JP2004223320A - Aeration treatment device - Google Patents

Aeration treatment device Download PDF

Info

Publication number
JP2004223320A
JP2004223320A JP2003011010A JP2003011010A JP2004223320A JP 2004223320 A JP2004223320 A JP 2004223320A JP 2003011010 A JP2003011010 A JP 2003011010A JP 2003011010 A JP2003011010 A JP 2003011010A JP 2004223320 A JP2004223320 A JP 2004223320A
Authority
JP
Japan
Prior art keywords
air
aeration tank
aeration
cylindrical body
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003011010A
Other languages
Japanese (ja)
Inventor
Kazuo Yamaoka
一夫 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOOMAA CLEAN KK
Original Assignee
HOOMAA CLEAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOOMAA CLEAN KK filed Critical HOOMAA CLEAN KK
Priority to JP2003011010A priority Critical patent/JP2004223320A/en
Publication of JP2004223320A publication Critical patent/JP2004223320A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aeration treatment device having the characteristics of both of an activated sludge system and a biological membrane system. <P>SOLUTION: A cylindrical body 3 is vertically provided in an aeration tank 1. Upper and lower perforated plates 5 and 6 are provided in the cylindrical body 3 and the space between the perforated plates 5 and 6 is filled with a large number of ceramic granular biological membrane carriers 7. A sewage inflow port 8 is provided to the lower end of the cylindrical body 3, and an air diffuser 10 for supplying air into the aeration tank 1 and an air diffuser for supplying air into the cylindrical body 3 are respectively arranged on the bottom part of the aeration tank 1. The biological membrane carriers 7 are fluidized in the cylindrical body by the pressure of air sent from the air diffusers. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、屎尿汚水、家畜糞尿汚水、工場汚水等の生活汚水や産業汚水を曝気処理により浄化する曝気処理装置に関するものである。
【0002】
【従来の技術】
生活汚水、動物飼育舎の糞尿等の有機物を含む汚水の浄化処理法として従来から知られている活性汚泥処理法は、例えば以下の文献に詳しく記載されている。
【0003】
【非特許文献1】
厚生省生活衛生局水道環境部監修「浄化槽の維持管理」,昭和60年4月,(財)日本環境整備教育センター編集・発行,P.30−31,171,198
【0004】
即ち、活性汚泥処理法は、曝気槽内に貯留された汚水に空気を供給しながら汚水に含まれる微生物を増殖活性化させ、汚濁物質である有機物を微生物に分解捕食させて浄化処理する方法である。その処理水は、沈殿槽に移送して上澄液と沈殿汚泥とに分離し、沈殿汚泥は、曝気槽内での活性汚泥を安定化させるために一部を同槽に返送するとともに、余剰汚泥を別槽に移送し、下水道処理施設等へ運搬処理している。また上澄液は、必要な殺菌処理を行なった後、河川に放流するか、そのまま下水道に放流している。
【0005】
前述の曝気槽は、活性汚泥処理法において最も重要な役割を果たす槽であり、大別して、微生物を汚水中に浮遊した状態で処理する活性汚泥方式と、坦体に微生物を付着させた状態で処理する接触曝気方式とがある。図3から図5は過去に設計施工された曝気槽の例を示している。
【0006】
図3は活性汚泥方式の一例であり、曝気槽30の内部に散気装置31から所定量の空気を送気し、汚水をゆっくりと攪拌させながら浮遊微生物により汚水浄化処理を行なうものである。また図4は接触曝気方式の一例であり、曝気槽30の内部に網目多層構造の接触材32を装着し、その接触材32に微生物膜を付着、生成させ、その微生物膜を利用して汚水中の有機物を捕食させるものである。さらに図5は生物膜方式の例であり、曝気槽30の内部の上下に装着された網目状支持板34,34の間に、プラスチックやスポンジ等から造られた多数の粒体状の生物膜坦体35を装填したものである。
