JP2004314406A - Layer thickness variable optical micro-shaping method and layer thickness variable optical micro-shaping apparatus - Google Patents

Layer thickness variable optical micro-shaping method and layer thickness variable optical micro-shaping apparatus Download PDF

Info

Publication number
JP2004314406A
JP2004314406A JP2003110630A JP2003110630A JP2004314406A JP 2004314406 A JP2004314406 A JP 2004314406A JP 2003110630 A JP2003110630 A JP 2003110630A JP 2003110630 A JP2003110630 A JP 2003110630A JP 2004314406 A JP2004314406 A JP 2004314406A
Authority
JP
Japan
Prior art keywords
thickness
light intensity
micro
resin
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003110630A
Other languages
Japanese (ja)
Inventor
Masanao Munekane
正直 宗兼
Hiroshi Muramatsu
宏 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003110630A priority Critical patent/JP2004314406A/en
Publication of JP2004314406A publication Critical patent/JP2004314406A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize fast scanning while avoiding a problem wherein surface resolving power is lowered if quantity of light is increased and to avoid a problem wherein a focus or a position is shifted when an object lens different in the number of apertures or magnification is ready to be replaced to lose the shaped article in a resin. <P>SOLUTION: The number of the apertures of the object lens 14 is increased when a thin and small region is cured to form microspots while reduced when a thick region is cured to increase the intensity of light. By this method, the thickness of a cured layer of a photosetting resin 16 is changed corresponding to situations so as to increase the cured region in a thickness direction while throttling an in-plane direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は光硬化樹脂にレーザビームを照射して樹脂内部の硬化を起こさせる焦点走査型のマイクロ光造形装置の改良に関する。
【0002】
【従来の技術】光造形の手法には光硬化樹脂の薄膜を順次積層させながら、立体構造を下から上へ形成する所謂積層法がよく知られている。この従来の光造形法とは全く造形原理が異なる光造形の手法として、内部硬化型マイクロ光造形法と呼ばれる光造形の手法が開発されている。その1つはヘリウムカドミウムレーザ等を用いた焦点走査型のマイクロ光造形法と呼ばれるものである。この方式は、光硬化樹脂の内部にレーザー光を集光させ、集光点を3次元的に走査せることで、積層することなく立体構造を形成するものである。このようにして光造形を行うものであるため、奥行き方向の加工分解能が積層厚さに制限されることがなく、光の回折限界に迫る加工分解能を達成できる長所がある。また、これとは別に2光子造形法という技術もある。この2光子造形法は、光硬化性樹脂の内部で3次元造形法を行うものである点で、先に述べた「焦点走査型のマイクロ光造形法」と同じであるが、硬化原理を全く異にする。本手法では、「2光子吸収」と呼ばれる非線形光学現象すなわち、2つのフォトンを同時に吸収することによって、照射させた光の2倍のエネルギーに相当する吸収が生じる現象を利用して光硬化性樹脂を硬化させるものである。
【0003】
特許文献1には積層法の短所である硬化層の剥離の問題を解消でき、しかも、加工分解能をさらに向上できる光造形加工法、該加工法を用いた可動装置および光造形加工装置を提供することを目的とした焦点走査型のマイクロ光造形法が開示されている。図7に液状の光硬化性樹脂hに光を照射して、該光硬化性樹脂hを所望の形状に硬化させる光造形加工法を用いた光造形加工装置を示す。この装置はレーザ発振器aと、レーザ発振器aから出射されたレーザビームLを集光するためのレンズgと、レンズgで集光されたレーザビームLが照射される液状の光硬化性樹脂hを載置するステージiと、レーザ発振器aとレンズgとの間に配置され、レーザ発振器aから出射されたレーザビームLのビーム幅を拡げることにより、レンズで集光されるレーザビームの焦点Fの部分のみが光硬化性樹脂hの硬化に必要なエネルギー強度を有するようにするためのビームエキスパンダeとを設けた構成が示されている。このような構成を採ることによりビームの焦点部分のみが光硬化性樹脂の硬化に必要なエネルギー強度を有するようにしたので、光硬化性樹脂の内部でビームの焦点部分のみを硬化させることが可能になり、これにより、硬化層の剥離の問題を解消でき、加工分解能を一層向上できるとともに、粘性の高い材料を使うことができる。
また、特許文献2には近赤外パルスレーザ光源からの光をミラースキャナーを通した後、レンズを用いて光硬化性樹脂中に集光させ、2光子吸収を誘起することによって焦点近傍のみにおいて樹脂を硬化させることを特徴とした2光子マイクロ光造形方法が提示されている。
【0004】
ところで上記した焦点走査型のマイクロ光造形によって、構造物全体を線密な描画を行って構造物を作成しようとすると、微細な焦点部分の光硬化を重ねて順次形成するという造形原理上その作業に長時間を要してしまう。また、光造形時にはビームを硬化樹脂内で走査させているので、硬化に伴う樹脂の収縮や膨張の影響や液状樹脂の揺らぎによって造形構造が崩れる可能性がある。その理由から、走査はなるべく速く行ったほうが望ましいし、加えて、生産ライン時の場合も走査が速くできたほうが効率化が図れることになって好ましい。しかし、走査を速く行うために光強度を増加させると、ビームウエスト周辺のスポットのみの硬化にとどまらず、開口数にあわせた広がりをもって入射方向に硬化してしまうため、面分解能が低下してしまうという問題が生じることがある。
また、造形速度を改善するため用途に合わせて開口数や倍率の異なる対物レンズを用いようとした場合、レンズ交換の作業ごとにフォーカスや位置がずれ、樹脂中の造形物を見失ってしまうという問題が生じる。
【0005】
【特許文献1】特開平11−170377号公報「光造形加工法、該加工法を用いた可動装置および光造形加工装置」平成11年6月29日公開
段落番号[0034]乃至[0036]、[0061] 図1
【特許文献2】2001−158050号公報「2光子マイクロ光造形方法およびその装置、2光子マイクロ光造形法によって形成した部品および可動機構」平成13年6月12日公開
【0006】
【発明が解決しようとする課題】本発明の課題は、上記の問題を解決すること、すなわち、光量を増加させると、面分解能が低下してしまうという問題を回避しながら速い走査を実現すること、また、そのために開口数や倍率の異なる対物レンズ交換を行おうとする際に、フォーカスや位置がずれ、樹脂中の造形物を見失ってしまうという問題を回避することにある。
