JP2004222595A - Method for producing diglyceride - Google Patents

Method for producing diglyceride Download PDF

Info

Publication number
JP2004222595A
JP2004222595A JP2003014453A JP2003014453A JP2004222595A JP 2004222595 A JP2004222595 A JP 2004222595A JP 2003014453 A JP2003014453 A JP 2003014453A JP 2003014453 A JP2003014453 A JP 2003014453A JP 2004222595 A JP2004222595 A JP 2004222595A
Authority
JP
Japan
Prior art keywords
fatty acid
acid
reaction
lipase
diglyceride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003014453A
Other languages
Japanese (ja)
Other versions
JP3813585B2 (en
Inventor
Manabu Sato
学 佐藤
Kazuhiro Onozuka
和洋 小野塚
Takaaki Watanabe
高明 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003014453A priority Critical patent/JP3813585B2/en
Publication of JP2004222595A publication Critical patent/JP2004222595A/en
Application granted granted Critical
Publication of JP3813585B2 publication Critical patent/JP3813585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a highly unsaturated fatty acid-containing diglyceride containing a high proportion of DHA or the like in high concentration. <P>SOLUTION: Glycerol is reacted with a highly unsaturated fatty acid-containing oil and fat in the presence of a catalyst and in the absence of water to carry out a glycerolysis reaction, and the obtained highly unsaturated fatty acid-containing partial glyceride is reacted with a fatty acid or a lower alkyl ester thereof in the presence of an immobilized partial glyceride lipase. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、DHA等の比率が高く、高度不飽和脂肪酸含有ジグリセリドを高濃度に、かつ効率良く製造する方法に関する。
【0002】
【従来の技術】
ジグリセリドは、油脂の可塑性改良用添加剤、食品、医薬品、化粧品等の分野に利用され、最近、ジグリセリドの優れた生理活性に着目した食品が注目されている。一方、アラキドン酸、エイコサペンタエン酸、ドコサヘキサエン酸(DHA)等の高度不飽和脂肪酸(PUFA)の生理活性も注目されており、特にDHAは、血小板凝集抑制作用、血中中性脂肪低下作用、血中コレステロール低下作用、制癌作用、脳機能向上効果等を有することが知られている。このため、高濃度にPUFAを含有する油脂の製造法が精力的に研究開発されている。
【0003】
一般的にPUFAは天然界においてはトリグリセリドの形で存在しているが、その含有量は低い。PUFAを分離・精製する方法としては、クロマトグラフィー法、尿素付加法、ウインタリング法、分子蒸留法、液液分配法、二重結合への付加物による方法、超臨界抽出法、及びこれらを組合わせた方法が知られている。しかしながら、これらの方法においては、いずれも工程が煩雑で効率が悪く、高コストとなってしまう。
【0004】
そこで、簡便かつ高効率に、直接トリグリセリドの形でPUFA画分を濃縮する方法として、リパーゼを用いてトリグリセリドの加水分解を行う酵素法がある。すなわち、一般にリパーゼはPUFAに対する作用が弱いため、この特性を利用し、トリグリセリド中のPUFA以外の構成脂肪酸のエステル結合を選択的に加水分解し、遊離酸を除去することでPUFA含有トリグリセリドを濃縮できる。例えば、Candida属由来のリパーゼを用いて濃縮する方法(例えば、特許文献1参照)のように、PUFA含有トリグリセリドを濃縮する方法は多数研究されている。
【0005】
一方、PUFA含有ジグリセリドの製造法についての例は僅かである。一例として、PUFA又はその低級アルコールエステルとグリセリンとを耐熱性リパーゼを用いて反応させるPUFA含有グリセリドの製造法があるが(特許文献2参照)、この方法では、反応温度が50〜70℃と酵素反応としてはやや高く、特殊な酵素を使用しており、かつ高濃度にジグリセリドを得ることはできない。また、触媒の存在下、油脂とグリセリンを反応させるいわゆるケミカルグリセロリシスを利用したジグリセリド製造法として、好ましくは200℃以上の温度でケミカルグリセロリシスを行った後、固定化又は菌体内1,3位選択的リパーゼの存在下、脂肪酸又はそのエステルを添加して反応させる方法が知られている(特許文献3参照)。しかし、当該酵素のPUFAに対する作用は弱いものであるため、この方法をPUFA含有油脂に適用した場合、得られるジグリセリドの濃度が十分でないとともに、ケミカルグリセロリシスの温度が非常に高いため、トランス酸の生成が多くなり、有用性の高いDHA等(全シス体)の比率が低くなるという問題がある。
【0006】
【特許文献1】
特開昭58−165796号公報
【特許文献2】
特開昭62−91188号公報
【特許文献3】
特開平10−234392号公報
【0007】
【発明が解決しようとする課題】
したがって、本発明の目的は、DHA等の比率が高く、かつジグリセリド濃度の高いPUFA含有ジグリセリドを効率良く製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、PUFA含有油脂をケミカルグリセロリシス反応に付した後、固定化部分グリセリドリパーゼの存在下に脂肪酸又はそのエステルを反応させることにより、高濃度のPUFA含有ジグリセリドを製造することが可能となることを見出した。
【0009】
すなわち本発明は、PUFA含有油脂に対し、触媒の存在下でかつ水不存在下、グリセリンを作用させてグリセロリシス反応を行い、得られたPUFA含有部分グリセリドと、脂肪酸又はその低級アルキルエステルとを、固定化部分グリセリドリパーゼの存在下に反応させるPUFA含有ジグリセリドの製造方法を提供するものである。
【0010】
【発明の実施の形態】
〔第一段階〕
