JP2004226153A - Diagnosing method for evacuation installation - Google Patents

Diagnosing method for evacuation installation Download PDF

Info

Publication number
JP2004226153A
JP2004226153A JP2003012109A JP2003012109A JP2004226153A JP 2004226153 A JP2004226153 A JP 2004226153A JP 2003012109 A JP2003012109 A JP 2003012109A JP 2003012109 A JP2003012109 A JP 2003012109A JP 2004226153 A JP2004226153 A JP 2004226153A
Authority
JP
Japan
Prior art keywords
leak
amount
vacuum
evacuation
ejectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003012109A
Other languages
Japanese (ja)
Other versions
JP4112991B2 (en
Inventor
Muneyasu Nasu
宗泰 那須
Takahiro Oshima
高弘 大島
Satoshi Ito
智 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003012109A priority Critical patent/JP4112991B2/en
Publication of JP2004226153A publication Critical patent/JP2004226153A/en
Application granted granted Critical
Publication of JP4112991B2 publication Critical patent/JP4112991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diagnosing method for an evacuation installation, dispensing with placement of any new device in particular, and detecting not only the position of a leak but also its scale. <P>SOLUTION: According to this diagnosing method for an evacuation installation, the position of a leak and the scale of the leak are specified in an evacuation installation in which a plurality of ejectors are series-connected. This method is characterized in that the plurality of ejectors are sequentially operated from the downstream side (where the vacuum tank side is assumed to be upstream), that the amount of leak in an evacuation system is found for each operation step, and that a difference between the amount of leak in a relevant step and the amount of leak in a step prior to the relevant step is assumed to be the amount of leak in an ejector newly operated in the relevant step, with respect to the respective operation steps. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、RH脱ガス設備、あるいはDH脱ガス設備など真空処理に供する真空排気設備の設備診断方法に関するものである。
【0002】
【従来の技術】
例えば、RH脱ガス設備などに用いる真空排気設備としては、排気用のスチームエジェクターを複数個直列に接続したものが一般的である。エジェクターを作動することにより最も上流側の真空槽内を真空にし、それによって取鍋内溶鋼を真空槽内に吸い上げ真空に晒し、脱水素、脱炭などの脱ガス処理を行なう。
【0003】
しかし、排気設備も経年劣化などでフランジ部の歪みあるいは、腐食による破孔などにより排気系にリークが生じる。排気系にリークが生じると系内にガスが導入され真空排気速度が落ちたり、真空槽内が所定の真空度まで到達しなかったりし、脱ガス効率が低下し、あるいは攪拌不足を招き、品質トラブルなどの原因となる。従って、この排気系のリークについては、迅速な発見と対応処置が重要である。