【0007】
【発明が解決しようとする課題】
図3に示した活性汚泥方式は、曝気槽30に上述のように沈殿槽から沈殿汚泥の一部を返送しているが、流入する汚水の濃度、流入水量等の環境変化に対応して槽内の汚泥濃度を安定化させることが難しく、汚泥濃度を高く保持して運転した場合、浄化能力は高まるものの、特に小型の曝気槽では処理能力に限界があり、汚泥が沈殿槽に流出し、結果的に余剰汚泥が増大するという問題がある。また、立ち上げ時に種汚泥の投入が必要であり、この汚泥が曝気槽30内で増殖しないうちに沈殿槽に流出するようなことがあるため、一定のMLSS(活性汚泥浮遊物質)を保持するまで時間が掛かる等の問題がある。
【0008】
また図4の接触曝気方式は、活性汚泥方式に比べて、汚水の流量変動に対して微生物の流出が少なく浄化能力が安定していることや、余剰汚泥が少ないこと、沈殿槽から汚泥を返送する手間が省けること、等の利点がある。しかしながら、栄養や酸素の供給が生物膜の表面に限定されるため、散気装置31により接触材32の全面に均一に酸素を供給するようにしなければならず、また接触材32が生物膜で肥厚するのを防ぐため、ときどき逆洗装置33により接触材32の生物膜を剥離し、それを槽外に排出するための操作が必要であるという問題がある。しかも、接触材32は曝気槽30の内部の複数箇所に設けられた架台36に支持固定する必要があり、これらは施工現場において単品毎に組み立てられているため、生産性が悪く、施工コストも高くなる等の問題がある。
【0009】
さらに、図5に示した生物膜方式では、曝気槽容量の、50〜60%程度の多量の生物膜坦体35を装填しなければならないこと、生物膜坦体35の重量により網目支持板34の強度の弱い部分、例えば曝気槽30との接続部(図中○部分)が破損し、生物膜坦体35が飛び出したり脱落したりする可能性があること、生物膜坦体35の装填層の下方から散気装置31により全面に曝気する必要があるため、散気装置31の交換ができにくい構造であること、等の問題がある。
【0010】
本発明は上述のような問題点を解決するために提案されたものである。即ち、本発明は、同一の曝気槽内において活性汚泥方式と生物膜方式の両方の特性を生かし、流入する汚水の濃度変動等があっても安定した浄化処理をすることができ、余剰汚泥の発生を低減させることができる曝気処理装置を提供することである。
【0011】
また本発明は、生物膜坦体の全体に均一に空気を供給できるようにし、生物膜坦体による浄化能力の向上と安定化を図るとともに、据え付け施工後に短期間で操業を立ち上げることができ、さらに生物膜坦体に付着する汚泥を特別な装置によらずに自然に剥離することができる曝気処理装置を提供することである。
【0012】
また本発明は、工場ラインにおいて簡単に組み立てができ、かつ低コストで量産化することが可能であり、さらには施工現場における工期を短縮することができ、補修や維持管理も簡単で低コストで行なえる曝気処理装置を提供することである。
【0013】
【課題を解決するための手段】
上述の課題を解決するため、本発明の曝気処理装置は、前記曝気槽の略中央部に立設された筒体と、前記曝気槽の内部と前記筒体の内部にそれぞれ空気を送り込む送気手段とを備えており、
前記筒体は、その内部の上下に多孔板を設け、これら多孔板の間に、前記送気手段の送気圧により流動する多数の生物膜坦体を装填するとともに、前記筒体の前記下側多孔板よりも下部の位置に、曝気槽内の汚水を筒体内に導くための汚水流入口を設けており、
前記筒体内部への送気手段は、前記下側多孔板の下方から前記生物膜坦体に向けて空気を吐出するものであることを特徴とする。
【0014】
これにより、曝気槽内の汚水は筒体内部を通って循環し、各送気手段により供給された空気(酸素)により曝気処理されると同時に、筒体内部において汚水は生物膜坦体と接触し、生物膜方式による浄化が行われる。また生物膜坦体は、筒体内部を送気圧によって上下方向に流動し、その間、互いに生物膜坦体が衝突し合って、生物膜坦体に付着した余剰汚泥が剥離し、汚水の循環流に乗って筒体外部に放出され、筒体外の活性汚泥として生成する。
【0015】
前記曝気槽の構造は、汚水処理量、設置場所、等の条件等により任意に設計される。また、前記筒体の筒径や筒長も曝気槽の構造や汚水処理条件に応じで設計され、必要であれば曝気槽内に複数設けるようにしても良い。
【0016】
前記多孔板は、筒体内部に装填される生物膜坦体を保持するものであり、筒体内に溶接や固定ボルト等の手段で固定される。この多孔板としては、平板に多数の細孔を開けたものや、所定のメッシュ孔を有する網目材等を選らぶことができるが、ここではSUS平板に3mm程度の穴を多数開けたパンチングメタルが使用される。
【0017】
前記生物膜坦体は、プラスチック、スポンジ、木炭等、様々な材質のものがあるが、ここではBOD除去性能や耐久性に優れ、高強度で比較的軽量なセラミック質坦体が使用される。このセラミック質坦体は、前記上下多孔板の間に70〜80%程度装填される。セラミック質坦体は、鋳物工場やセメント工場等で副生物として産出されるセラミック原料を焼成法等により造粒したものであり、無数の穴が開いている。そのセラミック質坦体は、前記多孔板の穴を通過しない程度の粒径を有し、送気手段の送気圧により筒体内を流動する程度の重さのものが使用される。
【0018】
前記送気手段は、特に限定はされないが、ここでは散気式装置が使用される。散気装置からは、曝気槽内が所定のDO(溶存酸素量)となる空気量が送気されるが、DO1mg/L以上で生物膜部が嫌気にならない程度の空気を送気するとよい。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図1及び図2に基づいて説明する。図1において1はタンク型の曝気槽であり、基台2に支持させた状態で地中に設置される。この曝気槽1には、図示しないが、流入槽からの汚水を導入する流入管と、沈殿槽に処理液を排出する排出管が接続されている。また、前記曝気槽1内部の略中央部には図2に示すような筒体3が立設されており、この筒体3は曝気槽1の底部に固定ボルト等の固定手段により固定されている。
【0020】