本発明方法の第一段階であるケミカルグリセロリシスにおいては、PUFA含有油脂、触媒及びグリセリンを用いる。ここでいう高度不飽和脂肪酸(PUFA)とは、二重結合を3個以上有する炭素数20以上の脂肪酸を意味する。具体的には、ドコサヘキサエン酸(DHA)、エイコサペンタエン酸(EPA)、アラキドン酸(AA)等が好ましいものとして挙げられる。PUFA含有油脂としては、イワシ、サバ、マグロなどの魚油や藻類、菌類などの天然油や、これらをリパーゼ等を用いて選択的加水分解することによりPUFAを濃縮した油脂を使用することもできる。
【0011】
触媒としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、炭素数1〜3のアルコキシドが挙げられる。アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が、アルカリ土類金属水酸化物としては、水酸化カルシウム、水酸化マグネシウム、水酸化バリウム等が、アルコキシドとしては、ナトリウムメチラート、ナトリウムエチラート等が挙げられる。なかでも、水酸化カルシウムが好ましい。
【0012】
ケミカルグリセロリシス反応における全脂肪酸基と全グリセリル基の反応モル比〔全脂肪酸基(mol)/全グリセリル基(mol)〕は、高濃度のジグリセリドを得るためには、0.3〜2.0、特に0.5〜1.5が好ましい。上記反応モル比の範囲内であれば、反応原料中には、PUFA含有油脂とグリセリンのほかに、脂肪酸や部分グリセリドが存在してもよい。なお、本反応は水不存在下で行うが、ここでいう「水不存在下」とは、水を添加しないという意味であり、原料中に当初から含まれている微量の水の存在をも排除するという意味ではない。
【0013】
ケミカルグリセロリシスにおける反応温度は、十分な反応速度を得るとともに、トランス酸の生成を抑制する観点から、120℃以上200℃未満、特に150〜180℃の範囲が好ましく、反応時間は、重合物等の生成抑制と経済性の観点から、6時間以下、特に4時間以下が好ましい。
【0014】
〔第二段階〕
第二段階では、第一段階で得られたPUFA含有部分グリセリドに、固定化部分グリセリドリパーゼの存在下、脂肪酸又はその低級アルキルエステルを反応させる。ここで、PUFA含有部分グリセリドとしては、第一段階で得られた生成物から単に余剰グリセリンを除去した反応混合液(トリグリセリドをも含んでいる)を、そのまま第二段階に使用することができる。
【0015】
第二段階で使用する部分グリセリドリパーゼは、モノグリセリド及びジグリセリドの部分グリセリドを加水分解するが、トリグリセリドを加水分解しないリパーゼである。部分グリセリドリパーゼとしては、ラット小腸、ブタ脂肪組織などの動物臓器由来のモノグリセリドリパーゼ又はジグリセリドリパーゼ;バチルス・スピーシーズ(Bacillus sp.)H−257由来モノグリセリドリパーゼ(J. Biochem., 127, 419−425, 2000)、シュードモナス・スピーシーズ(Pseudomonas sp.)LP7315由来モノグリセリドリパーゼ(Journal of Bioscience and Bioengineering, 91(1), 27−32, 2001)、ペニシリウム・サイクロピウム由来リパーゼ(J.Biochem, 87(1), 205−211, 1980)、ペニシリウム・カメンベルティ(Penicillium camembertii)U−150由来リパーゼ(J. Fermentation and Bioengineering, 72(3), 162−167, 1991)等が挙げられ、中でもペニシリウム(Penicillium)属由来のリパーゼが好ましい。市販品としては、例えば『リパーゼG「アマノ」50』(天野エンザイム社)等がある。
【0016】
本発明で使用する固定化部分グリセリドリパーゼは、上記部分グリセリドリパーゼが、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体;セルロースパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等の固定化担体に固定されたものであるが、特にイオン交換樹脂に固定化されたものが好ましい。
【0017】
イオン交換樹脂としては、多孔性の陰イオン交換樹脂が好ましい。樹脂の粒子径は100〜1000μmが望ましく、細孔径は100〜1500Åが望ましい。この細孔が酵素吸着に大きな表面積を与え、より大きな吸着量を得ることができる。樹脂の材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられる。特にフェノールホルムアルデヒド系樹脂(商品名Duolite A−568)が望ましい。
【0018】
部分グリセリドリパーゼの固定化温度は、酵素の失活の起きない温度であればよく、0〜60℃、特に5〜45℃が好ましい。また固定化に用いる酵素水溶液のpHは、酵素の変性が起きないような範囲であればよく、pH3〜9が好ましい。特に至適pHが酸性とされているリパーゼを用いる場合に最大の活性を得るには、pH4〜6とするのがよい。また酵素水溶液に用いる緩衝液としては、一般的な酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等を用いることができる。酵素水溶液中の部分グリセリドリパーゼの濃度は、固定化効率の点から、該酵素の溶解度以下で、かつ十分な濃度であることが望ましい。また必要に応じて不溶部を遠心分離により除去し、上清を使用してもよい。また部分グリセリドリパーゼと固定化担体の使用割合は、固定化担体1重量部に対して、部分グリセリドリパーゼ0.05〜10重量部、特に0.1〜5重量部が好ましい。
【0019】
本発明では、高活性を発現するような吸着状態にするため、固定化の前処理として、固定化担体を脂溶性脂肪酸又はその誘導体で処理することが好ましい。またこれらは単一で用いてもよいが、2種以上を組み合わせることで一層の効果が発揮される。これらの脂溶性脂肪酸又はその誘導体と固定化担体の接触法としては、水又は有機溶剤中にこれらをそのまま加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散・溶解させた後、水に分散させた固定化担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体と固定化担体の比率は、固定化担体1重量部(乾燥重量)に対し、脂溶性脂肪酸又はその誘導体0.01〜5重量部、特に0.1〜2重量部が好ましい。接触温度は、0〜100℃、特に20〜60℃が好ましい。接触時間は、5分〜5時間程度でよい。本処理後濾過して固定化担体を回収するが、この時乾燥してもよい。乾燥温度は室温〜100℃が良く、減圧乾燥を行ってもよい。
【0020】
この固定化担体処理に用いられる脂溶性脂肪酸としては、炭素数4〜24の直鎖又は分岐鎖の、飽和又は不飽和の、水酸基が置換していてもよい脂肪酸が挙げられる。好ましい脂溶性脂肪酸としては、炭素数8〜18の脂肪酸、例えば、カプリン酸、ラウリン酸、ミリスチン酸等の直鎖飽和脂肪酸、オレイン酸、リノール酸等の不飽和脂肪酸、リシノール酸等のヒドロキシ脂肪酸、イソステアリン酸等の分岐脂肪酸が挙げられる。脂溶性脂肪酸誘導体としては、炭素数8〜18の脂肪酸と水酸基を有する化合物とのエステルが挙げられ、1価アルコールエステル、多価アルコールエステル、リン脂質、あるいはこれらのエステルに更にエチレンオキサイドを付加した誘導体等が例示される。1価アルコールエステルとしては、メチルエステル、エチルエステル等が、多価アルコールエステルとしては、モノグリセリド、ジグリセリド、及びそれらの誘導体、あるいはポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル等が挙げられる。
これらの脂肪酸及びその誘導体は、いずれも常温で液状であることが工程上望ましい。これらの脂溶性脂肪酸又はその誘導体としては、上記脂肪酸の混合物、例えば大豆脂肪酸などの天然由来の脂肪酸を用いることもできる。