【0007】
【課題を解決するための手段】本発明の層厚可変のマイクロ光造形方法は、面分解能を落とさずに厚い樹脂硬化を実現させるため、薄く小さな領域を硬化させる場合には対物レンズの開口数を大きくとって微小スポット(樹脂内での硬化領域をスポットと定義する。)を形成し、逆に厚い領域を硬化させる場合には開口数を小さくすると共に光強度を上げることにより、あるいは薄く小さな領域を硬化させる場合には光強度を押さえると共に高倍率の対物レンズ用いて微小造形スポットを形成し、逆に厚い領域を硬化させる場合には低倍率の対物レンズ用いると共に光強度を上げることにより面内方向をしぼりつつ厚さ方向の硬化領域を増すようにして、樹脂の硬化層の厚みをその状況に応じて変化させるものである。
また、本発明の層厚可変型マイクロ光造形装置は、被加工物の形状に対応させた加工を容易に実行できるように、レーザ光源からのレーザの光強度を調整する手段と、対物レンズへの入射光の開口度を調整する可変絞りと、被加工物の形状に対応させて前記2つの調整手段への調整量を出力するコントローラとを備え、レーザの光強度と対物レンズへの入射光の開口度を一括して変化させる。
また、本発明の層厚可変型マイクロ光造形装置は、倍率、開口数および焦点深度を変更するため準備した複数の対物レンズを交換することによって、フォーカスや位置がずれ、樹脂中の造形物を見失ってしまうという問題を回避させるため、複数の対物レンズをリボルバ機構に焦点位置が同じとなるように配置してシステムに取り付けるようにした。
【0008】
【発明の実施の形態】
【0009】本発明に係る層厚可変型マイクロ光造形装置の全体構成を図1を参照しながら説明する。1はレーザ光源であり、2はレーザビームの通過/遮断機能をもつシャッタ、3は本発明で重要な役割を果たす光量調整手段で音響光学変調器(AOモジュレータ)やニュトラルデンシティフィルタ(NDフィルタ)が用いられ、レーザ光の透過量を制限する機能を有する。4,5はミラー、6,7,10はレンズ、8,9はビームをX方向とY方向に走査させるガルバノミラー、11は光を透過光と反射光に二分するビームスプリッタ、12は結像レンズであり、13は本発明で重要な役割を果たす可変絞り、14は対物レンズ、そして15はカバーガラス、16は光硬化性樹脂、17はガラス基板18はガラス基板をXYZ方向に移動させる三次元移動機構であり、19は観察用の照明で、20が観察用のCCD撮像カメラである。レーザ光源1からのレーザ光は光量調整手段3で透過量を制限されレンズ6で一旦集光されてから広げられ、レンズ7で平行光線とされる。平行光線とされたレーザ光はガルバノミラー8でX(またはY)方向に振られ、次いでガルバノミラー9でY(またはX)方向に振られる。走査偏向されたレーザ光はレンズ10により集光されてから広げられ結像レンズ12へ入れられる。本発明ではレンズ10による集光点と結像レンズ12間の位置にビームスプリッタ11が配設される。この結像レンズ12でレーザ光は平行光線にされ、可変絞り13を通過したレーザ光が対物レンズ14で光硬化性樹脂層に集光される。カバーガラス15を介してこのレーザスポットが照射された部分の樹脂が光硬化する。ここで、光硬化させる部分はCAD情報から得られたパターン該当領域であるが、この三次元位置情報に基き前記XYZ移動機構18のZ駆動と前記ガルバノミラー8,9が走査されレーザスポットがパターン形状をなぞって光造形する。また跳びパターンなどの場合にはスポット移動の間シャッタ2がレーザ光を遮断する。
【0010】
上記の光造形装置を用いてレーザ光を照射したとき、樹脂層内部に焦点を結び樹脂硬化の現象を引き起こす造形スポットについて、図2を参照して説明する。図の(a)に示すように可変絞り13(図1参照)の開口数に応じた幅で対物レンズ14に入射された平行光線は該対物レンズ14の焦点位置に集光される。樹脂硬化の現象を引き起こすための条件は光強度であるから、光量調整手段3(図1参照)から出射されるレーザの光強度と可変絞り13の開口数で決まる対物レンズ14の入射光の径、そして該対物レンズ14の焦点距離がそれを決める要素となる。高開口数でレーザ照射を行ったとき樹脂硬化が起こる造形スポットは図の(b)に示されるように焦点位置近傍の平面方向にも深さ方向にもビームウエストオーダの寸法領域である。同じ開口数同じ対物レンズを用いた状態で光量調整手段3を調整して光強度を上げて照射を行うと、樹脂硬化を起こす光量レベルの領域すなわち、造形スポットが焦点位置から広がって図の(c)に示されるように面方向にも高さ方向にも大きくなる。これによって微細な形状形成はできなくなり、分解能が低下することとなる。次に同じ対物レンズを用い、光量調整手段3の調整量は(c)の状態と同じにし可変絞り13の開口数を下げて照射を行うと、対物レンズ14への入射光量が開口数に応じて少なくなると共に焦点深度が深くなる。したがって、図の(d)に示されるように樹脂硬化を起こす光量レベルの領域すなわち、造形スポットが図の(c)のときより面方向には狭められ、高さ方向には若干小さくなる。更にこの状態で光量調整手段3を調整して光強度を上げて照射を行うと、樹脂硬化を起こす光量レベルの領域すなわち、造形スポットは焦点深度が深くされているため図の(e)に示されるよう面方向にはあまり広がらず、高さ方向に大きくなる。
【0011】
本発明は可変絞り13を調整して開口数を下げた状態で光量調整手段3を調整して光強度を上げることにより、造形スポットの面方向への広がりを少なくし、高さ方向にだけ広げることができるとの知見から、面分解能を落とさずに1回の走査で厚く樹脂を硬化させることができることに想到した。この形成方法は面方向には微細な変形を有するが深さ方向には単純な連続構造を持つ構造体を光造形するには形成時間短縮に極めて有利である。以上の知見を総合すると、焦点走査型のマイクロ光造形法において、加工時間を短縮し効率よく作製するためには、薄く小さな領域(この表現は本明細書においては平面方向にも深さ方向にもビームウエストオーダの寸法領域を意味する。)を硬化させる場合には対物レンズの開口数を大きくとって微小スポットを形成し、逆に厚い領域(この表現は本明細書においては深さ方向にビームウエストを遙かに越える寸法領域を意味する。)を硬化させる場合には開口数を小さくし光強度を上げるように樹脂の硬化層の厚みを状況に応じて変化させることが有利であるといえる。
【0012】
上記の層厚可変のマイクロ光造形方法を実行する層厚可変型マイクロ光造形装置のブロック図を図3に示す。造形物の形状情報が例えばCAD情報としてコンピュータに蓄積または外部入力される。この形状情報を受けたコントローラはその形状内容により、如何なる造形スポットを光硬化樹脂内に結ばせるのが最適であるかを判定して出力する。すなわち、記憶部に蓄積されている造形スポットの形状に対応するレンズ倍率、開口数、光強度のテーブル情報に基づいて最適データを読み出し、その値を光量調整手段3と可変絞り13の開口数を調整する絞り開口調整手段に送るとともに、その造形を行う位置情報をガルバノメータ8,9の駆動手段とXYZ移動機構18のZ移動機構に送信する。図中波線で囲んだCAD情報とテーブル情報を蓄積した記憶手段とコントローラの構成はコンピュータで対応できる。この情報を受けたガルバノメータ8,9の駆動手段はX方向Y方向二次元走査を行い、Z移動機構は受信した情報に従ってZ方向位置を決める。その際の造形スポットは開口数と光強度が最適量に調整される。本発明の層厚可変型マイクロ光造形装置はレーザ光強度と対物レンズへの入射光の開口度を一括して変化させる。
【0013】
また、本発明は焦点走査型のマイクロ光造形法において、加工時間を短縮し効率よく作製することを課題として出発したものであるが、面分解能を落とさずに1回の走査で厚く樹脂を硬化させることができる現象は従来の積層法にも応用できる。すなわち、積層法は上記した焦点走査型のマイクロ光造形法のように造形物の寸法を超える厚さの光硬化性樹脂の層をガラス基板とカバーガラス間に介在させて形成するのではなく、図4に示すようにアームに取り付けられた刷毛21もしくは平坦なへらで光硬化性樹脂16の薄い層を塗布すると共に表面を平坦化し、そこにレーザスポットを照射させて造形部分の樹脂を硬化させ、更に次のステップで光硬化性樹脂の薄い層を塗布すると共に表面を平坦化し、そこにレーザスポットを照射させて造形部分の樹脂を硬化させて順次積層形成してゆくものである。したがって、その造形物の分解能は面方向にはビーム照射による造形スポットの面積であり、深さ方向には積層塗布する光硬化性樹脂16の層の厚さということになる。したがって、もし、深さ方向の構造に連続して変化のない部分があれば、その部分を形成する際の塗布する光硬化性樹脂16の層の厚さは厚くても分解能を低下させることはない。この考えに基づいて、本発明は積層法においても可変絞り13を調整して開口数を下げた状態で光量調整手段3を調整して光強度を上げることにより、造形スポットの面方向への広がりを少なくし、高さ方向にだけ広げることで、効率的な光造形を提示する。