前記筒体3内の上下には多孔板5,6が固定されており、これら多孔板5,6の間に多数のセラミック質の生物膜坦体7が筒体容積の70〜80%程度装填されている。前記多孔板5,6は、円盤状のSUSパンチングメタルで構成され、3mm程度の穴が多数開口されている。また、前記生物膜坦体7には無数の穴が開いている。さらに前記筒体3の下端部には、下側多孔板5より下方の位置に複数の汚水流入口8が開口されている。なお、前記生物膜坦体7を装填した筒体3は、組立ラインで曝気槽1の内部に組み付けられる。
【0021】
一方、曝気槽1の底部には、筒体3の内部に空気を供給するための散気装置9(図2参照)と、曝気槽1の内部に空気を供給するための散気装置10(図1参照)が配設されている。前記散気装置9は、筒体3の下側多孔板5より下部の位置に散気ノズル部が挿入され、筒体3から簡単に取り外すことができる構成となっている。
【0022】
次に上述した曝気処理装置の操業例について説明する。まず曝気槽1は、流入槽から流入した汚水で満たされるが、立ち上げ時においては、筒体3の汚水流入口8から筒体3内に流入した汚水が生物膜坦体7に付着するため、曝気槽1内のMLSSが所定量に保持されるまでの間、この筒体3内で生成する微生物により浄化処理が行われる。
【0023】
曝気槽1内の汚水は、散気装置9,10からの送気圧により槽内を図1で矢視する方向に循環しながら曝気処理が行われ、微生物による汚水の浄化処理がなされる。即ち、筒体3内の汚水は、汚水流入口8から筒体3の内部に流入し、散気装置9により発生する上昇流によって下側多孔板5を通り、セラミック質の生物膜坦体7と均一に接触しながら筒体3の上方から筒外に流出する。
【0024】
前記生物膜坦体7には微生物による膜が生成、定着されており、汚水が多数の生物膜坦体7と接触することにより、汚濁物質である有機物質が分解されることになる。この場合、散気装置9から送気された空気は下側多孔板5に衝突、分散し、水中で溶解しながら多孔板5の穴を通って上昇し、微生物坦体7に付着している微生物と接触する。溶存酸素は、汚水中の気泡が生物膜坦体7に衝突して微細化するため、通常の活性汚泥処理法に比べて高濃度の溶存酸素が生じることになる。また、筒体3内に流入する汚水には筒外の散気装置10によって溶存酸素を含んでおり、生物膜坦体7に付着した微生物が活性化し、有機物の分解捕食が促進される。
【0025】
前記生物膜坦体7の表面には徐々に汚泥が付着するが、生物膜坦体7は常に上下方向に流動しながら互いに衝突し合うため、付着汚泥は所定期間経過後、自然に生物膜坦体7から剥離し、筒外に放出され、筒外の汚泥として生成される。なお、流動する生物膜坦体7は上下の多孔板5,6にも衝突するため、多孔板5,6に付着した汚泥も離脱する。
【0026】
一方、筒体3の外側では、汚水が散気装置10によって曝気され、通常の活性汚泥処理が行われている。一般に、活性汚泥処理法で出現する微生物は、フロック形成細菌と、このフロックに固着あるいは匍匐した微小動物(原生動物)であり、汚水中の有機物の分解は細菌が担い、微小動物は細菌を捕食することで発生汚泥を減少させ、処理水を透明にする働きがあるとされている。通常の活性汚泥処理法は、常に散気により攪拌されているために、微小動物の生存にとっては不利な環境にあり、また、増殖速度の遅い生物は曝気槽1で増殖しないういちに洗い流されてしまう。しかし本発明では、活性汚泥処理法として不利な微小動物や、増殖速度の遅い微生物、さらには散気の攪拌速度に著しく感受性の高い微小後生動物が、筒体3の生物膜坦体7に生成され、曝気槽1内に生存する微生物と相俟って、汚泥処理に係わる生物の多様化を図ることができる。このため、様々な流入汚水環境に対応することができ、安定した汚水浄化処理が可能となる。
【0027】
また通常の活性汚泥処理法では、水温の低下に伴って生物の比増殖速度が低下するが、本発明では上述のように生物の多様性が増加し、安定な生態系が形成されるため、低温でも耐性のある生物によって汚水が浄化処理されることになる。
【0028】
なお、曝気槽1内で曝気処理された処理水は、沈殿槽に移送され、処理水に含まれる汚泥が沈殿分離されるとともに、上澄水が殺菌処理された後、河川に放流されるか、そのまま下水道に放流される。
【0029】
【発明の効果】
上述した本発明によれば、同一の曝気槽内に活性汚泥方式と生物膜方式の浄化処理法が併存するため、両方の特性を生かして、流入する汚水の濃度変動等があっても安定した汚水の浄化処理をすることができ、余剰汚泥の発生を低減させることができる。また、沈殿槽からの汚泥返送工程を省くことができるため、設備コストや操業コストを抑えることができ、さらには設備全体の小型化を図ることができる。
【0030】
また本発明は、筒体の下方から下側多孔板を介して送気するため、筒体内の生物膜坦体の全体に均一に空気を供給でき、その生物膜坦体による浄化能力の向上と安定化を図ることができる。また、従来の立ち上げ時に必要とされた種汚泥投入が不要となり、据え付け施工後に短期間で操業を立ち上げることができ(設備設置後、2週間程度で汚水の浄化が期待できる)、さらに生物膜坦体に付着する汚泥は、筒体内部を生物膜坦体が流動する際、互いに衝突して自然に剥離するため、付着汚泥を剥離するための装置や除去作業が不要になる。
【0031】
また本発明は、筒体内に固定された多孔板の間に生物膜坦体を装填するため、従来の生物膜方式に比較して生物膜坦体の装填量も少なくて済み、重量も軽いため多孔板の破損、生物膜坦体の脱落等を防ぐことができる。
【0032】
また本発明は、工場ラインにおいて簡単に組立ができるため低コストで量産化が実現でき、施工現場における組立作業が省けるため、工期を短縮することができる。さらには散気装置交換等の修理維持も簡単に行なうことができ、維持費も安価である、等の効果がある。
【図面の簡単な説明】
【図1】本発明の曝気処理装置の実施態様を示す概略図である。
【図2】図1における筒体の内部構成を示す概略図である。
【図3】従来における活性汚泥方式の曝気槽の概略図である。
【図4】従来における接触曝気方式の曝気槽の概略図である。
【図5】従来における生物膜方式の曝気槽の概略図である。
【符号の説明】
1は曝気槽
2は基台
3は筒体
5,6は多孔板
7は生物膜坦体
8は汚水流入口
