JP2004223789A - Optical micro-shaping apparatus with observation function - Google Patents

Optical micro-shaping apparatus with observation function Download PDF

Info

Publication number
JP2004223789A
JP2004223789A JP2003012048A JP2003012048A JP2004223789A JP 2004223789 A JP2004223789 A JP 2004223789A JP 2003012048 A JP2003012048 A JP 2003012048A JP 2003012048 A JP2003012048 A JP 2003012048A JP 2004223789 A JP2004223789 A JP 2004223789A
Authority
JP
Japan
Prior art keywords
beam splitter
optical
laser
laser beam
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003012048A
Other languages
Japanese (ja)
Inventor
Hiroshi Muramatsu
宏 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003012048A priority Critical patent/JP2004223789A/en
Publication of JP2004223789A publication Critical patent/JP2004223789A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly confirm a curing condition or a manufacturing process by providing a monitor mechanism capable of observing a progress during an optical shaping process in an optical micro-shaping processing apparatus. <P>SOLUTION: In the laser optical system for performing the spot irradiation of a curable resin layer 16 with the laser beam emitted from a laser beam source 1 of the optical micro-shaping apparatus, a process, wherein the laser beam is once condensed to be again allowed to be incident on an object lens 14 through an image forming lens 12, is provided between scanning galvanomirrors 8 and 9, and the object lens 14, and a beam splitter 11 is arranged on the optical axis of the laser beam while an imaging camera 20 is arranged on the branched light path of the beam splitter 11 to provide a function capable of observing a processing condition or a processing state on the way of processing. The beam splitter 11 of the optical micro-shaping apparatus with the observation function is installed in a freely slidable manner to change over a form positioned on an optical axis and a form positioned outside the light path. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、立体形状データを基にして液体状の光硬化性樹脂に対し、形状部分にレーザ光を照射することにより前記樹脂を硬化させて前記立体形状を形成させる所謂光造形の技術に関する。
【0002】
【従来の技術】