【0014】
次に、対物レンズの倍率を変えた場合の造形スポットについて検証する。図5に示すように同じ開口数で対物レンズ14に入射された平行光線はその対物レンズの倍率の対応して焦点位置を異にする。低倍率の場合はAに示されるように光束は緩く絞られて焦点距離が長くなる。逆に高倍率の場合はCに示されるように光束はきつく絞られて焦点距離が短くなり、中倍率ではBに示されるようにその中間をとる。このことから、高倍率のレンズを用いて光強度を増加した場合、造形スポットは面方向に広くなり面分解能を低下させることは容易に理解されよう。これに対して低倍率のレンズを用いて光強度を増加した場合は、光の収束角が鋭角であるため造形スポットは面方向にはあまり広がらず、深さ方向に広がって高アスペクト比となる。この現象を利用して、本発明では面方向だけでなく深さ方向にも微細な構造変化の光造形には高倍率の対物レンズ14を用い光強度を押さえたビーム照射で図のDに示したように微小造形スポットを用い、深さ方向には変化のない連続した構造の光造形には低倍率の対物レンズ14を用い光強度を増したビーム照射で図のEに示したように高アスペクト比の造形スポットを用いることで効率的な光造形を実現することを提示する。
このように開口数を変えなくても対物レンズの倍率を変えることでも高アスペクト比の造形スポットを実現できるし、絞りを変化させる開口数調整と組み合わせてこの造形スポットを変更させることが可能である。
【0015】
ところで、このレンズ交換を実際のマイクロ光造形装置において実行しようとした場合、交換作業によってフォーカスや位置ずれがおこり、樹脂中の造形物を見失ってしまうといった不都合が生じることがある。そこで、本発明者はレンズ交換が容易に行えしかも交換作業によって光軸の位置ズレを起こさない構成として、リボルバ機構を用いることを提示する。すなわち、種類の異なる複数のレンズの各々を例えば図6に示すようなリボルバ機構の各位置に組み込む。リボルバ機構によりレンズを切り替えたとき、各レンズは対物レンズ位置にくるようにする。リボルバ機構は、その切り替えの際に各種類のレンズを選択するとレンズ中心が装置の光学軸となるべく一致するように調整が可能である。
ここでいうリボルバは回転式だけに限定されず、切り替え動作とその際の位置合わせができる機構であれば直線スライド方式であってもよい。この光造形方法を実行する装置においては、図3に示したブロック図において、CADに基づく形状情報により、コントローラが如何なる造形スポットを光硬化樹脂内に結ばせるのが最適であるかを、記憶部に蓄積された造形スポットの形状に対応するレンズ倍率、開口数、光強度のテーブル情報に基づいて判定し、例えば可変絞り13の開口数を決めた上で光量調整手段3の最適調整量と、最適倍率の対物レンズを選択すべくリボルバ22を駆動する対物レンズ切替手段へ切替情報とを出力することになる。その造形を行う位置情報をガルバノメータ8,9の駆動手段とXYZ移動機構18のZ移動機構に送信する点は先の例と全く同様である。
また、異なる形態としては可変絞り13の開口数の調整を含めて最適調整を行うこともでき、その際には絞り開口調整手段への調整信号も同時に送信されることになる。
【0016】
【発明の効果】
本発明の層厚可変のマイクロ光造形方法は、薄く小さな領域を硬化させる場合には対物レンズの開口数を大きくとって微小造形スポットを形成し、逆に厚い領域を硬化させる場合には開口数を小さくし光強度を上げることにより、あるいは薄く小さな領域を硬化させる場合には光強度を押さえと共に高倍率の対物レンズ用いて微小造形スポットを形成し、逆に厚い領域を硬化させる場合には低倍率の対物レンズ用いると共に光強度を上げることにより、面内方向をしぼりつつ厚さ方向の硬化領域を増すようにして、面方向に厚さ方向の造形スポット領域を増すようにして光造形を行うものであるから、樹脂の硬化層の厚みをその状況に応じて変化させることで面分解能を落とすことなく厚い樹脂硬化を実現させることができ、また、速い走査による迅速な光造形を実現することができる。
本発明の層厚可変のマイクロ光造形方法は従来の積層法によって光造形を行う際にも、厚み方向に連続する構造部分を形成するときは1回の樹脂層の厚みを大きくすると共に開口数を絞り光量を増加させて樹脂硬化を行わせることで面分解能を落とさずに厚い樹脂硬化を実現させることを可能とし、また、迅速な光造形を実現することができる。
【0017】
本発明の層厚可変型マイクロ光造形装置は、レーザ光源からのレーザの光強度を調整する手段と、対物レンズへの入射光の開口度を調整する可変絞りと、被加工物の形状に対応させて前記2つの調整手段への調整量を出力するコントローラとを備えるものであるから、レーザの光強度と対物レンズへの入射光の開口度を一括して変化させることができ、焦点走査方式のマイクロ光造形を効率よく迅速に実行することができる。
また、本発明の層厚可変型マイクロ光造形装置は、倍率、開口数および焦点深度を変更するため準備した複数の対物レンズを、リボルバ機構に光軸位置および/または焦点位置が同じとなるように配置してシステムに取り付けた構成を採ったものであるから、レンズ交換によってフォーカスや位置がずれを起こし、樹脂中の造形物を見失ってしまうという問題を確実かつ容易に回避することができる。
【図面の簡単な説明】
【図1】本発明に係る層厚可変型マイクロ光造形装置の全体構成を示す図である。
【図2】開口数と光強度を変えてレーザ光を照射したとき、樹脂層内部に焦点を結び樹脂硬化の現象を引き起こす造形スポットの形態を説明する図である。
【図3】本発明に係る層厚可変型マイクロ光造形装置の主要構成を示すブロック図である。
【図4】本発明の層厚可変のマイクロ光造形方法を応用する積層法のシステムを示す図である。
【図5】対物レンズの倍率と光強度を変えてレーザ光を照射したとき、樹脂層内部に焦点を結び樹脂硬化の現象を引き起こす造形スポットの形態を説明する図である。
【図6】リボルバを用いて対物レンズを切替える本発明の層厚可変型マイクロ光造形装置を説明する図である。
【図7】従来の焦点走査型のマイクロ光造形法を説明する図である。
【符号の説明】
1 レーザ光源 14 対物レンズ
2 シャッター 15 カバーガラス
3 光量調整手段 16 光硬化樹脂
4,5 ミラー 17 ガラス基板
6,7,10 レンズ 18 XYZ移動機構
8,9 ガルバノミラー 19 照明
11 ビームスプリッタ 20 CCDカメラ
12 結像レンズ 21 刷毛(樹脂塗布、平滑用)
13 可変絞り 22 リボルバ
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a focus scanning type micro stereolithography apparatus for irradiating a photocurable resin with a laser beam to cause curing inside the resin.
[0002]
2. Description of the Related Art As a stereolithography technique, a so-called lamination method of forming a three-dimensional structure from bottom to top while sequentially laminating thin films of a photocurable resin is well known. A stereolithography technique called an internal curing type micro stereolithography has been developed as a stereolithography technique completely different from the conventional stereolithography method. One of them is a so-called focal scanning type micro stereolithography using a helium cadmium laser or the like. This method forms a three-dimensional structure without stacking by condensing a laser beam inside a