9,10は散気装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aeration treatment apparatus for purifying domestic wastewater and industrial wastewater such as human wastewater, livestock manure wastewater, and industrial wastewater by aeration treatment.
[0002]
[Prior art]
Activated sludge treatment methods conventionally known as purification methods for wastewater containing organic matter such as domestic sewage and animal manure are described in detail in, for example, the following literature.
[0003]
[Non-patent document 1]
"Maintenance of septic tanks" supervised by the Water Environment Department, Ministry of Health and Welfare, Ministry of Health and Welfare, April 1985, edited and published by Japan Environmental Improvement Education Center, 30-31,171,198
[0004]
In other words, the activated sludge treatment method is a method in which microorganisms contained in the wastewater are proliferated and activated while supplying air to the wastewater stored in the aeration tank, and the microorganisms are decomposed and eaten by organic substances, which are pollutants. is there. The treated water is transferred to a sedimentation tank and separated into a supernatant liquid and settled sludge.A part of the settled sludge is returned to the same tank to stabilize the activated sludge in the aeration tank, and excess sludge is collected. Sludge is transferred to a separate tank and transported to sewerage treatment facilities. Further, the supernatant is subjected to necessary sterilization treatment and then discharged to a river or discharged to a sewer as it is.
[0005]
The above-mentioned aeration tank is a tank that plays the most important role in the activated sludge treatment method. There is a contact aeration system for processing. 3 to 5 show examples of aeration tanks designed and constructed in the past.
[0006]
FIG. 3 shows an example of the activated sludge method, in which a predetermined amount of air is supplied from an air diffuser 31 into an aeration tank 30, and a sewage purification treatment is performed by floating microorganisms while slowly stirring the sewage. FIG. 4 shows an example of a contact aeration system, in which a contact material 32 having a multi-layered mesh structure is mounted inside an aeration tank 30, a microbial membrane is attached to the contact material 32 and generated, and wastewater is contaminated using the microbial membrane. It preys on organic matter inside. FIG. 5 shows an example of the biofilm system, in which a number of granular biofilms made of plastic, sponge, etc. are provided between mesh-like support plates 34, 34 mounted on the upper and lower sides of the aeration tank 30. The carrier 35 is loaded.
[0007]
[Problems to be solved by the invention]
In the activated sludge method shown in FIG. 3, a part of the settled sludge is returned from the settling tank to the aeration tank 30 as described above. It is difficult to stabilize the sludge concentration in the inside, and when operating at a high sludge concentration, the purification capacity is increased, but the treatment capacity is limited, especially in a small aeration tank, and the sludge flows out to the sedimentation tank, As a result, there is a problem that excess sludge increases. In addition, seed sludge needs to be introduced at the time of start-up, and since this sludge may flow out to the sedimentation tank before multiplying in the aeration tank 30, a certain MLSS (active sludge floating substance) is held. There is a problem that it takes time until.
[0008]
In addition, the contact aeration method shown in FIG. 4 has a smaller flow rate of microorganisms with respect to fluctuations in the amount of wastewater, has a stable purification capacity, has less excess sludge, and returns sludge from the sedimentation tank, compared to the activated sludge method. There is an advantage such that the trouble of doing it can be omitted. However, since the supply of nutrients and oxygen is limited to the surface of the biofilm, it is necessary to uniformly supply oxygen to the entire surface of the contact material 32 by the air diffuser 31, and the contact material 32 is a biofilm. In order to prevent thickening, there is a problem that it is necessary to sometimes remove the biofilm of the contact material 32 by the backwashing device 33 and discharge the biofilm from the tank. In addition, the contact material 32 needs to be supported and fixed to the gantry 36 provided at a plurality of locations inside the aeration tank 30. Since these are assembled individually at the construction site, productivity is low and construction cost is low. There is a problem such as becoming high.
[0009]
Further, in the biofilm system shown in FIG. 5, a large amount of the biofilm carrier 35 of about 50 to 60% of the capacity of the aeration tank has to be loaded, and the mesh supporting plate 34 depends on the weight of the biofilm carrier 35. Is weak, for example, the connection part (the part in the figure) with the aeration tank 30 may be damaged and the biofilm carrier 35 may jump out or fall off. Since the entire surface needs to be aerated by the air diffuser 31 from below, there is a problem that the air diffuser 31 is difficult to replace.
[0010]
The present invention has been proposed to solve the above problems. That is, the present invention makes use of the characteristics of both the activated sludge method and the biofilm method in the same aeration tank, and can perform a stable purification treatment even if there is a concentration fluctuation of the inflowing wastewater, and can remove excess sludge. An object of the present invention is to provide an aeration apparatus capable of reducing the generation.
[0011]
In addition, the present invention enables uniform supply of air to the entire biofilm carrier, improves and stabilizes the purification ability of the biofilm carrier, and enables the operation to be started up in a short time after installation. It is still another object of the present invention to provide an aeration apparatus capable of naturally removing sludge adhering to a biofilm carrier without using a special apparatus.
[0012]
In addition, the present invention can be easily assembled in a factory line, can be mass-produced at low cost, can shorten the construction period at the construction site, and can be easily repaired and maintained at low cost. An object of the present invention is to provide a practicable aeration apparatus.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems, an aeration processing apparatus according to the present invention includes a cylinder which is provided to stand substantially at a central portion of the aeration tank, and an air supply which sends air into the interior of the aeration tank and the interior of the cylinder, respectively. And means,
The cylindrical body is provided with perforated plates at the top and bottom inside thereof, and between these perforated plates, a number of biofilm carriers flowing by the air pressure of the air supply means are loaded, and the lower perforated plate of the cylindrical body is provided. A sewage inlet for guiding sewage in the aeration tank into the cylinder is provided at a position lower than
The means for sending air into the inside of the cylindrical body discharges air from below the lower porous plate toward the biofilm carrier.
[0014]
Thereby, the sewage in the aeration tank circulates through the inside of the cylinder and is aerated by the air (oxygen) supplied by each air supply means, and at the same time, the sewage contacts the biofilm carrier inside the cylinder. Then, purification by a biofilm method is performed. In addition, the biofilm carrier flows in the vertical direction inside the cylinder by air pressure, during which the biofilm carriers collide with each other, and the excess sludge attached to the biofilm carrier is separated, and the circulating flow of the wastewater Is released to the outside of the cylinder and is generated as activated sludge outside the cylinder.
[0015]
The structure of the aeration tank is arbitrarily designed depending on conditions such as a sewage treatment amount, an installation place, and the like. The diameter and length of the cylindrical body are also designed according to the structure of the aeration tank and the sewage treatment conditions. If necessary, a plurality of cylinders may be provided in the aeration tank.
[0016]
The perforated plate holds the biofilm carrier loaded inside the cylinder, and is fixed to the cylinder by means such as welding or fixing bolts. As the perforated plate, a plate having a large number of pores formed in a flat plate, a mesh material having a predetermined mesh hole, or the like can be selected. Is used.