【0021】
第二段階において、PUFA含有部分グリセリドに反応させる脂肪酸としては、炭素数4〜22の飽和又は不飽和脂肪酸が好ましく、例えば酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ゾーマリン酸、ステアリン酸、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸、ガドレン酸、アラキン酸、ベヘン酸、エルカ酸、エイコサペンタエン酸、ドコサヘキサエン酸等を用いることができる。また上記脂肪酸とエステルを形成する低級アルコールとしては、炭素数1〜6の低級アルコール類が好ましい。炭素数1〜6の低級アルコールとしては、例えばメタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、ペンタノール、ヘキサノールなどが挙げられる。これらの脂肪酸又はその低級アルキルエステルは、2種以上を併用することもできる。また、上記脂肪酸の混合物、例えば大豆脂肪酸などの天然由来の脂肪酸を用いることもできる。
【0022】
この反応において、脂肪酸又はそのエステルの使用量は、R=〔脂肪酸又はその低級アルキルエステル及びPUFA含有部分グリセリド(モノグリセリド+ジグリセリド)中の脂肪酸基(mol)〕/〔PUFA含有部分グリセリド(モノグリセリド+ジグリセリド)中のグリセリル基(mol)〕としたときに、Rが1.5〜2.6、特に1.7〜2.4となる範囲が好ましい。
【0023】
反応温度は、原料及び生成物の融点、酵素の熱安定性により変化するが、20〜70℃、特に30〜50℃が反応性及びPUFAの安定性の点で好ましい。
【0024】
本発明方法によれば、PUFA含有ジグリセリドを、ジグリセリド濃度〔ジグリセリド/全グリセリド×100〕60重量%以上、好ましくは65重量%以上で製造することができる。
【0025】
得られるグリセリドのジグリセリド濃度をより高めるために、反応は、反応液の酸価(AV)を経時的に測定しながら行い、ジグリセリド濃度60重量%以上を達成するためには、酸価が、50R−55>AV>70R−150(ただし、AV>0)を満たす範囲内で、反応を終了させることが好ましい。
【0026】
本条件に従うことにより、原料仕込み比、反応温度、酵素濃度等の条件が変わった場合にも、当該変更に影響なく、高濃度のジグリセリドを製造することができる。すなわち、酸価が上記範囲外の時点で反応を終了させた場合には、十分なジグリセリド濃度が得られないため、好ましくない。
【0027】
【実施例】
固定化酵素製造例
Duolite A−568(Rohm & Hass社)10gを0.1mol/Lの水酸化ナトリウム水溶液100mL中で1時間攪拌した後、100mLの蒸留水で1時間洗浄し、500mMの酢酸緩衝液(pH5)100mLで2時間、次いで50mMの酢酸緩衝液(pH5)100mLで2時間ずつ2回、pHの平衡化を行った。濾過して担体を回収し、エタノール50mLでエタノール置換を30分間行った。濾過した後、リシノール酸を10g含むエタノール50mLを加え30分間、リシノール酸を担体に吸着させた。濾過して担体を回収し、50mMの酢酸緩衝液(pH5)50mLで4回洗浄し、エタノールを除去した後、濾過して担体を回収した。この担体に、市販の部分グリセリドリパーゼ(リパーゼG「アマノ」50,天野エンザイム社)20gを50mMの酢酸緩衝液(pH5)180mLに溶解した酵素液を2時間接触させ、固定化を行った。濾過し、固定化酵素を回収して、50mMの酢酸緩衝液(pH5)50mLで洗浄を行い、固定化していない酵素や蛋白を除去した。以上の操作はいずれも20℃で行った。固定化後の酵素液の残存活性と固定化前の酵素液の活性差より固定化率を求めたところ、95%であった。その後、大豆脂肪酸40gを加え、40℃下で減圧脱水を行った後、濾過して大豆脂肪酸と分離し、固定化酵素とした。こうして得られた固定化酵素を、使用前に実際に反応を行う基質で洗浄した。
【0028】
実施例1
PUFA含有油脂(DHA−46G,日本化学飼料社,DHA含有率46重量%,トランス酸含量1.5重量%)100gとグリセリン37.2g(モル比で脂肪酸基/グリセリル基=0.59)、水酸化カルシウム0.01gを混合し、温度170℃、窒素気流下で攪拌しながら4時間反応させた(グリセロリシス反応)。反応終了後、余剰グリセリンを除去し、グリセロリシス反応混合液とした。その後、該反応混合液100gにPUFA含有脂肪酸(DHA含有率44重量%)40g〔(脂肪酸、モノグリセリド及びジグリセリド中の脂肪酸基)/(モノグリセリド及びジグリセリド中のグリセリル基)のモル比R=1.93〕と洗浄した固定化リパーゼGの14g(乾燥重量)を混合し、温度40℃、減圧下で、反応液の酸価を経時的に測定しながら、エステル化反応を47時間行った。このときの反応液の酸価は8.6であった。反応液をHPLCで分析し、グリセリド組成及び未反応物の分析を行った。また反応液をTLCプレートに展開(展開溶媒:クロロホルム/アセトン/メタノール=93.5/4.5/2.0vol%)して各グリセリドに分画、酢酸エチルで溶離させ、脱溶剤後、GCで脂肪酸組成分析を行った。結果を表1に示す。DG濃度は67.2重量%と高濃度であり、DG中のDHA含有率も39重量%と高かった。なお、トランス酸含量は1.5重量%のままで原料油脂からの増加は見られなかった。
【0029】
比較例1
実施例1で得られたグリセロリシス反応混合液100gにPUFA含有脂肪酸(DHA含有率44重量%)40g〔(脂肪酸、モノグリセリド及びジグリセリド中の脂肪酸基)/(モノグリセリド及びジグリセリド中のグリセリル基)のモル比R=1.93〕と市販の固定化酵素である1,3位選択性リパーゼ:Lipozyme RM IM(Novozymes社)7gを混合し、温度50℃、減圧下で、反応液の酸価を経時的に測定しながら、エステル化反応を48時間行った。このときの反応液の酸価は18.8であった。
DG濃度は50.0重量%と低く、高濃度にDGを製造できなかった。
【0030】
比較例2
PUFA含有油脂(DHA−46G,日本化学飼料社,DHA含有率46重量%,トランス酸含量1.5重量%)100gとグリセリン37.2g(モル比で脂肪酸基/グリセリル基=0.59)、水酸化カルシウム0.01gを混合し、温度200℃、窒素気流下で攪拌しながら2時間反応させた(グリセロリシス反応)。その後、該反応混合液100gにPUFA含有脂肪酸(DHA含有率44重量%)42g〔(脂肪酸、モノグリセリド及びジグリセリド中の脂肪酸基)/(モノグリセリド及びジグリセリド中のグリセリル基)のモル比R=1.88〕と市販の固定化酵素である1,3位選択性リパーゼ:Lipozyme RM IM(Novozymes社)7.1gを混合し、温度50℃、減圧下で、反応液の酸価を経時的に測定しながら、エステル化反応を48時間行った。このときの反応液の酸価は18.4であった。
DG濃度は48.3重量%と低く、高濃度にDGを製造できなかった。なお、トランス酸含量は原料油脂に比べ増加し、2.1重量%まで上昇していた。
【0031】
比較例3
PUFA含有脂肪酸(DHA含有率44重量%)とグリセリン80g(モル比で脂肪酸基/グリセリル基=2.36)に市販の固定化酵素である1,3位選択性リパーゼ:Lipozyme RM IM(Novozymes社)4gを添加し、50℃、減圧下で、反応液の酸価を経時的に測定しながら、エステル化反応を48時間行った。このときの反応液の酸価は45.2であった。
DG濃度は37.6重量%と低く、高濃度にDGを製造できなかった。
【0032】
【表1】

Figure 2004222595
【0033】
【発明の効果】