photocurable resin and scanning the condensing point three-dimensionally. Since the stereolithography is performed in this manner, there is an advantage that the processing resolution in the depth direction is not limited by the layer thickness, and a processing resolution approaching the diffraction limit of light can be achieved. There is also another technique called two-photon modeling. This two-photon molding method is the same as the above-mentioned “focal scanning micro stereolithography method” in that a three-dimensional molding method is performed inside a photocurable resin. Make a difference. This method uses a nonlinear optical phenomenon called "two-photon absorption", that is, a phenomenon in which two photons are simultaneously absorbed, resulting in absorption corresponding to twice the energy of irradiated light. Is to be cured.
[0003]
Patent Literature 1 provides a stereolithography method capable of solving the problem of peeling of a hardened layer, which is a disadvantage of the lamination method, and further improving the processing resolution, a movable device using the processing method, and an optical modeling device. A focus scanning type micro stereolithography method for the purpose is disclosed. FIG. 7 shows an optical shaping apparatus using an optical shaping method for irradiating light to the liquid photocurable resin h to cure the photocurable resin h into a desired shape. This apparatus comprises a laser oscillator a, a lens g for condensing a laser beam L emitted from the laser oscillator a, and a liquid photocurable resin h irradiated with the laser beam L condensed by the lens g. The laser beam L emitted from the laser oscillator a is disposed between the stage i to be mounted and the lens g, and the beam width of the laser beam L emitted from the laser oscillator a is widened. A configuration in which only a portion is provided with a beam expander e for providing an energy intensity necessary for curing the photocurable resin h is shown. With this configuration, only the focal point of the beam has the energy intensity necessary to cure the photocurable resin, so it is possible to cure only the focal point of the beam inside the photocurable resin. Accordingly, the problem of peeling of the cured layer can be solved, the processing resolution can be further improved, and a highly viscous material can be used.
Further, in Patent Document 2, after light from a near-infrared pulsed laser light source passes through a mirror scanner, it is condensed in a photocurable resin using a lens, and two-photon absorption is induced, thereby only in the vicinity of the focal point. A two-photon micro stereolithography method characterized by curing a resin has been proposed.
[0004]
By the way, by using the above-mentioned focus scanning type micro stereolithography, when trying to create a structure by performing line-density drawing on the entire structure, the work is based on the modeling principle that light curing of a fine focal portion is superimposed and sequentially formed. It takes a long time. In addition, since the beam is scanned in the cured resin at the time of optical shaping, the shaping structure may be destroyed by the influence of resin shrinkage or expansion due to hardening or fluctuation of the liquid resin. For that reason, it is desirable that scanning be performed as fast as possible. In addition, in the case of a production line, it is preferable that scanning be performed at high speed because efficiency can be improved. However, when the light intensity is increased to perform scanning at a high speed, not only the spot around the beam waist is hardened, but also the light is hardened in the incident direction with a spread corresponding to the numerical aperture, and the surface resolution is reduced. Problem may occur.
Also, when using an objective lens with a different numerical aperture or magnification according to the application to improve the modeling speed, the focus or position shifts every time the lens is replaced, and the molded object in the resin is lost. Occurs.
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 11-170377, “Stereolithography, movable device and stereolithography using the processing method”, published on June 29, 1999, paragraph numbers [0034] to [0036]; [0061] FIG.
[Patent Document 2] JP-A-2001-158050, "Two-Photon Micro Stereolithography Method and Apparatus, Parts and Movable Mechanism Formed by Two-Photon Micro Stereolithography Method" published on June 12, 2001
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem, that is, to realize fast scanning while avoiding the problem that the surface resolution is reduced when the light amount is increased. Another object of the present invention is to avoid the problem that when an objective lens having a different numerical aperture or a different magnification is to be exchanged, the focus or position is deviated, and the object in the resin is lost.
[0007]
The micro-stereolithography method of the present invention, in which the thickness of the layer is variable, achieves the curing of a thick resin without deteriorating the surface resolution. To form a small spot (a cured area in the resin is defined as a spot), and conversely, when curing a thick area, reduce the numerical aperture and increase the light intensity, or reduce When curing an area, suppress the light intensity and use a high-magnification objective lens to form a micro-shaped spot.On the other hand, when curing a thick area, use a low-magnification objective lens and increase the light intensity. The thickness of the cured layer of the resin is changed according to the situation by increasing the cured region in the thickness direction while squeezing inward.
Also, the layer thickness variable type micro stereolithography apparatus of the present invention includes a means for adjusting the light intensity of the laser from the laser light source and an objective lens so that processing corresponding to the shape of the workpiece can be easily performed. A variable aperture for adjusting the aperture of the incident light, and a controller for outputting the amount of adjustment to the two adjusting means in accordance with the shape of the workpiece, and the light intensity of the laser and the incident light to the objective lens. Are changed at once.
Also, the variable layer thickness type micro stereolithography device of the present invention is capable of changing the focus and position by exchanging a plurality of objective lenses prepared for changing the magnification, the numerical aperture and the depth of focus. In order to avoid the problem of being lost, a plurality of objective lenses are arranged on the revolver mechanism so as to have the same focal position and are attached to the system.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The overall structure of the variable thickness micro stereolithography apparatus according to the present invention will be described with reference to FIG. 1 is a laser light source, 2 is a shutter having a function of passing / blocking a laser beam, and 3 is a light amount adjusting means which plays an important role in the present invention, which is an acousto-optic modulator (AO modulator) or a neutral density filter (ND filter). ) Is used, and has a function of limiting the amount of transmission of laser light. 4, 5 are mirrors; 6, 7, 10 are lenses; 8, 9 are galvano mirrors for scanning beams in the X and Y directions; 11 is a beam splitter that divides light into transmitted light and reflected light; Reference numeral 13 denotes a variable aperture which plays an important role in the present invention, 14 denotes an objective lens, 15 denotes a cover glass, 16 denotes a photocurable resin, 17 denotes a glass substrate, and 18 denotes a tertiary moving glass substrate in the XYZ directions. Reference numeral 19 denotes an illumination for observation, and reference numeral 20 denotes a CCD imaging camera for observation. The amount of laser light from the laser light source 1 is limited by the light amount adjusting means 3, is once condensed by the lens 6, is then spread, and is converted into a parallel light by the lens 7. The parallel laser light is oscillated in the X (or Y) direction by the galvanomirror 8 and then oscillated in the Y (or X) direction by the galvanomirror 9. The scan-deflected laser light is condensed by a lens 10 and then spread and entered into an imaging lens 12. In the present invention, a beam splitter 11 is provided at a position between the focal point of the lens 10 and the imaging lens 12. The laser light is converted into parallel rays by the imaging lens 12, and the laser light that has passed through the variable aperture 13 is condensed on the photocurable resin layer by the objective lens 14. The resin in the portion irradiated with the laser spot through the cover glass 15 is light-cured. Here, the portion to be photocured is a region corresponding to the pattern obtained from the CAD information. Based on the three-dimensional position information, the Z drive of the XYZ moving mechanism 18 and the scanning of the galvanometer mirrors 8 and 9 cause the laser spot to be patterned. Trace the shape and make it. In the case of a jumping pattern or the like, the shutter 2 blocks the laser light during the spot movement.
[0010]
With reference to FIG. 2, a description will be given of a molding spot that focuses on the inside of the resin layer and causes a phenomenon of resin curing when laser light is irradiated using the above-described optical molding apparatus. As shown in FIG. 3A, a parallel light beam incident on the objective lens 14 with a width corresponding to the numerical aperture of the variable stop 13 (see FIG. 1) is condensed at the focal position of the objective lens 14. Since the condition for causing the resin curing phenomenon is light intensity, the diameter of the incident light of the objective lens 14 determined by the light intensity of the laser emitted from the light amount adjusting means 3 (see FIG. 1) and the numerical aperture of the variable aperture 13. , And the focal length of the objective lens 14 is a factor that determines this. When a laser beam is irradiated at a high numerical aperture, the molding spot where the resin cures is a beam waist order dimension area in both the planar direction near the focal position and the depth direction as shown in FIG. When the light intensity adjusting means 3 is adjusted and the light intensity is increased to perform irradiation with the same numerical aperture and the same objective lens, the region of the light intensity level at which the resin cures, that is, the modeling spot spreads from the focal position, and ( As shown in c), it becomes larger both in the surface direction and in the height direction. As a result, fine shapes cannot be formed, and the resolution is reduced. Next, when the same objective lens is used and the amount of adjustment of the light amount adjusting means 3 is made the same as in the state (c) and the numerical aperture of the variable aperture 13 is reduced to perform irradiation, the amount of light incident on the objective lens 14 depends on the numerical aperture. And the depth of focus becomes deeper. Therefore, as shown in FIG. 3D, the area of the light amount level at which the resin cures, that is, the modeling spot is narrower in the plane direction than in FIG. 3C and slightly smaller in the height direction. Further, in this state, when the irradiation is performed by adjusting the light amount adjusting means 3 to increase the light intensity, the region of the light amount level at which the resin cures, that is, the modeling spot is shown in FIG. It does not spread so much in the plane direction, but increases in the height direction.
[0011]
The present invention adjusts the variable aperture 13 to reduce the numerical aperture and adjusts the light amount adjusting means 3 to increase the light intensity, thereby reducing the spread of the modeling spot in the plane direction and expanding only in the height direction. From the knowledge that the resin can be formed, it has been conceived that the resin can be cured thickly in one scan without lowering the surface resolution. This forming method is extremely advantageous for shortening the forming time in order to stereo-fabricate a structure having a small continuous structure in the plane direction but having a simple continuous structure in the depth direction. Summarizing the above findings, in the focus scanning type micro stereolithography, in order to shorten the processing time and efficiently manufacture, a thin and small area (this expression is referred to as a planar direction or a depth direction in this specification). In the case of curing a beam waist order size area, a small spot is formed by increasing the numerical aperture of the objective lens, and conversely, a thick area (this expression is referred to as a depth direction in this specification). In the case of curing a region much larger than the beam waist, it is advantageous to change the thickness of the cured resin layer in accordance with the situation so as to reduce the numerical aperture and increase the light intensity. I can say.
[0012]
FIG. 3 shows a block diagram of a variable layer thickness micro stereolithography apparatus that performs the above-described variable layer thickness micro stereolithography method. The shape information of the modeled object is stored in a computer as CAD information or externally input. The controller that has received the shape information determines and outputs, based on the content of the shape, what shaping spot is most suitable for connecting the photocurable resin. That is, the optimum data is read out based on the table information of the lens magnification, the numerical aperture, and the light intensity corresponding to the shape of the modeling spot stored in the storage unit, and the value is used as the numerical aperture of the light amount adjusting means 3 and the variable aperture 13. The information is sent to the aperture adjusting means for adjusting, and the position information for performing the shaping is sent to the driving means of the galvanometers 8 and 9 and the Z moving mechanism of the XYZ moving mechanism 18. The configuration of the storage means and the controller storing the CAD information and the table information surrounded by the dashed line in the figure can be handled by a computer. The driving means of the galvanometers 8 and 9 receiving this information performs two-dimensional scanning in the X and Y directions, and the Z moving mechanism determines the position in the Z direction according to the received information. At this time, the modeling spot is adjusted to have an optimum numerical aperture and light intensity. The variable layer thickness type micro stereolithography apparatus of the present invention changes the laser beam intensity and the aperture of incident light on the objective lens at once.
[0013]
In addition, the present invention started with the object of shortening the processing time and efficiently fabricating the micro-lithography method of the focus scanning type, but the resin was hardened thickly in one scan without lowering the surface resolution. The phenomenon that can be applied can be applied to a conventional lamination method. That is, the laminating method is not formed by interposing a layer of a photocurable resin having a thickness exceeding the size of the molded article between the glass substrate and the cover glass as in the above-described focal scanning type micro stereolithography, As shown in FIG. 4, a thin layer of the photo-curable resin 16 is applied with a brush 21 or a flat spatula attached to the arm, and the surface is flattened. In the next step, a thin layer of a photo-curable resin is applied and the surface is flattened, and a laser spot is irradiated on the surface to cure the resin in the molded portion, thereby sequentially forming a laminate. Therefore, the resolution of the modeled object is the area of the modeled spot by beam irradiation in the plane direction, and the thickness of the layer of the photocurable resin 16 to be laminated and applied in the depth direction. Therefore, if there is a portion where the structure in the depth direction does not change continuously, even if the thickness of the layer of the photocurable resin 16 to be applied at the time of forming the portion is large, the resolution cannot be reduced. Absent. Based on this idea, the present invention also adjusts the variable aperture 13 to reduce the numerical aperture and adjusts the light amount adjusting means 3 to increase the light intensity in the laminating method, thereby spreading the modeling spot in the plane direction. By reducing the size and expanding only in the height direction, efficient stereolithography is presented.
[0014]
Next, the formed spot when the magnification of the objective lens is changed will be verified. As shown in FIG. 5, the parallel rays incident on the objective lens 14 with the same numerical aperture have different focal positions corresponding to the magnification of the objective lens. In the case of a low magnification, as shown in A, the light beam is gently stopped down, and the focal length becomes longer. Conversely, in the case of high magnification, the light beam is tightly narrowed as shown by C and the focal length becomes short, and in the case of medium magnification, the light flux takes an intermediate value as shown by B. From this, it can be easily understood that, when the light intensity is increased by using a high-magnification lens, the formed spot becomes wider in the plane direction and the plane resolution is reduced. On the other hand, when the light intensity is increased by using a low-magnification lens, the convergence angle of the light is an acute angle, so the modeling spot does not spread so much in the plane direction, but spreads in the depth direction and has a high aspect ratio. . Utilizing this phenomenon, the present invention uses a high-magnification objective lens 14 to irradiate a beam with suppressed light intensity using a high-magnification objective lens 14 for stereolithography in which minute structural changes occur not only in the plane direction but also in the depth direction as shown in FIG. As shown in FIG. 8E, the beam irradiation with the increased light intensity using the low-magnification objective lens 14 is used for the stereolithography having a continuous structure that does not change in the depth direction by using the microlithography spot as shown in FIG. We propose to realize an efficient stereolithography by using a molding spot with an aspect ratio.
By changing the magnification of the objective lens without changing the numerical aperture in this way, a high-aspect-ratio modeling spot can be realized, and this modeling spot can be changed in combination with the numerical aperture adjustment that changes the aperture. .
[0015]
By the way, when this lens exchange is to be performed in an actual micro optical molding apparatus, there is a case where an inconvenience such that the exchange operation causes a focus or a positional shift and a molded object in the resin is lost. Therefore, the present inventor proposes using a revolver mechanism as a configuration in which the lens can be easily replaced and the optical axis does not shift due to the replacement operation. That is, each of a plurality of different types of lenses is incorporated in each position of a revolver mechanism as shown in FIG. 6, for example. When the lenses are switched by the revolver mechanism, each lens is brought to the position of the objective lens. The revolver mechanism can be adjusted so that when each type of lens is selected at the time of the switching, the lens center coincides with the optical axis of the apparatus as much as possible.
The revolver mentioned here is not limited to a rotary type, but may be a linear slide type as long as it is a mechanism capable of performing a switching operation and positioning at that time. In the apparatus for performing this stereolithography method, in the block diagram shown in FIG. 3, the storage unit determines which molding spot is optimally formed by the controller in the photocurable resin based on the CAD-based shape information. Is determined based on the table information of the lens magnification, the numerical aperture, and the light intensity corresponding to the shape of the modeling spot accumulated in the table. For example, after the numerical aperture of the variable aperture 13 is determined, the optimal adjustment amount of the light amount adjusting means 3 is determined. The switching information is output to the objective lens switching unit that drives the revolver 22 to select the objective lens having the optimum magnification. The point that the position information for performing the shaping is transmitted to the driving means of the galvanometers 8 and 9 and the Z movement mechanism of the XYZ movement mechanism 18 is exactly the same as the previous example.