[0017]
The biofilm carrier is made of various materials such as plastic, sponge, charcoal and the like. Here, a ceramic carrier which is excellent in BOD removal performance and durability, and has high strength and relatively light weight is used. The ceramic carrier is loaded in an amount of about 70 to 80% between the upper and lower perforated plates. The ceramic carrier is obtained by granulating a ceramic raw material produced as a by-product in a foundry or a cement plant by a firing method or the like, and has countless holes. The ceramic carrier has a particle size that does not pass through the holes of the perforated plate, and has a weight that is large enough to flow through the cylinder by the air pressure of the air supply means.
[0018]
The air supply means is not particularly limited, but a diffuser is used here. From the air diffuser, an amount of air that causes a predetermined DO (dissolved oxygen amount) in the aeration tank is sent. It is preferable to send air at a DO of 1 mg / L or more to such an extent that the biofilm portion does not become anaerobic.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In FIG. 1, reference numeral 1 denotes a tank-type aeration tank, which is installed underground while being supported by a base 2. Although not shown, the aeration tank 1 is connected to an inflow pipe for introducing sewage from an inflow tank and a discharge pipe for discharging a processing solution to a settling tank. A cylindrical body 3 as shown in FIG. 2 is erected at a substantially central portion inside the aeration tank 1, and the cylindrical body 3 is fixed to the bottom of the aeration tank 1 by fixing means such as fixing bolts. I have.
[0020]
Perforated plates 5 and 6 are fixed above and below the cylindrical body 3, and a large number of ceramic biofilm carriers 7 are loaded between the porous plates 5 and 6 at about 70 to 80% of the volume of the cylindrical body. Have been. The perforated plates 5 and 6 are made of a disc-shaped SUS punched metal, and have a large number of holes of about 3 mm. The biofilm carrier 7 has numerous holes. Further, at the lower end of the cylindrical body 3, a plurality of sewage inflow ports 8 are opened at positions below the lower porous plate 5. The cylindrical body 3 loaded with the biofilm carrier 7 is assembled inside the aeration tank 1 on an assembly line.
[0021]
On the other hand, at the bottom of the aeration tank 1, a diffuser 9 (see FIG. 2) for supplying air to the inside of the cylindrical body 3 and a diffuser 10 (for supplying air to the inside of the aeration tank 1). 1 (see FIG. 1). The air diffuser 9 has a configuration in which an air diffusion nozzle portion is inserted at a position below the lower porous plate 5 of the cylindrical body 3 and can be easily removed from the cylindrical body 3.
[0022]
Next, an operation example of the above-described aeration apparatus will be described. First, the aeration tank 1 is filled with the sewage flowing from the inflow tank. However, at the time of startup, the sewage flowing into the cylinder 3 from the sewage inlet 8 of the cylinder 3 adheres to the biofilm carrier 7. Until the MLSS in the aeration tank 1 is maintained at a predetermined amount, the purification process is performed by the microorganisms generated in the cylindrical body 3.
[0023]
The sewage in the aeration tank 1 is subjected to aeration while being circulated in the tank in the direction indicated by the arrow in FIG. 1 by the pressure of air sent from the aeration devices 9 and 10, thereby purifying the sewage by microorganisms. That is, the sewage in the cylinder 3 flows into the interior of the cylinder 3 from the sewage inlet 8, passes through the lower porous plate 5 by the ascending flow generated by the air diffuser 9, and passes through the ceramic biofilm carrier 7. While flowing uniformly out of the cylinder 3.
[0024]
A microbial membrane is formed and fixed on the biofilm carrier 7, and when the sewage contacts a large number of biofilm carriers 7, the organic substance that is a pollutant is decomposed. In this case, the air sent from the air diffuser 9 collides with the lower perforated plate 5, disperses, rises through the holes of the perforated plate 5 while dissolving in water, and adheres to the microorganism carrier 7. Contact with microorganisms. Dissolved oxygen is finer due to bubbles in the sewage colliding with the biofilm carrier 7, so that a higher concentration of dissolved oxygen is generated as compared with a normal activated sludge treatment method. Further, the sewage flowing into the cylinder 3 contains dissolved oxygen by the diffuser 10 outside the cylinder, the microorganisms attached to the biofilm carrier 7 are activated, and the decomposition and predation of organic substances are promoted.
[0025]
Sludge gradually adheres to the surface of the biofilm carrier 7. However, since the biofilm carriers 7 constantly collide with each other while flowing vertically, the attached sludge naturally spreads after a predetermined period of time. It separates from the body 7 and is discharged outside the cylinder, and is generated as sludge outside the cylinder. Since the flowing biofilm carrier 7 also collides with the upper and lower perforated plates 5 and 6, the sludge attached to the perforated plates 5 and 6 is also separated.
[0026]
On the other hand, on the outside of the cylindrical body 3, the sewage is aerated by the diffuser 10, and normal activated sludge treatment is performed. In general, the microorganisms that appear in the activated sludge treatment method are floc-forming bacteria and micro-animals (protozoa) that have stuck to or crawled on the flocs. The bacteria are responsible for the decomposition of organic matter in the wastewater, and the micro-animals prey on the bacteria. It is said that this has the effect of reducing the generated sludge and making the treated water transparent. In the ordinary activated sludge treatment method, the environment is disadvantageous for the survival of micro-animals because it is constantly agitated by aeration, and organisms having a low growth rate are washed away by the ungrown fish in the aeration tank 1. I will. However, in the present invention, micro-animals that are disadvantageous as an activated sludge treatment method, microorganisms that have a low growth rate, and micro-metamorphous animals that are extremely sensitive to the agitation speed of aeration are formed on the biofilm carrier 7 of the cylinder 3. Thus, diversification of organisms involved in sludge treatment can be achieved in combination with microorganisms living in the aeration tank 1. Therefore, it is possible to cope with various inflow sewage environments, and a stable sewage purification process can be performed.
[0027]
In addition, in the ordinary activated sludge treatment method, the specific growth rate of organisms decreases with a decrease in water temperature, but in the present invention, the diversity of organisms increases as described above, and a stable ecosystem is formed. The sewage will be purified by organisms that are resistant to low temperatures.
[0028]
The treated water that has been aerated in the aeration tank 1 is transferred to a sedimentation tank, where the sludge contained in the treated water is settled and separated, and the supernatant water is sterilized before being discharged to the river, Released into the sewer as it is.
[0029]
【The invention's effect】
According to the present invention described above, the activated sludge type and the biofilm type purification treatment methods coexist in the same aeration tank. Wastewater can be purified, and the generation of excess sludge can be reduced. In addition, since the step of returning sludge from the sedimentation tank can be omitted, equipment costs and operation costs can be suppressed, and further, the size of the entire equipment can be reduced.
[0030]
Further, according to the present invention, since air is supplied from below the cylinder through the lower perforated plate, air can be uniformly supplied to the entire biofilm carrier in the cylinder, thereby improving the purification ability of the biofilm carrier. Stabilization can be achieved. In addition, seed sludge input required at the time of conventional startup is not required, and operation can be started up in a short period of time after installation work (purification of sewage can be expected in about 2 weeks after installation of equipment). Sludge adhering to the membrane carrier collides with each other when the biofilm carrier flows through the inside of the cylindrical body, and is spontaneously separated. Therefore, a device for removing the attached sludge and a removing operation are not required.
[0031]
In addition, the present invention, in which the biofilm carrier is loaded between the perforated plates fixed in the cylinder, requires less loading of the biofilm carrier than the conventional biofilm method, and the weight is light, so the perforated plate is light. Damage, falling off of the biofilm carrier and the like can be prevented.
[0032]
Further, according to the present invention, mass production can be realized at low cost because assembly can be easily performed in a factory line, and assembly work at a construction site can be omitted, so that the construction period can be shortened. Further, repair and maintenance such as replacement of the diffuser can be easily performed, and the maintenance cost is inexpensive.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of an aeration apparatus of the present invention.
FIG. 2 is a schematic diagram showing an internal configuration of a cylindrical body in FIG.
FIG. 3 is a schematic view of a conventional activated sludge type aeration tank.
FIG. 4 is a schematic view of a conventional contact aeration type aeration tank.
FIG. 5 is a schematic view of a conventional biofilm type aeration tank.
[Explanation of symbols]
1 is an aeration tank 2, a base 3 is a cylinder 5, 6 is a perforated plate 7, a biofilm carrier 8 is a sewage inlet 9, 10 is an aeration device

Claims (2)

曝気槽内の汚水に空気を送り込み、微生物により汚水を浄化処理する曝気処理装置において、
前記曝気槽の略中央部に立設された筒体と、前記曝気槽の内部と前記筒体の内部にそれぞれ空気を送り込む送気手段とを備えており、
前記筒体は、その内部の上下に多孔板を設け、これら多孔板の間に、前記送気手段の送気圧により流動する多数の生物膜坦体を装填するとともに、前記筒体の前記下側多孔板よりも下部の位置に、曝気槽内の汚水を筒体内に導くための汚水流入口を設けており、
前記筒体内部への送気手段は、前記下側多孔板の下方から前記生物膜坦体に向けて空気を吐出するものであることを特徴とする曝気処理装置。
In an aeration treatment device that sends air to sewage in an aeration tank and purifies sewage by microorganisms,
A cylinder provided upright at a substantially central portion of the aeration tank, and air supply means for sending air to the inside of the aeration tank and the interior of the cylinder, respectively.
The cylindrical body is provided with perforated plates at the top and bottom inside thereof, and between these perforated plates, a number of biofilm carriers flowing by the air pressure of the air supply means are loaded, and the lower perforated plate of the cylindrical body is provided. A sewage inlet for guiding sewage in the aeration tank into the cylinder is provided at a position lower than
The aeration apparatus, wherein the means for supplying air into the cylindrical body discharges air from below the lower porous plate toward the biofilm carrier.
