JP6952622B2 - Performance evaluation method, performance evaluation device, and performance evaluation system - Google Patents

Performance evaluation method, performance evaluation device, and performance evaluation system Download PDF

Info

Publication number
JP6952622B2
JP6952622B2 JP2018032456A JP2018032456A JP6952622B2 JP 6952622 B2 JP6952622 B2 JP 6952622B2 JP 2018032456 A JP2018032456 A JP 2018032456A JP 2018032456 A JP2018032456 A JP 2018032456A JP 6952622 B2 JP6952622 B2 JP 6952622B2
Authority
JP
Japan
Prior art keywords
compressor
acquisition
efficiency
acquired
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018032456A
Other languages
Japanese (ja)
Other versions
JP2019148199A (en
Inventor
中庭 彰宏
彰宏 中庭
良治 小笠原
良治 小笠原
貴之 小城
貴之 小城
琢磨 ▲関▼
琢磨 ▲関▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Compressor Corp
Original Assignee
Mitsubishi Heavy Industries Compressor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Compressor Corp filed Critical Mitsubishi Heavy Industries Compressor Corp
Priority to JP2018032456A priority Critical patent/JP6952622B2/en
Publication of JP2019148199A publication Critical patent/JP2019148199A/en
Application granted granted Critical
Publication of JP6952622B2 publication Critical patent/JP6952622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、性能評価方法、性能評価装置、及び性能評価システムに関する。 The present invention relates to a performance evaluation method, a performance evaluation device, and a performance evaluation system.

従来、プラント等で利用される圧縮機として、複数段の羽根車を備えた多段遠心圧縮機が広く用いられている。このような圧縮機では、複数のガスが混合された混合ガスが作動ガスとして流入する。流入した混合ガスは、インペラにより昇圧されて圧縮機から吐出される。 Conventionally, a multi-stage centrifugal compressor equipped with a multi-stage impeller is widely used as a compressor used in a plant or the like. In such a compressor, a mixed gas in which a plurality of gases are mixed flows in as a working gas. The inflowing mixed gas is boosted by the impeller and discharged from the compressor.

このような圧縮機では、運転中の性能をモニタリングすることで、運転中の異常を検出している。例えば、特許文献1には、圧縮機の運転中の各種パラメータ値をリアルタイムでモニタリングするとともに、実際に期待される性能に対して許容値内となっているか否かを判定するモニタリング方法が記載されている。 In such a compressor, an abnormality during operation is detected by monitoring the performance during operation. For example, Patent Document 1 describes a monitoring method for monitoring various parameter values during operation of a compressor in real time and determining whether or not the performance is actually within an allowable value. ing.

米国特許出願公開第2015/0057973号明細書U.S. Patent Application Publication No. 2015/0057973

ところで、圧縮機では、このような方法だけでなく、より高い精度で運転時の性能の変化をモニタリングすることが求められている。 By the way, in a compressor, not only such a method but also a change in performance during operation is required to be monitored with higher accuracy.

本発明は、上記課題に応えるためになされたものであって、運転時の圧縮機の性能の変化を高い精度で確認することが可能な性能評価方法、性能評価装置、及び性能評価システムを提供することを目的とする。 The present invention has been made in order to meet the above problems, and provides a performance evaluation method, a performance evaluation device, and a performance evaluation system capable of confirming changes in the performance of a compressor during operation with high accuracy. The purpose is to do.

本発明は、上記課題を解決するため、以下の手段を採用する。
本発明の第一態様に係る性能評価方法は、複数のガスが混合された混合ガスが流入する圧縮機の性能を評価する性能評価方法であって、前記圧縮機の複数の回転数のそれぞれ応じた機械マッハ数をそれぞれ取得するマッハ数取得工程と、前記圧縮機の効率と前記圧縮機の流量係数との相関関係を示す曲線である予測性能カーブを前記マッハ数取得工程で取得した複数の前記機械マッハ数に対応させてそれぞれ取得する予測性能カーブ取得工程と、前記予測性能カーブ取得工程で取得した複数の前記予測性能カーブの中で、基準とする前記機械マッハ数での前記予測性能カーブを基準予測性能カーブとして選択し、前記流量係数が同じである場合に、他の前記機械マッハ数での前記予測性能カーブにおける前記効率の値を、選択された前記基準予測性能カーブにおける前記効率の値に一致させる補正値を複数の前記機械マッハ数及び複数の前記流量係数のそれぞれに対応して取得する補正値取得工程と、運転中の前記圧縮機の流入口に流入される前記混合ガスの少なくとも圧力、温度、及び流量を入口測定値として取得し、運転中の前記圧縮機の流出口から流出する前記混合ガスの少なくとも圧力及び温度を出口測定値として取得する測定値取得工程と、前記入口測定値のうちの圧力及び温度と、前記出口測定値のうちの圧力及び温度とに基づいて、前記測定値取得工程で各種測定値を取得時の前記圧縮機の前記効率を取得する効率取得工程と、前記入口測定値のうちの流量と、前記取得時の前記圧縮機の回転数とに基づいて、前記取得時の前記圧縮機の流量係数を取得する流量係数取得工程と、前記効率取得工程で取得した前記効率を、前記取得時の前記圧縮機の前記機械マッハ数と、前記流量係数取得工程で取得した前記流量係数とに応じた前記補正値で補正する取得値補正工程と、を含む。
The present invention employs the following means in order to solve the above problems.
The performance evaluation method according to the first aspect of the present invention is a performance evaluation method for evaluating the performance of a compressor into which a mixed gas in which a plurality of gases are mixed flows, and corresponds to each of a plurality of rotation speeds of the compressor. A plurality of said Mach number acquisition steps for acquiring each of the mechanical Mach numbers and a prediction performance curve which is a curve showing the correlation between the efficiency of the compressor and the flow coefficient of the compressor. Among the prediction performance curve acquisition process acquired in each of the prediction performance curve acquisition steps corresponding to the number of machine Mach and the plurality of prediction performance curves acquired in the prediction performance curve acquisition process, the prediction performance curve with the reference machine Mach number is used. When selected as the reference prediction performance curve and the flow coefficient is the same, the efficiency value in the prediction performance curve at another mechanical Mach number is the efficiency value in the selected reference prediction performance curve. The correction value acquisition step of acquiring the correction value to match each of the plurality of mechanical Mach numbers and the plurality of flow coefficients, and at least the mixed gas flowing into the inflow port of the compressor during operation. The measurement value acquisition step of acquiring the pressure, temperature, and flow rate as inlet measurement values, and acquiring at least the pressure and temperature of the mixed gas flowing out from the outlet of the compressor during operation as outlet measurement values, and the inlet measurement. An efficiency acquisition step of acquiring the efficiency of the compressor at the time of acquiring various measured values in the measured value acquisition step based on the pressure and temperature of the values and the pressure and temperature of the outlet measured values. In the flow coefficient acquisition step of acquiring the flow coefficient of the compressor at the time of acquisition and the efficiency acquisition step based on the flow rate of the inlet measurement value and the rotation speed of the compressor at the time of acquisition. The acquired efficiency includes an acquisition value correction step of correcting the acquired efficiency with the correction value corresponding to the mechanical Mach number of the compressor at the time of acquisition and the flow coefficient acquired in the flow coefficient acquisition step.

このような構成によれば、機械マッハ数を利用して補正値が取得されている。この補正値を利用して運転中の圧縮機の効率を補正することで、基準予測性能カーブに対応する機械マッハ数で運転している場合の効率として圧縮機の効率を取得することができる。そのため、運転中の圧縮機の実際の回転数にかかわらず、一つの機械マッハ数を基準として、圧縮機の性能を評価することができる。これにより、圧縮機の回転数の変化の影響を抑えて、圧縮機における効率と流量係数との関係を高い精度で確認することができる。 According to such a configuration, the correction value is acquired by using the machine Mach number. By correcting the efficiency of the compressor during operation using this correction value, it is possible to acquire the efficiency of the compressor as the efficiency when operating with the machine Mach number corresponding to the reference prediction performance curve. Therefore, regardless of the actual rotation speed of the compressor in operation, the performance of the compressor can be evaluated with reference to one mechanical Mach number. As a result, the influence of the change in the rotation speed of the compressor can be suppressed, and the relationship between the efficiency and the flow coefficient in the compressor can be confirmed with high accuracy.

また、本発明の第二態様に係る性能評価方法では、第一態様において、前記圧縮機が目標とする状態で運転されている場合の前記効率と前記流量係数との相関関係を示す曲線として予め定められた目標性能カーブを取得し、前記取得値補正工程で補正された前記効率が、取得した前記目標性能カーブから外れているか否かを判定する判定工程をさらに含んでいてもよい。 Further, in the performance evaluation method according to the second aspect of the present invention, in the first aspect, as a curve showing the correlation between the efficiency and the flow coefficient when the compressor is operated in the target state in advance. A determination step of acquiring a predetermined target performance curve and determining whether or not the efficiency corrected in the acquired value correction step deviates from the acquired target performance curve may be further included.

このような構成によれば、流量係数及び補正した効率が目標性能カーブから外れているか否かを判定することで、目標とする圧縮機の運転状態と比較して異常が生じているなどの現状の圧縮機の異常を早期に把握することができる。 According to such a configuration, by determining whether or not the flow coefficient and the corrected efficiency deviate from the target performance curve, an abnormality has occurred compared with the operating state of the target compressor. It is possible to grasp the abnormality of the compressor at an early stage.

また、本発明の第三態様に係る性能評価方法では、第一または第二態様において、前記流量係数取得工程で取得された前記流量係数と、前記取得値補正工程で補正された前記効率とに基づいて、前記流量係数と補正された前記効率との相関関係を示す曲線として補正性能カーブを取得する補正性能カーブ取得工程をさらに含んでいてもよい。 Further, in the performance evaluation method according to the third aspect of the present invention, in the first or second aspect, the flow coefficient acquired in the flow coefficient acquisition step and the efficiency corrected in the acquisition value correction step are added. Based on this, a correction performance curve acquisition step of acquiring the correction performance curve as a curve showing the correlation between the flow coefficient and the corrected efficiency may be further included.

このような構成によれば、現状の圧縮機の性能が補正性能カーブを利用して評価できる。そして、補正性能カーブと目標性能カーブとを比較することで、圧縮機の現状の性能と初期の目標とする性能とを容易に比較することができる。 According to such a configuration, the performance of the current compressor can be evaluated by using the correction performance curve. Then, by comparing the correction performance curve and the target performance curve, it is possible to easily compare the current performance of the compressor with the initial target performance.

また、本発明の第四態様に係る性能評価装置は、複数のガスが混合された混合ガスが流入する圧縮機の性能を評価する性能評価装置であって、前記圧縮機の複数の回転数のそれぞれ応じて予め定められた機械マッハ数をそれぞれ取得するマッハ数取得部と、前記圧縮機の効率と前記圧縮機の流量係数との相関関係を示す曲線である予測性能カーブを前記マッハ数取得部で取得した複数の前記機械マッハ数ごとにそれぞれ取得する予測性能カーブ取得部と、前記予測性能カーブ取得部で取得した複数の前記予測性能カーブの中で、基準とする前記機械マッハ数での前記予測性能カーブを基準予測性能カーブとして選択し、前記流量係数が同じである場合に、他の前記機械マッハ数での前記予測性能カーブにおける前記効率の値を、選択された前記基準予測性能カーブにおける前記効率の値に一致させる補正値を複数の前記機械マッハ数及び複数の前記流量係数のそれぞれに対応して取得する補正値取得部と、運転中の前記圧縮機の流入口に流入される前記混合ガスの少なくとも圧力、温度、及び流量を入口測定値として取得し、運転中の前記圧縮機の流出口から流出する前記混合ガスの少なくとも圧力及び温度を出口測定値として取得する測定値取得部と、前記入口測定値のうちの圧力及び温度と、前記出口測定値のうちの圧力及び温度とに基づいて、前記測定値取得部で各種測定値を取得時の前記圧縮機の前記効率を取得する効率取得部と、前記入口測定値のうちの流量と、前記取得時の前記圧縮機の回転数とに基づいて、前記取得時の前記圧縮機の流量係数を取得する流量係数取得部と、前記効率取得部で取得した前記効率の値を、前記取得時の前記圧縮機の前記機械マッハ数と、前記流量係数取得部で取得した前記流量係数とに応じた前記補正値で補正する取得値補正部とを備える。 Further, the performance evaluation device according to the fourth aspect of the present invention is a performance evaluation device that evaluates the performance of a compressor into which a mixed gas in which a plurality of gases are mixed flows, and has a plurality of rotation speeds of the compressor. The Mach number acquisition unit obtains a predetermined mechanical Mach number according to each, and the Mach number acquisition unit obtains a prediction performance curve which is a curve showing the correlation between the efficiency of the compressor and the flow coefficient of the compressor. Among the prediction performance curve acquisition unit acquired for each of the plurality of machine Mach numbers acquired in the above and the plurality of prediction performance curves acquired by the prediction performance curve acquisition unit, the said machine Mach number as a reference. When the prediction performance curve is selected as the reference prediction performance curve and the flow coefficient is the same, the value of the efficiency in the prediction performance curve at another mechanical Mach number is set in the selected reference prediction performance curve. A correction value acquisition unit that acquires a correction value that matches the efficiency value corresponding to each of the plurality of mechanical Mach numbers and the plurality of flow coefficients, and the correction value that flows into the inflow port of the compressor during operation. With a measurement value acquisition unit that acquires at least the pressure, temperature, and flow rate of the mixed gas as inlet measurement values, and acquires at least the pressure and temperature of the mixed gas flowing out from the outlet of the compressor during operation as outlet measurement values. , The efficiency of the compressor at the time of acquiring various measured values by the measured value acquisition unit is acquired based on the pressure and temperature of the inlet measured values and the pressure and temperature of the outlet measured values. The efficiency acquisition unit, the flow coefficient acquisition unit that acquires the flow coefficient of the compressor at the time of acquisition based on the flow rate of the inlet measurement values and the rotation speed of the compressor at the time of acquisition, and the above. Acquisition value correction that corrects the efficiency value acquired by the efficiency acquisition unit with the correction value corresponding to the mechanical Mach number of the compressor at the time of acquisition and the flow coefficient acquired by the flow coefficient acquisition unit. It has a part.

また、本発明の第五態様に係る性能評価装置では、第四態様において、前記圧縮機が目標とする状態で運転されている場合の前記効率と前記流量係数との相関関係を示す曲線として予め定められた目標性能カーブを取得し、前記取得値補正部で補正された前記効率が、取得した前記目標性能カーブから外れているか否かを判定する判定部をさらに備えていてもよい。 Further, in the performance evaluation device according to the fifth aspect of the present invention, in the fourth aspect, as a curve showing the correlation between the efficiency and the flow coefficient when the compressor is operated in the target state in advance. A determination unit that acquires a predetermined target performance curve and determines whether or not the efficiency corrected by the acquired value correction unit deviates from the acquired target performance curve may be further provided.

また、本発明の第六態様に係る性能評価装置では、第四又は第五態様において、前記流量係数取得部で取得された前記流量係数と、前記取得値補正部で補正された前記効率とに基づいて、前記流量係数と補正された前記効率との相関関係を示す曲線として補正性能カーブを取得する補正性能カーブ取得部をさらに備えていてもよい。 Further, in the performance evaluation device according to the sixth aspect of the present invention, in the fourth or fifth aspect, the flow coefficient acquired by the flow coefficient acquisition unit and the efficiency corrected by the acquisition value correction unit are obtained. Based on this, a correction performance curve acquisition unit that acquires the correction performance curve as a curve showing the correlation between the flow coefficient and the corrected efficiency may be further provided.

また、本発明の第七態様に係る性能評価システムは、第四から第六態様のいずれか一つの性能評価装置と、前記混合ガスが流入する圧縮機と、運転中の前記圧縮機の流入口に流入される前記混合ガスの少なくとも圧力、温度、及び流量を測定して入口測定値として前記性能評価装置に送る入口測定部と、運転中の前記圧縮機の流出口から流出する前記混合ガスの少なくとも圧力及び温度を測定して出口測定値として前記性能評価装置に送る出口測定部と、を備える。 Further, the performance evaluation system according to the seventh aspect of the present invention includes the performance evaluation device according to any one of the fourth to sixth aspects, the compressor into which the mixed gas flows, and the inflow port of the compressor during operation. An inlet measuring unit that measures at least the pressure, temperature, and flow rate of the mixed gas flowing into the compressor and sends it to the performance evaluation device as an inlet measurement value, and the mixed gas flowing out from the outlet of the compressor during operation. It is provided with an outlet measuring unit that measures at least pressure and temperature and sends them as outlet measured values to the performance evaluation device.

本発明によれば、運転時の圧縮機の性能の変化を高い精度で確認することができる。 According to the present invention, it is possible to confirm the change in the performance of the compressor during operation with high accuracy.

本発明の実施形態の性能評価システムを示す模式図である。It is a schematic diagram which shows the performance evaluation system of embodiment of this invention. 本発明の実施形態の性能評価装置のハードウェア構成を示す図である。It is a figure which shows the hardware composition of the performance evaluation apparatus of embodiment of this invention. 本発明の実施形態の性能評価装置の機能ブロック図である。It is a functional block diagram of the performance evaluation apparatus of embodiment of this invention. 本発明の実施形態で機械マッハ数ごとの予測性能カーブから補正値を取得する際の一例を示すグラフである。It is a graph which shows an example at the time of acquiring the correction value from the prediction performance curve for each machine Mach number in the embodiment of this invention. 本発明の実施形態で取得される基準予測性能カーブと、補正性能カーブとの関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the reference prediction performance curve acquired by embodiment of this invention, and a correction performance curve. 本発明の実施形態の性能評価方法を示すフロー図である。It is a flow chart which shows the performance evaluation method of embodiment of this invention.

以下、本発明の実施形態の性能評価システム1について、図面を参照して詳細に説明する。 Hereinafter, the performance evaluation system 1 according to the embodiment of the present invention will be described in detail with reference to the drawings.

図1に示すように、性能評価システム1は、圧縮機20と、圧縮機20の流入口に繋がる上流ライン30と、圧縮機20の流出口に繋がる下流ライン40と、圧縮機20が運転中の混合ガスの状態を測定する測定部50と、圧縮機20の性能を評価する性能評価装置10とを備えている。 As shown in FIG. 1, in the performance evaluation system 1, the compressor 20, the upstream line 30 connected to the inlet of the compressor 20, the downstream line 40 connected to the outlet of the compressor 20, and the compressor 20 are in operation. A measuring unit 50 for measuring the state of the mixed gas and a performance evaluation device 10 for evaluating the performance of the compressor 20 are provided.

圧縮機20には、複数のガスが混合された混合ガスが上流ライン30から流入する。圧縮機20は、流入した混合ガスを圧縮して下流ライン40に吐出する。本実施形態の圧縮機20は、例えばプラント等に設置される一軸多段遠心圧縮機である。 A mixed gas in which a plurality of gases are mixed flows into the compressor 20 from the upstream line 30. The compressor 20 compresses the inflowing mixed gas and discharges it to the downstream line 40. The compressor 20 of the present embodiment is a uniaxial multi-stage centrifugal compressor installed in, for example, a plant or the like.

測定部50は、運転中の圧縮機20に流入する混合ガスまたは圧縮機20から流出される混合ガスの状態を測定する。本実施形態の測定部50は、入口測定部51と、出口測定部52と、を有する。 The measuring unit 50 measures the state of the mixed gas flowing into the compressor 20 in operation or the mixed gas flowing out of the compressor 20. The measuring unit 50 of the present embodiment includes an inlet measuring unit 51 and an outlet measuring unit 52.

入口測定部51は、圧縮機20において混合ガスを内部に流入させる吸込口(流入口)21に設けられている。入口測定部51は、吸込口21で測定した圧縮前の混合ガスの圧力、温度、及び流量を測定している。入口測定部51は、測定結果の情報を入口測定値MV1として性能評価装置10に送っている。ここで、入口測定値MV1のうち、測定された圧力を入口圧力Ps、測定された温度を入口温度Ts、測定された流量を入口流量Qとそれぞれ称する。 The inlet measuring unit 51 is provided at a suction port (inflow port) 21 for allowing the mixed gas to flow into the inside of the compressor 20. The inlet measuring unit 51 measures the pressure, temperature, and flow rate of the mixed gas before compression measured at the suction port 21. The entrance measurement unit 51 sends the information of the measurement result to the performance evaluation device 10 as the entrance measurement value MV1. Here, among the inlet measured values MV1, the measured pressure is referred to as an inlet pressure Ps, the measured temperature is referred to as an inlet temperature Ts, and the measured flow rate is referred to as an inlet flow rate Q.

出口測定部52は、圧縮機20において混合ガスを外部に流出させる吐出口(流出口)22に設けられている。出口測定部52は、吐出口22で測定した圧縮後の混合ガスの圧力及び温度を測定している。出口測定部52は、測定結果の情報を出口測定値MV2として性能評価装置10に送っている。ここで、出口測定値MV2のうち、測定された圧力を出口圧力Pd、測定された温度を出口温度Tdとそれぞれ称する。 The outlet measuring unit 52 is provided at the discharge port (outlet) 22 that allows the mixed gas to flow out to the outside in the compressor 20. The outlet measuring unit 52 measures the pressure and temperature of the compressed mixed gas measured at the discharge port 22. The outlet measuring unit 52 sends the information of the measurement result to the performance evaluation device 10 as the outlet measured value MV2. Here, among the outlet measured values MV2, the measured pressure is referred to as an outlet pressure Pd, and the measured temperature is referred to as an outlet temperature Td.

性能評価装置10は、圧縮機20の効率η及び流量係数φに基づいて圧縮機20の性能を評価する。性能評価装置10は、図2に示すように、CPU(Central Processing Unit)101、ROM(Read Only Memory)102、RAM(Random Access Memory)103、ストレージ部104、信号受信モジュール(受信機)105を備えるコンピュータである。信号受信モジュール105には、測定部50から出力される測定結果の情報、及び運転中の圧縮機20に関する情報が入力される。 The performance evaluation device 10 evaluates the performance of the compressor 20 based on the efficiency η of the compressor 20 and the flow coefficient φ. As shown in FIG. 2, the performance evaluation device 10 includes a CPU (Central Processing Unit) 101, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, a storage unit 104, and a signal receiving module (receiver) 105. It is a computer equipped. Information on the measurement result output from the measuring unit 50 and information on the compressor 20 in operation are input to the signal receiving module 105.

CPU101は、性能評価装置10の動作全体を司るプロセッサである。CPU101は、予め用意されたプログラムに従って動作することで、後述する各種機能を発揮する。 The CPU 101 is a processor that controls the entire operation of the performance evaluation device 10. The CPU 101 exerts various functions described later by operating according to a program prepared in advance.

ROM102は、書き換え不能の不揮発性メモリである。RAM103は、書き換え可能な揮発性メモリである。ROM102やRAM103は、主記憶装置とも呼ばれ、CPU101が各種機能を発揮して動作するためのプログラムが展開されている。 The ROM 102 is a non-volatile memory that cannot be rewritten. The RAM 103 is a rewritable volatile memory. The ROM 102 and the RAM 103 are also called main storage devices, and programs for the CPU 101 to exert various functions and operate are developed.

ストレージ部104は、性能評価装置10に内蔵される大容量記憶装置(不揮発性メモリ)であって、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)等である。ストレージ部104は、補助記憶装置とも呼ばれ、後述する圧縮機20及び各ガスの固有のデータや事前の試験やシミュレーションによって取得されたデータ等の予め必要な情報が記憶されている。 The storage unit 104 is a large-capacity storage device (nonvolatile memory) built in the performance evaluation device 10, and is, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like. The storage unit 104 is also called an auxiliary storage device, and stores necessary information in advance such as data unique to the compressor 20 and each gas, which will be described later, and data acquired by a preliminary test or simulation.

図3に示すように、性能評価装置10のCPU101は予め自装置で記憶するプログラムを実行することにより、制御部111、マッハ数取得部121、予測性能カーブ取得部131、補正値取得部141、測定値取得部151、効率取得部161、流量係数取得部171、取得値補正部181、判定部191、及び補正性能カーブ取得部201の各機能を発揮する。 As shown in FIG. 3, the CPU 101 of the performance evaluation device 10 executes a program stored in its own device in advance to control the control unit 111, the Mach number acquisition unit 121, the prediction performance curve acquisition unit 131, and the correction value acquisition unit 141. Each function of the measurement value acquisition unit 151, the efficiency acquisition unit 161, the flow coefficient acquisition unit 171, the acquisition value correction unit 181 and the determination unit 191 and the correction performance curve acquisition unit 201 is exhibited.

制御部111は、圧縮機20の起動、停止、性能評価処理の開始、終了など種々の制御を行う。 The control unit 111 performs various controls such as starting and stopping the compressor 20 and starting and ending the performance evaluation process.

マッハ数取得部121は、圧縮機20の回転数に応じて定められる機械マッハ数Mmを取得する。機械マッハ数Mmは、下記の式(1)から算出することができる。各回転数に対応する機械マッハ数Mmの情報は予めストレージ部104に記憶されている。本実施形態のマッハ数取得部121は、ストレージ部104から複数の回転数のそれぞれに応じた機械マッハ数Mmを取得する。 The Mach number acquisition unit 121 acquires the mechanical Mach number Mm determined according to the rotation speed of the compressor 20. The mechanical Mach number Mm can be calculated from the following equation (1). Information on the machine Mach number Mm corresponding to each rotation speed is stored in the storage unit 104 in advance. The Mach number acquisition unit 121 of the present embodiment acquires the mechanical Mach number Mm corresponding to each of the plurality of rotation speeds from the storage unit 104.

Figure 0006952622
Figure 0006952622

ここで、式(1)におけるインペラの代表周速Uは、圧縮機20の回転数に応じて予め決定される定数であり、圧縮機20の回転数に対応して取得される。本実施形態のインペラの代表周速Uは、任意の回転数で運転中の圧縮機20における任意の段のインペラの周速である。インペラの代表周速Uは、例えば、任意の回転数で運転中の初段のインペラの周速である。 Here, the representative peripheral speed U of the impeller in the equation (1) is a constant determined in advance according to the rotation speed of the compressor 20, and is acquired in accordance with the rotation speed of the compressor 20. The representative peripheral speed U of the impeller of the present embodiment is the peripheral speed of the impeller of an arbitrary stage in the compressor 20 operating at an arbitrary rotation speed. The representative peripheral speed U of the impeller is, for example, the peripheral speed of the first-stage impeller operating at an arbitrary rotation speed.

また、式(1)における音速aは、混合ガスの種類によって決定される定数であって、圧縮機20に吸込まれる混合ガスの音速である。 Further, the sound velocity a in the equation (1) is a constant determined by the type of the mixed gas, and is the sound velocity of the mixed gas sucked into the compressor 20.

予測性能カーブ取得部131は、図4に示すように、予測性能カーブを複数の機械マッハ数Mmごとにそれぞれ取得する。予測性能カーブは、圧縮機20の効率ηと圧縮機20の流量係数φとの相関関係を示す曲線である。具体的には、予測性能カーブは、事前に試験やシミュレーションを行って、機械マッハ数Mmに応じた圧縮機20の効率η及び流量係数φを取得することで得られ、予めストレージ部104に記憶されている。本実施形態の予測性能カーブ取得部131は、マッハ数取得部121で取得した機械マッハ数Mmに対応する予測性能カーブをストレージ部104から取得する。 As shown in FIG. 4, the prediction performance curve acquisition unit 131 acquires the prediction performance curve for each of a plurality of machine Mach numbers Mm. The prediction performance curve is a curve showing the correlation between the efficiency η of the compressor 20 and the flow coefficient φ of the compressor 20. Specifically, the predicted performance curve is obtained by conducting a test or simulation in advance and acquiring the efficiency η and the flow coefficient φ of the compressor 20 according to the mechanical Mach number Mm, and is stored in the storage unit 104 in advance. Has been done. The prediction performance curve acquisition unit 131 of the present embodiment acquires the prediction performance curve corresponding to the machine Mach number Mm acquired by the Mach number acquisition unit 121 from the storage unit 104.

補正値取得部141は、予測性能カーブ取得部131で取得した複数の予測性能カーブの中から基準予測性能カーブとして選択して取得する。基準予測性能カーブは、基準となる機械マッハ数Mmに対応する予測性能カーブである(例えば、図4における真ん中の破線)。基準となる機械マッハ数Mmは、例えば、評価者によって選択された圧縮機20の回転数(圧縮機20の回転数が100%など)に対応する機械マッハ数Mmである。補正値取得部141は、基準予測性能カーブ(例えば、図4における真ん中の線)と、他の機械マッハ数Mmでの予測性能カーブ(例えば、図4における基準予測性能カーブに対する上下の線)との関係から補正値を取得する。具体的には、補正値は、流量係数φが同じである場合に、他の機械マッハ数Mmでの予測性能カーブにおける効率ηの値を、基準予測性能カーブにおける効率ηの値に一致させる値である。補正値は、任意の流量係数φにおける基準予測性能カーブ上の効率ηと、他の予測性能カーブ上の効率ηとの差分として算出される。補正値取得部141では、複数の機械マッハ数Mm及び複数の流量係数φのそれぞれに対応するように、補正値が複数取得される。 The correction value acquisition unit 141 selects and acquires a reference prediction performance curve from a plurality of prediction performance curves acquired by the prediction performance curve acquisition unit 131. The reference prediction performance curve is a prediction performance curve corresponding to the reference machine Mach number Mm (for example, the broken line in the middle in FIG. 4). The reference mechanical Mach number Mm is, for example, a mechanical Mach number Mm corresponding to the rotation speed of the compressor 20 selected by the evaluator (the rotation speed of the compressor 20 is 100%, etc.). The correction value acquisition unit 141 includes a reference prediction performance curve (for example, the middle line in FIG. 4) and a prediction performance curve at another machine Mach number Mm (for example, the upper and lower lines with respect to the reference prediction performance curve in FIG. 4). The correction value is obtained from the relationship of. Specifically, the correction value is a value that matches the value of efficiency η in the prediction performance curve at another machine Mach number Mm with the value of efficiency η in the reference prediction performance curve when the flow coefficient φ is the same. Is. The correction value is calculated as the difference between the efficiency η on the reference prediction performance curve and the efficiency η on other prediction performance curves at an arbitrary flow coefficient φ. The correction value acquisition unit 141 acquires a plurality of correction values so as to correspond to each of the plurality of mechanical Mach numbers Mm and the plurality of flow coefficient φ.

測定値取得部151は、入口測定値MV1及び出口測定値MV2を取得する。即ち、測定値取得部151は、測定部50で測定された混合ガスの情報を取得する。 The measurement value acquisition unit 151 acquires the inlet measurement value MV1 and the outlet measurement value MV2. That is, the measurement value acquisition unit 151 acquires the information of the mixed gas measured by the measurement unit 50.

効率取得部161は、入口測定値MV1、出口測定値MV2、及び予め定められている混合ガスの比熱比kに基づいて、測定値取得部151で各種測定値を取得時(本実施形態では測定部50で各種測定値を測定した時点であり、以下、単に測定時点と称する)での圧縮機20の効率ηを取得する。具体的には、入口圧力Ps、入口温度Ts、出口圧力Pd、及び出口温度Tdに基づいて、以下の式(2)からポリトロープ指数nを算出する。 When the efficiency acquisition unit 161 acquires various measurement values by the measurement value acquisition unit 151 based on the inlet measurement value MV1, the outlet measurement value MV2, and the predetermined specific heat ratio k of the mixed gas (measurement in the present embodiment). The efficiency η of the compressor 20 at the time when various measured values are measured by the unit 50, hereinafter simply referred to as the measurement time) is acquired. Specifically, the polytropic index n is calculated from the following equation (2) based on the inlet pressure Ps, the inlet temperature Ts, the outlet pressure Pd, and the outlet temperature Td.

Figure 0006952622
Figure 0006952622

効率取得部161は、算出したポリトロープ指数nと比熱比kとに基づいて、以下の式(3)から圧縮機20の効率ηを算出する。比熱比kは、混合ガスの種類に応じて予め定められて定数であり、事前にストレージ部104に記憶されている。 The efficiency acquisition unit 161 calculates the efficiency η of the compressor 20 from the following equation (3) based on the calculated polytropic index n and the specific heat ratio k. The specific heat ratio k is predetermined and a constant according to the type of the mixed gas, and is stored in the storage unit 104 in advance.

Figure 0006952622
Figure 0006952622

流量係数取得部171は、圧縮機20の性能を示す無次元パラメータの一つである流量係数φを取得する。流量係数取得部171は、入口流量Qと、測定時点での運転中の圧縮機20の回転数とに基づいて、圧縮機20の流量係数φを取得する。具体的には、以下の式(4)に基づいて、流量係数φを取得する。 The flow coefficient acquisition unit 171 acquires the flow coefficient φ, which is one of the dimensionless parameters indicating the performance of the compressor 20. The flow coefficient acquisition unit 171 acquires the flow coefficient φ of the compressor 20 based on the inlet flow rate Q and the rotation speed of the compressor 20 in operation at the time of measurement. Specifically, the flow coefficient φ is acquired based on the following equation (4).

Figure 0006952622
Figure 0006952622

ここで、式(4)におけるインペラの代表直径Dは、圧縮機20に応じて予め決定される定数であり、事前にストレージ部104に記憶されている値である。本実施形態のインペラの代表直径Dは、圧縮機20における任意の段のインペラの直径である。インペラの代表直径Dは、例えば、初段のインペラの直径が代表直径Dとして設定される。 Here, the representative diameter D of the impeller in the equation (4) is a constant determined in advance according to the compressor 20, and is a value stored in the storage unit 104 in advance. The representative diameter D of the impeller of the present embodiment is the diameter of the impeller of any stage in the compressor 20. As the representative diameter D of the impeller, for example, the diameter of the first-stage impeller is set as the representative diameter D.

取得値補正部181は、効率取得部161で取得した効率ηの値を、測定時点の圧縮機20の回転数から算出した機械マッハ数Mmと、流量係数取得部171で取得した流量係数φとに応じた補正値で補正する。具体的には、取得値補正部181では、運転中の圧縮機20の回転数から機械マッハ数Mmを算出する。算出した機械マッハ数Mm及び取得した流量係数φに対応する補正値を取得した効率ηに加算することで、補正後の効率ηを取得する。 The acquisition value correction unit 181 uses the mechanical Mach number Mm calculated from the rotation speed of the compressor 20 at the time of measurement and the flow coefficient φ acquired by the flow coefficient acquisition unit 171 for the value of the efficiency η acquired by the efficiency acquisition unit 161. Correct with the correction value according to. Specifically, the acquired value correction unit 181 calculates the mechanical Mach number Mm from the rotation speed of the compressor 20 during operation. The corrected efficiency η is obtained by adding the calculated machine Mach number Mm and the correction value corresponding to the acquired flow coefficient φ to the acquired efficiency η.

判定部191は、予めストレージ部104に記憶されている目標性能カーブを取得する。目標性能カーブは、圧縮機20が目標とする状態で運転されている場合の効率ηと流量係数φとの相関関係を示す曲線として圧縮機20に応じて予め定められている。 The determination unit 191 acquires the target performance curve stored in the storage unit 104 in advance. The target performance curve is predetermined according to the compressor 20 as a curve showing the correlation between the efficiency η and the flow coefficient φ when the compressor 20 is operated in the target state.

なお、判定部191における目標性能カーブは、基準予測性能カーブと同じであってもよい。また、目標性能カーブは、基準予測性能カーブ以外の予測性能カーブ取得部131で取得された他の予測性能カーブと同じであってもよい。また、目標性能カーブは、予測性能カーブ取得部131で取得したものとは別に新たに取得したものであってもよい。 The target performance curve in the determination unit 191 may be the same as the reference prediction performance curve. Further, the target performance curve may be the same as other prediction performance curves acquired by the prediction performance curve acquisition unit 131 other than the reference prediction performance curve. Further, the target performance curve may be newly acquired separately from the one acquired by the prediction performance curve acquisition unit 131.

判定部191は、取得値補正部181で補正された効率ηと、流量係数取得部171で取得された流量係数φとが、取得した目標性能カーブから外れているか否かを判定する。取得した効率η及び流量係数φが目標性能カーブから外れている場合、圧縮機20自体の性能が低下している等の圧縮機20に異常が生じていることを示している。 The determination unit 191 determines whether or not the efficiency η corrected by the acquisition value correction unit 181 and the flow coefficient φ acquired by the flow coefficient acquisition unit 171 deviate from the acquired target performance curve. When the acquired efficiency η and flow coefficient φ deviate from the target performance curve, it indicates that an abnormality has occurred in the compressor 20 such as a decrease in the performance of the compressor 20 itself.

補正性能カーブ取得部201は、取得値補正部181で補正された効率ηと、流量係数取得部171で取得された流量係数φとに基づいて、補正性能カーブ(図5における実線)を取得する。補正性能カーブは、測定時点での運転中の圧縮機20の効率ηを補正した値と流量係数φとの相関関係を示す曲線である。図5に示すように、取得した補正性能カーブ(図5における実線)と、目標性能カーブ(図5における破線)とを比較することで、圧縮機20の初期性能と現状の圧縮機20の性能との状態の差が把握される。 The correction performance curve acquisition unit 201 acquires a correction performance curve (solid line in FIG. 5) based on the efficiency η corrected by the acquisition value correction unit 181 and the flow coefficient φ acquired by the flow coefficient acquisition unit 171. .. The correction performance curve is a curve showing the correlation between the corrected value of the efficiency η of the compressor 20 in operation at the time of measurement and the flow coefficient φ. As shown in FIG. 5, by comparing the acquired correction performance curve (solid line in FIG. 5) with the target performance curve (broken line in FIG. 5), the initial performance of the compressor 20 and the current performance of the compressor 20 are compared. The difference between the state and the state is grasped.

次に、図6を用いて、本実施形態の性能評価システム1に基づく性能評価方法S1について説明する。本実施形態の性能評価方法S1は、マッハ数取得工程S2、予測性能カーブ取得工程S3、補正値取得工程S4、測定値取得工程S5、効率取得工程S6、流量係数取得工程S7、取得値補正工程S8、判定工程S9、及び補正性能カーブ取得工程S10の各工程を含む。 Next, the performance evaluation method S1 based on the performance evaluation system 1 of the present embodiment will be described with reference to FIG. The performance evaluation method S1 of the present embodiment includes a Mach number acquisition process S2, a prediction performance curve acquisition process S3, a correction value acquisition process S4, a measured value acquisition process S5, an efficiency acquisition process S6, a flow coefficient acquisition process S7, and an acquisition value correction process. Each step of S8, the determination step S9, and the correction performance curve acquisition step S10 is included.

マッハ数取得工程S2では、式(1)に基づく圧縮機20における機械マッハ数Mmが、複数の回転数のそれぞれ応じてマッハ数取得部121によって取得される。マッハ数取得工程S2では、一の回転数に対して、対応する一の機械マッハ数Mmが取得される。これにより、マッハ数取得工程S2では、圧縮機20が運転する範囲における評価したい複数の回転数に応じて、複数の機械マッハ数Mmが取得される。 In the Mach number acquisition step S2, the mechanical Mach number Mm in the compressor 20 based on the equation (1) is acquired by the Mach number acquisition unit 121 according to each of the plurality of rotation speeds. In the Mach number acquisition step S2, one mechanical Mach number Mm corresponding to one rotation speed is acquired. As a result, in the Mach number acquisition step S2, a plurality of mechanical Mach numbers Mm are acquired according to the plurality of rotation speeds to be evaluated in the operating range of the compressor 20.

予測性能カーブ取得工程S3では、事前に試験やシミュレーションを行って、複数の機械マッハ数Mmごとにそれぞれ予測性能カーブが取得される。予測性能カーブ取得工程S3では、一の機械マッハ数Mmに対して対応する一の予測性能カーブが取得される。これにより、予測性能カーブ取得工程S3では、圧縮機20において評価される複数の回転数に対応するように、機械マッハ数Mmに対応する予測性能カーブが予測性能カーブ取得部131によって複数取得される。 In the prediction performance curve acquisition step S3, tests and simulations are performed in advance, and prediction performance curves are acquired for each of a plurality of machine Mach numbers Mm. In the prediction performance curve acquisition step S3, one prediction performance curve corresponding to one machine Mach number Mm is acquired. As a result, in the prediction performance curve acquisition step S3, a plurality of prediction performance curves corresponding to the mechanical Mach number Mm are acquired by the prediction performance curve acquisition unit 131 so as to correspond to the plurality of rotation speeds evaluated by the compressor 20. ..

補正値取得工程S4では、測定時点の圧縮機20の回転数に基づいて、評価者によって基準とする機械マッハ数Mm(例えば、圧縮機20の回転数が100%に対応する機械マッハ数Mm)が選択される。選択された機械マッハ数Mmに応じた予測性能カーブが基準予測性能カーブとして補正値取得部141で取得される。補正値取得工程S4では、基準予測性能カーブと、他の機械マッハ数Mmでの予測性能カーブ(例えば、図4における基準予測性能カーブに対する上下の線)との関係から補正値を取得する。補正値取得工程S4では、補正値取得部141によって、任意の流量係数φにおける基準予測性能カーブ上の効率ηと、他の予測性能カーブ上の効率ηとの差分として、補正値が算出される。補正値は、一の流量係数φに対して複数の機械マッハの数に対応して複数取得される。 In the correction value acquisition step S4, the machine Mach number Mm as a reference by the evaluator based on the rotation speed of the compressor 20 at the time of measurement (for example, the machine Mach number Mm corresponding to 100% of the rotation speed of the compressor 20). Is selected. The prediction performance curve corresponding to the selected machine Mach number Mm is acquired by the correction value acquisition unit 141 as the reference prediction performance curve. In the correction value acquisition step S4, the correction value is acquired from the relationship between the reference prediction performance curve and the prediction performance curve at another machine Mach number Mm (for example, the upper and lower lines with respect to the reference prediction performance curve in FIG. 4). In the correction value acquisition step S4, the correction value acquisition unit 141 calculates the correction value as the difference between the efficiency η on the reference prediction performance curve at an arbitrary flow coefficient φ and the efficiency η on another prediction performance curve. .. A plurality of correction values are acquired corresponding to the number of a plurality of mechanical Mach numbers for one flow coefficient φ.

測定値取得工程S5では、測定部50で測定された混合ガスの状態が取得される。本実施形態の測定値取得工程S5は、入口測定工程S51と、出口測定工程S52と、を含んでいる。 In the measured value acquisition step S5, the state of the mixed gas measured by the measuring unit 50 is acquired. The measurement value acquisition step S5 of the present embodiment includes an inlet measurement step S51 and an outlet measurement step S52.

入口測定工程S51では、入口測定部51で測定された測定結果が測定値取得部151に送られることで、入口測定値MV1が取得される。出口測定工程S52では、出口測定部52で測定された測定結果が測定値取得部151に送られることで、出口測定値MV2が取得される。また、測定値取得工程S5では、測定時点での圧縮機20の回転数が取得される。 In the inlet measurement step S51, the inlet measurement value MV1 is acquired by sending the measurement result measured by the inlet measurement unit 51 to the measurement value acquisition unit 151. In the outlet measurement step S52, the outlet measurement value MV2 is acquired by sending the measurement result measured by the outlet measurement unit 52 to the measurement value acquisition unit 151. Further, in the measurement value acquisition step S5, the rotation speed of the compressor 20 at the time of measurement is acquired.

効率取得工程S6では、入口圧力Ps、入口温度Ts、出口圧力Pd、及び出口温度Tdと、上述した式(2)及び式(3)に基づいて、圧縮機20の効率ηが効率取得部161によって算出される。これにより、効率取得工程S6では、測定時点での圧縮機20の効率ηが取得される。 In the efficiency acquisition step S6, the efficiency η of the compressor 20 is the efficiency acquisition unit 161 based on the inlet pressure Ps, the inlet temperature Ts, the outlet pressure Pd, and the outlet temperature Td, and the above equations (2) and (3). Calculated by. As a result, in the efficiency acquisition step S6, the efficiency η of the compressor 20 at the time of measurement is acquired.

流量係数取得工程S7では、入口流量Qと、測定時点での運転中の圧縮機20の回転数から算出される初段のインペラの周速である代表周速Uと、上述した式(4)とに基づいて、流量係数φが流量係数取得部171によって算出される。これにより、流量係数取得工程S7では、測定時点での圧縮機20の流量係数φが取得される。 In the flow coefficient acquisition step S7, the inlet flow rate Q, the representative peripheral speed U which is the peripheral speed of the first-stage impeller calculated from the rotation speed of the compressor 20 in operation at the time of measurement, and the above-mentioned equation (4). The flow coefficient φ is calculated by the flow coefficient acquisition unit 171 based on the above. As a result, in the flow coefficient acquisition step S7, the flow coefficient φ of the compressor 20 at the time of measurement is acquired.

取得値補正工程S8では、効率取得工程S6で取得された効率ηの値が、測定時点での圧縮機20の機械マッハ数Mmと、流量係数取得工程S7で取得された流量係数φとに応じた補正値で補正される。具体的には、取得値補正工程S8では、運転中の圧縮機20の回転数から機械マッハ数Mmが取得値補正部181によって算出される。算出した機械マッハ数Mm及び取得した流量係数φに対応する補正値を取得した効率ηに加算することで、補正後の効率ηが取得値補正部181で取得される。 In the acquisition value correction step S8, the value of the efficiency η acquired in the efficiency acquisition step S6 corresponds to the mechanical Mach number Mm of the compressor 20 at the time of measurement and the flow coefficient φ acquired in the flow coefficient acquisition step S7. It is corrected by the correction value. Specifically, in the acquisition value correction step S8, the acquisition value correction unit 181 calculates the mechanical Mach number Mm from the rotation speed of the compressor 20 during operation. By adding the calculated machine Mach number Mm and the correction value corresponding to the acquired flow coefficient φ to the acquired efficiency η, the corrected efficiency η is acquired by the acquired value correction unit 181.

判定工程S9では、圧縮機20を運転させる際の目標とする状態に応じて、目標性能カーブが事前に取得される。判定工程S9では、取得値補正工程S8で補正された効率ηと、流量係数取得工程S7で取得された流量係数φとが、目標性能カーブから外れているか否かが判定部191によって判定される。 In the determination step S9, the target performance curve is acquired in advance according to the target state when the compressor 20 is operated. In the determination step S9, the determination unit 191 determines whether or not the efficiency η corrected in the acquisition value correction step S8 and the flow coefficient φ acquired in the flow coefficient acquisition step S7 deviate from the target performance curve. ..

補正性能カーブ取得工程S10では、取得値補正工程S8で補正された効率ηと、流量係数取得工程S7で取得された流量係数φとに基づいて、補正性能カーブが補正性能カーブ取得部201によって取得される。 In the correction performance curve acquisition step S10, the correction performance curve is acquired by the correction performance curve acquisition unit 201 based on the efficiency η corrected in the acquisition value correction step S8 and the flow coefficient φ acquired in the flow coefficient acquisition step S7. Will be done.

上記のような性能評価装置10及び性能評価方法S1によれば、上述した式(1)に基づいて機械マッハ数Mmが取得されている。この機械マッハ数Mmを利用して基準予測性能カーブに対する補正値が算出されている。この補正値を利用して運転中の圧縮機20の効率ηを補正することで、基準予測性能カーブに対応する機械マッハ数Mmで運転している場合の効率ηとして圧縮機20の効率ηを算出することができる。そのため、運転中の圧縮機20の実際の回転数にかかわらず、一つの機械マッハ数Mmを基準として、圧縮機20の性能を評価することができる。これにより、圧縮機20の回転数の変化の影響を抑えて、圧縮機20における効率ηと流量係数φとの関係を高い精度で確認することができる。 According to the performance evaluation device 10 and the performance evaluation method S1 as described above, the mechanical Mach number Mm is acquired based on the above equation (1). A correction value for the reference prediction performance curve is calculated using this mechanical Mach number Mm. By correcting the efficiency η of the compressor 20 during operation using this correction value, the efficiency η of the compressor 20 can be set as the efficiency η when operating at a machine Mach number Mm corresponding to the reference prediction performance curve. Can be calculated. Therefore, regardless of the actual rotation speed of the compressor 20 during operation, the performance of the compressor 20 can be evaluated with reference to one mechanical Mach number Mm. Thereby, the influence of the change in the rotation speed of the compressor 20 can be suppressed, and the relationship between the efficiency η and the flow coefficient φ in the compressor 20 can be confirmed with high accuracy.

従来から、圧縮機20の運転中には、圧縮機20の効率ηをリアルタイムでモニタリングして圧縮機20に異常が生じて性能低下が生じていないかを確認する必要がある。ところが、圧縮機20はヘッド一定で運転されることが多く、このような場合には圧縮機20では回転数が変動しながら運転されている。そのため、測定時点での圧縮機20の効率ηを取得しても、圧縮機20の回転数が異なっていることで生じる機械マッハ数Mmの違いによって、取得する度に効率ηの値にばらつきが生じてしまう。その結果、圧縮機20の性能を正確に把握することが難しくなる。しかしながら、上記のような性能評価装置10及び性能評価方法S1によれば、圧縮機20の回転数の変化の影響を抑えることができ、運転時の圧縮機20の性能の変化を高い精度で確認することができる。 Conventionally, during the operation of the compressor 20, it is necessary to monitor the efficiency η of the compressor 20 in real time to confirm whether or not an abnormality has occurred in the compressor 20 and a performance deterioration has occurred. However, the compressor 20 is often operated with a constant head, and in such a case, the compressor 20 is operated while the rotation speed fluctuates. Therefore, even if the efficiency η of the compressor 20 at the time of measurement is acquired, the value of the efficiency η varies every time it is acquired due to the difference in the mechanical Mach number Mm caused by the difference in the rotation speed of the compressor 20. It will occur. As a result, it becomes difficult to accurately grasp the performance of the compressor 20. However, according to the performance evaluation device 10 and the performance evaluation method S1 as described above, the influence of the change in the rotation speed of the compressor 20 can be suppressed, and the change in the performance of the compressor 20 during operation can be confirmed with high accuracy. can do.

また、流量係数φ及び補正した効率ηが目標性能カーブからずれているか否かを判定することで、目標とする圧縮機20の運転状態と比較して異常が生じているなどの現状の圧縮機20の異常を早期に把握することができる。 Further, by determining whether or not the flow coefficient φ and the corrected efficiency η deviate from the target performance curve, the current compressor such that an abnormality has occurred compared with the operating state of the target compressor 20. 20 abnormalities can be grasped at an early stage.

また、流量係数φ及び補正した効率ηから実性能カーブを取得することで、測定時点での圧縮機20の性能が実性能カーブを利用して評価できる。そして、実性能カーブと目標性能カーブとを比較することで、圧縮機20の現状の性能と初期性能とを容易に比較することができる。 Further, by acquiring the actual performance curve from the flow coefficient φ and the corrected efficiency η, the performance of the compressor 20 at the time of measurement can be evaluated using the actual performance curve. Then, by comparing the actual performance curve and the target performance curve, the current performance and the initial performance of the compressor 20 can be easily compared.

(実施形態の他の変形例)
以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
(Other variants of the embodiment)
Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations thereof in the respective embodiments are examples, and the configurations are added or omitted within the range not deviating from the gist of the present invention. , Replacements, and other changes are possible. Further, the present invention is not limited to the embodiments, but only to the scope of claims.

なお、性能評価装置10は、上述した構成のみを備える構造に限定されるものではない、例えば、性能評価装置10には評価者によって確認可能な表示部があってもよい。この場合、各種取得した値を表示部に表示することで、評価者は、混合ガスの状態や圧縮機20の状態をリアルタイムに把握することができる。 The performance evaluation device 10 is not limited to a structure having only the above-described configuration. For example, the performance evaluation device 10 may have a display unit that can be confirmed by an evaluator. In this case, by displaying various acquired values on the display unit, the evaluator can grasp the state of the mixed gas and the state of the compressor 20 in real time.

1…性能評価システム 20…圧縮機 21…吸込口 22…吐出口 30…上流ライン 40…下流ライン 50…測定部 51…入口測定部 MV1…入口測定値 Ps…入口圧力 Ts…入口温度 Q…入口流量 52…出口測定部 MV2…出口測定値 Pd…出口圧力 Td…出口温度 10…性能評価装置 101…CPU 102…ROM 103…RAM 104…ストレージ部 105…信号受信モジュール 111…制御部 121…マッハ数取得部 Mm…機械マッハ数 U…代表周速 a…音速 131…予測性能カーブ取得部 141…補正値取得部 151…測定値取得部 161…効率取得部 k…比熱比 n…ポリトロープ指数 η…効率 171…流量係数取得部 φ…流量係数 D…代表直径 181…取得値補正部 191…判定部 201…補正性能カーブ取得部 S1…性能評価方法 S2…マッハ数取得工程 S3…予測性能カーブ取得工程 S4…補正値取得工程 S5…測定値取得工程 S51…入口測定工程 S52…出口測定工程 S6…効率取得工程 S7…流量係数取得工程 S8…取得値補正工程 S9…判定工程 S10…補正性能カーブ取得工程 1 ... Performance evaluation system 20 ... Compressor 21 ... Suction port 22 ... Discharge port 30 ... Upstream line 40 ... Downstream line 50 ... Measurement unit 51 ... Inlet measurement unit MV1 ... Inlet measurement value Ps ... Inlet pressure Ts ... Inlet temperature Q ... Inlet Flow rate 52 ... Outlet measurement unit MV2 ... Outlet measurement value Pd ... Outlet pressure Td ... Outlet temperature 10 ... Performance evaluation device 101 ... CPU 102 ... ROM 103 ... RAM 104 ... Storage unit 105 ... Signal reception module 111 ... Control unit 121 ... Mach number Acquisition unit Mm ... Mechanical Mach number U ... Representative peripheral speed a ... Sound velocity 131 ... Prediction performance curve acquisition unit 141 ... Correction value acquisition unit 151 ... Measurement value acquisition unit 161 ... Efficiency acquisition unit k ... Specific heat ratio n ... Polytropic index η ... Efficiency 171 ... Flow coefficient acquisition unit φ ... Flow coefficient D ... Representative diameter 181 ... Acquisition value correction unit 191 ... Judgment unit 201 ... Correction performance curve acquisition unit S1 ... Performance evaluation method S2 ... Mach number acquisition process S3 ... Prediction performance curve acquisition process S4 ... Correction value acquisition process S5 ... Measurement value acquisition process S51 ... Entrance measurement process S52 ... Exit measurement process S6 ... Efficiency acquisition process S7 ... Flow coefficient acquisition process S8 ... Acquisition value correction process S9 ... Judgment process S10 ... Correction performance curve acquisition process

Claims (7)