Further, as a different form, it is possible to perform the optimal adjustment including the adjustment of the numerical aperture of the variable aperture 13, and at that time, an adjustment signal to the aperture adjusting means is also transmitted at the same time.
[0016]
【The invention's effect】
The micro-stereolithography method with a variable layer thickness according to the present invention uses a large numerical aperture of the objective lens to cure a small and thin area to form a microscopic spot, and conversely, to cure a thick area. In order to cure thin and small areas, reduce the light intensity and form a micro-shaped spot using a high-magnification objective lens. By using a magnification objective lens and increasing the light intensity, stereolithography is performed by increasing the hardened area in the thickness direction while squeezing the in-plane direction, and increasing the formation spot area in the thickness direction in the plane direction. Therefore, by changing the thickness of the cured resin layer according to the situation, it is possible to realize thick resin curing without reducing the surface resolution, It is possible to realize a rapid optical shaping by.
According to the micro-stereolithography method of the present invention having a variable layer thickness, even when performing stereolithography by a conventional lamination method, when forming a structural part continuous in the thickness direction, the thickness of one resin layer is increased and the numerical aperture is increased. By increasing the aperture light amount and performing the resin curing, it is possible to realize a thick resin curing without lowering the surface resolution, and it is also possible to realize rapid stereolithography.
[0017]
The variable layer thickness type micro stereolithography apparatus of the present invention includes a means for adjusting the light intensity of the laser beam from the laser light source, a variable aperture for adjusting the aperture of the incident light to the objective lens, and a shape corresponding to the shape of the workpiece. And a controller for outputting an adjustment amount to the two adjusting means, so that the light intensity of the laser and the aperture of the incident light on the objective lens can be changed at a time, and the focus scanning method can be used. Can be efficiently and quickly performed.
Further, the variable layer thickness type micro stereolithography apparatus of the present invention uses a plurality of objective lenses prepared for changing magnification, numerical aperture, and focal depth so that the revolver mechanism has the same optical axis position and / or focal position. In this configuration, the focus and the position are deviated due to the lens exchange, and the problem of losing the object in the resin can be reliably and easily avoided.
[Brief description of the drawings]
FIG. 1 is a diagram showing the overall configuration of a variable-layer thickness micro stereolithography apparatus according to the present invention.
FIG. 2 is a view for explaining a form of a molding spot which focuses on the inside of a resin layer and causes a phenomenon of resin hardening when laser light is irradiated while changing the numerical aperture and light intensity.
FIG. 3 is a block diagram showing a main configuration of a variable-layer thickness micro stereolithography apparatus according to the present invention.
FIG. 4 is a diagram showing a system of a laminating method to which the micro stereolithography method with a variable layer thickness of the present invention is applied.
FIG. 5 is a view for explaining a form of a molding spot which focuses on the inside of a resin layer and causes a phenomenon of resin curing when laser light is irradiated while changing magnification and light intensity of an objective lens.
FIG. 6 is a diagram illustrating a variable-layer-thickness micro stereolithography apparatus of the present invention in which an objective lens is switched using a revolver.
FIG. 7 is a diagram illustrating a conventional focus scanning type micro stereolithography.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laser light source 14 Objective lens 2 Shutter 15 Cover glass 3 Light amount adjusting means 16 Photocurable resin 4, 5 Mirror 17 Glass substrate 6, 7, 10 Lens 18 XYZ moving mechanism 8, 9 Galvano mirror 19 Illumination 11 Beam splitter 20 CCD camera 12 Imaging lens 21 brush (resin coating, smoothing)
13 Variable aperture 22 Revolver

Claims (5)

薄く小さな領域を硬化させる場合には対物レンズの開口数を大きくとって微小造形スポットを形成し、逆に厚い領域を硬化させる場合には開口数を小さくすると共に光強度を上げることにより面方向にしぼりつつ厚さ方向の造形スポット領域を増すようにして、樹脂の硬化層の厚みをその状況に応じて変化させることで面分解能を落とさずに厚い樹脂硬化を実現させることを特徴とする層厚可変のマイクロ光造形方法。When curing thin and small areas, increase the numerical aperture of the objective lens to form a micro-shaped spot.On the other hand, when curing thick areas, reduce the numerical aperture and increase the light intensity to increase the light intensity in the surface direction. By increasing the modeling spot area in the thickness direction while squeezing, by changing the thickness of the cured resin layer according to the situation, it is possible to realize thick resin curing without reducing the surface resolution. Variable micro stereolithography method. 薄く小さな領域を硬化させる場合には光強度を押さえ高倍率の対物レンズ用いて微小造形スポットを形成し、逆に厚い領域を硬化させる場合には低倍率の対物レンズ用いると共に光強度を上げることにより面内方向をしぼりつつ厚さ方向の硬化領域を増すようにして、樹脂の硬化層の厚みをその状況に応じて変化させることで面分解能を落とさずに厚い樹脂硬化を実現させることを特徴とする層厚可変のマイクロ光造形方法。When hardening thin and small areas, suppress the light intensity and use a high magnification objective lens to form a micro-shaped spot, and when curing a thick area, use a low magnification objective lens and increase the light intensity. It is characterized by realizing thick resin curing without reducing surface resolution by increasing the curing area in the thickness direction while squeezing the in-plane direction and changing the thickness of the cured resin layer according to the situation. Micro stereolithography method with variable layer thickness. レーザ光源からのレーザの光強度を調整する手段と、対物レンズへの入射光の開口度を調整する可変絞りと、被加工物の形状に対応させて前記2つの調整手段への調整量を出力するコントローラとを備え、レーザの光強度と対物レンズへの入射光の開口度を一括して変化させることを特徴とする層厚可変型マイクロ光造形装置。Means for adjusting the light intensity of the laser from the laser light source, a variable stop for adjusting the degree of opening of the light incident on the objective lens, and outputting the adjustment amounts to the two adjusting means in accordance with the shape of the workpiece. A variable thickness layer type micro stereolithography apparatus, comprising: a controller that changes a light intensity of a laser beam and an opening degree of light incident on an objective lens. 倍率、開口数および焦点深度を変更するため準備した各種の対物レンズを、あらかじめ切り替え機構の各位置に取り付け、前記対物レンズ切り替えた時、光軸位置および/または焦点位置が同じとなるように調整してシステムに取り付けたことを特徴とする層厚可変型マイクロ光造形装置。Various objective lenses prepared for changing magnification, numerical aperture, and depth of focus are mounted in advance on each position of the switching mechanism, and when the objective lenses are switched, the optical axis position and / or the focal position are adjusted to be the same. A variable-layer-thickness micro-stereolithography apparatus, which is attached to a system by using the method. 積層法によって光造形を行う際に、厚み方向に連続する構造部分を形成するときは1回の樹脂層の厚みを大きくすると共に開口数を絞ると共に光強度を増加させて樹脂硬化を行わせることで面分解能を落とさずに厚い樹脂硬化を実現させることを特徴とする層厚可変のマイクロ光造形方法。When forming a structure part that is continuous in the thickness direction when performing stereolithography by the laminating method, it is necessary to increase the thickness of the resin layer once, narrow the numerical aperture, and increase the light intensity to cure the resin. A variable layer thickness micro-stereolithography method that achieves thick resin hardening without lowering the surface resolution.
JP2003110630A 2003-04-15 2003-04-15 Layer thickness variable optical micro-shaping method and layer thickness variable optical micro-shaping apparatus Pending JP2004314406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110630A JP2004314406A (en) 2003-04-15 2003-04-15 Layer thickness variable optical micro-shaping method and layer thickness variable optical micro-shaping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110630A JP2004314406A (en) 2003-04-15 2003-04-15 Layer thickness variable optical micro-shaping method and layer thickness variable optical micro-shaping apparatus

Publications (1)

Publication Number Publication Date
JP2004314406A true JP2004314406A (en) 2004-11-11

Family

ID=33471439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110630A Pending JP2004314406A (en) 2003-04-15 2003-04-15 Layer thickness variable optical micro-shaping method and layer thickness variable optical micro-shaping apparatus

Country Status (1)

Country Link
JP (1) JP2004314406A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106227A (en) * 2004-10-01 2006-04-20 Hokkaido Univ Laser processing method and apparatus
JP2008238651A (en) * 2007-03-28 2008-10-09 Jsr Corp Optical shaping method
CN102441740A (en) * 2010-10-07 2012-05-09 住友重机械工业株式会社 Laser irradiation apparatus, laser irradiation method, and insulating film forming apparatus
JP2017154260A (en) * 2016-02-29 2017-09-07 国立大学法人 東京大学 Manufacturing method and manufacturing device of overhang structure
CN109895389A (en) * 2017-12-07 2019-06-18 康达智株式会社 Three-dimensional equipment and its control method and non-transitory computer-readable medium
JP2021154151A (en) * 2015-12-30 2021-10-07 デックスコム・インコーポレーテッド Biointerface layer for analyte sensors
WO2022084921A1 (en) * 2020-10-23 2022-04-28 Bmf Material Technology Inc. A multi-scale system for projection micro stereolithography

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106227A (en) * 2004-10-01 2006-04-20 Hokkaido Univ Laser processing method and apparatus
JP4599553B2 (en) * 2004-10-01 2010-12-15 国立大学法人北海道大学 Laser processing method and apparatus
JP2008238651A (en) * 2007-03-28 2008-10-09 Jsr Corp Optical shaping method
CN102441740A (en) * 2010-10-07 2012-05-09 住友重机械工业株式会社 Laser irradiation apparatus, laser irradiation method, and insulating film forming apparatus
JP2021154151A (en) * 2015-12-30 2021-10-07 デックスコム・インコーポレーテッド Biointerface layer for analyte sensors
JP7258953B2 (en) 2015-12-30 2023-04-17 デックスコム・インコーポレーテッド Bio-interface layer for analyte sensors
JP2017154260A (en) * 2016-02-29 2017-09-07 国立大学法人 東京大学 Manufacturing method and manufacturing device of overhang structure
CN109895389A (en) * 2017-12-07 2019-06-18 康达智株式会社 Three-dimensional equipment and its control method and non-transitory computer-readable medium
JP2019098705A (en) * 2017-12-07 2019-06-24 カンタツ株式会社 3d molding device, control method of 3d molding device, and control program of 3d molding device
WO2022084921A1 (en) * 2020-10-23 2022-04-28 Bmf Material Technology Inc. A multi-scale system for projection micro stereolithography

Similar Documents

Publication Publication Date Title
JP4716663B2 (en) Laser processing apparatus, laser processing method, and structure manufactured by the processing apparatus or processing method
WO2016015389A1 (en) Femtosecond laser two-photon polymerization micro/nanoscale machining system and method
US7088432B2 (en) Dynamic mask projection stereo micro lithography
US20120098164A1 (en) Two-photon stereolithography using photocurable compositions
CN104669621A (en) Photocurable 3D (three-dimensional) printing device and imaging system thereof
JP2007057622A (en) Optical element, manufacturing method thereof, method for manufacturing shape transfer mold for optical element, and transfer mold for optical element
US20190255773A1 (en) Method for lithography-based generative production of three-dimensional components
KR20100120383A (en) 3-dimensional ultrafine structure fabrication system for auto focusing control and auto focusing control method thereof
JP2006119427A (en) Laser machining method and laser machining device, and structure fabricated therewith
CN1821883A (en) Method and device for light etching micrometer structure of smooth surface
CN108983555B (en) Processing method for improving three-dimensional micro-nano structure based on composite scanning
JP2004314406A (en) Layer thickness variable optical micro-shaping method and layer thickness variable optical micro-shaping apparatus
JP4456881B2 (en) Laser processing equipment
JP3815652B2 (en) Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism
JP4477893B2 (en) LASER PROCESSING METHOD AND DEVICE, AND STRUCTURE MANUFACTURING METHOD USING LASER PROCESSING METHOD
JP4436162B2 (en) Laser processing equipment
JP2004223790A (en) Method and apparatus for smoothly producing fine shaped article having curved shape by optical shaping method
JP3635701B2 (en) Processing equipment
CN112297422B (en) One shot forming&#39;s 3D printing device
JP2004223789A (en) Optical micro-shaping apparatus with observation function
JP2004046003A (en) Fine structure, manufacturing method of fine structure and manufacturing device thereof
KR100921939B1 (en) Stereolithography Device Using Laser Pick-UP Unit and Method for Forming Structure Using the Device
JP2004223791A (en) Layer thickness variable type optical micro-shaping apparatus
JPS6299753A (en) Formation of three-dimensional shape
KR102497174B1 (en) A double patterning method and apparatus in two-photon stereolithography