measuring terminal 20 is high, a current flows from the voltage measuring terminal 20 to the electrode 2 via the resistors 15 and 16. When a voltage drop occurs due to the current flowing through the resistor 15 and the voltage between the base and the emitter of the transistor 13 becomes about 0.6 V, the transistor 13 is turned on. Subsequently, the transistor 14 is also turned on, and the input terminal 21 of the microcomputer 17 becomes the L voltage. FIG. 3D shows a voltage waveform of the input terminal 21. Immediately after the output terminal 18 is turned on, the state of the input terminal 21 is detected, and if the voltage is the L voltage, it can be determined that there is conduction between the electrode 1 and the electrode 2. At this timing, if the input terminal 21 is at the H voltage, it can be determined that there is no conduction. Immediately before the output terminal 18 is turned off, since the capacitor 12 has been charged, the positive pole of the capacitor 12 has risen to the Vcc voltage. The negative pole is at the GND level.
[0017]
Next, when the output terminal 19 is turned on, the transistor 11 is turned on, and the positive pole of the capacitor 12 is at the GND level. Since the capacitor 12 has been charged with the Vcc voltage, when the + pole becomes the GND level, the-pole of the capacitor 12 is lowered to the -Vcc level. Thus, a negative pulse is generated. At this time, a current flows from the electrode 2 to the electrode 1. The current flows into the negative pole of the capacitor 12 via the resistor 16 and the diode 22 to discharge the capacitor 12. When the negative pulse is being generated, the transistor 13 does not turn on, so that no conduction detection is performed.
[0018]
As described above, by alternately driving the positive pulse generating means 3 and the negative pulse generating means 4 with respect to the electrode 1, an AC voltage can be applied to the electrode 1, and there is no bias in the electrode. Does not corrode. Further, a stop period is provided between the driving of the positive pulse generating means 3 and the driving of the negative pulse generating means 4, and the intermittent driving is performed to reduce the current per unit time flowing between the electrodes 1 and 2. Can be. In this embodiment, the driving time of the positive pulse generating means 3 is 0.05 seconds, and the stop period until the next driving of the negative pulse generating means 4 is 0.45 seconds. Therefore, the current can be reduced to one tenth and the amount of water electrolysis can be reduced to one tenth as compared with the conventional example having no stop period.
[0019]
Although the timer means 7 is constituted by the microcomputer 17, it goes without saying that the timer means 7 may be constituted by discrete components.
[0020]
In the present embodiment, the driving interval between the positive pulse generating means 3 and the negative pulse generating means 4 is set to 0.5 seconds. However, the longer the interval is, the more the current flowing between the electrode 1 and the electrode 2 per unit time. And the amount of water electrolysis can be reduced.
[0021]
In addition, the electrode 2 may be also used as a tank for storing water.
[0022]
Vcc shown in the circuit diagram of FIG. 2 may be set in consideration of the maximum voltage applied to the electrode 1.
[0023]
In this embodiment, the microcomputer 17 is used to detect the detection timing of the conduction detecting means 6 at a timing synchronized with the timer means 7. However, by connecting a capacitor having a large capacitance between the collector and the emitter of the transistor 14 and increasing the resistance value of the resistor connected to the collector of the transistor 14, the time constant for charging the capacitor increases. There is no need to synchronize the detection timing. For example, assuming that the capacitance of the capacitor is 100 μF and the resistance of the resistor is 100 kΩ, the transistor 14 is turned on, the capacitor is discharged, the transistor 14 is turned off, and the capacitor starts charging. The voltage charged for one second until the transistor 14 turns on is about 0.5 V, which is within the L voltage determination range of the microcomputer. As described above, the timing of the conduction detecting means does not need to be synchronized, but by synchronizing, there is no need to provide a capacitor or the like, and the configuration can be made inexpensively. Further, by synchronizing, the drive interval between the positive pulse generating means 3 and the negative pulse generating means 4 can be set freely. For example, the interval can be set to one hour, one day, or a long time, and the electrolysis of water can be suppressed to a very small amount.
[0024]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent the electrode from being corroded, without depending on the potential applied to the electrode. Further, since the current flowing per unit time can be reduced, the electrolysis of water can be suppressed to a very small amount.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram of a water detection device according to an embodiment of the present invention. FIG. 2 is a circuit diagram of a water detection circuit in the device. FIG. 3 is a voltage waveform diagram of a water detection circuit in the device.
1 electrode 2 electrode 3 positive pulse generating means 4 negative pulse generating means 6 conduction detecting means 7 timer means

Claims (2)

水中に設けた2本の電極と、前記2本の電極間に交互に正負の電圧を印加するための正パルス発生手段と、負パルス発生手段と、前記2本の電極間に流れる電流を検知する導通検知手段と、前記正パルス発生手段と前記負パルス発生手段とを間欠的に交互に駆動するタイマー手段で構成される水検知装置。Two electrodes provided in water, positive pulse generating means for alternately applying positive and negative voltages between the two electrodes, negative pulse generating means, and detecting a current flowing between the two electrodes A water detecting device comprising: a conduction detecting means for performing the operation; and a timer means for intermittently driving the positive pulse generating means and the negative pulse generating means alternately. 導通検知手段は、タイマー手段と同期したタイミングで検知を行うよう構成した請求項1記載の水検知装置。2. The water detecting device according to claim 1, wherein the conduction detecting means is configured to perform the detection at a timing synchronized with the timer means.
JP2003014579A 2003-01-23 2003-01-23 Water detector Pending JP2004226242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014579A JP2004226242A (en) 2003-01-23 2003-01-23 Water detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014579A JP2004226242A (en) 2003-01-23 2003-01-23 Water detector

Publications (1)

Publication Number Publication Date
JP2004226242A true JP2004226242A (en) 2004-08-12

Family

ID=32902589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014579A Pending JP2004226242A (en) 2003-01-23 2003-01-23 Water detector

Country Status (1)

Country Link
JP (1) JP2004226242A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088487A2 (en) * 2009-01-30 2010-08-05 Goodrich Corporation Level sensing device
JP2017194435A (en) * 2016-04-22 2017-10-26 株式会社ノーリツ Liquid level detection device
CN110160597A (en) * 2019-06-11 2019-08-23 宁波市机电工业研究设计院有限公司 A kind of water level detection circuit based on positive and negative symmetrical square wave direct current

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088487A2 (en) * 2009-01-30 2010-08-05 Goodrich Corporation Level sensing device
WO2010088487A3 (en) * 2009-01-30 2010-09-23 Goodrich Corporation Conductive fluid level sensing device
US8601866B2 (en) 2009-01-30 2013-12-10 Goodrich Corporation Aircraft potable water system
JP2017194435A (en) * 2016-04-22 2017-10-26 株式会社ノーリツ Liquid level detection device
CN110160597A (en) * 2019-06-11 2019-08-23 宁波市机电工业研究设计院有限公司 A kind of water level detection circuit based on positive and negative symmetrical square wave direct current

Similar Documents

Publication Publication Date Title
JP3763415B1 (en) Average current detection circuit
JP4751108B2 (en) Control circuit for separately excited DC / DC converter and power supply device, light emitting device, and electronic device using the same
JP2006032017A (en) Lamp operation control device and its method
TW200945746A (en) Switching regular with boosted auxiliary winding supply
JP2006109546A (en) Dc power supply
JP2005221676A5 (en)
JP4318659B2 (en) Discharge lamp driving device
JP6032749B2 (en) Switching power supply
JP6649622B2 (en) Capacitor discharge circuit
JP2012237283A (en) Ion current detector
JP2008064539A (en) Electronic ammeter
US20100109542A1 (en) Electronic ballast with controlled lamp preheating
JP2008181814A (en) Lighting device of high pressure discharge lamp
JP2004226242A (en) Water detector
JP2006296118A (en) Charger
CN111969551B (en) Leakage protection circuit, control method thereof and driving circuit
TWI268123B (en) Feedback sampling control circuit for lamp driving system
KR101542578B1 (en) Water level sensor circuit
JP2019092254A (en) Low-voltage detection device
JP2010521766A (en) Lamp drive circuit and detection circuit for detecting the end of life state
JP2011106987A (en) Electricity source and method for determining useful life of capacitor
JP2005123977A (en) Zero-cross point detection apparatus and heater controller using the same
JP5111819B2 (en) Permission signal generation circuit and power supply circuit for flash discharge tube using the same
KR20150112838A (en) Power supply device comprising the same
JP2003045691A (en) Charging circuit for stroboscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070629

A131 Notification of reasons for refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325