JP2004224103A - 船舶のフラップ制御装置 - Google Patents

船舶のフラップ制御装置 Download PDF

Info

Publication number
JP2004224103A
JP2004224103A JP2003011975A JP2003011975A JP2004224103A JP 2004224103 A JP2004224103 A JP 2004224103A JP 2003011975 A JP2003011975 A JP 2003011975A JP 2003011975 A JP2003011975 A JP 2003011975A JP 2004224103 A JP2004224103 A JP 2004224103A
Authority
JP
Japan
Prior art keywords
angle
target
flap
steering angle
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003011975A
Other languages
English (en)
Inventor
Yasushi Yamada
泰 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2003011975A priority Critical patent/JP2004224103A/ja
Publication of JP2004224103A publication Critical patent/JP2004224103A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】船舶の転舵時にも船体姿勢を安定させること。
【解決手段】目標位置演算部210は、左右フラップの各目標位置Φ,Φを算定する制御ブロックで、船体のロール角ρやピッチ角Pが、与えられた目標値ρ,Pに速やかに収斂する様に構成されている。目標値ρ,Pは適当な定数でも良いし、例えば走行速度vや舵角θ等に適度に依存する変数であっても良い。転舵作用FF部212は、目標値ρを達成するために進行方向eを回転軸方向として生成すべき力のモーメントNに対する補正項δNを次式(3)に従って算出する。この様な構成に従えば、舵角θに応じて発生すると推定される補正項δN等の作用によって、転舵時に舵角θに基づいて発生するロール動作を緩和又は抑制することが可能、容易、或いは確実と成る。
δN=β{θ+β(dθ/dt)}v …(3)
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、船体の水面下の船尾又は側面に取り付けられた左右同数の各フラップが受ける揚力又は抗力を制御する船舶のフラップ制御装置に関する。
【0002】
【従来の技術】
【特許文献1】
特開平9−315384号公報
【特許文献2】
特開平9−076992号公報
【0003】
上記の特許文献1,2等に見られる従来の船舶のフラップ制御装置においては、左右各フラップの角度制御が、ロール角センサから検知された船体のロール角に基づいて実施されている。例えばこの様な、クルーザーやヨット等に搭載される従来のフラップ制御装置では、船体の右回旋時には、船体の右側が相対的に下がり、船体の左側が相対的に上がるため、この時の船体のロール角に基づいて右フラップを下げる等のフラップの角度制御を行う等して、これらの制御により、例えば船体を水平に戻す様な船体の姿勢を安定化させる姿勢制御を実現していた。
【0004】
図7は、従来技術によるロール制御の処理手順を例示するフローチャートであり、また、図8は、例えば方向舵や左右のフラップ等を用いて船舶の船体1に作用させることができる各向きの力のモーメントN,N,N及び各フラップの位置φ,φのそれぞれの符号に付いて説明(定義)する船舶の模式的な斜視図である。
例えば図7のロール角とは、鉛直線に対する船体の左右方向の傾きを示す角度のことであり、以下、船体が右に傾いている時、即ち船体の右側が左側よりも相対的に下がっている時、ロール角ρが正(ρ>0)であるものとする。また、以下で言及するピッチ角とは、鉛直線に対する船体の前後方向の傾きを示す角度のことであり、以下、船首が下に傾いている時、ピッチ角Pが正(P>0)であるものとする。
【0005】
図8の符号Gは、船舶の重心を表している。この船舶の船体のピッチ角Pを制御する力のモーメントNの回転軸方向eは、船舶の左右方向と一致し、ロール角ρを制御する力のモーメントNの回転軸方向eは船舶の前後方向に一致する。更に、ヨー角を制御する力のモーメントNの回転軸方向eは船舶の上下方向に一致する。
また、同図8に示す様に、右フラップ3の位置φは、e方向からの変位角度で定義し、下に下がる向きを正の向きとする。左フラップ2の位置φに付いても同様である。
【0006】
したがって、例えば、図7の左ロールとは、船体の左側が右側よりも下がっている状態、即ち、ρ<0成る状態を指している。例えばこの様な場合、図7の制御アルゴリズムに従えば、左フラップを下げる、即ち、左フラップの位置の経時的変化量Δφを正にする。同じく左ロール(ρ<0)の状態を水平に戻すためには、他に右フラップを上げても良い。即ち、右フラップの位置の経時的変化量Δφを負にしても良い。
【0007】
図7のロール制御では、次の様な制御が実施されている。
(1)右ロール(ρ>0)の場合、以下の(a)〜(c)の何れかの制御を実行する。
(a)Δφ>0とする。 (即ち、右フラップを下げる。)
(b)Δφ<0とする。 (即ち、左フラップを上げる。)
(c)Δφ>0、かつ、Δφ<0とする。
【0008】
(2)左ロール(ρ<0)の場合、以下の(a)〜(c)の何れかの制御を実行する。
(a)Δφ>0とする。
(b)Δφ<0とする。
(c)Δφ>0、かつ、Δφ<0とする。
【0009】
【発明が解決しようとする課題】
しかしながら、例えば上記の様な従来のロール制御を実施する場合、船体にロール動作が発生してからでないと、フラップが駆動されないため、ロール動作を抑制するための制御に応答の遅れが生じ易い。
また、この様な応答性に関する脆弱性は、例えば比較的速い速度で走行している時に方向舵を大きく切った際等に特に表面化し易く、この様な転舵時の操舵容易性や船体姿勢の安定性に係わる問題を起こし易い。
【0010】
本発明は、上記の課題を解決するために成されたものであり、その目的は、船舶の転舵時にも船体姿勢を安定させることである。
【0011】
【課題を解決するための手段、並びに、作用及び発明の効果】
上記の課題を解決するためには、以下の手段が有効である。
即ち、本発明の第1の手段は、船体の水中の側面、船尾又は船底に取り付けられた左右同数の各フラップが受ける揚力又は抗力を制御する船舶のフラップ制御装置において、船体の進行方向eを回転軸方向とする船体のロール角ρを検出するロール角センサと、船体の速度vを検出又は推定する速度取得手段と、舵角θを検出する舵角センサと、各フラップの各位置φ(mは各フラップの番号)を検出する各位置センサとを備え、更に、ロール角ρの目標値ρを達成するための各位置φに対する各目標値Φを、ロール角ρと速度vと舵角θに基づいて算定する目標位置演算手段を備えることである。
【0012】
ただし、上記のフラップの個数は左右同数ならば任意で良い。また、フラップの取り付け位置は、水中であり、かつ略左右対称ならば任意で良い。
上記の様な構成に従えば、船体のロール角ρや或いは速度v等に加えて、更に、その時の舵角θにも応じた船体の姿勢制御を実施することができるので、転舵に伴う船体姿勢の劣化を緩和したり、抑制したり、未然に防止したりすることが可能、容易或いは確実と成る。
【0013】
また、この様な手段により、操舵時に舵角を大きく切っても船体が安定するため、従来よりも大きく舵を切ることが可能又は容易となる。したがって、この様な手段により、高速走行時や中速走行時等にも船体の旋回半径を小さくすることができる。また、これらの作用により、例えば緊急回避等の船舶の急旋回の場合等における船舶の運動性能が大幅に向上する。
より詳細、或いは具体的には、例えば以下の何れかの手段を実施すること等が望ましい。
【0014】
即ち、例えば本発明の第2の手段は、上記の第1の手段において、船舶の方向舵が受ける揚力又は抗力に伴って舵角θに応じて発生すると推定される、進行方向eを回転軸方向とする力のモーメントnを減衰又は相殺する回転緩和トルクが生成される様に、上記の各目標値Φを補正する転舵作用緩和手段を備えることである。
【0015】
方向舵が取り付けられている位置は、通常、船舶の重心Gを通るe方向(前後方向)の回転軸からは外れている。これは船尾の下方に方向舵を取り付けないと、転舵時に方向舵が十分な揚力又は抗力を水流から受けることができないためである。このため、通常、転舵時に方向舵に作用する抗力や揚力は、船体にヨー角加速度を生じさせるが、それと同時にロール方向の角加速度も生じさせる。
しかしながら、転舵する目的は、通常ヨー角加速度を得ることだけである。
そこで、この様なヨー角加速度の生成に伴って派生してしまうロール方向の角加速度を減衰又は相殺する様に、上記の各目標値Φを補正すれば、不要なロール動作を緩和又は抑制できるので、船体姿勢を安定させることができる。
【0016】
また、第3の手段は、上記の第1又は第2の手段の目標位置演算手段に、舵角θに応じて発生すると推定されるロール角ρに対する補正項δρ又は補正項δρに係わる関連値をフィードフォワード処理することにより各目標値Φを補正する第1転舵作用フィードフォワード手段を設けることである。
【0017】
この様な構成に従えば、舵角θに応じて発生すると推定される補正項δρ等の作用によって、転舵時に舵角θに基づいて発生するロール動作を緩和又は抑制することが可能、容易、或いは確実と成る。
【0018】
また、第4の手段は、上記の第1乃至第3の何れか1つの手段の目標位置演算手段に、舵角θに応じて発生すると推定される目標値ρを達成するために進行方向eを回転軸方向として生成すべき力のモーメントNに対する補正項δN又は補正項δNに係わる関連値をフィードフォワード処理することにより各目標値Φを補正する第2転舵作用フィードフォワード手段を設けることである。
【0019】
この様な構成に従えば、舵角θに応じて発生すると推定される補正項δN等の作用によって、転舵時に舵角θに基づいて発生するロール動作を緩和又は抑制することが可能、容易、或いは確実と成る。
【0020】
また、第5の手段は、上記の第1乃至第4の何れか1つの手段において、舵角θの角速度Ωを検出又は算出する舵角速度取得手段を設け、更に、上記の目標位置演算手段に、その角速度Ωに基づいて舵角θの遅延を補償する第1遅延補償手段を設けることである。
【0021】
舵角θの角速度は、近い将来の舵角θを推定する上で大いに有用であり、よって、この様な構成に従えば、舵角θの検出遅れ等のロール制御に関する遅れを補償することができる。
【0022】
また、第6の手段は、上記の第1乃至第5の何れか1つの手段において、ロール角ρの角速度Ωを検出又は算出するロール角速度取得手段を設け、更に、上記の目標位置演算手段に、角速度Ωに基づいてロール角ρの遅延を補償する第2遅延補償手段を設けることである。
【0023】
ロール角ρの角速度は、近い将来のロール角ρを推定する上で大いに有用であり、よって、この様な構成に従えば、ロール角ρの検出遅れ等のロール制御に関する遅れを補償することができる。
以上の本発明の手段により、前記の課題を効果的、或いは合理的に解決することができる。
【0024】
【発明の実施の形態】
以下、本発明を具体的な実施例に基づいて説明する。ただし、本発明は以下に示す実施例に限定されるものではない。
〔実施例〕
図1は、本実施例に係わるフラップ制御装置100のハードウェア構成図である。本フラップ制御装置100が有する外界状態センサとしては、舵角θを検出する舵角センサ4と、ロール角ρを検出するロール角センサ5と、ピッチ角Pを検出するピッチ角センサ6と、船舶の推進速度vを検出する速度センサ7等がある。
【0025】
上記の舵角θは、方向舵の実舵角でもハンドルの操舵角でも良い。また、速度センサ7は、船体付近の水流の流水速度等から船舶の速度vを測定するものでも、エンジン回転数等に基づいて速度vを推定するものでも、或いは、GPSからの受信信号等に基づいて速度vを推定するものでも良い。これらの各センサ4〜7等には公知或いは任意の各種センサを用いることができる。
フラップの駆動装置(アクチュエータ)はポンプ駆動式のものでも良く、それらの駆動形態に特段の制約はないが、以下、アクチュエータとしてモータを用いた実施例について詳細に例示する。
【0026】
モータ116は、右フラップ(例:図8の右フラップ3)を回動駆動するためのものであり、右フラップ駆動回路120Rの一部分を成している。左フラップ駆動用の回路(左フラップ駆動回路120L)も、同様に多重化して実装されているが、その中身は右フラップ駆動回路120Rと略同様なので、詳細は図示していない。モータ116には、モータ116の回転角φを検出する回転角センサ117とモータ116に通電されている電流Iを検出する電流検出器115が取り付けられている。
【0027】
CPU111は、実時間で、舵角θ、ロール角ρ、ピッチ角P、速度v、回転角φ、電流I等の検出値を入出力インターフェイス114を介して入力することができる。ROM112bには、CPU111が参照すべきデータや実行すべきプログラム等が記憶されている。RAM112aはCPU111が実行する制御処理や演算処理等に常時利用される。
また、チョッパ制御を実行するPWM駆動回路113aは、ハードウェアにて実装されているが、例えばCPU111が実行可能なソフトウェア等で実現しても良い。上記の検出値(θ、ρ、P、v、φ、I等)に基づいてCPU111により算定された所望の指令電圧Vを実現するモータ駆動回路113により、常時所望の電力がモータ116に給電される。
以上の構成は、右フラップ駆動回路120Rと対称的に構成された左フラップ駆動回路120L(詳細図略)についても同様である。
【0028】
図2は、本発明の実施例に係わるフラップ制御装置100の制御ブロック図である。本図2においても、制御系が左右対称のため、左フラップに係わる部分については殆ど省略してある。
目標位置演算部210は、上記の検出値θ、ρ、P、vに基づいて、左右のフラップの目標位置(目標角度)Φ,Φを算定する。以下、制御系が左右対称のため、本図2については右フラップの制御系についてのみ説明する。
【0029】
右フラップ(例:図8の右フラップ3)は、目標位置(目標角度)Φと検出角度φとに基づいて、比例制御(P制御)等を用いて、図2に例示される様にサーボ制御(フィードバック制御)される。
例えば、P制御部220は次式(1)に基づいて、モータ116の角速度の目標値ωを決定する。
【数1】
ω=c(Φ−φ) …(1)
【0030】
また、例えば、PI制御部230では、次式(2)に基づいて、モータ116に通電すべき駆動電流の目標値Iを決定する。ただし、これらの定数c(nは自然数)は、適当にチューニングされた定数である。
【数2】
=c(ω−ω)+c∫(ω−ω)dt,
ω=dφ/dt …(2)
【0031】
なお、制御ブロック250、251は、モータ116の角速度ω(=dφ/dt)を求めるためのものであり、制御ブロック250は所定の1制御周期内での回転角φの変化量を演算するものであり、制御ブロック251はその変化量に適当なゲインを掛ける演算を表している。
また、電流制御部240は通常のフィードバック制御(P制御又はPI制御)にて、周知の電流ループを実現する制御ブロックである。
以上のフィードバック制御により、上記の右フラップは、所望の位置(目標位置Φ)に制御される。勿論、左フラップについても同様に制御することができる。
【0032】
図3は、上記のフラップ制御装置100の目標位置演算部210の制御ブロック図である。この目標位置演算部210は、船体(例:図8の船体1)のロール角ρやピッチ角Pが、目標姿勢指定部211から与えられる目標値ρ,Pに速やかに収斂する様に構成されており、特に、転舵作用フィードフォワード部(以下、転舵作用FF部212と言う。)を有するところが大きな特徴と成っている。目標姿勢指定部211から与える目標値ρ,Pは、適当な定数でも良いし、例えば速度vや舵角θ等に適度に依存する変数であっても良い。
【0033】
図4は、目標位置演算部210が実行する演算処理のフローチャートである。この演算処理では、まず最初に、ステップ410において、目標値ρを達成するために進行方向eを回転軸方向として生成すべき力のモーメントNに対する補正項δNを次式(3)に従って算出する。
【数3】
δN=f(θ,v,Ω)=β(θ+βΩ)v,
Ω≡dθ/dt …(3)
【0034】
ただし、ここでは、舵角θは運転者が操作するハンドルの操舵角で、左に操舵した際にθ>0、右に操舵した際にθ<0とし、係数β,βは適当にチューニングされた正の定数とする。また、角速度Ωは操舵角速度を表しており、「βΩ」成る項は、舵角θの検出遅延等を始めとするフラップ制御系の遅延を補償するためのものであって、本発明の第1遅延補償手段に相当する。
以上の処理が、図3の転舵作用FF部212(第2転舵作用フィードフォワード手段)が実行する制御処理に相当する。
【0035】
ステップ420では、次式(4)に従って船体のロール角の偏差Δρの値を求める。
【数4】
Δρ=ρ−ρ …(4)
また、ステップ430では、次式(5)に従って、目標値ρを達成するために進行方向eを回転軸方向として生成すべき力のモーメントNの値を求める。
【数5】
=αΔρ+α∫Δρdt+δN …(5)
【0036】
ただし、ここで、各係数α,αは、予め適当にチューニングされた正の定数である。また、積分範囲は、θ≒0であった直前の転舵開始時刻から現在までの期間でも良いし、勿論更に前(過去)から現在まででも良い。相対的にαを大きくすると応答性が高くなり、αを大きくすると安定性や収斂性が向上する傾向にある。また、αを大きくし過ぎると、フラップ制御により船体のロール角方向の振動数が体感的に不快な領域に達する恐れがあるので、上記のチューニングの際には船舶の乗り心地にも注意する必要がある。
以上の様に、図3のロール角PI制御部214では、上記の式(4)、式(5)を実行する。
【0037】
例えば以上の様な実施形態により、本発明の第2転舵作用フィードフォワード手段を機能させることができる。また、上記の第2転舵作用フィードフォワード手段は、事実上本発明の転舵作用緩和手段を兼ねたものと言うことができる。
【0038】
次に、ステップ440では、次式(6)に従って船体のピッチ角の偏差ΔPの値を求める。
【数6】
ΔP=P−P …(6)
【0039】
また、ステップ450では、次式(7)に従って、目標値Pを達成するために、図8の横方向eを回転軸方向として生成すべき力のモーメントNの値を求める。
【数7】
=γΔP+γ∫ΔPdt …(7)
ただし、ここで、各係数γ,γは、予め適当にチューニングされた正の定数である。即ち、図3のピッチ角PI制御部216では、上記の式(6)、式(7)を実行する。
【0040】
図5は、上記の式(5)及び式(7)の各力のモーメントN,Nと各フラップの目標位置Φ,Φとの関係を表すグラフである。係数a,bは船舶の速度v(>0)に略反比例する正の値を持つ。即ち、フラップによって得られる力のモーメントNは、和値(Φ+Φ)と速度vとの積(Φ+Φ)vに略比例し、フラップによって得られる力のモーメントNは、差値(Φ−Φ)と速度vとの積(Φ−Φ)vに略比例する。
【0041】
そこで、ステップ460では、次式(8)に従って、上記の係数aの値を求める。
【数8】
a=κ/v …(8)
ただし、ここで、κは、予め適当にチューニングされた正の定数である。また、この値は、フラップの流体力学的な特性や取り付け位置、或いは、船舶の回転軸(図8の方向e)回りの慣性モーメント等に基づいて、演繹的に好適値を求めても良い。
【0042】
また、ステップ470でも同様に、次式(9)に従って、上記の係数bの値を求める。
【数9】
b=κ/v …(9)
ただし、ここで、κは、予め適当にチューニングされた正の定数である。また、この値は、フラップの流体力学的な特性や取り付け位置、或いは、船舶の回転軸(図8の方向e)回りの慣性モーメント等に基づいて、演繹的に好適値を求めても良い。
【0043】
そして、最後にステップ480では、上記の図5の関係から直接得られる次式(10),(11)に従って、フラップの目標位置(即ち、各目標値Φ、Φ)を求める。
【数10】
Φ=(aN−bN)/21/2 …(10)
【数11】
Φ=(aN+bN)/21/2 …(11)
即ち、図3の位置指令換算部218では、上記の式(8)〜式(11)を実行する。
【0044】
例えば以上の様な構成に従えば、舵角θに応じて発生すると推定される補正項δN等の作用によって、転舵時に舵角θに基づいて発生するロール動作を緩和又は抑制することが可能、容易、或いは確実と成る。また、これにより、ロール制御の応答性が必要かつ十分に確保できるため、船体の安定性や操舵操作における安定感が向上する。
【0045】
なお、上記の目標値ρや目標値Pは変数でも良い。通常ρは、船体に働く遠心力をも含めた重力の方向、即ち、船内で自由落下する物体が受ける力の方向を重力センサ(即ち、ロール角センサ)で検出し、その方向が船体の真下の方向(図8の−eの方向)に一致する様に設定される。
また、目標値Pは、船舶の速度vや或いは船舶の加速度等に応じて決定しても良い。これらのチューニングにより、より良い安定感(乗り心地や操舵感)を確保することができる。
【0046】
〔変形例〕
上記の実施例においては、左右のフラップの取り付け位置を例えば図8に習った位置(船尾)に仮定したが、フラップの数や位置や大きさや形状等は任意で良い。
図6は、本発明の変形例を例示する船舶の側面図である。例えば、これらの図(a),(b)等の様に、フラップを船底や船体の側面等に取り付けても、勿論、本発明の作用・効果を得ることができる。
【0047】
また、フラップの位置が上向き(φR,L <0)になった場合にも、例えば図6(a),(b)の様な、フラップに十分に水流が当たる構造を工夫すれば、フラップの位置が上向きとなるΦR,L の負値領域に付いても、図5の関係をより幅広い範囲で確実に確保することができる等のメリットを得ることができる。
また、モータの特性としては、応答性能と出力トルクの両方を十分に確保することが難しい場合があるが、フラップを左右各々複数ずつ用意して各部に特性の異なるモータを適当に配分することにより、フラップ制御装置全体として応答性と出力トルクの両特性を相補的に補うことが可能な構成をとることができる場合がある。したがって、この様な見地からも、フラップを左右各々複数ずつ用意することにより、大きなメリットが得られる場合も考えられる。
【0048】
また、上記の実施例では、図3の転舵作用FF部212の所で、本発明の第2転舵作用フィードフォワード手段を用いたが、上記の様な第2転舵作用フィードフォワード手段(転舵作用FF部212)の代りに、本発明の第1転舵作用フィードフォワード手段を用いても良い。
例えばこの様な場合には、前記の式(3)、式(5)の代りに、次の式(12)、式(13)等を用いれば良い。
【0049】
【数12】
δρ=f(θ,v,Ω)=β10(θ+βΩ)v,
Ω≡dθ/dt …(12)
【数13】
=α(Δρ+δρ)+α∫Δρdt …(13)
ただし、ここで、係数β10は適当にチューニングされた正の定数とする。
【0050】
また、上記の実施例では、式(3)等により本発明の第1遅延補償手段を構成して用いたが、この手段は必ずしも用いなければならないものではなく、また、その他の制御遅延対策用の手段としては、例えば前述の第2遅延補償手段等を別途用いても良い。
【0051】
また、上記の実施例では、フラップのアクチュエータ(駆動装置)にモータを直截的に使用したが、本発明を実際に適用する段においてはフラップの駆動方式は任意で良い。例えば公開特許公報「特開平9−315384」(前記の特許文献1)や「特開平9−76992」(前記の特許文献2)等には油圧式のアクチュエータを利用したフラップ制御装置の構成例が開示されているが、勿論この様な周知のフラップ制御装置の制御方式においても、例えば前述の図3や図4等と略同様に本発明を適当に応用することにより本発明の作用・効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例に係わるフラップ制御装置100のハードウェア構成図。
【図2】本発明の実施例に係わるフラップ制御装置100の制御ブロック図。
【図3】フラップ制御装置100の目標位置演算部210の制御ブロック図。
【図4】目標位置演算部210が実行する演算処理のフローチャート。
【図5】各力のモーメントN,Nと各フラップの目標位置Φ,Φとの関係を表すグラフ。
【図6】本発明の変形例を例示する船舶の側面図。
【図7】従来技術によるロール制御のフローチャート。
【図8】各力のモーメントN,N,N及び各フラップの位置φ,φのそれぞれの向き(符号)に付いて説明(定義)する船舶の斜視図。
【符号の説明】
ρ … ロール角
P … ピッチ角
ρ … ロール角の目標値
… ピッチ角の目標値
v … 船舶の推進速度
θ … 舵角
G … 船舶重心
… ピッチ角Pを制御する力のモーメント
… ロール角ρを制御する力のモーメント
… ヨー角を制御する力のモーメント
… 力のモーメントNの回転軸方向(=船舶の左右方向)
… 力のモーメントNの回転軸方向(=船舶の前後方向)
… 力のモーメントNの回転軸方向(=船舶の上下方向)
φ … 右フラップの位置(=e方向からの変位角度)
φ … 左フラップの位置(=e方向からの変位角度)
Φ … 右フラップの目標位置
Φ … 左フラップの目標位置
100 … フラップ制御装置
120R… 右フラップ駆動回路
120L… 左フラップ駆動回路
210 … 目標位置演算部
211 … 目標姿勢指定部
212 … 転舵作用フィードフォワード部
214 … ロール角PI制御部
216 … ピッチ角PI制御部
218 … 位置指令換算部

Claims (6)

  1. 船体の水中の側面、船尾又は船底に取り付けられた左右同数の各フラップが受ける揚力又は抗力を制御する船舶のフラップ制御装置において、
    前記船体の進行方向eを回転軸方向とする前記船体のロール角ρを検出するロール角センサと、
    前記船体の速度vを検出又は推定する速度取得手段と、
    舵角θを検出する舵角センサと、
    前記各フラップの各位置φ(mは前記各フラップの番号)を検出する各位置センサと
    を有し、
    前記ロール角ρの目標値ρを達成するための前記各位置φに対する各目標値Φを、前記ロール角ρと前記速度vと前記舵角θに基づいて算定する目標位置演算手段
    を有する
    ことを特徴とするフラップ制御装置。
  2. 前記船舶の方向舵が受ける揚力又は抗力に伴って、前記舵角θに応じて発生すると推定される、前記進行方向eを回転軸方向とする力のモーメントnを減衰又は相殺する回転緩和トルクが生成される様に、前記各目標値Φを補正する転舵作用緩和手段
    を有する
    ことを特徴とする請求項1に記載のフラップ制御装置。
  3. 前記目標位置演算手段は、
    前記舵角θに応じて発生すると推定される、
    前記ロール角ρに対する補正項δρ又は前記補正項δρに係わる関連値
    をフィードフォワード処理することにより、前記各目標値Φを補正する第1転舵作用フィードフォワード手段を有する
    ことを特徴とする請求項1又は請求項2に記載のフラップ制御装置。
  4. 前記目標位置演算手段は、
    前記舵角θに応じて発生すると推定される、
    前記目標値ρを達成するために前記進行方向eを回転軸方向として生成すべき力のモーメントNに対する補正項δN又は前記補正項δNに係わる関連値
    をフィードフォワード処理することにより、前記各目標値Φを補正する第2転舵作用フィードフォワード手段
    を有する
    ことを特徴とする請求項1乃至請求項3のいずれか1項に記載のフラップ制御装置。
  5. 前記舵角θの角速度Ωを検出又は算出する舵角速度取得手段を有し、
    前記目標位置演算手段は、
    前記角速度Ωに基づいて、前記舵角θの遅延を補償する第1遅延補償手段
    を有する
    ことを特徴とする請求項1乃至請求項4のいずれか1項に記載のフラップ制御装置。
  6. 前記ロール角ρの角速度Ωを検出又は算出するロール角速度取得手段
    を有し、
    前記目標位置演算手段は、
    前記角速度Ωに基づいて、前記ロール角ρの遅延を補償する第2遅延補償手段を有する
    ことを特徴とする請求項1乃至請求項5のいずれか1項に記載のフラップ制御装置。
JP2003011975A 2003-01-21 2003-01-21 船舶のフラップ制御装置 Pending JP2004224103A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011975A JP2004224103A (ja) 2003-01-21 2003-01-21 船舶のフラップ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011975A JP2004224103A (ja) 2003-01-21 2003-01-21 船舶のフラップ制御装置

Publications (1)

Publication Number Publication Date
JP2004224103A true JP2004224103A (ja) 2004-08-12

Family

ID=32900721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011975A Pending JP2004224103A (ja) 2003-01-21 2003-01-21 船舶のフラップ制御装置

Country Status (1)

Country Link
JP (1) JP2004224103A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191138A (ja) * 2005-12-20 2007-08-02 Yamaha Motor Co Ltd 航走制御装置およびそれを用いた船舶
US7702431B2 (en) 2005-12-20 2010-04-20 Yamaha Hatsudoki Kabushiki Kaisha Marine vessel running controlling apparatus, and marine vessel employing the same
WO2016137314A1 (en) * 2015-02-27 2016-09-01 Tan Yu Lee Vehicle control system for watercraft using a microchip based processor and control surfaces
US11459070B2 (en) 2019-09-24 2022-10-04 Yamaha Hatsudoki Kabushiki Kaisha Posture control system for hull, posture control method for the hull, and marine vessel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191138A (ja) * 2005-12-20 2007-08-02 Yamaha Motor Co Ltd 航走制御装置およびそれを用いた船舶
US7702431B2 (en) 2005-12-20 2010-04-20 Yamaha Hatsudoki Kabushiki Kaisha Marine vessel running controlling apparatus, and marine vessel employing the same
WO2016137314A1 (en) * 2015-02-27 2016-09-01 Tan Yu Lee Vehicle control system for watercraft using a microchip based processor and control surfaces
US11459070B2 (en) 2019-09-24 2022-10-04 Yamaha Hatsudoki Kabushiki Kaisha Posture control system for hull, posture control method for the hull, and marine vessel

Similar Documents

Publication Publication Date Title
JP6554006B2 (ja) 車両用操舵装置
KR100997498B1 (ko) 차량의 제어 장치
JP2007050823A (ja) 小型船舶の挙動制御装置
US11459070B2 (en) Posture control system for hull, posture control method for the hull, and marine vessel
JP2010241238A (ja) 船推進機
JP2007161157A (ja) 電動パワーステアリング装置
JP2004224103A (ja) 船舶のフラップ制御装置
JP4036062B2 (ja) 電動パワーステアリング装置
JP7141253B2 (ja) 船舶推進装置の転舵装置
JP2006240491A (ja) 自動二輪車の制御装置及び自動二輪車の駆動システム
JP2020199977A (ja) 船舶の操船システム、及び船舶の操船方法
JP5407402B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP4114339B2 (ja) 自動車の電動パワーステアリング装置
JP4776797B2 (ja) 減揺装置
US11787516B2 (en) Apparatus and method for steering control of marine vessel able to automatically reduce chine walk, and marine vessel
JP2004291773A (ja) 船体の減揺システム
JP2006168481A (ja) 車両用操舵制御装置およびその転舵角制御方法
JP5272570B2 (ja) 舵角制御装置及び舵角制御方法
JP4123158B2 (ja) 車両用パワーステアリング装置及び車両用外乱推定装置
JP3707199B2 (ja) 車両の自動操舵装置
JP4089637B2 (ja) 車両用パワーステアリング装置及び車両用外乱推定装置
JP4031717B2 (ja) 船舶減揺装置
JP2010036720A (ja) 車両用操舵制御装置
JP5251028B2 (ja) 車両用操舵制御装置
JP5012314B2 (ja) 車両用操舵装置