光造形のプロセスについて図4の概念図を基にまず説明する。ステップ1で作製したい形状をCAD情報としてコンピュータ上で作製するか外部からコンピュータに入力する。ステップ2でCADにより三次元の静止画形態に変換する。ステップ3で該三次元形状を1軸方向に直交する面で厚さd毎にスライスして各層毎の断面形状情報を得る。ステップ4で該各層毎の断面形状情報に基づき、下層部分から順次形成する。この手法は液状の光硬化性樹脂の容器内に少なくとも上下方向に駆動されるテーブルを配置し、該テーブル面が樹脂液面下dの位置にくるようにセットすると共に、前記テーブル上の樹脂層にレーザスポットを照射しながら最下層の断面形状をなぞるように走査する。すると、厚みdの樹脂層の内レーザスポットがあてられた部分だけが硬化してテーブル上に最下層形状S1が形状形成される。ステップ5では前記テーブルをdだけ下方に変位させる。すると今形成された最下層形状S1の面上に厚みdの液体樹脂層がかぶることになる。この状態で第2層目の断面形状をなぞるようにビームスポットを走査し、最下層形状S1の面上に第2層形状S2が光硬化して形成される。以下順次にテーブルの下方移動と各層毎の断面データに基くレーザ走査を繰り返し、各層毎の形状を形成してゆく。そしてステップ5に示すように最上層の形状Snを形成して所望の三次元形状の造形を終了する。以上が積層型光造形プロセスの基本である。
【0003】
この光造形の技術は複雑な立体形状を得るのに適した方法として機械部品モデルの加工等に採用され実用化されている。さらに最近は医学の分野への適用が期待されているマイクロマシンの作製にこの光造形技術を用いることが研究されている。特許文献1には硬化層の剥離の問題を解消でき、しかも、加工分解能をさらに向上できる光造形加工法、該加工法を用いた可動装置および光造形加工装置を提供することを目的として、図3に示す光造形加工装置が記載されている。すなわち、「液状の光硬化性樹脂hに光を照射して、該光硬化性樹脂hを所望の形状に硬化させる光造形加工法を用いた光造形加工装置において、レーザ発振器aと、レーザ発振器から出射されたレーザビームLを集光するためのレンズgと、レンズgで集光されたレーザビームLが照射される液状の光硬化性樹脂hを載置するステージiと、レーザ発振器aとレンズgとの間に配置され、レーザ発振器aから出射されたレーザビームLのビーム幅を拡げることにより、レンズで集光されるレーザビームの焦点Fの部分のみが光硬化性樹脂hの硬化に必要なエネルギ強度を有するようにするためのビームエキスパンダeとを設ける。」構成が提示されている。このような構成を採ることによりビームの焦点部分のみが光硬化性樹脂の硬化に必要なエネルギ強度を有するようにしたので、光硬化性樹脂の内部でビームの焦点部分のみを硬化させることが可能になり、これにより、硬化層の剥離の問題を解消でき、加工分解能を一層向上できるとともに、粘性の高い材料を使えるようになる効果を生じるものである。しかし、この種の従来の光造形法においては加工途中の状態、すなわち硬化条件の確認や製造過程の確認をすることが難しかった。そのため、一連の製造工程を終えた段階で加工された製品を見てその出来具合から次回の加工にそれを生かすしかなかった。
【0004】
【特許文献1】特開平11−170377号公報
【0005】
【発明が解決しようとする課題】
本発明の課題は、マイクロ光造形加工装置において、光造形の途中経過を観察できるモニター機構を設けて、硬化条件の確認や製造過程の確認をスムーズに行なうことができるようにすることにある。
【0006】
【課題を解決するための手段】
本発明のマイクロ光造形装置は、レーザ光源からのレーザビームを硬化性樹脂層にスポット照射するレーザ光学系において、走査用のガルバノミラーと対物レンズの間で、ビームをレンズで一旦集光させて再び結像レンズを介して平行光として対物レンズに入れる構成をとると共に、この光軸上にビームスプリッタと、該ビームスプリッタの分岐光路に撮像カメラを配置するようにし、加工途上において加工条件や加工状態の良し悪しを観察できる機能を備えるようにした。
また、本発明の観察機能付きマイクロ光造形装置ビームスプリッタは、摺動自在に設置し、光軸上に位置する形態と光路外に位置する形態が切換えられることを特徴とする。更に、ビームスプリッタには屈折率を同じくするダミーを連設させた構成をとることを特徴とし、この場合における本発明の観察機能付きマイクロ光造形装置は、該ビームスプリッタが光路外に位置する形態において光学路における屈折率の補償を行なうことができる。
【0007】
【発明の実施の形態】
本発明の基本構成を図1を参照しつつ説明する。1はレーザ光源であり、2はレーザビームの通過/遮断機能をもつシャッタ、3はニュトラルデンシティフィルタ(NDフィルタ)で、レーザ光の透過量を制限する機能を有する。4,5はミラー、6,7,10はレンズ、8,9はビームをX方向とY方向に走査させるガルバノミラー、11は光を透過光と反射光に二分するビームスプリッタ、12は結像レンズであり、13は絞り、14は対物レンズ、そして15はカバーガラス、16は光硬化性樹脂、17はガラス基板18はガラス基板をXYZ方向に移動させる三次元移動機構であり、19は観察用の照明で、20が観察用のCCD撮像カメラである。レーザ光源1からのレーザ光はNDフィルター3で透過量を制限されレンズ6で一旦集光されてから広げられ、レンズ7で平行光線とされる。平行光線とされたレーザ光はガルバノミラー8でX(またはY)方向に振られ、次いでガルバノミラー9でY(またはX)方向に振られる。走査偏向されたレーザ光はレンズ10により集光されてから広げられ結像レンズ12へ入れられる。本発明ではさらに集光点と結像レンズ12間の位置にビームスプリッタ11が配設される。この結像レンズ12でレーザ光は平行光線にされ、絞り13を通過したレーザ光が対物レンズ14で光硬化性樹脂層に集光される。カバーガラス15を介してこのレーザスポットが照射された部分の樹脂が光硬化する。ここで、光硬化させるパターンはCAD情報から得られた該当層の断面形状である。そして、この二次元位置情報に基づき前記ガルバノミラー8,9が走査されレーザスポットが断面形状をなぞる。また、跳びパターンなどの場合にはスポット移動の間シャッタ2がレーザ光を遮断する。そして該当層の加工が終了したならばシャッタ2がレーザ光を遮断した状態でXYZ方向移動機構18でZ方向に層の厚み分変位させ、一つ上の層のパターンを形成する。以上は光造形装置としての一般構成と作動である。
【0008】
本発明の特徴点はこの光硬化現象を加工途上においてリアルタイムで観察できる機能を備えた点にあり、そのための構成は照明19と結像レンズ12、ビームスプリッタ11とその分岐光学路上に配置されたCCDカメラ20等の撮像カメラである。結像レンズ12のレンズ力に対応して加工中の層が撮像カメラの結像位置となるように撮像カメラ20、ビームスプリッタ11そして結像レンズ12の位置が決められる。加工中の状態を観察をする場合には照明19により、光硬化性樹脂を下方から照らすと、レーザビームスポット部分が撮像カメラ20に捉えられる。この撮像画像をモニタ画面に映し目視により、光硬化現象の状態や硬化条件の確認が加工途上においてリアルタイムで観察できる。したがって、すぐに不適性な加工条件は修正することが可能となり、作製効率歩留まりが従来に較べて格段に向上する。またこの画像を記録に残し作製された造形物と対比させて後の検討に供することもできる。
【0009】
上記のビームスプリッタ11は撮像カメラで加工状況を観察するために必要なもので、単に光造形を実行するだけの時には必要がないものである。そして、このビームスプリッタ11は照射するレーザ光量のロスを伴うものでもあるため、本発明では非観察時には図2のAに示すようにビームスプリッタ11を光学路から退避させる構成を提示する。具体的には摺動機構に該ビームスプリッタ11を取り付けるようにし、二つの摺動位置で光軸上に位置する形態と光路外に位置する形態が切換えられるようにした。
【0010】
また、このビームスプリッタ11が光軸上に位置する形態と光路外に位置する形態でレーザビーム光学系の光学的条件が変ってしまわないように、ダミーキューブ21を準備し、図2のBに示すように上記の光軸上に位置する形態と光路外に位置する形態の二つの摺動位置に対応するようにビームスプリッタ11とダミーキューブ21を連接して設ける構成を提示する。このダミーキューブ21は該ビームスプリッタ11と同じ屈折率を有する光学部材で、ビームスプリッタ11が光路外に退避している時、光路内に位置して透過するレーザビームに対して同じ屈折率となって作用する。
【0011】
【発明の効果】
本発明の光造形装置は、レーザ光源からのレーザビームを硬化性樹脂層にスポット照射するレーザ光学系において、走査用のガルバノミラーと対物レンズの間で、ビームを一旦集光させて再び結像レンズを介して対物レンズに入れる構成をとると共に、この光軸上にビームスプリッタと、該ビームスプリッタの分岐光路に撮像カメラを配置した構成を採用したものであるから、光造形の加工途上でオペレータが加工状態をモニターを見ながら観察することができ、不適正である場合には加工条件の修正を即座に対応して実行することができる。したがって、従来のように加工を終えた製品の出来具合から適正条件を修正するようなことではなく、加工作業中にリアルタイムの対応がとれるので加工精度がよく、歩留まりも高くなる。
【0012】
また、摺動自在に設置し、光軸上に位置する形態と光路外に位置する形態が切換えられるビームスプリッタの構成を採った本発明の観察機能付きマイクロ光造形装置は、非観察時にはビームスプリッタをレーザ光の光路から退避させることができるので、該ビームスプリッタによるレーザ光量のロスを防ぎ効率の良い光硬化を促すことができる。
そして、そのビームスプリッタには屈折率を同じくするダミーを連設させ、該ビームスプリッタ光路外に位置する形態を採ったときには、ビームスプリッタをレーザ光の光路から退避させた状態において同じ屈折率を持ったダミーが光路に位置されることとなり、光学路における屈折率の補償を行ない当該光路における光学特性をビームスプリッタが存在した時と同じに保つことができる。
【図面の簡単な説明】
【図1】本発明の観察機能付きマイクロ光造形装置の構成を示す図である。
【図2】Aはスライド機構を備えたビームスプリッタの作動形態を説明する図で、Bはダミーキューブを連接した形態を説明する図である。
【図3】従来のマイクロ光造形装置の例を示す図である。
【図4】光造形のプロセスを説明する図である。
【符号の説明】
1 レーザ光源 14 対物レンズ
2 シャッタ 15 カバーガラス
3 フィルター 16 光硬化性樹脂
4,5 ミラー 17 ガラス基板
6,7,10 レンズ 18 XYZ移動機構
8,9 ガルバノミラー 19 照明
11 ビームスプリッタ 20 撮像カメラ
12 結像レンズ 21 ダミーキューブ
13 絞り
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a so-called stereolithography technique for forming a three-dimensional shape by irradiating a shape portion with a laser beam to a liquid photocurable resin based on three-dimensional shape data to form the three-dimensional shape.
[0002]
[Prior art]
The stereolithography process will be described first with reference to the conceptual diagram of FIG. The shape to be produced in step 1 is produced on a computer as CAD information or is input to the computer from outside. In step 2, the image is converted into a three-dimensional still image by CAD. In step 3, the three-dimensional shape is sliced for each thickness d on a plane orthogonal to the one axis direction to obtain cross-sectional shape information for each layer. In step 4, based on the cross-sectional shape information of each layer, the layers are sequentially formed from the lower layer portion. In this method, a table which is driven at least in a vertical direction is arranged in a container of a liquid photocurable resin, and the table surface is set so as to be located at a position d below the resin liquid level, and the resin layer on the table is formed. While irradiating a laser spot on the lowermost layer so as to trace the sectional shape of the lowermost layer. Then, only the portion of the resin layer having the thickness d where the laser spot is applied is cured, and the lowermost layer shape S1 is formed on the table. In step 5, the table is displaced downward by d. Then, a liquid resin layer having a thickness of d covers the surface of the currently formed lowermost layer shape S1. In this state, the beam spot is scanned so as to trace the cross-sectional shape of the second layer, and the second layer shape S2 is formed by light curing on the surface of the lowermost layer shape S1. Thereafter, the downward movement of the table and the laser scanning based on the cross-sectional data of each layer are sequentially repeated to form the shape of each layer. Then, as shown in step 5, the shape Sn of the uppermost layer is formed, and the shaping of the desired three-dimensional shape is completed. The above is the basics of the multilayer stereolithography process.
[0003]
This stereolithography technique has been adopted and practically used for processing of a machine part model as a method suitable for obtaining a complicated three-dimensional shape. More recently, the use of this stereolithography technology for the fabrication of micromachines expected to be applied to the field of medicine has been studied. Patent Document 1 aims to provide a stereolithography method capable of solving the problem of peeling of a hardened layer and further improving the processing resolution, a movable device using the processing method, and a stereolithography apparatus. 3 is described. That is, in a stereolithography machine using a stereolithography method for irradiating a liquid photocurable resin h with light to cure the photocurable resin h into a desired shape, a laser oscillator a and a laser oscillator A lens g for condensing the laser beam L emitted from the lens g, a stage i for mounting a liquid photocurable resin h to be irradiated with the laser beam L condensed by the lens g, and a laser oscillator a. By disposing between the lens g and the beam width of the laser beam L emitted from the laser oscillator a, only the portion of the focal point F of the laser beam condensed by the lens is cured by the photocurable resin h. And a beam expander e for providing a necessary energy intensity. " With this configuration, only the focal point of the beam has the energy intensity required for curing the photocurable resin, so that only the focal point of the beam can be cured inside the photocurable resin. Accordingly, the problem of peeling of the hardened layer can be solved, the processing resolution can be further improved, and an effect that a material having high viscosity can be used is produced. However, in this type of conventional stereolithography, it was difficult to confirm the state during processing, that is, to confirm the curing conditions and the production process. For this reason, the only way to look at the finished product after a series of manufacturing processes is to use it in the next process based on the finished product.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. 11-170377
[Problems to be solved by the invention]
It is an object of the present invention to provide a micro stereolithography processing apparatus with a monitor mechanism capable of observing the progress of stereolithography so that curing conditions and a manufacturing process can be smoothly checked.
[0006]
[Means for Solving the Problems]
The micro-stereolithography apparatus of the present invention is a laser optical system that irradiates a laser beam from a laser light source onto a curable resin layer in a spot, between a scanning galvanometer mirror and an objective lens, once condensing the beam with a lens. Again, a configuration is adopted in which the light is fed into the objective lens as parallel light again via the imaging lens, and a beam splitter and an imaging camera are disposed on the optical path of the beam splitter on this optical axis. It has a function to observe the quality of the condition.
Further, the beam splitter according to the present invention is characterized in that the beam splitter is slidably installed and a mode located on the optical axis and a mode located outside the optical path are switched. Further, the beam splitter has a configuration in which a dummy having the same refractive index is continuously provided, and in this case, the micro stereolithography device with the observation function of the present invention has a configuration in which the beam splitter is located outside the optical path. Can compensate for the refractive index in the optical path.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The basic configuration of the present invention will be described with reference to FIG. 1 is a laser light source, 2 is a shutter having a function of passing / blocking a laser beam, and 3 is a neutral density filter (ND filter), which has a function of limiting the amount of transmission of laser light. 4, 5 are mirrors; 6, 7, 10 are lenses; 8, 9 are galvano mirrors for scanning beams in the X and Y directions; 11 is a beam splitter that divides light into transmitted light and reflected light; Reference numeral 13 denotes an aperture, 14 denotes an objective lens, 15 denotes a cover glass, 16 denotes a photocurable resin, 17 denotes a glass substrate, 18 denotes a three-dimensional moving mechanism for moving the glass substrate in the XYZ directions, and 19 denotes an observation. Reference numeral 20 denotes a CCD imaging camera for observation. The amount of transmission of the laser light from the laser light source 1 is restricted by the ND filter 3, the laser light is once condensed by the lens 6, then expanded, and is converted into a parallel light by the lens 7. The parallel laser light is oscillated in the X (or Y) direction by the galvanomirror 8 and then oscillated in the Y (or X) direction by the galvanomirror 9. The scan-deflected laser light is condensed by a lens 10 and then spread and entered into an imaging lens 12. In the present invention, a beam splitter 11 is further provided at a position between the light converging point and the imaging lens 12. The laser beam is converted into a parallel beam by the imaging lens 12, and the laser beam that has passed through the aperture 13 is condensed on the photocurable resin layer by the objective lens 14. The resin in the portion irradiated with the laser spot through the cover glass 15 is light-cured. Here, the pattern to be photocured is the cross-sectional shape of the corresponding layer obtained from the CAD information. The galvanometer mirrors 8 and 9 are scanned based on the two-dimensional position information, and the laser spot traces the cross-sectional shape. In the case of a jumping pattern or the like, the shutter 2 blocks the laser light during the spot movement. When the processing of the corresponding layer is completed, the XYZ direction moving mechanism 18 displaces the layer in the Z direction by the thickness of the layer while the shutter 2 blocks the laser beam, thereby forming a pattern of the next higher layer. The above is the general configuration and operation of the optical shaping apparatus.
[0008]
The feature of the present invention resides in that a function of observing this photocuring phenomenon in real time during processing is provided, and the configuration for that is arranged on the illumination 19, the imaging lens 12, the beam splitter 11, and its branch optical path. It is an imaging camera such as the CCD camera 20. The positions of the imaging camera 20, the beam splitter 11, and the imaging lens 12 are determined so that the layer being processed becomes the imaging position of the imaging camera in accordance with the lens power of the imaging lens 12. When observing the state during processing, when the photocurable resin is illuminated from below with the illumination 19, the laser beam spot portion is captured by the imaging camera 20. This captured image is displayed on a monitor screen, and the state of the photocuring phenomenon and the curing conditions can be confirmed in real time during processing by visual observation. Therefore, improper processing conditions can be corrected immediately, and the production efficiency yield is significantly improved as compared with the conventional case. Also, this image can be recorded and compared with the formed object for later examination.
[0009]
The above-described beam splitter 11 is necessary for observing the processing situation with the imaging camera, and is not necessary when merely performing the stereolithography. Since the beam splitter 11 involves a loss of the amount of laser light to be irradiated, the present invention proposes a configuration in which the beam splitter 11 is retracted from the optical path as shown in FIG. Specifically, the beam splitter 11 is attached to the sliding mechanism, and the form located on the optical axis and the form located outside the optical path can be switched between the two sliding positions.
[0010]
Further, a dummy cube 21 is prepared so that the optical conditions of the laser beam optical system do not change depending on whether the beam splitter 11 is located on the optical axis or outside the optical path. As shown in the figure, there is provided a configuration in which the beam splitter 11 and the dummy cube 21 are provided in series so as to correspond to the two sliding positions of the configuration located on the optical axis and the configuration located outside the optical path. The dummy cube 21 is an optical member having the same refractive index as that of the beam splitter 11. When the beam splitter 11 is retracted out of the optical path, the dummy cube 21 has the same refractive index with respect to the transmitted laser beam located in the optical path. Act.
[0011]
【The invention's effect】
In the laser optical system of the present invention, in a laser optical system that irradiates a laser beam from a laser light source to a curable resin layer with a spot, the beam is once focused between a scanning galvanometer mirror and an objective lens to form an image again. In addition to the configuration in which the lens is inserted into the objective lens via a lens, and a configuration in which a beam splitter is provided on the optical axis and an imaging camera is disposed in a branch optical path of the beam splitter, an operator is required to be in the process of optical molding. Can observe the processing state while looking at the monitor, and when it is inappropriate, correction of the processing conditions can be immediately executed. Therefore, it is not necessary to correct the appropriate condition based on the finished product of the processed product as in the conventional case, but a real-time response can be taken during the processing operation, so that the processing accuracy is good and the yield is high.
[0012]
In addition, the micro stereolithography device with the observation function of the present invention adopting a configuration of a beam splitter that is slidably installed and can be switched between a configuration located on the optical axis and a configuration located outside the optical path is a beam splitter when not observing. Can be retracted from the optical path of the laser light, so that the loss of the amount of laser light by the beam splitter can be prevented, and efficient light curing can be promoted.
A dummy having the same refractive index is connected to the beam splitter, and when the beam splitter is positioned outside the optical path of the beam splitter, the dummy has the same refractive index when the beam splitter is retracted from the optical path of the laser beam. The dummy placed in the optical path is compensated for in the optical path, and the optical characteristics in the optical path can be kept the same as when the beam splitter is present.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a micro stereolithography apparatus with an observation function according to the present invention.
2A is a diagram illustrating an operation mode of a beam splitter provided with a slide mechanism, and FIG. 2B is a diagram illustrating a mode in which dummy cubes are connected.
FIG. 3 is a diagram showing an example of a conventional micro stereolithography apparatus.
FIG. 4 is a diagram for explaining a stereolithography process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laser light source 14 Objective lens 2 Shutter 15 Cover glass 3 Filter 16 Photocurable resin 4,5 Mirror 17 Glass substrate 6,7,10 Lens 18 XYZ moving mechanism 8,9 Galvano mirror 19 Illumination 11 Beam splitter 20 Imaging camera 12 Conclusion Image lens 21 Dummy cube 13 Aperture

Claims (3)

レーザ光源からのレーザビームを硬化性樹脂層にスポット照射するレーザ光学系において、走査用のガルバノミラーと対物レンズの間で、ビームを一旦集光させて再び結像レンズを介して対物レンズに入れる構成をとると共に、この光軸上にビームスプリッタを、該ビームスプリッタの分岐光路に撮像カメラを配置した観察機能付きマイクロ光造形装置。In a laser optical system that irradiates a laser beam from a laser light source to a curable resin layer with a spot, the beam is once focused between a scanning galvanomirror and an objective lens and then re-entered into the objective lens via an imaging lens. A micro stereolithography apparatus having an observation function, having a configuration, a beam splitter on the optical axis, and an imaging camera arranged in a branch optical path of the beam splitter. 前記ビームスプリッタは摺動自在に設置し、光軸上に位置する形態と光路外に位置する形態が切換えられることを特徴とする請求項1に記載の観察機能付きマイクロ光造形装置。2. The micro-stereolithography apparatus with an observation function according to claim 1, wherein the beam splitter is slidably installed, and a mode located on an optical axis and a mode located outside an optical path are switched. 3. 前記ビームスプリッタには屈折率を同じくするダミーを連設させ、該ビームスプリッタが光路外に位置する形態において、前記ダミーを光軸上に配置させ光学路における屈折率の補償を行なうことを特徴とする請求項2に記載の観察機能付きマイクロ光造形装置。A dummy having the same refractive index is continuously provided to the beam splitter, and in a mode in which the beam splitter is located outside the optical path, the dummy is arranged on the optical axis to compensate for the refractive index in the optical path. The micro-stereolithography device with an observation function according to claim 2.
JP2003012048A 2003-01-21 2003-01-21 Optical micro-shaping apparatus with observation function Pending JP2004223789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012048A JP2004223789A (en) 2003-01-21 2003-01-21 Optical micro-shaping apparatus with observation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012048A JP2004223789A (en) 2003-01-21 2003-01-21 Optical micro-shaping apparatus with observation function

Publications (1)

Publication Number Publication Date
JP2004223789A true JP2004223789A (en) 2004-08-12

Family

ID=32900776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012048A Pending JP2004223789A (en) 2003-01-21 2003-01-21 Optical micro-shaping apparatus with observation function

Country Status (1)

Country Link
JP (1) JP2004223789A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568904B2 (en) 2005-03-03 2009-08-04 Laser Solutions Co., Ltd. Stereolithography apparatus
JP2012182448A (en) * 2007-06-29 2012-09-20 Tap Development Ltd Liability Co Systems and methods for curing deposited layer on substrate
JP2013532592A (en) * 2010-07-28 2013-08-19 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Manufacturing method of 3D parts
JP2019023343A (en) * 2017-07-21 2019-02-14 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for additionally manufacturing three-dimensional object
KR102106102B1 (en) * 2019-09-19 2020-05-04 주식회사 큐브세븐틴 3D over-printing device and method
JP2020168873A (en) * 2020-07-17 2020-10-15 株式会社リコー Three-dimensional model-forming apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568904B2 (en) 2005-03-03 2009-08-04 Laser Solutions Co., Ltd. Stereolithography apparatus
JP2012182448A (en) * 2007-06-29 2012-09-20 Tap Development Ltd Liability Co Systems and methods for curing deposited layer on substrate
US11701740B2 (en) 2010-07-28 2023-07-18 Concept Laser Gmbh Method for producing a three-dimensional component
JP2013532592A (en) * 2010-07-28 2013-08-19 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Manufacturing method of 3D parts
EP2598313B1 (en) 2010-07-28 2015-08-12 CL Schutzrechtsverwaltungs GmbH Method and apparatus for producing a three-dimensional component
US10265912B2 (en) 2010-07-28 2019-04-23 Cl Schutzrechtsverwaltungs Gmbh Method for producing a three-dimensional component
US10759117B2 (en) 2010-07-28 2020-09-01 Concept Laser Gmbh Method for producing a three-dimensional component
US11904413B2 (en) 2010-07-28 2024-02-20 Concept Laser Gmbh Method for producing a three-dimensional component
US11292060B2 (en) 2010-07-28 2022-04-05 Concept Laser Gmbh Method for producing a three-dimensional component
JP2019023343A (en) * 2017-07-21 2019-02-14 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for additionally manufacturing three-dimensional object
US10760958B2 (en) 2017-07-21 2020-09-01 Concept Laser Gmbh Method for additively manufacturing of three-dimensional objects
KR102106102B1 (en) * 2019-09-19 2020-05-04 주식회사 큐브세븐틴 3D over-printing device and method
JP2020168873A (en) * 2020-07-17 2020-10-15 株式会社リコー Three-dimensional model-forming apparatus

Similar Documents

Publication Publication Date Title
JP6771076B2 (en) Equipment for the generative manufacturing of three-dimensional members
US7088432B2 (en) Dynamic mask projection stereo micro lithography
US20120098164A1 (en) Two-photon stereolithography using photocurable compositions
KR101038474B1 (en) 3-dimensional ultrafine structure fabrication system for auto focusing control and auto focusing control method thereof
JP4699051B2 (en) Stereolithography equipment
JP4674333B2 (en) Laser processing equipment, optical device manufactured using this equipment
US11981079B2 (en) Multi-axis additive manufacturing system
JPH10290389A (en) Multi-focus image formation method and image formation device
JP2676838B2 (en) 3D image formation method
Busetti et al. A hybrid exposure concept for lithography-based additive manufacturing
JP2004223789A (en) Optical micro-shaping apparatus with observation function
JP4594256B2 (en) Laser processing system and laser processing method
CN113556934A (en) Method and device for automatically detecting and quickly repairing printed circuit board
JP2004223790A (en) Method and apparatus for smoothly producing fine shaped article having curved shape by optical shaping method
JP2023520296A (en) Predictive method and relative apparatus for isotropic stereolithography 3D printing with variable speed and power hybrid light source
CN110435141B (en) Device for additive production of three-dimensional objects
Pan et al. Dynamic resolution control in a laser projection-based stereolithography system
JP2004314406A (en) Layer thickness variable optical micro-shaping method and layer thickness variable optical micro-shaping apparatus
JP2001158050A (en) Two-photon optical micro-shaping method, apparatus adapted thereto, part molded by two-photon optical micro-shaping method, and movable mechanism
JP2004223791A (en) Layer thickness variable type optical micro-shaping apparatus
JP4376649B2 (en) Multi-beam microstructure optical modeling method and apparatus using different wavelength laser beam
JP2004223792A (en) Optical micro-shaping apparatus equipped with focal position confirming function
KR100921939B1 (en) Stereolithography Device Using Laser Pick-UP Unit and Method for Forming Structure Using the Device
JPH07232383A (en) Three-dimensional optical shaping method and apparatus
JP5207248B2 (en) Molecular orientation member with uniform molecular orientation and method for producing the same