JP2004221816A - Manufacturing method of crystal vibrator - Google Patents

Manufacturing method of crystal vibrator Download PDF

Info

Publication number
JP2004221816A
JP2004221816A JP2003005391A JP2003005391A JP2004221816A JP 2004221816 A JP2004221816 A JP 2004221816A JP 2003005391 A JP2003005391 A JP 2003005391A JP 2003005391 A JP2003005391 A JP 2003005391A JP 2004221816 A JP2004221816 A JP 2004221816A
Authority
JP
Japan
Prior art keywords
crystal
wafer
thickness
manufacturing
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003005391A
Other languages
Japanese (ja)
Inventor
Akio Chiba
亜紀雄 千葉
Tamotsu Kurosawa
保 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2003005391A priority Critical patent/JP2004221816A/en
Publication of JP2004221816A publication Critical patent/JP2004221816A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a crystal vibrator with higher productivity in comparison with a conventional manufacturing method wherein a crystal wafer is polished, and thereafter each crystal chip obtained by slitting the wafer longitudinally and laterally is again polished so that each crystal chip has a specified thickness. <P>SOLUTION: In the manufacturing method for the crystal vibrator wherein electrodes corresponding to the respective crystal chips 2 are formed for the AT-cut crystal wafer 1 and thereafter the wafer is split into the respective crystal chips 2, the thickness distribution of the crystal wafer 1 is measured in advance, the wafer 1 is processed to have a prescribed thickness in response to the thickness distribution and thereafter the electrodes are formed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は厚みすべり系例えばATカットとした水晶振動子の製造方法を産業上の技術分野とし、特に水晶ウェハの厚みを一定にして分割する製造方法に関する。
【0002】
【従来の技術】
(発明の背景)水晶振動子は周波数制御素子として知られ、発振器やフィルタ等に発振子や共振子として組み込まれる。近年では、各種の電子機器に内蔵されて需要も多く、生産性の高い製造方法が求められている。
【0003】
(従来技術の一例)第4図は一従来例を説明する水晶振動子の製造工程図である。
水晶振動子は、先ず、人工水晶からATカットとした切断角度で水晶ウェハ1を切り出す。そして、水晶ウェハ1を振動周波数に応答した厚みに研磨する。次に、縦横(A−A、B−B)に切断して個々の水晶片2を得る。そして、再度の研磨によって規定の厚みにするとともに平行度を高める。最後に、水晶片2の両主面に励振電極3及び引出電極4を形成して、図示しない容器内に保持して密閉封入する。
【0004】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、上記製造方法では水晶ウェハ1を研磨して個々の水晶片2に切断した後、水晶片2を再び研磨する。すなわち、水晶ウェハ1の状態では平面外形が大きいため、均一の厚みに研磨されず、例えば中央部を凸状や凹状として研磨される「第5図(ab)」。したがって、個々の水晶片2に分割した後、厚み及び平行度を規定値内にするため、再研磨する。
【0005】
また、個々の水晶片2にした後、例えば蒸着やスパッタによって電極を形成するので、各水晶片2をメッキ枠(マスク治具)に収容する工程をも必要とする。これらのことから、生産性が低下する問題があった。
【0006】
(発明の目的)本発明は生産性の高い水晶振動子の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、水晶ウェハの厚み分布を予め測定し、前記厚み分布に応答して一定厚みに加工し、個々の水晶片に対応して電極を形成した後、個々の水晶片に分割した製造方法とする。
【0008】
これにより、水晶ウェハの厚みを均一にするので、個々の水晶片に対応して電極を形成できる。したがって、個々の水晶片に分割した後、電極を形成する必要がないので、生産性を高められる。以下、本発明の一実施例を説明する。
【0009】
【実施例】
第1図は本発明の一実施例を説明する水晶振動子の製造工程図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。水晶振動子は、前述したように、先ず、人工水晶から厚みすべり系としたATカットの水晶ウェハ1を切り出し、振動周波数に応答した厚みに研磨する「第1図(a)」。
【0010】
次に、水晶ウェハ1の厚み分布を測定する。厚み分布は個々の水晶片2(1〜n)に対応して測定される。例えば水晶ウェハ1の一主面をXYステージ5の金属板6上に載置し、他主面に電極棒7を当接して個々の水晶片2の振動周波数を測定する「第1図(b)」。そして、計測器8のメモリに順次に記憶される。そして、個々の水晶片2について規定の厚みとなる加工量(加工データ)を設定する。
【0011】
次に、例えば水晶ウェハ1をXYステージ5に固定し、イオンガン9からのイオンビームPを個々の水晶片2(1〜n)に順次に照射して切削し、規定の厚みに加工する。この場合、イオンビームPの照射時間は、個々の水晶片2の加工データに基づいて設定される「第1図(c)」。
【0012】
最後に、印刷技術を用いたエッチングによって、水晶ウェハ1の個々の水晶片2に励振電極3及び引出電極4を形成する。例えば第2図に示したように引出電極4の延出端部に貫通孔10を設けて、両主面に引出電極4を形成する。そして、水晶ウェハ1を縦横(A−A、B−B)に切断して、個々の水晶片2に分割する。
【0013】
このような製造方法であれば、水晶ウェハ1の厚み分布を測定し、加工データに基づいて切削するので、個々の水晶片2を均一の厚みにする。したがって、水晶ウェハ1の状態で電極を一体的に形成できる。これにより、水晶片2に分割した後の再研磨やメッキ枠に収容しての蒸着工程を要しないので、生産性を高められる。
【0014】
【他の事項】
上記実施例ではイオンガンによるイオンビームを照射して切削したが、例えば反応性ガスの雰囲気中でスパッタによって切削してもよく、その切削方法は任意に選択できる。
【0015】
また、振動周波数の測定は例えば第3図に示したようにしてもよい。すなわち、水晶ウェハ1の平坦面側に各水晶片2に対応して電極対11(ab)を設けて平行電界によって振動させる。そして、振動周波数を検出しながら、厚み加工をする。このようにすれば、振動周波数の検出と厚み加工とを同時に進行できるのでさらに生産性を高める。
【0016】
【発明の効果】
本発明は、水晶ウェハの厚み分布を予め測定し、前記厚み分布に応答して一定厚みに加工し、個々の水晶片に対応して電極を形成した後、個々の水晶片に分割するので、生産性の高い水晶振動子の製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明する水晶振動子の製造工程図である。
【図2】本発明の一実施例による水晶片の平面図である。
【図3】本発明の他の実施例を説明する周波数検出及び厚み加工の工程図である。
【図4】従来例を説明する水晶振動子の製造工程図である。
【図5】従来例の問題点を説明する水晶ウェハの側面図である。
【符号の説明】
1 水晶ウェハ、2 水晶片、3 励振電極、4 引出電極、5 XYステージ、6 金属板、7 電極棒、8 計測器、9 イオンガン、10 貫通孔、11 電極対.
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a manufacturing method of a quartz oscillator having a thickness-slipping system, for example, an AT-cut quartz resonator, and more particularly to a manufacturing method of dividing a quartz crystal wafer with a constant thickness.
[0002]
[Prior art]
BACKGROUND OF THE INVENTION Quartz resonators are known as frequency control elements and are incorporated as oscillators and resonators in oscillators and filters. In recent years, there has been a great demand for being built in various electronic devices, and a manufacturing method with high productivity has been demanded.
[0003]
(Example of Prior Art) FIG. 4 is a manufacturing process diagram of a crystal unit for explaining a conventional example.
First, the crystal oscillator cuts out the crystal wafer 1 from an artificial crystal at an AT-cutting angle. Then, the quartz wafer 1 is polished to a thickness corresponding to the vibration frequency. Next, individual crystal blanks 2 are obtained by cutting vertically and horizontally (AA, BB). Then, the thickness is adjusted to a specified value by re-polishing, and the parallelism is increased. Finally, the excitation electrode 3 and the extraction electrode 4 are formed on both main surfaces of the crystal blank 2, and are held in a container (not shown) and hermetically sealed.
[0004]
[Problems to be solved by the invention]
(Problems of the prior art) However, in the above manufacturing method, the crystal wafer 1 is polished and cut into individual crystal pieces 2, and then the crystal piece 2 is polished again. In other words, in the state of the quartz wafer 1, since the planar outer shape is large, it is not polished to a uniform thickness, but is polished, for example, in a convex or concave shape at the central portion (FIG. 5 (ab)). Therefore, after being divided into individual crystal blanks 2, re-polishing is performed so that the thickness and the parallelism are within specified values.
[0005]
Further, since the electrodes are formed by, for example, vapor deposition or sputtering after the individual crystal blanks 2 are formed, a step of accommodating each crystal blank 2 in a plating frame (mask jig) is required. For these reasons, there is a problem that productivity is reduced.
[0006]
(Object of the Invention) It is an object of the present invention to provide a method of manufacturing a crystal resonator having high productivity.
[0007]
[Means for Solving the Problems]
The present invention relates to a manufacturing method in which a thickness distribution of a quartz wafer is measured in advance, processed to have a constant thickness in response to the thickness distribution, electrodes are formed corresponding to the individual quartz pieces, and then divided into individual quartz pieces. And
[0008]
Thereby, the thickness of the quartz wafer is made uniform, so that electrodes can be formed corresponding to individual quartz pieces. Therefore, it is not necessary to form an electrode after dividing into individual quartz pieces, so that productivity can be increased. Hereinafter, an embodiment of the present invention will be described.
[0009]
【Example】
FIG. 1 is a manufacturing process diagram of a crystal unit for explaining an embodiment of the present invention. The same parts as those in the prior art are denoted by the same reference numerals, and description thereof will be simplified or omitted. As described above, the quartz oscillator first cuts out an AT-cut quartz wafer 1 having a thickness-slip system from artificial quartz and polishes it to a thickness corresponding to the vibration frequency (FIG. 1A).
[0010]
Next, the thickness distribution of the quartz wafer 1 is measured. The thickness distribution is measured corresponding to each of the crystal blanks 2 (1 to n). For example, one main surface of the crystal wafer 1 is placed on the metal plate 6 of the XY stage 5, and the electrode rod 7 is brought into contact with the other main surface to measure the vibration frequency of each crystal blank 2 (FIG. 1 (b)). ) ". Then, it is sequentially stored in the memory of the measuring instrument 8. Then, a processing amount (processing data) having a specified thickness is set for each crystal blank 2.
[0011]
Next, for example, the crystal wafer 1 is fixed to the XY stage 5, and the individual crystal blanks 2 (1 to n) are sequentially irradiated with the ion beam P from the ion gun 9 to cut and process to a specified thickness. In this case, the irradiation time of the ion beam P is set based on the processing data of the individual crystal blank 2 (FIG. 1C).
[0012]
Finally, the excitation electrode 3 and the extraction electrode 4 are formed on the individual crystal blanks 2 of the crystal wafer 1 by etching using a printing technique. For example, as shown in FIG. 2, a through hole 10 is provided at the extension end of the extraction electrode 4, and the extraction electrode 4 is formed on both main surfaces. Then, the crystal wafer 1 is cut vertically and horizontally (AA, BB) and divided into individual crystal blanks 2.
[0013]
According to such a manufacturing method, the thickness distribution of the crystal wafer 1 is measured and cut based on the processing data, so that the individual crystal blanks 2 have a uniform thickness. Therefore, the electrodes can be integrally formed in the state of the quartz wafer 1. This eliminates the need for re-polishing after the division into the quartz pieces 2 and the vapor deposition step in which the quartz pieces are accommodated in the plating frame, thereby improving the productivity.
[0014]
[Other matters]
In the above embodiment, cutting was performed by irradiating an ion beam with an ion gun. For example, cutting may be performed by sputtering in an atmosphere of a reactive gas, and the cutting method may be arbitrarily selected.
[0015]
The measurement of the vibration frequency may be performed, for example, as shown in FIG. That is, an electrode pair 11 (ab) is provided on the flat surface side of the crystal wafer 1 corresponding to each crystal blank 2 and vibrated by a parallel electric field. Then, the thickness is processed while detecting the vibration frequency. In this case, the detection of the vibration frequency and the thickness processing can be simultaneously performed, so that the productivity is further improved.
[0016]
【The invention's effect】
The present invention measures the thickness distribution of the quartz wafer in advance, processes it to a constant thickness in response to the thickness distribution, forms electrodes corresponding to the individual quartz pieces, and divides the quartz pieces into individual pieces. A method for manufacturing a crystal resonator with high productivity can be provided.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a crystal unit explaining one embodiment of the present invention.
FIG. 2 is a plan view of a crystal blank according to an embodiment of the present invention.
FIG. 3 is a process chart of frequency detection and thickness processing for explaining another embodiment of the present invention.
FIG. 4 is a manufacturing process diagram of a quartz oscillator for explaining a conventional example.
FIG. 5 is a side view of a quartz crystal wafer for explaining a problem of the conventional example.
[Explanation of symbols]
1 quartz wafer, 2 quartz pieces, 3 excitation electrodes, 4 extraction electrodes, 5 XY stage, 6 metal plates, 7 electrode rods, 8 measuring instruments, 9 ion guns, 10 through holes, 11 electrode pairs.

Claims (1)

厚みすべり系の水晶ウェハに個々の水晶片に対応する電極を形成した後、前記個々の水晶片2に分割する水晶振動子の製造方法であって、前記水晶ウェハの厚み分布を予め測定し、前記厚み分布に応答して一定厚みに加工した後、前記電極を形成したことを特徴とする水晶振動子の製造方法。After forming electrodes corresponding to individual crystal blanks on a quartz crystal wafer of a thickness-slipping system, a method for manufacturing a crystal resonator which is divided into the individual crystal blanks 2, wherein a thickness distribution of the crystal wafer is measured in advance, A method for manufacturing a crystal resonator, comprising: forming a plurality of electrodes after processing the electrodes to a predetermined thickness in response to the thickness distribution.
JP2003005391A 2003-01-14 2003-01-14 Manufacturing method of crystal vibrator Pending JP2004221816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005391A JP2004221816A (en) 2003-01-14 2003-01-14 Manufacturing method of crystal vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005391A JP2004221816A (en) 2003-01-14 2003-01-14 Manufacturing method of crystal vibrator

Publications (1)

Publication Number Publication Date
JP2004221816A true JP2004221816A (en) 2004-08-05

Family

ID=32896056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005391A Pending JP2004221816A (en) 2003-01-14 2003-01-14 Manufacturing method of crystal vibrator

Country Status (1)

Country Link
JP (1) JP2004221816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068113A (en) * 2005-09-02 2007-03-15 Nippon Dempa Kogyo Co Ltd Method for manufacturing quartz resonator
WO2014104098A1 (en) * 2012-12-26 2014-07-03 日本碍子株式会社 Composite substrate, method for fabricating same, and elastic wave device
JP2015146512A (en) * 2014-02-03 2015-08-13 京セラクリスタルデバイス株式会社 Quartz crystal processing apparatus and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068113A (en) * 2005-09-02 2007-03-15 Nippon Dempa Kogyo Co Ltd Method for manufacturing quartz resonator
JP4551297B2 (en) * 2005-09-02 2010-09-22 日本電波工業株式会社 Manufacturing method of crystal unit
WO2014104098A1 (en) * 2012-12-26 2014-07-03 日本碍子株式会社 Composite substrate, method for fabricating same, and elastic wave device
CN104871431A (en) * 2012-12-26 2015-08-26 日本碍子株式会社 Composite substrate, method for fabricating same, and elastic wave device
KR20150100696A (en) * 2012-12-26 2015-09-02 엔지케이 인슐레이터 엘티디 Composite substrate, method for fabricating same, and elastic wave device
JPWO2014104098A1 (en) * 2012-12-26 2017-01-12 日本碍子株式会社 Composite substrate, method for producing the same, and acoustic wave device
US9917246B2 (en) 2012-12-26 2018-03-13 Ngk Insulators, Ltd. Composite substrate, production method thereof, and acoustic wave device
CN104871431B (en) * 2012-12-26 2018-04-10 日本碍子株式会社 Composite base plate and its manufacture method, and acoustic wave device
US10622544B2 (en) 2012-12-26 2020-04-14 Ngk Insulators, Ltd. Composite substrate and acoustic wave device
KR102133336B1 (en) * 2012-12-26 2020-07-13 엔지케이 인슐레이터 엘티디 Composite substrate, method for fabricating same, and elastic wave device
JP2015146512A (en) * 2014-02-03 2015-08-13 京セラクリスタルデバイス株式会社 Quartz crystal processing apparatus and method

Similar Documents

Publication Publication Date Title
JP3995987B2 (en) Manufacturing method of crystal unit
US8134284B2 (en) Tuning-fork type piezoelectric vibrating pieces having similarly shaped vibrating-root and supporting root portions
US20120137775A1 (en) Piezoelectric resonating device, manufacturing method thereof, piezoelectric resonator, and piezoelectric oscillator
JP6265915B2 (en) Composite substrate manufacturing method
CN1706098B (en) Frequency regulating method for tuning fork type vibrator and tuning fork type vibrator frequency-regulated by the method
JP2002164759A (en) Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method
JP4551297B2 (en) Manufacturing method of crystal unit
JP2004221816A (en) Manufacturing method of crystal vibrator
JP6215077B2 (en) Quartz processing apparatus and method
JP2008078869A (en) Method for manufacturing oscillator
JP2009171553A (en) Piezoelectric oscillator and method of manufacturing the same
US10236436B2 (en) Element manufacturing method
JP2008205764A (en) Frequency adjustment apparatus of quartz vibrator, and frequency adjustment method thereof
JP2001223557A (en) Method for forming electrode of crystal oscillator and crystal oscillator
JP2006078179A (en) Micro-mass sensor and holding mechanism of its oscillator
JP2005244735A (en) Manufacturing method of quartz oscillator, and quartz oscillator
JP2002171008A (en) Piezoelectric element piece and manufacturing method of piezoelectric device
JP4411967B2 (en) Method for adjusting frequency of piezoelectric vibration device
CN216599565U (en) Ultra-high precision quartz crystal resonator capable of implementing fine adjustment on crystal wafer frequency
JPS5829648B2 (en) How to adjust the natural frequency of a tuning fork crystal resonator
JP2018157469A (en) Frequency adjustment method of piezoelectric transducer
JP2002314162A (en) Crystal substrate and its manufacturing method
JP2003168941A (en) Convex working method for small piezoelectric blank plate
JP2004363980A (en) Crystal oscillator
JPS59208412A (en) Method of measuring quantity of change of layer thickness onapplication or removal of thin layer