本発明の製造方法によれば、DHA等の比率が高く、かつジグリセリド濃度の高いPUFA含有ジグリセリドが効率良く得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for efficiently producing a highly unsaturated fatty acid-containing diglyceride having a high ratio of DHA or the like and a high concentration.
[0002]
[Prior art]
Diglycerides are used in the fields of additives for improving the plasticity of fats and oils, foods, medicines, cosmetics, and the like. Recently, foods that focus on the excellent physiological activity of diglycerides have been receiving attention. On the other hand, the physiological activity of highly unsaturated fatty acids (PUFA) such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid (DHA) has also been attracting attention. In particular, DHA has an inhibitory effect on platelet aggregation, a lowering effect on blood triglyceride, It is known that it has a medium cholesterol lowering effect, an anticancer effect, a brain function improving effect, and the like. For this reason, methods for producing fats and oils containing PUFA at a high concentration have been vigorously researched and developed.
[0003]
Generally, PUFA exists in the form of triglyceride in the natural world, but its content is low. Methods for separating and purifying PUFA include chromatography, urea addition, wintering, molecular distillation, liquid-liquid partitioning, addition to double bonds, supercritical extraction, and combinations thereof. A combined method is known. However, in these methods, the steps are complicated, the efficiency is low, and the cost is high.
[0004]
Therefore, as an easy and highly efficient method for directly concentrating the PUFA fraction in the form of triglyceride, there is an enzymatic method in which lipase is used to hydrolyze triglyceride. That is, since lipase generally has a weak action on PUFA, by utilizing this property, PUFA-containing triglyceride can be concentrated by selectively hydrolyzing ester bonds of constituent fatty acids other than PUFA in triglyceride and removing free acid. . For example, many methods have been studied for concentrating PUFA-containing triglycerides, such as a method for concentrating using a lipase derived from the genus Candida (see, for example, Patent Document 1).
[0005]
On the other hand, there are few examples of a method for producing a PUFA-containing diglyceride. As an example, there is a method for producing a PUFA-containing glyceride in which PUFA or a lower alcohol ester thereof is reacted with glycerin using a thermostable lipase (see Patent Document 2). The reaction is rather expensive, a special enzyme is used, and diglyceride cannot be obtained at a high concentration. Further, as a diglyceride production method using so-called chemical glycerolysis in which oil and fat are reacted with glycerin in the presence of a catalyst, preferably, after performing chemical glycerolysis at a temperature of 200 ° C. or higher, immobilization or the first and third positions in the cells A method is known in which a fatty acid or an ester thereof is added and reacted in the presence of a selective lipase (see Patent Document 3). However, since the enzyme has a weak effect on PUFA, when this method is applied to PUFA-containing fats and oils, the concentration of diglyceride obtained is not sufficient, and the temperature of chemical glycerolysis is extremely high. There is a problem that the production increases and the ratio of highly useful DHA or the like (all cis-forms) decreases.
[0006]
[Patent Document 1]
JP-A-58-165796 [Patent Document 2]
JP-A-62-91188 [Patent Document 3]
JP-A-10-234392
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a method for efficiently producing a PUFA-containing diglyceride having a high ratio of DHA or the like and a high diglyceride concentration.
[0008]
[Means for Solving the Problems]
The present inventors have made it possible to produce a high-concentration PUFA-containing diglyceride by subjecting a PUFA-containing fat or oil to a chemical glycerolysis reaction and then reacting the fatty acid or an ester thereof in the presence of immobilized partial glyceride lipase. I found out.
[0009]
That is, the present invention provides a PUFA-containing oil and fat, in the presence of a catalyst and in the absence of water, glycerin is reacted to perform a glycerolysis reaction, and the obtained PUFA-containing partial glyceride and a fatty acid or a lower alkyl ester thereof, An object of the present invention is to provide a method for producing a PUFA-containing diglyceride which is reacted in the presence of an immobilized partial glyceride lipase.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
〔First stage〕
In the first step of the method of the present invention, chemical glycerolysis, PUFA-containing fats and oils, a catalyst and glycerin are used. The polyunsaturated fatty acid (PUFA) as used herein means a fatty acid having 20 or more carbon atoms having 3 or more double bonds. Specifically, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (AA) and the like are preferable. As PUFA-containing fats and oils, fish oils such as sardines, mackerel and tuna, natural oils such as algae and fungi, and fats and oils in which PUFAs are concentrated by selectively hydrolyzing them using lipase or the like can also be used.
[0011]
Examples of the catalyst include an alkali metal hydroxide, an alkaline earth metal hydroxide, and an alkoxide having 1 to 3 carbon atoms. As the alkali metal hydroxide, sodium hydroxide, potassium hydroxide, etc., as the alkaline earth metal hydroxide, calcium hydroxide, magnesium hydroxide, barium hydroxide, etc., as the alkoxide, sodium methylate, And sodium ethylate. Among them, calcium hydroxide is preferred.
[0012]
The reaction molar ratio of total fatty acid groups to total glyceryl groups [total fatty acid groups (mol) / total glyceryl groups (mol)] in the chemical glycerolysis reaction is 0.3 to 2.0 in order to obtain a high concentration of diglyceride. And particularly preferably 0.5 to 1.5. As long as the reaction molar ratio is within the above range, a fatty acid or a partial glyceride may be present in the reaction raw material in addition to the PUFA-containing fat and oil and glycerin. This reaction is carried out in the absence of water.Here, "in the absence of water" means that no water is added, and the presence of a trace amount of water originally contained in the raw material is also considered. It does not mean to eliminate.
[0013]
The reaction temperature in chemical glycerolysis is preferably from 120 ° C. to less than 200 ° C., particularly preferably from 150 to 180 ° C., from the viewpoint of obtaining a sufficient reaction rate and suppressing the generation of trans acid, and the reaction time is preferably a polymer or the like. It is preferably 6 hours or less, particularly preferably 4 hours or less, from the viewpoints of suppression of generation of methane and economic efficiency.
[0014]
[Second stage]
In the second step, the PUFA-containing partial glyceride obtained in the first step is reacted with a fatty acid or a lower alkyl ester thereof in the presence of an immobilized partial glyceride lipase. Here, as the PUFA-containing partial glyceride, a reaction mixture obtained by simply removing excess glycerin from the product obtained in the first step (including triglyceride) can be used as it is in the second step.
[0015]
The partial glyceride lipase used in the second step is a lipase that hydrolyzes partial glycerides of monoglyceride and diglyceride but does not hydrolyze triglyceride. Examples of the partial glyceride lipase include monoglyceride lipase or diglyceride lipase derived from animal organs such as rat small intestine and porcine adipose tissue; monoglyceride lipase derived from Bacillus sp. H-257 (J. Biochem., 127, 419-425, 2000), Pseudomonas sp. LP7315-derived monoglyceride lipase (Journal of Bioscience and Bioengineering, 91 (1), 27-32, 2001), Lipase from Penicillium cyclopium, 87 (e), Lipase derived from Penicillium cyclium, 87 (1), 87 (1), 87 (1) -211, 1980), Penicillium camemberti. U-0.99 lipase (J. Fermentation and Bioengineering, 72 (3), 162-167, 1991), and among them Penicillium (Penicillium) derived from the genus lipase is preferred. Examples of commercially available products include "Lipase G" Amano "50" (Amano Enzyme).
[0016]
The immobilized partial glyceride lipase to be used in the present invention may be an inorganic carrier such as celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics, etc .; cellulose powder, polyvinyl Alcohol, polypropylene, chitosan, ion-exchange resin, hydrophobic adsorption resin, chelate resin, is fixed on a carrier such as organic polymer such as synthetic adsorption resin, especially those immobilized on ion-exchange resin preferable.
[0017]
As the ion exchange resin, a porous anion exchange resin is preferable. The particle size of the resin is desirably 100 to 1000 μm, and the pore diameter is desirably 100 to 1500 °. These pores provide a large surface area for enzyme adsorption, and a larger adsorption amount can be obtained. Examples of the resin material include phenol formaldehyde, polystyrene, acrylamide, and divinylbenzene. Particularly, a phenol formaldehyde resin (trade name: Duolite A-568) is desirable.
[0018]
The immobilization temperature of the partial glyceride lipase may be any temperature at which the inactivation of the enzyme does not occur, and is preferably 0 to 60 ° C, particularly preferably 5 to 45 ° C. The pH of the aqueous enzyme solution used for immobilization may be in a range that does not cause denaturation of the enzyme, and is preferably from 3 to 9. In particular, when lipase whose optimal pH is acidified is used, the pH is preferably 4 to 6 in order to obtain the maximum activity. As a buffer used for the enzyme aqueous solution, a general acetate buffer, phosphate buffer, Tris-HCl buffer and the like can be used. The concentration of the partial glyceride lipase in the enzyme aqueous solution is desirably not more than the solubility of the enzyme and a sufficient concentration from the viewpoint of immobilization efficiency. If necessary, the insoluble portion may be removed by centrifugation, and the supernatant may be used. Further, the use ratio of the partial glyceride lipase and the immobilized carrier is preferably 0.05 to 10 parts by weight, particularly preferably 0.1 to 5 parts by weight, based on 1 part by weight of the immobilized carrier.
[0019]
In the present invention, as a pretreatment for immobilization, it is preferable to treat the immobilization carrier with a fat-soluble fatty acid or a derivative thereof in order to obtain an adsorption state that exhibits high activity. These may be used singly, but a combination of two or more of them can provide a further effect. As a method of contacting these fat-soluble fatty acids or derivatives thereof with the immobilized carrier, these may be added as they are in water or an organic solvent, but in order to improve dispersibility, the fat-soluble fatty acids or derivatives thereof are added to the organic solvent. Once dispersed and dissolved, it may be added to an immobilized carrier dispersed in water. Examples of the organic solvent include chloroform, hexane, and ethanol. The ratio of the fat-soluble fatty acid or its derivative to the immobilized carrier is such that the fat-soluble fatty acid or its derivative is 0.01 to 5 parts by weight, particularly 0.1 to 2 parts by weight, relative to 1 part by weight (dry weight) of the immobilized carrier. preferable. The contact temperature is preferably from 0 to 100C, particularly preferably from 20 to 60C. The contact time may be about 5 minutes to 5 hours. After this treatment, the immobilized carrier is recovered by filtration, but may be dried at this time. The drying temperature is preferably room temperature to 100 ° C., and drying under reduced pressure may be performed.
[0020]
Examples of the fat-soluble fatty acid used for the treatment with the immobilized carrier include a linear or branched, saturated or unsaturated fatty acid having 4 to 24 carbon atoms, which may be substituted with a hydroxyl group. Preferred fat-soluble fatty acids include fatty acids having 8 to 18 carbon atoms, for example, linear saturated fatty acids such as capric acid, lauric acid, and myristic acid, unsaturated fatty acids such as oleic acid and linoleic acid, and hydroxy fatty acids such as ricinoleic acid. And branched fatty acids such as isostearic acid. Examples of the fat-soluble fatty acid derivative include esters of a fatty acid having 8 to 18 carbon atoms and a compound having a hydroxyl group. Monohydric alcohol esters, polyhydric alcohol esters, phospholipids, and ethylene oxide are further added to these esters. Derivatives and the like are exemplified. Examples of the monohydric alcohol ester include methyl ester and ethyl ester, and examples of the polyhydric alcohol ester include monoglyceride, diglyceride, and derivatives thereof, and polyglycerin fatty acid ester, sorbitan fatty acid ester, and sucrose fatty acid ester.
It is desirable in the process that all of these fatty acids and their derivatives are liquid at room temperature. As these fat-soluble fatty acids or derivatives thereof, a mixture of the above-mentioned fatty acids, for example, naturally-occurring fatty acids such as soybean fatty acids can also be used.
[0021]
In the second step, the fatty acid to be reacted with the PUFA-containing partial glyceride is preferably a saturated or unsaturated fatty acid having 4 to 22 carbon atoms, such as butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, and capric acid. , Undecanoic acid, lauric acid, myristic acid, palmitic acid, zomaric acid, stearic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, arachidonic acid, gadrenic acid, arachinic acid, behenic acid, erucic acid, eicosapentaenoic acid, Docosahexaenoic acid or the like can be used. As the lower alcohol which forms an ester with the above fatty acid, a lower alcohol having 1 to 6 carbon atoms is preferable. Examples of the lower alcohol having 1 to 6 carbon atoms include methanol, ethanol, 1-propanol, 2-propanol, butanol, pentanol, and hexanol. These fatty acids or lower alkyl esters thereof may be used in combination of two or more. Also, a mixture of the above fatty acids, for example, a naturally occurring fatty acid such as soybean fatty acid can be used.
[0022]
In this reaction, the amount of the fatty acid or its ester used is R = [fatty acid group (mol) in fatty acid or its lower alkyl ester and PUFA-containing partial glyceride (monoglyceride + diglyceride)] / [PUFA-containing partial glyceride (monoglyceride + diglyceride) ), A range in which R is 1.5 to 2.6, particularly 1.7 to 2.4 is preferable.
[0023]
The reaction temperature varies depending on the melting points of the raw materials and products and the thermal stability of the enzyme, and is preferably from 20 to 70 ° C, particularly preferably from 30 to 50 ° C, in view of the reactivity and the stability of PUFA.
[0024]
According to the method of the present invention, the PUFA-containing diglyceride can be produced at a diglyceride concentration [diglyceride / total glyceride × 100] of 60% by weight or more, preferably 65% by weight or more.
[0025]
In order to further increase the diglyceride concentration of the obtained glyceride, the reaction is carried out while measuring the acid value (AV) of the reaction solution over time, and in order to achieve a diglyceride concentration of 60% by weight or more, the acid value must be 50R. The reaction is preferably terminated within a range satisfying -55>AV> 70R-150 (where AV> 0).
[0026]
By following these conditions, even when the conditions such as the raw material charging ratio, the reaction temperature, and the enzyme concentration are changed, a high-concentration diglyceride can be produced without being affected by the changes. That is, it is not preferable that the reaction is terminated when the acid value is out of the above range, since a sufficient diglyceride concentration cannot be obtained.