従来、このリーク発生の検知方法として特許文献1に開示されているように、排気系の振動を検出する振動センサを設け、振動の変化によりリーク箇所を検知する方法があった。
【0004】
【特許文献1】
特開昭63−98537号公報
【0005】
【発明が解決しようとする課題】
しかし、前記従来の方法では、新たに振動を検知する装置の設置が必要であり、また振動だけでは、リークの規模を検知することはできない。
本発明は、特に新たな装置の設置を必要とせず、また、リークの箇所ばかりでなく、その規模をも検知し得る真空排気設備の診断方法を提供することを目的とする。
【0006】
【課題を解決するため手段】
本発明は前記課題を有利に解決しようとするもので、その主旨は特許請求の範囲に記載の通り、
(1)複数のエジェクターを直列に接続した真空排気設備におけるリーク箇所及びリーク規模を特定する真空排気設備の診断方法であって、前記複数のエジェクターを下流側(但し、真空槽側を上流とする)から順次作動し、順次作動した各作動ステップ毎に真空排気系におけるリーク量を求め、当該作動ステップのリーク量と当該ステップ前の作動ステップのリーク量との差を当該ステップで新たに作動したエジェクターにおけるリーク量とすることを特徴とする真空排気設備の診断方法。
(2)前記各作動ステップのリーク量を、当該ステップの理論上の真空排気速度と実績真空排気速度との偏差の積分値から求めることを特徴とする前記(1)記載の真空排気設備の診断方法。
(3)求められた前記リーク量から、リーク孔を真円と仮定した場合のリーク孔径を求めることを特徴とする前記(1)又は(2)記載の真空排気設備の診断方法。
(4)各ステップのリーク量、あるいはリーク孔径について、複数回分の診断データを蓄積し、リーク箇所あるいはリーク規模の傾向管理をすることを特徴とする前記(1)乃至(3)のいずれかに記載の真空排気設備の診断方法。
である。
その特徴は、既存の真空排気設備のみを利用し、複数のエジェクターを下流側から順次作動していき、その時々の真空排気速度の状態によりリークの発生している箇所及びリーク量の規模を推定するものである。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
図1は、真空排気系全体の一例を示す図である。取鍋に入った溶鋼を処理する真空槽が最も上流側にあり、その下流側に1B、2B、3Bのスチームエジェクターが直列に接続され、その吐出されたスチームを冷却し、系外に排出する第1のコンデンサー(1C)があり、次いで比較的小さなエジェクター4Eが接続され、第2のコンデンサー(2C)が配置され、その下流にエジェクター5EA、5EBが並列に接続され、第3のコンデンサー(3C)があり、更にエジェクター6EA,6EBが配置され、アフターコンデンサー(AC)があり放散塔へとつながっている。
【0008】
通常、真空排気を開始する場合は、真空槽の下部開口部を溶鋼に浸漬し、次に下流側(真空槽側を上流側、放散塔側を下流側とする)のスチームエジェクターから作動し、順次上流側のエジェクターへと作動していく。即ち、放散塔に近い側から系内に存在するエアーを排出していき、最後に真空槽内のエアーを排気し、真空槽内を真空とし、溶鋼を槽内に吸い上げ、真空下に晒し脱ガス処理を行なう。図2は具体的なエジェクターの作動順を示している。まず最下流側の6EA,6EBを作動し、真空槽内あるいは1B前で測定している真空度計にて所定の真空度(ここでは180Torr)に到達したら次の上流側エジェクターを作動する。真空度の検知器は、通常1Bと真空槽との間、あるいは、真空槽内、あるいは、それら両方を備えたものもある。いずれでも本発明には適用可能である。
【0009】
5E,6Eは、2基のエジェクターを並列に接続している。これらは始動時の排気量が大きく負荷が大きな時は2基のエジェクターで作動し、ある程度真空度が高く(絶対真空側)なり抽気量が少なくなった時点で1基のエジェクターで運転し、使用スチームの削減を図るものである。
【0010】
図3は、順次エジェクターを作動していった場合の真空排気曲線の概念図を示す図である。「基準」と記載してあるのは、理論上の真空排気速度を示す。それは、設備新設時の真空排気設備の排気特性に加え、実操業時の脱ガスによる溶鋼からのCOなどの発生ガス量、及び還流用のガス、パージ用のガスなどの処理に必要な系内にインプットされるガス量を考慮し、真空排気速度を求めたものである。
【0011】
それに対し、「実績」と記載してあるのは、経年劣化などでリークが発生すると前記以外のガスが系内に導入されるので、見かけの真空排気速度が遅くなる。これら「基準」と「実績」の排気速度の差からリーク量を求めることができる。また、このリーク量を各エジェクターを作動するステップ毎に求めていくと、実際にリークしている箇所のエジェクターを作動したときに初めてその箇所のリークによる影響が小さくなるので、各ステップ毎の作動エジェクターとリーク量の推移をみることによりリーク箇所を同定することができる。
例えば、図4のように2Bを作動したところで、リーク量が小さくなっている。このことによって2Bにリークが発生していると推定することができる。
更に、このリーク量からその孔の規模を推定することができる。リーク量そのものでも良いが、孔径で表すことによって、感覚的にそのダメージの規模を知ることができるので有効である。
【0012】
リーク量及びリーク孔径の求め方の具体的な一例を下記に示す。但し、本発明は、特に下記の式に限定されるものではない。
排気中の真空度変化と理論計算値を比較することで、真空槽〜3B各部のリーク量の推定を行なう。

Figure 2004226153
<計算方法>
▲1▼.各排気ステップ毎に、リーク孔径を計算。
▲2▼.リーク孔径を比較し、リーク箇所を特定する。
【0013】
また、この診断結果は、処理毎に変化する可能性があるため、その傾向を監視し、1回の診断で判断するよりも複数の診断で判断したほうがより確実な判断ができる。
また、リーク量に関しては、低真空度(常圧に近い側)では、もともと排気装置系内に入っているガス量の評価が定量的に難しいため、ある一定の真空度以上の高真空度側で診断したほうが良い。目安は、200Torr前後である。
【0014】
【実施例】
図1の真空排気設備実機を使用して実処理中に本発明を適用した結果が、図5である。図5より、2B部にリークが発生していると判断できる。
【0015】
【発明の効果】
本発明により、特に新たな装置の設置を必要とせず、また、リークの箇所ばかりでなく、その規模をも検知し得る真空排気設備の診断方法を提供することを可能とした。
【図面の簡単な説明】
【図1】脱ガス設備全体概念図。
【図2】真空排気パターンの一例。
【図3】真空排気速度の一例を示す図。
【図4】エジェクター作動時のリーク量の一例を示す図。
【図5】本発明による真空排気系の診断結果を示す図。
【符号の説明】
1B、2B、3B スチームエジェクター
1C 第1コンデンサー 4E エジェクター
2C 第2コンデンサー 5EA、5EB エジェクター
3C 第3コンデンサー 6EA、6EB エジェクター
AC アフターコンデンサー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of diagnosing vacuum exhaust equipment provided for vacuum processing, such as RH degassing equipment or DH degassing equipment.
[0002]
[Prior art]
For example, as a vacuum exhaust equipment used for an RH degassing equipment or the like, a general equipment in which a plurality of exhaust steam ejectors are connected in series is generally used. By operating the ejector, the inside of the vacuum chamber on the most upstream side is evacuated, whereby the molten steel in the ladle is sucked into the vacuum chamber and exposed to vacuum to perform degassing such as dehydrogenation and decarburization.
[0003]
However, a leak occurs in the exhaust system due to distortion of the flange portion due to deterioration over time due to deterioration of the exhaust system or a hole due to corrosion. If a leak occurs in the evacuation system, gas is introduced into the system and the evacuation speed drops, the inside of the vacuum chamber does not reach the predetermined degree of vacuum, the degassing efficiency is reduced, or insufficient stirring is caused. May cause trouble. Therefore, it is important to quickly detect and deal with the leak in the exhaust system.
Conventionally, as a method of detecting the occurrence of a leak, as disclosed in Patent Document 1, there has been a method of providing a vibration sensor for detecting a vibration of an exhaust system and detecting a leak portion based on a change in the vibration.
[0004]
[Patent Document 1]
JP-A-63-98537
[Problems to be solved by the invention]
However, in the above-mentioned conventional method, it is necessary to newly install a device for detecting vibration, and it is not possible to detect the magnitude of the leak only by vibration.
An object of the present invention is to provide a method of diagnosing vacuum exhaust equipment that does not require installation of a new device and that can detect not only the location of a leak but also its scale.
[0006]
[Means for solving the problem]
The present invention seeks to advantageously solve the above problems, the gist of which is as described in the claims,
(1) A method for diagnosing a vacuum exhaust system that specifies a leak location and a leak scale in a vacuum exhaust system in which a plurality of ejectors are connected in series, wherein the plurality of ejectors are located on the downstream side (however, the vacuum tank side is defined as the upstream side) ), The leak amount in the vacuum evacuation system is obtained for each of the operation steps sequentially operated, and the difference between the leak amount in the operation step and the leak amount in the operation step before the step is newly operated in the step. A method for diagnosing vacuum exhaust equipment, wherein the amount of leak in an ejector is used.
(2) The diagnosis of the vacuum evacuation equipment according to the above (1), wherein the leak amount in each of the operation steps is obtained from an integral value of a deviation between a theoretical evacuation speed and an actual evacuation speed of the step. Method.
(3) The method for diagnosing vacuum exhaust equipment according to the above (1) or (2), wherein a leak hole diameter when the leak hole is assumed to be a perfect circle is obtained from the obtained leak amount.
(4) The method according to any one of (1) to (3), wherein diagnostic data for a plurality of times is accumulated for a leak amount or a leak hole diameter in each step, and a tendency of a leak location or a leak scale is managed. The method for diagnosing the vacuum exhaust equipment described in the above.
It is.
The feature is that using only the existing vacuum pumping equipment, multiple ejectors are sequentially operated from the downstream side, and the location of the leak and the size of the leak amount are estimated based on the state of the vacuum pumping speed at each time Is what you do.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
FIG. 1 is a diagram illustrating an example of the entire vacuum exhaust system. A vacuum tank for processing molten steel in a ladle is located at the most upstream side, and downstream thereof, 1B, 2B, and 3B steam ejectors are connected in series to cool the discharged steam and discharge it to the outside of the system. There is a first condenser (1C), then a relatively small ejector 4E is connected, a second condenser (2C) is arranged, downstream of which an ejector 5EA, 5EB is connected in parallel and a third condenser (3C). ), Ejectors 6EA and 6EB are further arranged, and an after condenser (AC) is connected to the stripping tower.
[0008]
Usually, when starting vacuum evacuation, the lower opening of the vacuum chamber is immersed in molten steel, and then operated from the steam ejector on the downstream side (the vacuum chamber side is the upstream side, and the stripping tower side is the downstream side), It works sequentially to the ejector on the upstream side. That is, the air existing in the system is discharged from the side near the stripping tower, and finally the air in the vacuum tank is exhausted, the inside of the vacuum tank is evacuated, the molten steel is sucked into the tank, and exposed under vacuum to remove Perform gas treatment. FIG. 2 shows a specific operation sequence of the ejector. First, 6EA and 6EB on the most downstream side are operated, and when a predetermined degree of vacuum (here, 180 Torr) is reached by a vacuum gauge measured in the vacuum tank or 1B before, the next upstream ejector is operated. Some vacuum level detectors usually include a space between 1B and the vacuum chamber, or a vacuum chamber, or both. Any of them can be applied to the present invention.
[0009]
5E and 6E connect two ejectors in parallel. These are operated by two ejectors when the displacement at start-up is large and the load is large. When the degree of vacuum is high to some extent (absolute vacuum side) and the amount of bleeding is reduced, one ejector operates. The aim is to reduce steam.
[0010]
FIG. 3 is a diagram showing a conceptual diagram of an evacuation curve when the ejectors are sequentially operated. “Reference” indicates a theoretical vacuum pumping speed. This is because, in addition to the exhaust characteristics of the vacuum exhaust equipment at the time of new installation, the amount of generated gas such as CO from molten steel due to degassing during actual operation, and the system required for processing gas for reflux, gas for purge, etc. The vacuum pumping speed was determined in consideration of the amount of gas input to the vacuum pump.
[0011]
On the other hand, the description of “actual” indicates that when a leak occurs due to aging or the like, other gases are introduced into the system, so that the apparent evacuation speed becomes slow. The leak amount can be determined from the difference between the “reference” and the “actual” pumping speeds. In addition, if the amount of leak is obtained for each step of operating each ejector, the effect of the leak at that location becomes smaller only when the ejector is actually operated at the location where the leak actually occurs. The leak location can be identified by observing the transition of the ejector and the leak amount.
For example, when 2B is operated as shown in FIG. 4, the leak amount becomes small. Thus, it can be estimated that a leak has occurred in 2B.
Further, the size of the hole can be estimated from the leak amount. Although the leak amount itself may be used, it is effective to express the damage amount by expressing it by the hole diameter, since the magnitude of the damage can be sensed intuitively.
[0012]
A specific example of how to determine the leak amount and the leak hole diameter is shown below. However, the present invention is not particularly limited to the following formula.
By comparing the change in the degree of vacuum during evacuation with the theoretically calculated value, the amount of leak in each part of the vacuum tank to 3B is estimated.
Figure 2004226153
<Calculation method>
▲ 1 ▼. Calculate leak hole diameter for each exhaust step.
▲ 2 ▼. Compare leak hole diameters and identify leak locations.
[0013]
In addition, since this diagnosis result may change for each process, it is possible to make a more reliable judgment by monitoring the tendency and making a judgment by a plurality of diagnoses rather than by one diagnosis.
Regarding the amount of leak, it is difficult to quantitatively evaluate the amount of gas originally contained in the exhaust system at a low vacuum (near normal pressure). It is better to make a diagnosis. The standard is around 200 Torr.
[0014]
【Example】
FIG. 5 shows the result of applying the present invention during actual processing using the actual vacuum pumping equipment of FIG. From FIG. 5, it can be determined that a leak has occurred in the portion 2B.
[0015]
【The invention's effect】
According to the present invention, it has become possible to provide a method of diagnosing vacuum exhaust equipment that does not require installation of a new device and that can detect not only the location of a leak but also its scale.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of the entire degassing facility.
FIG. 2 shows an example of an evacuation pattern.
FIG. 3 is a diagram showing an example of a vacuum pumping speed.
FIG. 4 is a diagram illustrating an example of a leak amount when an ejector is operated.
FIG. 5 is a diagram showing a diagnosis result of the evacuation system according to the present invention.
[Explanation of symbols]
1B, 2B, 3B Steam ejector 1C First condenser 4E Ejector 2C Second condenser 5EA, 5EB Ejector 3C Third condenser 6EA, 6EB Ejector AC After condenser

Claims (4)

複数のエジェクターを直列に接続した真空排気設備におけるリーク箇所及びリーク規模を特定する真空排気設備の診断方法であって、前記複数のエジェクターを下流側(但し、真空槽側を上流とする)から順次作動し、順次作動した各作動ステップ毎に真空排気系におけるリーク量を求め、当該作動ステップのリーク量と当該ステップ前の作動ステップのリーク量との差を当該ステップで新たに作動したエジェクターにおけるリーク量とすることを特徴とする真空排気設備の診断方法。A method for diagnosing a vacuum exhaust system for identifying a leak location and a leak scale in a vacuum exhaust system in which a plurality of ejectors are connected in series, wherein the plurality of ejectors are sequentially arranged from a downstream side (however, a vacuum tank side is defined as an upstream side). The leak amount in the vacuum evacuation system is calculated for each operation step that has been operated sequentially, and the difference between the leak amount in the operation step and the leak amount in the operation step before the step is determined by the leak amount in the ejector newly operated in the step. A method for diagnosing vacuum exhaust equipment, characterized in that the amount is an amount. 前記各作動ステップのリーク量を、当該ステップの理論上の真空排気速度と実績真空排気速度との偏差の積分値から求めることを特徴とする請求項1記載の真空排気設備の診断方法。The method according to claim 1, wherein the amount of leak in each of the operation steps is obtained from an integral value of a deviation between a theoretical evacuation speed and an actual evacuation speed in the step. 求められた前記リーク量から、リーク孔を真円と仮定した場合のリーク孔径を求めることを特徴とする請求項1又は2記載の真空排気設備の診断方法。3. The method for diagnosing vacuum exhaust equipment according to claim 1, wherein a leak hole diameter when the leak hole is assumed to be a perfect circle is obtained from the obtained leak amount. 各ステップのリーク量、あるいはリーク孔径について、複数回分の診断データを蓄積し、リーク箇所あるいはリーク規模の傾向管理をすることを特徴とする請求項1乃至3のいずれかに記載の真空排気設備の診断方法。4. The vacuum exhaust equipment according to claim 1, wherein diagnostic data for a plurality of times is accumulated for a leak amount or a leak hole diameter in each step, and a tendency of a leak location or a leak scale is managed. Diagnostic method.
JP2003012109A 2003-01-21 2003-01-21 Diagnosis method of vacuum exhaust equipment Expired - Fee Related JP4112991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012109A JP4112991B2 (en) 2003-01-21 2003-01-21 Diagnosis method of vacuum exhaust equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012109A JP4112991B2 (en) 2003-01-21 2003-01-21 Diagnosis method of vacuum exhaust equipment

Publications (2)

Publication Number Publication Date
JP2004226153A true JP2004226153A (en) 2004-08-12
JP4112991B2 JP4112991B2 (en) 2008-07-02

Family

ID=32900824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012109A Expired - Fee Related JP4112991B2 (en) 2003-01-21 2003-01-21 Diagnosis method of vacuum exhaust equipment

Country Status (1)

Country Link
JP (1) JP4112991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466827A (en) * 2022-08-29 2022-12-13 武汉钢铁有限公司 Double-plant three-unit combined heat storage RH vacuum refining steam system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466827A (en) * 2022-08-29 2022-12-13 武汉钢铁有限公司 Double-plant three-unit combined heat storage RH vacuum refining steam system
CN115466827B (en) * 2022-08-29 2023-08-18 武汉钢铁有限公司 Double-factory three-unit combined heat storage RH vacuum refining steam system

Also Published As

Publication number Publication date
JP4112991B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
EP2325709B1 (en) Anomalous data detection method
KR102020693B1 (en) Deposit detection device for exhaust pump, and exhaust pump
US20100114502A1 (en) System and method for article monitoring
JP2002022617A (en) Apparatus for diagnosing bearing
JPWO2010010688A1 (en) Operation monitoring system for processing equipment
CN107606821A (en) Compressor of air conditioner oil return system and its return line jam judging method
WO2017077970A1 (en) Vacuum pump determination system and vacuum pump
JP7350135B2 (en) Abnormality determination system
JP2000283056A (en) Vacuum pump abnormality monitoring system
JPH1162846A (en) Failure predicting system of vacuum pump
CN114235422A (en) Method for detecting abnormal starting of gas turbine
JP2004226153A (en) Diagnosing method for evacuation installation
JP2008275360A (en) Method of detecting air leakage in vacuum system
JP6952622B2 (en) Performance evaluation method, performance evaluation device, and performance evaluation system
JP4804297B2 (en) Gas sampling apparatus and gas sampling method
JP2016134585A (en) Semiconductor manufacturing device, diagnosis system for the same, and method of manufacturing semiconductor device
JP2004120994A (en) Phase-failure detector and phase-failure detecting method
WO2020250897A1 (en) Information processing system, information processing method, and program
CN216568263U (en) Automatic state detection device for vacuum-pumping system of vacuum damping machine
CN101072926B (en) Method for monitoring the condition of turbines using their coasting time
CN107591344B (en) Process chamber atmosphere detection method and wafer processing equipment
CN104088675B (en) Monitoring method for vacuum leakage points of steam turbine
CN114658543B (en) High-pressure fuel leakage diagnosis method, device and system
JP3858978B2 (en) Evaluation method and apparatus
JP2001214888A (en) Evacuation device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R151 Written notification of patent or utility model registration

Ref document number: 4112991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees