JP2004224610A - Low dusting type aluminum nitride - Google Patents
Low dusting type aluminum nitride Download PDFInfo
- Publication number
- JP2004224610A JP2004224610A JP2003012166A JP2003012166A JP2004224610A JP 2004224610 A JP2004224610 A JP 2004224610A JP 2003012166 A JP2003012166 A JP 2003012166A JP 2003012166 A JP2003012166 A JP 2003012166A JP 2004224610 A JP2004224610 A JP 2004224610A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum nitride
- plasma
- exposed
- sintered body
- halogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Resistance Heating (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は、半導体製造装置のハロゲンプラズマに曝される個所に用いられる窒化アルミニウム焼結体に関する。
【0002】
【従来の技術】
窒化アルミニウムは、熱伝導率が理論値として320W/m・Kと高いために、放熱基板や半導体製造装置でウェーハに均一に熱を伝達するための部材などに使用されている。また、窒化アルミニウムは、耐ハロゲン性を有するために半導体製造装置のプラズマエッチング装置、プラズマアッシング装置、CVD装置などのハロゲンプラズマに曝される各種部材、例えばマイクロ波導入窓用部材、静電チャック、保護プレートなどの部材に使用されている。半導体製造装置におけるプラズマ処理装置では、炉内クリーニング時にチャンバー内を減圧して弗素系の反応ガスを導入し、高周波やマイクロ波を印加してガス放電を起こさせるものである。こうしたプラズマ処理装置において、前記のマイクロ波導入窓、保護プレート、静電チャックなの部材は弗素系プラズマに激しく曝らされるものである。窒化アルミニウムは熱伝導率が著しく高い上に、ハロゲンに対し良好な耐食性があるのでこうした部材に最も好ましい材料であるが、窒化アルミニウムもこうしたプラズマ処理装置で繰り返しハロゲンプラズマに曝されると徐々に腐食を受けるようになる。即ち、窒化アルミニウム部材に弗素系ガスを供給しこれにプラズマを照射すると、表面に弗化アルミニウムの層が生成し、これが曝露時間の経過とともに膜状に成長していくのが認められるものである。
【0003】
半導体製造装置の稼動時に、上記のような装置内面の部材に弗化アルミニウムが徐々に堆積するとこれが部材から脱離してパーティクルとなり、装置内のウェーハを汚染し半導体製造の歩留りに大きな影響を与えることになる。このために、プラズマ処理装置では、一定数のウェーハをプラズマ処理して弗化アルミニウムが所定以上に堆積した部材は高い頻度で取外し、これを交換またはクリーニングしなければならず、このメインテナンスのために半導体製造工程のスループットに影響を与えることにもなっていた。
【0004】
従来から、半導体製造装置のプラズマ耐食性部材として使用されている窒化アルミニウムとしては、平均粒径が1μmから20μmで、プラズマに接すべき表面の平均表面粗さが0.5μm以下で、耐食性に優れかつ高い強度をもったものが提案されている(特許文献1参照)。
【0005】
【特許文献1】
特開平11−209182号(段落[0010])
しかしがら、この先行技術は、窒化アルミニウム焼結体部材のプラズマに曝される表面を、通常の研削加工および/または研磨加工してその平均表面粗さを0.5μm以下とするものであるから、この焼結体では研削加工または研磨加工によって結晶粒子が粒塊のまま欠落することが多く、その跡をミクロ的に観察するとこれまで嵌装していた粒子形状と一致して鋭角をもった凹凸部を随所に形成したものとなっていた。この状態の窒化アルミニウム焼結体の表面を模写して図2に示した。図2において、ハッチング部が粒塊のまま欠落した凹部を示す。こうした鋭角部にはプラズマが集中し易く窒化アルミニウムの焼結体の表面は、表面粗さが小さくても弗化アルミニウムが堆積し易く、またこれが多くなるとこれが部材から脱離してパーティクルとなる恐れがあった。従って、これを交換またはクリーニングする頻度を多くしなければならないという問題があった。
【0006】
【発明が解決しようとする課題】
この発明は、窒化アルミニウム焼結体のハロゲンプラズマに曝される面の40%以上を粒内破壊によって形成して、窒化アルミニウム焼結体のハロゲンプラズマに曝される面において鋭角をもった凹凸部の存在を少なくし、これによって部材表面に弗化アルミニウムが堆積し難くし、さらに弗化アルミニウムが部材から脱離してパーティクルを発生しなようにした窒化アルミニウム焼結体を得ようとしたものである。
【0007】
【課題を解決するための手段】
この発明は、半導体製造装置のハロゲンプラズマに曝される部材に用いられる窒化アルミニウム焼結体部材であって、該部材のハロゲンプラズマに曝される面の40%以上が粒内破壊によって生成されたものであることを特徴とする低発塵性窒化アルミニウムである。即ち、この発明は窒化アルミニウム焼結体部材表面の平滑化を従来の単なる表面粗さの限定に代えて、焼結体の結晶粒子自体の破壊による粒内破壊によって行うようにしたもので、しかもその面積を焼結体部材のハロゲンガスに曝される表面積の40%以上を占めるようにしたものである。
【0008】
【発明の実施の態様】
一般に、セラミック焼結体製品の表面は、研削又は研磨などの加工によって形成される。また、その加工面は結晶粒子の脱落による粒界破壊と、結晶粒子自体が破壊を受ける粒内破壊が混在した状態で存在した形となっている。この中で粒界破壊によって生じた表面は結晶面による鋭角をもった凹凸を有し、ハロゲンプラズマの曝露によるハロゲン化アルミニウムの生成時には、この凹凸形状が反映した膜がここに形成されることになる。一方、粒内破壊によって生じた表面は粒界破壊によって生じた表面よりも凹凸が少なく、しかもそこでの凹凸は結晶粒子の脱落に起因するような鋭角をもったものではないので、ハロゲンプラズマの曝露によるハロゲン化アルミニウムの生成時の膜はこの緩やかな凹凸形状が反映されたものとなる。この発明は、セラミック焼結体の表面加工における粒界破壊と粒内破壊のこうした特徴に注目して、ハロゲンプラズマに曝される部材に用いられる窒化アルミニウム焼結体部材のうち40%以上が粒内破壊によって生成されるようにしたものである。粒内破壊が40%以上の窒化アルミニウムを得るためには、窒化アルミニウム焼結体の粒径制御と焼結体を研削する条件を適宜に設定することによって当業者に可能である。
【0009】
この発明の窒化アルミニウム焼結体自体は通常の方法で得たものが用いられる。即ち、高純度窒化アルミニウム粉末に焼結助剤、例えば酸化イットリウム、酸化カルシウムなどを添加し、これにさらに有機バインダーや有機溶剤を適量添加し、これをボールミルで混合してスラリーとする。このスラリーをスプレードライヤーで造粒する。次いでこの造粒粉を一軸金型プレス機で加圧して成形体とする。この成形体を大気中加熱して脱脂を行い、その後1500℃〜2000℃で焼成して窒化アルミニウム焼結体とするものである。しかしながら、この発明になる窒化アルミニウム焼結体を得るには、焼結体の結晶粒が出来るだけ小さくしておくことが好ましく、5μm以下さらに好ましくは3μm以下が好適である。焼結体の粒径がこれよりも大きいと焼結体の使用面を研削するときに結晶粒が脱落して、その跡にそれまで存在していた結晶粒の形状をした鋭角の凹部が形成されるからである。反対に、結晶粒が小径であると粒子が表面研削によっても脱落せずマトリックスに強固に固着されたままとなるので、研削に際しても粒子自体が研削されて粒内破壊が行なわれやすくなる。結晶粒子を小さくするには、原料の窒化アルミニウム粉末は高純度のものを用いるとともに、1850℃以下と低温焼成でしかも焼成時間も5h以下(最高温度保持時間)と短い時間とする。また、低温で焼成することが可能なホットプレスを用いることもできる。この場合は、焼成温度は1650℃〜1750℃まで低下させることができる。
【0010】
次に、上記の焼結体のハロゲンプラズマに曝露される面を研削または研磨して、焼結体部材のうち40%以上が粒内破壊によって生成されるようにする。そのために、ここにおける研削または研磨は出来るだけマイルドで、即ち、砥石の切り込みを小さく、さらに細かい砥粒で行う。例えば、砥石の切り込み量は2μm以下、砥粒は♯240以上で行う。従って、逆に研削時間はそれだけ多くの時間をかけて行うことが必要である。但し、適正な加工条件は焼結体特性により変わるため、上記の条件に限らず、試行してこれを決定する必要がある。粒内破壊は主に研削で行なわれるが、必ずしもこれに限られるものではなく、外にブラスト加工によっても可能である。これらの粒内破壊を行った後は、この面をさらに研削して最終的な表面仕上げを行うものである。最終的に仕上げた表面の表面粗さ(Ra)は0.8以下が好ましい。上記によって、ハロゲン化プラズマに曝される窒化アルミニウムの面の40%以上を粒内破壊にすることが出来る。さらに好ましくはハロゲン化プラズマに曝される面の60%以上を粒内破棄によるものである。
【0011】
【実施例】
(実施例1〜3,比較例1〜5)
純度99.5%、平均粒径1μmの高純度窒化アルミニウム原料粉に、焼結助剤として酸化イットリウムを0.5重量%、バインダー、有機溶媒としてメチルアルコールを適量添加してボールミルで混合した。このスラリーをスプレードライヤーで造粒した。この造粒粉を一軸金型プレス機によって30MPaの圧力で径260mm、厚さ15mmの厚手の円板に成形した。さらにこの成形体を大気中600℃で脱脂した。この成形体を表1に示す条件で焼成を行った。
【0012】
この厚手の円板状の焼結体は、全て同じ条件で研削加工して径200mm、厚さ5mmに成形した。各焼成条件のサンプルはそれぞれ2ピース作成し、その中の1ピース資料はSEMによる表面観察を行い、その結果から粒界破壊している部分と粒内破壊している部分の面積を算出し、粒内破壊率[粒内破壊率/(粒界破壊面積+粒内破壊面積)×100(%)]を求めた。なお、この円板状の窒化アルミニウム焼結体の表面を模写して図1に示した。他方の1ピースの試料は、これをICPプラズマ処理装置を用いてC2F6ガスを用いた弗素プラズマの中に曝し、これに0.5μmの弗化アルミニウム膜を堆積させた。さらに、これらの弗化アルミニウムの層を有する窒化アルミニウム円板上に6インチのシリコンウェーハを載置して、20mTorr、800WのArプラズマ中で1minのプラズマ曝露を実施した。その後、このシリコンウェーハを回収し、パーティクルカウンターによってシリコンウェーハ上の直径0.2μm上のパーティクル数を測定した。この測定結果を表1に示す。
【0013】
【表1】
【0014】
表1の実施例1、実施例2に示すように、焼成温度を低温とした焼結体で、ハロゲンプラズマ曝露面の粒内破壊率が本発明の範囲内にあるものは、半導体製造プロセス中のパーティクル発生を低レベルに抑えることが可能である。また、実施例3に示すように、常圧焼結することによって粒内破壊率が本発明の範囲内にしたものにあっても(実施例3)、同じように半導体製造プロセス中のパーティクル発生を低レベルに抑えることが可能である。これに対して、比較例1ないし5のようにハロゲンプラズマ曝露面の粒内破壊率が本発明の範囲外にあるものは、いずれも半導体製造プロセス中のパーティクル発生が高いレベルにあった。
【0015】
【発明の効果】
以上のように、この発明の窒化アルミニウム焼結体部材は、ハロゲンプラズマに曝される面の40%以上が粒内破壊によって生成されたものであるので表面の凹凸が少なく、しかもそこでの凹凸は結晶粒子の脱落によるような鋭角をもったものではないので、ハロゲンプラズマの曝露によるハロゲン化アルミニウムの生成時の膜はこの緩やかな凹凸形状が反映された強固なものが形成され、これが脱離してパーティクルとなりにくくすることができる。したがって、この部材の交換またはクリーニングまで膜の離脱によるパーティクルの発生を抑制することができて、半導体製造装置の性能を一層向上させることが出来るようになった。
【図面の簡単な説明】
【図1】この発明による円板状の窒化アルミニウム焼結体の表面を模写した説明図。
【図2】従来の円板状の窒化アルミニウム焼結体の表面を模写した説明図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aluminum nitride sintered body used at a location of a semiconductor manufacturing apparatus exposed to halogen plasma.
[0002]
[Prior art]
Since aluminum nitride has a high thermal conductivity of 320 W / m · K as a theoretical value, aluminum nitride is used for a heat dissipation substrate or a member for uniformly transferring heat to a wafer in a semiconductor manufacturing apparatus. In addition, aluminum nitride is a member that is exposed to halogen plasma such as a plasma etching apparatus, a plasma ashing apparatus, and a CVD apparatus of a semiconductor manufacturing apparatus in order to have halogen resistance, for example, a member for a microwave introduction window, an electrostatic chuck, Used for members such as protection plates. In a plasma processing apparatus in a semiconductor manufacturing apparatus, the inside of a chamber is decompressed during cleaning in a furnace, a fluorine-based reaction gas is introduced, and a high frequency or microwave is applied to cause a gas discharge. In such a plasma processing apparatus, the members such as the microwave introduction window, the protection plate, and the electrostatic chuck are violently exposed to fluorine-based plasma. Aluminum nitride is the most preferred material for such components due to its extremely high thermal conductivity and good corrosion resistance to halogens, but aluminum nitride also gradually corrodes when repeatedly exposed to halogen plasma in such plasma processing equipment. Will receive. That is, when a fluorine-based gas is supplied to the aluminum nitride member and plasma is applied to the fluorine-based gas, a layer of aluminum fluoride is generated on the surface, and it is recognized that this layer grows into a film with the passage of exposure time. .
[0003]
During operation of a semiconductor manufacturing apparatus, if aluminum fluoride is gradually deposited on the members on the inner surface of the apparatus as described above, the aluminum fluoride is detached from the members and becomes particles, which contaminates the wafer in the apparatus and greatly affects the yield of semiconductor manufacturing. become. For this reason, in a plasma processing apparatus, a member on which a predetermined number of wafers are plasma-processed and aluminum fluoride is deposited at a predetermined amount or more must be removed at a high frequency, and it must be replaced or cleaned. It also affects the throughput of the semiconductor manufacturing process.
[0004]
Conventionally, aluminum nitride used as a plasma corrosion-resistant member of a semiconductor manufacturing apparatus has an average particle diameter of 1 μm to 20 μm, an average surface roughness of a surface to be in contact with plasma of 0.5 μm or less, and has excellent corrosion resistance. Further, one having high strength has been proposed (see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-11-209182 (paragraph [0010])
However, according to this prior art, the surface of the aluminum nitride sintered body member exposed to the plasma is subjected to ordinary grinding and / or polishing to reduce the average surface roughness to 0.5 μm or less. However, in this sintered body, crystal grains were often missing as agglomerates due to grinding or polishing, and when microscopically observed, the traces had an acute angle in conformity with the previously fitted particle shape. Uneven portions were formed everywhere. FIG. 2 is a copy of the surface of the aluminum nitride sintered body in this state. In FIG. 2, a concave portion in which a hatched portion is missing as a granular mass is shown. Plasma tends to concentrate on such sharp corners, and aluminum fluoride is likely to accumulate on the surface of the aluminum nitride sintered body, even if the surface roughness is small. there were. Therefore, there has been a problem that the frequency of replacement or cleaning must be increased.
[0006]
[Problems to be solved by the invention]
According to the present invention, an irregular portion having an acute angle is formed on a surface of an aluminum nitride sintered body exposed to halogen plasma by forming at least 40% of the surface exposed to halogen plasma by intragranular fracture. The purpose of the present invention is to obtain an aluminum nitride sintered body in which aluminum fluoride is less likely to be deposited on the surface of the member, and aluminum fluoride is not separated from the member to generate particles. is there.
[0007]
[Means for Solving the Problems]
The present invention relates to an aluminum nitride sintered body member used for a member exposed to halogen plasma in a semiconductor manufacturing apparatus, wherein 40% or more of a surface of the member exposed to halogen plasma is generated by intragranular fracture. It is a low-dusting aluminum nitride characterized by being a thing. That is, in the present invention, the smoothing of the surface of the aluminum nitride sintered body member is performed by intragranular destruction due to the destruction of the crystal grains of the sintered body, instead of the conventional simple limitation of surface roughness. The area occupies 40% or more of the surface area of the sintered body member exposed to the halogen gas.
[0008]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Generally, the surface of a ceramic sintered body product is formed by processing such as grinding or polishing. Further, the processed surface has a form in which grain boundary destruction due to falling of crystal grains and intragranular destruction in which crystal grains themselves are destroyed are present in a mixed state. Among them, the surface caused by grain boundary destruction has irregularities with acute angles due to crystal planes, and when aluminum halide is generated by exposure to halogen plasma, a film reflecting this irregularity is formed here. Become. On the other hand, the surface caused by intragranular fracture has less irregularities than the surface caused by intergranular fracture, and the irregularities there do not have an acute angle due to the dropout of crystal grains. The film at the time of generation of the aluminum halide reflects the gently uneven shape. The present invention focuses on such features of grain boundary fracture and intragranular fracture in the surface processing of a ceramic sintered body, and more than 40% of aluminum nitride sintered body members used for a member exposed to halogen plasma have a grain boundary. It is generated by internal destruction. In order to obtain aluminum nitride having an intragranular fracture of 40% or more, it is possible for those skilled in the art to control the particle size of the aluminum nitride sintered body and appropriately set conditions for grinding the sintered body.
[0009]
As the aluminum nitride sintered body of the present invention, one obtained by a usual method is used. That is, a sintering aid, for example, yttrium oxide, calcium oxide, or the like is added to high-purity aluminum nitride powder, and an appropriate amount of an organic binder or an organic solvent is further added thereto, followed by mixing with a ball mill to form a slurry. This slurry is granulated with a spray drier. Next, the granulated powder is pressed by a uniaxial die press to form a compact. This compact is heated in the air to perform degreasing, and then fired at 1500 to 2000 ° C. to obtain an aluminum nitride sintered body. However, in order to obtain the aluminum nitride sintered body according to the present invention, it is preferable that the crystal grains of the sintered body be as small as possible, preferably 5 μm or less, more preferably 3 μm or less. If the grain size of the sintered body is larger than this, crystal grains will fall off when grinding the used surface of the sintered body, forming an acute angle recess in the shape of the crystal grain that existed there Because it is done. Conversely, if the crystal grains have a small diameter, the grains do not fall off even by surface grinding and remain firmly fixed to the matrix, so that the grains themselves are also ground during grinding and intragranular fracture is likely to occur. In order to reduce the crystal grain size, a high-purity aluminum nitride powder as the raw material is used, and the firing is performed at a low temperature of 1850 ° C. or less and the firing time is as short as 5 hours or less (maximum temperature holding time). A hot press that can be fired at a low temperature can also be used. In this case, the firing temperature can be reduced to 1650C to 1750C.
[0010]
Next, the surface of the sintered body exposed to the halogen plasma is ground or polished so that 40% or more of the sintered body members are generated by intragranular fracture. For this purpose, the grinding or polishing here is performed as mildly as possible, that is, the cutting of the grinding wheel is made smaller and finer abrasive grains are used. For example, the cutting amount of the grindstone is set to 2 μm or less, and the size of the abrasive grains is set to # 240 or more. Therefore, conversely, it is necessary to perform the grinding time by taking much time. However, since the appropriate processing conditions vary depending on the characteristics of the sintered body, the conditions need not be limited to the above conditions but must be determined by trial. The intragranular fracture is mainly performed by grinding, but is not necessarily limited to this, and can also be performed by blasting outside. After performing these intragranular fractures, this surface is further ground to perform a final surface finish. The surface roughness (Ra) of the finally finished surface is preferably 0.8 or less. As described above, 40% or more of the surface of the aluminum nitride exposed to the halogenated plasma can be broken intragranularly. More preferably, 60% or more of the surface exposed to the halogenated plasma is obtained by intragranular disposal.
[0011]
【Example】
(Examples 1 to 3, Comparative Examples 1 to 5)
To a high-purity aluminum nitride raw material powder having a purity of 99.5% and an average particle diameter of 1 μm, 0.5% by weight of yttrium oxide as a sintering aid, and appropriate amounts of methyl alcohol as a binder and an organic solvent were added and mixed by a ball mill. This slurry was granulated with a spray drier. This granulated powder was formed into a thick disk having a diameter of 260 mm and a thickness of 15 mm by a uniaxial die press under a pressure of 30 MPa. Further, this molded body was degreased at 600 ° C. in the atmosphere. This compact was fired under the conditions shown in Table 1.
[0012]
All of the thick disk-shaped sintered bodies were ground under the same conditions and formed into a diameter of 200 mm and a thickness of 5 mm. Samples of each baking condition were made in two pieces, and one piece of the material was subjected to surface observation by SEM, and the area of the grain boundary fractured part and the intragranular fracture part was calculated from the result, The intragranular fracture rate [intragranular fracture rate / (grain boundary fracture area + intragranular fracture area) × 100 (%)] was determined. The surface of the disc-shaped aluminum nitride sintered body was copied and shown in FIG. The other one-piece sample was exposed to fluorine plasma using C 2 F 6 gas using an ICP plasma processing apparatus, and a 0.5 μm aluminum fluoride film was deposited thereon. Further, a 6-inch silicon wafer was placed on the aluminum nitride disk having these aluminum fluoride layers, and plasma exposure was performed for 1 minute in Ar plasma at 20 mTorr and 800 W. Thereafter, the silicon wafer was collected, and the number of particles on the silicon wafer having a diameter of 0.2 μm was measured by a particle counter. Table 1 shows the measurement results.
[0013]
[Table 1]
[0014]
As shown in Example 1 and Example 2 of Table 1, sintered bodies having a low firing temperature and having a intragranular breakdown rate of the halogen plasma-exposed surface within the range of the present invention were obtained during the semiconductor manufacturing process. Particles can be suppressed to a low level. Further, as shown in Example 3, even if the intragranular fracture rate was within the range of the present invention by sintering under normal pressure (Example 3), the particle generation during the semiconductor manufacturing process was similarly performed. Can be suppressed to a low level. On the other hand, in each of Comparative Examples 1 to 5, in which the intragranular breakdown rate of the halogen plasma exposed surface was out of the range of the present invention, the generation of particles during the semiconductor manufacturing process was at a high level.
[0015]
【The invention's effect】
As described above, in the aluminum nitride sintered body member of the present invention, since 40% or more of the surface exposed to the halogen plasma is generated by intragranular fracture, the surface unevenness is small, and the unevenness there is small. Since the film does not have an acute angle as caused by the dropping of crystal grains, the film at the time of the formation of aluminum halide by exposure to halogen plasma forms a strong film reflecting this gently uneven shape, which is detached. Particles can be hardly formed. Therefore, the generation of particles due to the detachment of the film until the replacement or cleaning of the member can be suppressed, and the performance of the semiconductor manufacturing apparatus can be further improved.
[Brief description of the drawings]
FIG. 1 is an explanatory view simulating the surface of a disk-shaped aluminum nitride sintered body according to the present invention.
FIG. 2 is an explanatory view simulating the surface of a conventional disk-shaped aluminum nitride sintered body.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003012166A JP2004224610A (en) | 2003-01-21 | 2003-01-21 | Low dusting type aluminum nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003012166A JP2004224610A (en) | 2003-01-21 | 2003-01-21 | Low dusting type aluminum nitride |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004224610A true JP2004224610A (en) | 2004-08-12 |
Family
ID=32900862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003012166A Pending JP2004224610A (en) | 2003-01-21 | 2003-01-21 | Low dusting type aluminum nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004224610A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263965A (en) * | 2004-03-18 | 2005-09-29 | Sakamoto Yakuhin Kogyo Co Ltd | New epoxy resin and curable resin composition containing the same |
JP2007042672A (en) * | 2005-07-29 | 2007-02-15 | Ibiden Co Ltd | Plasma process device chamber member and its manufacturing method |
JP6002038B2 (en) * | 2010-08-10 | 2016-10-05 | 株式会社東芝 | Polycrystalline aluminum nitride substrate for GaN-based semiconductor crystal growth and method for producing GaN-based semiconductor using the same |
-
2003
- 2003-01-21 JP JP2003012166A patent/JP2004224610A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263965A (en) * | 2004-03-18 | 2005-09-29 | Sakamoto Yakuhin Kogyo Co Ltd | New epoxy resin and curable resin composition containing the same |
JP4524127B2 (en) * | 2004-03-18 | 2010-08-11 | 阪本薬品工業株式会社 | Novel epoxy resin and curable resin composition containing the same |
JP2007042672A (en) * | 2005-07-29 | 2007-02-15 | Ibiden Co Ltd | Plasma process device chamber member and its manufacturing method |
JP6002038B2 (en) * | 2010-08-10 | 2016-10-05 | 株式会社東芝 | Polycrystalline aluminum nitride substrate for GaN-based semiconductor crystal growth and method for producing GaN-based semiconductor using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI852155B (en) | Method of manufacturing chamber component for processing chamber | |
JP4213790B2 (en) | Plasma-resistant member and plasma processing apparatus using the same | |
KR101645043B1 (en) | A plasma processing chamber, a plasma processing component and a method of manufacturing a plasma etch chamber processing component | |
JP2003146751A (en) | Plasma-resistant member and method of producing the same | |
JP2010141341A (en) | Method and apparatus for processing substrate, and ceramic composition for them | |
JPH10167859A (en) | Ceramic part and its production | |
JP3527839B2 (en) | Components for semiconductor device manufacturing equipment | |
JPH08188468A (en) | Formed silicon carbide produced by chemical vapor deposition and its production | |
JP3555442B2 (en) | Alumina ceramic material excellent in plasma corrosion resistance and method for producing the same | |
JP5593694B2 (en) | Corrosion-resistant member and manufacturing method thereof | |
JP2010042991A (en) | Silica glass jig used in process for manufacturing semiconductor | |
JP2004224610A (en) | Low dusting type aluminum nitride | |
JP3808245B2 (en) | Chamber component for semiconductor manufacturing | |
JP2008007350A (en) | Yttria ceramic sintered compact | |
TWI777799B (en) | Sintered yttrium oxide body of large dimension | |
JP3769416B2 (en) | Components for plasma processing equipment | |
JP4811946B2 (en) | Components for plasma process equipment | |
JP2000243742A (en) | Plasma generator, inner wall protective member of chamber thereof, manufacture thereof, protection of inner wall of chamber and plasma treatment | |
JP2007223828A (en) | Yttria ceramic sintered compact and method of manufacturing the same | |
JP2002068864A (en) | Plasma resistant member and method of manufacturing for the same | |
JP2001233676A (en) | Plasma corrosion-resistant member and method for producing the same | |
JP4119268B2 (en) | Semiconductor manufacturing apparatus member and manufacturing method thereof | |
JP2007063595A (en) | Ceramic gas nozzle made of y2o3 sintered compact | |
JPH11278919A (en) | Plasma-resistant member | |
JPH11219939A (en) | Substrate placing stand surface protecting board, method for cleaning processing chamber, and method for cleaning substrate placing stand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050908 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090224 |