[0027]
【Example】
Production Example of Immobilized Enzyme 10 g of Duolite A-568 (Rohm & Hass) was stirred in 100 mL of a 0.1 mol / L aqueous sodium hydroxide solution for 1 hour, washed with 100 mL of distilled water for 1 hour, and then washed with 500 mM acetate buffer. The pH was equilibrated twice with 100 mL of the liquid (pH 5) for 2 hours, and then twice with 100 mL of 50 mM acetate buffer (pH 5) for 2 hours. The carrier was recovered by filtration, and ethanol replacement with 50 mL of ethanol was performed for 30 minutes. After filtration, 50 mL of ethanol containing 10 g of ricinoleic acid was added, and ricinoleic acid was adsorbed on the carrier for 30 minutes. The carrier was recovered by filtration, washed four times with 50 mL of 50 mM acetate buffer (pH 5), and after removing ethanol, the carrier was recovered by filtration. The carrier was contacted with an enzyme solution obtained by dissolving 20 g of a commercially available partial glyceride lipase (Lipase G "Amano" 50, Amano Enzyme) in 180 mL of 50 mM acetate buffer (pH 5) for 2 hours to perform immobilization. After filtration, the immobilized enzyme was recovered and washed with 50 mL of 50 mM acetate buffer (pH 5) to remove unimmobilized enzyme and protein. All of the above operations were performed at 20 ° C. The immobilization rate was determined from the difference between the remaining activity of the enzyme solution after immobilization and the activity of the enzyme solution before immobilization, and was 95%. Thereafter, 40 g of soybean fatty acid was added, and the mixture was dehydrated under reduced pressure at 40 ° C., and then separated by filtration from soybean fatty acid to obtain an immobilized enzyme. The immobilized enzyme thus obtained was washed with a substrate that actually undergoes a reaction before use.
[0028]
Example 1
100 g of PUFA-containing fats and oils (DHA-46G, Nippon Chemical Feed Co., DHA content 46% by weight, trans acid content 1.5% by weight) and 37.2 g of glycerin (fatty acid group / glyceryl group = 0.59 in molar ratio), 0.01 g of calcium hydroxide was mixed, and reacted at 170 ° C. for 4 hours while stirring under a nitrogen stream (glycerolysis reaction). After the completion of the reaction, excess glycerin was removed to obtain a glycerolysis reaction mixture. Then, 40 g of PUFA-containing fatty acid (DHA content: 44% by weight) [(fatty acid group in fatty acid, monoglyceride and diglyceride) / (molar ratio of glyceryl group in monoglyceride and diglyceride) R = 1.93 in 100 g of the reaction mixture. And 14 g (dry weight) of the washed immobilized lipase G were mixed, and the esterification reaction was carried out for 47 hours at 40 ° C. under reduced pressure while measuring the acid value of the reaction solution over time. At this time, the acid value of the reaction solution was 8.6. The reaction solution was analyzed by HPLC, and glyceride composition and unreacted substances were analyzed. The reaction solution was developed on a TLC plate (developing solvent: chloroform / acetone / methanol = 93.5 / 4.5 / 2.0 vol%), fractionated into glycerides, eluted with ethyl acetate, desolvated, and analyzed by GC. Was used to perform fatty acid composition analysis. Table 1 shows the results. The DG concentration was as high as 67.2% by weight, and the DHA content in DG was as high as 39% by weight. In addition, no increase from the raw material fat was observed while the trans acid content was kept at 1.5% by weight.
[0029]
Comparative Example 1
40 g of PUFA-containing fatty acid (DHA content: 44% by weight) 40 g [(fatty acid group in fatty acid, monoglyceride and diglyceride) / (molar ratio of (glyceryl group in monoglyceride and diglyceride)] in 100 g of the glycerolysis reaction mixture obtained in Example 1 R = 1.93] and 7 g of a commercially available immobilized enzyme, 1,3-position selective lipase: Lipozyme RM IM (Novozymes), and the acid value of the reaction solution was measured at 50 ° C. under reduced pressure with time. The esterification reaction was carried out for 48 hours while the measurement was carried out. At this time, the acid value of the reaction solution was 18.8.
The DG concentration was as low as 50.0% by weight, and DG could not be produced at a high concentration.
[0030]
Comparative Example 2
100 g of PUFA-containing fats and oils (DHA-46G, Nippon Chemical Feed Co., DHA content 46% by weight, trans acid content 1.5% by weight) and 37.2 g of glycerin (fatty acid group / glyceryl group = 0.59 in molar ratio), 0.01 g of calcium hydroxide was mixed, and reacted at 200 ° C. for 2 hours while stirring under a nitrogen stream (glycerolysis reaction). Thereafter, 42 g of PUFA-containing fatty acid (DHA content: 44% by weight) [(fatty acid group in fatty acid, monoglyceride and diglyceride) / (molar ratio of glyceryl group in monoglyceride and diglyceride) R = 1.88 to 100 g of the reaction mixture. And 7.1 g of a commercially available immobilized enzyme, 1,3-selective lipase: Lipozyme RM IM (Novozymes), and the acid value of the reaction solution is measured with time at 50 ° C. under reduced pressure. The esterification reaction was performed for 48 hours. At this time, the acid value of the reaction solution was 18.4.
The DG concentration was as low as 48.3% by weight, and DG could not be produced at a high concentration. In addition, the trans acid content increased compared with the raw material fats and oils, and increased to 2.1% by weight.
[0031]
Comparative Example 3
1,3-position selective lipase which is a commercially available immobilized enzyme in PUFA-containing fatty acid (DHA content 44% by weight) and glycerin 80g (molar ratio of fatty acid group / glyceryl group = 2.36): Lipozyme RM IM (Novozymes) 4) was added, and the esterification reaction was performed for 48 hours at 50 ° C. under reduced pressure while measuring the acid value of the reaction solution over time. At this time, the acid value of the reaction solution was 45.2.
The DG concentration was as low as 37.6% by weight, and DG could not be produced at a high concentration.
[0032]
[Table 1]
Figure 2004222595
[0033]
【The invention's effect】
According to the production method of the present invention, a PUFA-containing diglyceride having a high ratio of DHA and the like and a high diglyceride concentration can be efficiently obtained.