複数のガスが混合された混合ガスが流入する圧縮機の性能を評価する性能評価方法であって、
前記圧縮機の複数の回転数のそれぞれ応じた機械マッハ数をそれぞれ取得するマッハ数取得工程と、
前記圧縮機の効率と前記圧縮機の流量係数との相関関係を示す曲線である予測性能カーブを前記マッハ数取得工程で取得した複数の前記機械マッハ数に対応させてそれぞれ取得する予測性能カーブ取得工程と、
前記予測性能カーブ取得工程で取得した複数の前記予測性能カーブの中で、基準とする前記機械マッハ数での前記予測性能カーブを基準予測性能カーブとして選択し、前記流量係数が同じである場合に、他の前記機械マッハ数での前記予測性能カーブにおける前記効率の値を、選択された前記基準予測性能カーブにおける前記効率の値に一致させる補正値を複数の前記機械マッハ数及び複数の前記流量係数のそれぞれに対応して取得する補正値取得工程と、
運転中の前記圧縮機の流入口に流入される前記混合ガスの少なくとも圧力、温度、及び流量を入口測定値として取得し、運転中の前記圧縮機の流出口から流出する前記混合ガスの少なくとも圧力及び温度を出口測定値として取得する測定値取得工程と、
前記入口測定値のうちの圧力及び温度と、前記出口測定値のうちの圧力及び温度とに基づいて、前記測定値取得工程で各種測定値を取得時の前記圧縮機の前記効率を取得する効率取得工程と、
前記入口測定値のうちの流量と、前記取得時の前記圧縮機の回転数とに基づいて、前記取得時の前記圧縮機の流量係数を取得する流量係数取得工程と、
前記効率取得工程で取得した前記効率を、前記取得時の前記圧縮機の前記機械マッハ数と、前記流量係数取得工程で取得した前記流量係数とに応じた前記補正値で補正する取得値補正工程と、を含む性能評価方法。
It is a performance evaluation method that evaluates the performance of a compressor into which a mixed gas in which a plurality of gases are mixed flows.
A Mach number acquisition step for acquiring the mechanical Mach number corresponding to each of the plurality of rotation speeds of the compressor, and
Acquisition of predicted performance curves, which are curves showing the correlation between the efficiency of the compressor and the flow coefficient of the compressor, corresponding to the plurality of machine Mach numbers acquired in the Mach number acquisition process. Process and
When the prediction performance curve with the number of machine Mach as a reference is selected as the reference prediction performance curve from the plurality of prediction performance curves acquired in the prediction performance curve acquisition step, and the flow coefficient is the same. A correction value that matches the efficiency value in the prediction performance curve with another machine Mach number to the efficiency value in the selected reference prediction performance curve is set to a plurality of the machine Mach numbers and a plurality of the flow coefficients. The correction value acquisition process to be acquired corresponding to each of the coefficients, and
At least the pressure, temperature, and flow rate of the mixed gas flowing into the inlet of the compressor during operation are acquired as inlet measurement values, and at least the pressure of the mixed gas flowing out from the outlet of the compressor during operation. And the measurement value acquisition process that acquires the temperature as the outlet measurement value,
Efficiency of acquiring the efficiency of the compressor at the time of acquiring various measured values in the measured value acquisition step based on the pressure and temperature of the inlet measured values and the pressure and temperature of the outlet measured values. Acquisition process and
A flow coefficient acquisition step of acquiring the flow coefficient of the compressor at the time of acquisition based on the flow rate of the inlet measurement value and the rotation speed of the compressor at the time of acquisition.
Acquisition value correction step of correcting the efficiency acquired in the efficiency acquisition step with the correction value corresponding to the mechanical Mach number of the compressor at the time of acquisition and the flow coefficient acquired in the flow coefficient acquisition step. And, including performance evaluation methods.
前記圧縮機が目標とする状態で運転されている場合の前記効率と前記流量係数との相関関係を示す曲線として予め定められた目標性能カーブを取得し、前記取得値補正工程で補正された前記効率が、取得した前記目標性能カーブから外れているか否かを判定する判定工程をさらに含む請求項1に記載の性能評価方法。 The target performance curve, which is predetermined as a curve showing the correlation between the efficiency and the flow coefficient when the compressor is operated in the target state, is acquired and corrected in the acquired value correction step. The performance evaluation method according to claim 1, further comprising a determination step of determining whether or not the efficiency deviates from the acquired target performance curve. 前記流量係数取得工程で取得された前記流量係数と、前記取得値補正工程で補正された前記効率とに基づいて、前記流量係数と補正された前記効率との相関関係を示す曲線として補正性能カーブを取得する補正性能カーブ取得工程をさらに含む請求項1又は請求項2に記載の性能評価方法。 A correction performance curve as a curve showing the correlation between the flow coefficient and the corrected efficiency based on the flow coefficient acquired in the flow coefficient acquisition step and the efficiency corrected in the acquisition value correction step. The performance evaluation method according to claim 1 or 2, further comprising a correction performance curve acquisition step of acquiring the above. 複数のガスが混合された混合ガスが流入する圧縮機の性能を評価する性能評価装置であって、
前記圧縮機の複数の回転数のそれぞれ応じて予め定められた機械マッハ数をそれぞれ取得するマッハ数取得部と、
前記圧縮機の効率と前記圧縮機の流量係数との相関関係を示す曲線である予測性能カーブを前記マッハ数取得部で取得した複数の前記機械マッハ数ごとにそれぞれ取得する予測性能カーブ取得部と、
前記予測性能カーブ取得部で取得した複数の前記予測性能カーブの中で、基準とする前記機械マッハ数での前記予測性能カーブを基準予測性能カーブとして選択し、前記流量係数が同じである場合に、他の前記機械マッハ数での前記予測性能カーブにおける前記効率の値を、選択された前記基準予測性能カーブにおける前記効率の値に一致させる補正値を複数の前記機械マッハ数及び複数の前記流量係数のそれぞれに対応して取得する補正値取得部と、
運転中の前記圧縮機の流入口に流入される前記混合ガスの少なくとも圧力、温度、及び流量を入口測定値として取得し、運転中の前記圧縮機の流出口から流出する前記混合ガスの少なくとも圧力及び温度を出口測定値として取得する測定値取得部と、
前記入口測定値のうちの圧力及び温度と、前記出口測定値のうちの圧力及び温度とに基づいて、前記測定値取得部で各種測定値を取得時の前記圧縮機の前記効率を取得する効率取得部と、
前記入口測定値のうちの流量と、前記取得時の前記圧縮機の回転数とに基づいて、前記取得時の前記圧縮機の流量係数を取得する流量係数取得部と、
前記効率取得部で取得した前記効率の値を、前記取得時の前記圧縮機の前記機械マッハ数と、前記流量係数取得部で取得した前記流量係数とに応じた前記補正値で補正する取得値補正部とを備える性能評価装置。
It is a performance evaluation device that evaluates the performance of a compressor into which a mixed gas in which a plurality of gases are mixed flows.
A Mach number acquisition unit that acquires a predetermined mechanical Mach number according to each of the plurality of rotation speeds of the compressor, and a Mach number acquisition unit.
A prediction performance curve acquisition unit that acquires a prediction performance curve, which is a curve showing the correlation between the efficiency of the compressor and the flow coefficient of the compressor, for each of a plurality of the machine Mach numbers acquired by the Mach number acquisition unit. ,
When the prediction performance curve with the reference machine Mach number is selected as the reference prediction performance curve from the plurality of prediction performance curves acquired by the prediction performance curve acquisition unit, and the flow coefficient is the same. A correction value that matches the efficiency value in the prediction performance curve with another machine Mach number to the efficiency value in the selected reference prediction performance curve is set to a plurality of the machine Mach numbers and a plurality of the flow coefficients. The correction value acquisition unit that acquires each of the coefficients, and the correction value acquisition unit
At least the pressure, temperature, and flow rate of the mixed gas flowing into the inlet of the compressor during operation are acquired as inlet measurement values, and at least the pressure of the mixed gas flowing out from the outlet of the compressor during operation. And the measurement value acquisition unit that acquires the temperature as the outlet measurement value,
Efficiency of acquiring the efficiency of the compressor at the time of acquiring various measured values by the measured value acquisition unit based on the pressure and temperature of the inlet measured values and the pressure and temperature of the outlet measured values. Acquisition department and
A flow coefficient acquisition unit that acquires the flow coefficient of the compressor at the time of acquisition based on the flow rate of the inlet measurement value and the rotation speed of the compressor at the time of acquisition.
An acquisition value that corrects the efficiency value acquired by the efficiency acquisition unit with the correction value corresponding to the mechanical Mach number of the compressor at the time of acquisition and the flow coefficient acquired by the flow coefficient acquisition unit. A performance evaluation device equipped with a correction unit.
前記圧縮機が目標とする状態で運転されている場合の前記効率と前記流量係数との相関関係を示す曲線として予め定められた目標性能カーブを取得し、前記取得値補正部で補正された前記効率が、取得した前記目標性能カーブから外れているか否かを判定する判定部をさらに備える請求項4に記載の性能評価装置。 The target performance curve, which is predetermined as a curve showing the correlation between the efficiency and the flow coefficient when the compressor is operated in the target state, is acquired and corrected by the acquired value correction unit. The performance evaluation device according to claim 4, further comprising a determination unit for determining whether or not the efficiency deviates from the acquired target performance curve. 前記流量係数取得部で取得された前記流量係数と、前記取得値補正部で補正された前記効率とに基づいて、前記流量係数と補正された前記効率との相関関係を示す曲線として補正性能カーブを取得する補正性能カーブ取得部をさらに備える請求項4又は請求項5に記載の性能評価装置。 A correction performance curve as a curve showing the correlation between the flow coefficient and the corrected efficiency based on the flow coefficient acquired by the flow coefficient acquisition unit and the efficiency corrected by the acquired value correction unit. The performance evaluation device according to claim 4 or 5, further comprising a correction performance curve acquisition unit for acquiring the above. 請求項4から請求項6の何れか一項に記載の性能評価装置と、
前記混合ガスが流入する圧縮機と、
運転中の前記圧縮機の流入口に流入される前記混合ガスの少なくとも圧力、温度、及び流量を測定して入口測定値として前記性能評価装置に送る入口測定部と、
運転中の前記圧縮機の流出口から流出する前記混合ガスの少なくとも圧力及び温度を測定して出口測定値として前記性能評価装置に送る出口測定部と、を備える性能評価システム。
The performance evaluation device according to any one of claims 4 to 6,
The compressor into which the mixed gas flows and
An inlet measuring unit that measures at least the pressure, temperature, and flow rate of the mixed gas flowing into the inlet of the compressor during operation and sends it to the performance evaluation device as an inlet measurement value.
A performance evaluation system including an outlet measuring unit that measures at least the pressure and temperature of the mixed gas flowing out from the outlet of the compressor during operation and sends the mixed gas as an outlet measured value to the performance evaluation device.
JP2018032456A 2018-02-26 2018-02-26 Performance evaluation method, performance evaluation device, and performance evaluation system Active JP6952622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018032456A JP6952622B2 (en) 2018-02-26 2018-02-26 Performance evaluation method, performance evaluation device, and performance evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018032456A JP6952622B2 (en) 2018-02-26 2018-02-26 Performance evaluation method, performance evaluation device, and performance evaluation system

Publications (2)

Publication Number Publication Date
JP2019148199A JP2019148199A (en) 2019-09-05
JP6952622B2 true JP6952622B2 (en) 2021-10-20

Family

ID=67849232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018032456A Active JP6952622B2 (en) 2018-02-26 2018-02-26 Performance evaluation method, performance evaluation device, and performance evaluation system

Country Status (1)

Country Link
JP (1) JP6952622B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110701086B (en) * 2019-09-10 2020-10-13 天津大学 Compressor full-working-condition performance prediction method
CN113803283B (en) * 2020-06-16 2024-03-26 中国石油天然气股份有限公司 Method and system for correcting performance curve of compressor
CN113761690B (en) * 2021-09-23 2024-03-19 顿汉布什(中国)工业有限公司 Screw compressor performance simulation calculation method

Also Published As

Publication number Publication date
JP2019148199A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP6952622B2 (en) Performance evaluation method, performance evaluation device, and performance evaluation system
EP3399376B1 (en) Plant-abnormality-monitoring method and computer program for plant abnormality monitoring
US20170060664A1 (en) Method for verifying bad pattern in time series sensing data and apparatus thereof
KR102202161B1 (en) Monitoring device, monitoring method and program of target device
US20180284739A1 (en) Quality control apparatus, quality control method, and quality control program
CN109073508B (en) Fault diagnosis during testing of turbine units
JP4513771B2 (en) Performance monitoring method and system for single-shaft combined cycle plant
US8751423B2 (en) Turbine performance diagnostic system and methods
US10359401B2 (en) Malfunction diagnosing apparatus, malfunction diagnosing method, and recording medium
KR20180137513A (en) Monitoring device, monitoring method and program of target device
TWI738411B (en) Device diagnosis device, plasma processing device and device diagnosis method
JP6484525B2 (en) Alarm device and process control system
MX2015005729A (en) A method for operating a compressor in case of failure of one or more measure signal.
JP2014044510A (en) Abnormality diagnostic device
JP6274932B2 (en) Prediction system, monitoring system, operation support system, gas turbine equipment, and prediction method
JP2013041491A (en) Abnormality diagnostic device
CN110382878B (en) Method and device for determining an indicator for predicting instability in a compressor and use thereof
US7841825B2 (en) Method for predicting surge in compressor
US10853538B2 (en) Model generation system and model generation method
JP5948998B2 (en) Abnormality diagnosis device
JP6952621B2 (en) Performance evaluation method, performance evaluation device, and performance evaluation system
JP6347771B2 (en) Abnormality diagnosis apparatus, abnormality diagnosis method, and abnormality diagnosis program
KR102574567B1 (en) Blast furnace fault determination apparatus, method for determining fault in blast furnace, and method for operating blast furnace
JP2009299934A (en) Failure diagnosing device using refrigerating cycle device
JP7437163B2 (en) Diagnostic equipment, diagnostic methods and programs

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20201029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210928

R150 Certificate of patent or registration of utility model

Ref document number: 6952622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150