前記生物膜坦体は、粒体状の多孔質セラミック材であることを特徴とする請求項1に記載の曝気処理装置。The aeration processing apparatus according to claim 1, wherein the biofilm carrier is a granular porous ceramic material.
JP2003011010A 2003-01-20 2003-01-20 Aeration treatment device Pending JP2004223320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011010A JP2004223320A (en) 2003-01-20 2003-01-20 Aeration treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011010A JP2004223320A (en) 2003-01-20 2003-01-20 Aeration treatment device

Publications (1)

Publication Number Publication Date
JP2004223320A true JP2004223320A (en) 2004-08-12

Family

ID=32900039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011010A Pending JP2004223320A (en) 2003-01-20 2003-01-20 Aeration treatment device

Country Status (1)

Country Link
JP (1) JP2004223320A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263605A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Suspended carrier-used biological treatment apparatus
CN100353006C (en) * 2005-04-28 2007-12-05 金贤 Processing method for micro-processing biochemical toilet bowl
JP2014065013A (en) * 2012-09-27 2014-04-17 Meidensha Corp Effluent treatment apparatus
CN104150589A (en) * 2014-08-26 2014-11-19 朱江 Integrated non-gradient activated sludge sewage treatment device
CN108911118A (en) * 2018-09-26 2018-11-30 湖南创清环境技术有限公司 A kind of hydrodynamic(al) biomembrane is from aerator
CN114349264A (en) * 2021-12-13 2022-04-15 浙江嘉科新能源科技有限公司 Biological aeration device
WO2023197640A1 (en) * 2022-04-12 2023-10-19 青岛理工大学 Energy-saving self-oxygenation distributed biofilm sewage treatment apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263605A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Suspended carrier-used biological treatment apparatus
CN100353006C (en) * 2005-04-28 2007-12-05 金贤 Processing method for micro-processing biochemical toilet bowl
JP2014065013A (en) * 2012-09-27 2014-04-17 Meidensha Corp Effluent treatment apparatus
CN104150589A (en) * 2014-08-26 2014-11-19 朱江 Integrated non-gradient activated sludge sewage treatment device
CN108911118A (en) * 2018-09-26 2018-11-30 湖南创清环境技术有限公司 A kind of hydrodynamic(al) biomembrane is from aerator
CN108911118B (en) * 2018-09-26 2024-01-05 湖南创清环境技术有限公司 Water-driven biological film self-aerator
CN114349264A (en) * 2021-12-13 2022-04-15 浙江嘉科新能源科技有限公司 Biological aeration device
WO2023197640A1 (en) * 2022-04-12 2023-10-19 青岛理工大学 Energy-saving self-oxygenation distributed biofilm sewage treatment apparatus

Similar Documents

Publication Publication Date Title
JP2005279447A (en) Water treatment method and apparatus
KR20090100962A (en) Stock raising onsite wastewater treatment apparatus
JP2004223320A (en) Aeration treatment device
JP2003205298A (en) Treatment apparatus for sewage containing domestic animal urine
JP2010207657A (en) Wastewater treatment apparatus and wastewater treatment method
KR101617426B1 (en) Advanced water-treating apparatus
KR102289941B1 (en) water treating apparatus for sewage and wastewater
JP2003053378A (en) Method and device for treating water by using separation membrane
KR100458764B1 (en) Method and apparatus for the treatment of contaminated water by submersible biological aerated filter
JP3963667B2 (en) Sewage treatment apparatus and operation method thereof
JP4006750B2 (en) Immobilized microorganism carrier and environmental purification method using the same
KR20030013491A (en) Sewage treatment system utilized bio-ball, bio-tank and lock-filter
JPH04310298A (en) Biological nitrogen removing unit
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
JPS59225793A (en) Sewage purifying apparatus
KR100530555B1 (en) Small-scale facility and method for treating wastewater biologically
JPH1085783A (en) Denitrification method and apparatus for drainage containing nitric acid type nitrogen
KR200171727Y1 (en) Processing system for excretions of animals
KR100272758B1 (en) Waste water treatment method and apparatus using upflow filtering biological bio-film process
KR101392719B1 (en) Apparatus for setting porous filtering media and aeration tank
CN216737977U (en) Distributed sewage treatment device
KR100583063B1 (en) Manufacturing method of immobilized-microorganism product using cellulose acetate and the immobilized-microorganism product produced by the method
JP2004290744A (en) Wastewater treatment apparatus and wastewater treatment method
Sunny et al. Effect of aeration on seafood processing wastewater
KR20150057501A (en) Wastewater Treatment System and Method Using Membrane with a single reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041020