Claims (5)

高度不飽和脂肪酸含有油脂に対し、触媒の存在下でかつ水不存在下、グリセリンを作用させてグリセロリシス反応を行い、得られた高度不飽和脂肪酸含有部分グリセリドと、脂肪酸又はその低級アルキルエステルとを、固定化部分グリセリドリパーゼの存在下に反応させる高度不飽和脂肪酸含有ジグリセリドの製造方法。For highly unsaturated fatty acid-containing fats and oils, in the presence of a catalyst and in the absence of water, glycerol is allowed to act to carry out a glycerolysis reaction, and the resulting highly unsaturated fatty acid-containing partial glyceride and a fatty acid or a lower alkyl ester thereof. And a method for producing a highly unsaturated fatty acid-containing diglyceride which is reacted in the presence of an immobilized partial glyceride lipase. グリセロリシス反応における反応温度が、120℃以上200℃未満である請求項1記載の製造方法。The production method according to claim 1, wherein the reaction temperature in the glycerolysis reaction is 120 ° C or more and less than 200 ° C. グリセロリシス反応における全脂肪酸基と全グリセリル基の反応モル比〔全脂肪酸基(mol)/全グリセリル基(mol)〕が、0.3〜2.0である請求項1又は2記載の製造方法。The production method according to claim 1 or 2, wherein a reaction molar ratio of total fatty acid groups to total glyceryl groups [total fatty acid groups (mol) / total glyceryl groups (mol)] in the glycerolysis reaction is 0.3 to 2.0. グリセロリシス反応に用いる触媒が、アルカリ金属水酸化物、アルカリ土類金属水酸化物及び炭素数1〜3のアルコキシドから選ばれるものである請求項1〜3のいずれかに記載の製造方法。The method according to any one of claims 1 to 3, wherein the catalyst used in the glycerolysis reaction is selected from an alkali metal hydroxide, an alkaline earth metal hydroxide and an alkoxide having 1 to 3 carbon atoms. 固定化部分グリセリドリパーゼが、脂溶性脂肪酸又はその誘導体で前処理された固定化担体に部分グリセリドリパーゼを固定化したものである請求項1〜4のいずれかに記載の製造方法。The method according to any one of claims 1 to 4, wherein the immobilized partial glyceride lipase is obtained by immobilizing a partial glyceride lipase on an immobilized carrier pretreated with a fat-soluble fatty acid or a derivative thereof.
JP2003014453A 2003-01-23 2003-01-23 Method for producing diglyceride Expired - Fee Related JP3813585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014453A JP3813585B2 (en) 2003-01-23 2003-01-23 Method for producing diglyceride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014453A JP3813585B2 (en) 2003-01-23 2003-01-23 Method for producing diglyceride

Publications (2)

Publication Number Publication Date
JP2004222595A true JP2004222595A (en) 2004-08-12
JP3813585B2 JP3813585B2 (en) 2006-08-23

Family

ID=32902504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014453A Expired - Fee Related JP3813585B2 (en) 2003-01-23 2003-01-23 Method for producing diglyceride

Country Status (1)

Country Link
JP (1) JP3813585B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732335B1 (en) 2005-10-12 2007-06-25 주식회사오뚜기 Method of preparation of oil composition containing a high percentage of diglycerides
WO2007119811A1 (en) * 2006-04-13 2007-10-25 Nippon Suisan Kaisha, Ltd. Method for production of condensed polyunsaturated fatty acid oil
JP2015077139A (en) * 2008-07-18 2015-04-23 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド Methods for enhancing quality of life of senior animal
WO2022211017A1 (en) * 2021-04-01 2022-10-06 花王株式会社 Oil/fat composition
CN116445558A (en) * 2023-02-24 2023-07-18 江南大学 Preparation method of diglyceride oil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732335B1 (en) 2005-10-12 2007-06-25 주식회사오뚜기 Method of preparation of oil composition containing a high percentage of diglycerides
WO2007119811A1 (en) * 2006-04-13 2007-10-25 Nippon Suisan Kaisha, Ltd. Method for production of condensed polyunsaturated fatty acid oil
US9150817B2 (en) 2006-04-13 2015-10-06 Nippon Suisan Kaisha, Ltd. Process for preparing concentrated polyunsaturated fatty acid oil
JP2015077139A (en) * 2008-07-18 2015-04-23 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド Methods for enhancing quality of life of senior animal
WO2022211017A1 (en) * 2021-04-01 2022-10-06 花王株式会社 Oil/fat composition
CN116445558A (en) * 2023-02-24 2023-07-18 江南大学 Preparation method of diglyceride oil

Also Published As

Publication number Publication date
JP3813585B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP7213184B2 (en) Enzymatic enrichment of n-3 fatty acids in the form of glycerides
US20090076149A1 (en) Production method of oil or fat containing polyunsaturated fatty acid-containing triglyceride
Garcia-Galan et al. Biotechnological prospects of the lipase from Mucor javanicus
US7141399B2 (en) Process for the production of diglycerides
JP6715586B2 (en) Method for producing highly unsaturated fatty acid
JP5242230B2 (en) Method for producing immobilized enzyme
JPH01262795A (en) Immobilized enzyme and production thereof
JP5586855B2 (en) Method for producing monoacylglycerol-rich oil and fat
JP3929890B2 (en) Method for producing diglyceride
JP3813585B2 (en) Method for producing diglyceride
JP3813584B2 (en) Method for producing diglyceride
JP3893107B2 (en) Method for producing fatty acid
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP4220957B2 (en) Method for producing immobilized enzyme
JP2012034622A (en) Method for producing fat and oil with high diacylglycerol content
JP4012117B2 (en) Method for producing immobilized enzyme
JP2021073951A (en) Method for producing high-diacylglycerol-content oil and fat
JP3893106B2 (en) Method for producing diglyceride
JP7092460B2 (en) Manufacturing method of structural fats and oils
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
JP3847729B2 (en) Method for producing docosahexaenoic acid-rich oil
JP3037349B2 (en) Enzyme-immobilizing carrier and method for producing immobilized enzyme
JP3720205B2 (en) Method for producing partial glyceride
JPH04258291A (en) Immobilized enzyme and its production
JP4616755B2 (en) Method for producing immobilized enzyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees