JP2004221808A - Diversity receiver - Google Patents

Diversity receiver Download PDF

Info

Publication number
JP2004221808A
JP2004221808A JP2003005277A JP2003005277A JP2004221808A JP 2004221808 A JP2004221808 A JP 2004221808A JP 2003005277 A JP2003005277 A JP 2003005277A JP 2003005277 A JP2003005277 A JP 2003005277A JP 2004221808 A JP2004221808 A JP 2004221808A
Authority
JP
Japan
Prior art keywords
signals
filter
signal
combining
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003005277A
Other languages
Japanese (ja)
Other versions
JP4134730B2 (en
Inventor
Junshi Imai
純志 今井
Noburo Ito
修朗 伊藤
Yoshitoshi Fujimoto
美俊 藤元
Tsuguyuki Shibata
伝幸 柴田
Katsushi Mita
勝史 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003005277A priority Critical patent/JP4134730B2/en
Publication of JP2004221808A publication Critical patent/JP2004221808A/en
Application granted granted Critical
Publication of JP4134730B2 publication Critical patent/JP4134730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radio Transmission System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diversity receiver capable of enhancing a reception quality improvement effect by reducing the effect of frequency selective fading even when the delay time of a delayed wave gets longer. <P>SOLUTION: Signals received by antennas 11 to 14 are converted into signals with frequencies proper to signal processing respectively by receivers 21 to 24. The resulting signals are subjected to analog / digital conversion and orthogonal demodulation and given to two kinds of digital filters (31, 32). Synthesizers 41, 42 thereafter apply maximum ratio synthesis or equi-gain synthesis to the signals of each antenna for the respective frequency bands. A coupler 50 receives a synthesis signal synthesized by the synthesizers 41, 42 and the coupler 50 obtains signal correlation between two adjacent synthesis signals. The signals are synthesized with matched phases on the basis of the obtained signal correlation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ダイバーシチ受信装置に関し、特にマルチパスによる周波数選択性フェージングの影響を軽減するためのダイバーシチ受信装置に関する。
【0002】
【従来の技術】
従来、ダイバーシチ受信装置では、各アンテナで受信した信号間の相関係数を基に重み係数を決定する。特許文献1のダイバーシチ受信装置では、合成した信号と各アンテナで受信した信号の相関係数を基に重み係数を決定している。これにより、特定のアンテナの受信レベルが極端に低下した場合でも、確実に所望波を合成することが可能となり、安定した受信信号が得られるようになる。
【0003】
【特許文献1】
特開2001−156689号公報
【0004】
【発明が解決しようとする課題】
一般に、主波と遅延波が同時に受信されると、受信信号の周波数特性が歪む。歪みの周期は、遅延波の遅延時間に依存し、遅延時間が長くなるほど周波数軸上での歪みの周期は短くなる。特許文献1に記載のダイバーシチ受信装置では、受信信号の全帯域に対して一括で重みを掛け合成している。従って、遅延波の遅延時間が短く、周波数特性の歪みが軽微であれば、最大比合成に基づいて合成することにより全帯域の信号を同位相にそろえて合成することが可能であり、受信信号の品質を大きく改善することができる。しかしながら、遅延波の遅延時間が長くなると最大比合成に基づいて重み付けを行い合成しても、全帯域の信号が同位相となるように重み付けを行うことが困難となる。すなわち、特許文献1に記載のダイバーシチ受信装置では、遅延時間が長くなった場合には、受信品質改善効果が低下する場合があった。
【0005】
本発明は上記課題を解決するものであって、遅延波の遅延時間が長くなった場合であっても周波数選択性フェージングの影響を軽減して、受信品質改善効果を向上させることのできるダイバーシチ受信装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本願の請求項1に記載のダイバーシチ受信装置は、マルチキャリア変調を用いた通信におけるダイバーシチ受信装置において、複数のアンテナと、前記複数のアンテナで受信した信号をそれぞれ複数の周波数帯域ごとに分割する分割手段と、前記分割されたそれぞれの信号に重み付けを行って周波数帯域ごとの合成信号を出力する合成手段と、前記出力された周波数帯域ごとの合成信号の位相を揃えて結合する結合手段とを有することを特徴とする。
【0007】
また、本願の請求項2に記載のダイバーシチ受信装置は、合成手段の重み付けに用いる重み係数は最大比合成または等利得合成に基づき決定されることを特徴とする。
【0008】
また、本願の請求項3に記載のダイバーシチ受信装置は、結合手段は、隣り合う周波数帯域の合成信号間の相関係数を求める相関係数算出手段を有し、算出した相関係数に基づいて位相を揃えて合成信号を結合することを特徴とする。
【0009】
また、本願の請求項4に記載のダイバーシチ受信装置は、分割手段は、周波数帯域を2または3または5に分割することを特徴とする。
【0010】
【発明の作用及び効果】
本発明のダイバーシチ受信装置は、受信信号を複数の周波数帯域に分割し、それぞれの周波数帯域ごとに重み付けを行って合成する。受信信号は、マルチパスによる周波数選択性フェージングにより、確率的にある周波数成分において劣化している。また、この現象は各アンテナについて独立に起きている。各周波数帯域の合成手段では劣化した信号成分の影響が軽減された、より正確な重み係数を算出することが可能となり、各周波数帯域ごとの信号レベルが平準化される。上記により、本発明のダイバーシチ受信装置は、マルチパスによる周波数選択性フェージングの影響を軽減することが可能となる。
【0011】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を説明する。
(第1の実施の形態)
図1に本発明の第1の実施の形態のダイバーシチ受信装置を構成するブロック図を示す。本実施の形態のダイバーシチ受信装置は、アンテナ11,12,13,14、受信機21,22,23,24、フィルタ31,32、合成器41,42、結合器50、復調器60とからなる。以下にそれぞれの動作について説明する。
【0012】
各アンテナ11〜14で受信された信号は、それぞれ受信機21〜24で信号処理に適した周波数に変換され、A/D変換及び直交復調し、2種類のディジタルフィルタ(フィルタ31、32)に入力される。このフィルタ31、32は、信号の周波数帯域のちょうど中心で6dB落ちる特性をもったローパスフィルタとハイパスフィルタで構成される。これは、それぞれの帯域の合成信号を結合するとき、周波数軸上で重なり合う部分の信号レベルが元通りになるようにするためである。
【0013】
その後、合成器41、42において、それぞれの周波数帯域で各アンテナの信号を最大比合成または等利得合成する。本実施の形態では最大比合成を行っている。この合成器は特許文献1に記載の手段を用いることができる。これにより、それぞれの周波数帯域ごとで最もS/N比が改善される重み係数が掛けられる。すなわち、マルチパスによる周波数選択性フェージングにより、あるアンテナ素子のある周波数成分が劣化していたとしても、その影響は軽減することができる。
【0014】
そして、合成器41、42で合成された合成信号は結合器50に入力される。結合器50では2つの隣り合う合成信号間の信号相関を求める。本実施の形態ではそもそも合成信号は2つであるため、その2つの合成信号の信号相関を求める。求められた信号相関を基に位相を揃える。この場合の位相とは、2つの信号が周波数軸上で重なり合う部分の信号の位相であり、この位相が揃っていなければ、最悪の場合(つまり逆位相)には結合によって、重なり合う周波数の信号成分が相殺されてしまうため、位相を揃える。
【0015】
厳密にはこの結合は、中心部分の位相を揃えることが目的であるので、周波数軸上で重なり合う部分はより狭いほうが良く、すなわちフィルタとしてはできるだけ急峻な特性を持つほうがより好ましい。
【0016】
結合された信号は復調器60に入力される。周波数帯域の分割数を増やすとフィルタと合成部が増えるだけで、動作原理については上記と同様である。
【0017】
ここで、本実施の形態のように周波数帯域を2分割にした場合に、フィルタの回路規模が大幅に削減できることを説明する。フィルタはディジタルフィルタにより実現する。
【0018】
2分割の場合、1種類のローパスフィルタ係数を用意すればよい。フィルタといえば実信号領域つまり正の周波数領域で考えるのが一般的であるが、ここでは負の周波数領域にまで拡張して考える。すなわち、カットオフF(Hz)のローパスフィルタは、この場合、−F〜F(Hz)のバンドパスフィルタとなる(図2)。このフィルタのフィルタ係数を変形させることで周波数軸上で+F(Hz)移動させれば0〜2F(Hz)のバンドパスフィルタとなり、逆に−F(Hz)移動させれば−2F〜0(Hz)のバンドパスフィルタとなる。
【0019】
さて、動作周波数Fd(Hz)の回路でディジタルフィルタを構成する際、F=Fd/4(Hz)のローパスフィルタを用意する。そのフィルタ係数は実数値{KR1,KR2,…,KRn}であるが、これは簡単に複素数領域に拡張でき、その場合の(複素)フィルタ係数は{KR1+0*j=K1,KR2=0*j=K2,…,KRn+0*j=Kn}(但し、j*j=−1)と表せる。この(複素)フィルタ係数に対し、回転係数exp(2πjφ/360)のi乗をKiに掛けると、そのフィルタの周波数特性は−Fd/4+Fd*φ/360〜Fd/4+Fd*φ/360(Hz)のバンドパス特性となる。φ=90及び−90としたときのフィルタ特性はそれぞれ0〜2Fd(Hz)のバンドパスフィルタ(上側フィルタ)と−2Fd〜0(Hz)のバンドパスフィルタ(下側フィルタ)となる。
【0020】
ここでφ=±90ということが回路規模を考えるうえで非常に重要である。フィルタは信号{SRi+j*SIi}とフィルタ係数{KRi+j*KIi}との積をiに関し累積する処理であるため、本来1係数あたり4個の乗算(SRi*KRi,SRi*Kii,SIi*KRI,SIi*KIi)が必要である。しかし、φ=±90であると、KRiかKIiのどちらかが0になる。つまり1係数あたりの乗算器の数が2個ですむ。さらに上側フィルタの係数と下側フィルタの係数とではKIiの符号が一部反転しているだけなので、乗算後の値を上側フィルタと下側フィルタの両者に使用することが出来る。従って、本来必要な乗算量に対し4分の1の乗算量でフィルタを構成することが出来る。
【0021】
一方、復調後の信号の周波数帯域を−Fs〜Fs(Fs<Fd/2)とおくと例えば、地上ディジタル放送の場合Fsは約3MHzである。このシステムではFdを約32MHzとしたとき、上記のようにフィルタを設計すれば上側のフィルタによる地上ディジタル放送信号出力は0〜3MHzの信号、下側の出力は−3〜0MHzの信号となる。そして、それぞれの帯域の信号を合成することになる。
【0022】
(第2の実施の形態)
第2の実施の形態のダイバーシチ受信装置のブロック図を図3に示す。本実施の形態においては、フィルタと合成器がそれぞれ3つ(フィルタ31〜33、合成器41〜43)で構成されている。つまり周波数帯域を3分割している。本実施の形態の各構成要素の動作は第1の実施の形態と同様である。ここでは、各フィルタの構成について説明する。
【0023】
本実施の形態の場合も、第1の実施の形態と同様に1種類のローパスフィルタ係数を用意すればよい。用意するのはF=Fd/8のローパスフィルタである(図4)。このフィルタ係数に対し、φ=−90,0,90の3種類の回転係数を掛けた(複素)フィルタは、それぞれ−3Fd/8〜−Fd/8,−Fd/8〜Fd/8,Fd/8〜3Fd/8のバンドパスフィルタとなる。このままでは−3〜3MHzを3分割できない。そこで、これらのフィルタ係数の間に0を挿入する。m個ずつ0を挿入するとフィルタの周波数特性は(m+1)分の1になる。従って、上記バンドパスフィルタの係数間にm=3個ずつ0を挿入して出来る新しいフィルタ係数は−3〜3MHzをちょうど3分割することとなる。
【0024】
(第3の実施の形態)
次に、第3の実施の形態のダイバーシチ受信装置のブロック図を図5に示す。本実施の形態においては、フィルタと合成器がそれぞれ5つ(フィルタ31〜35、合成器41〜45)で構成されている。つまり周波数帯域を5分割している。各構成要素の動作は第1の実施の形態と同様である。ここでは、各フィルタの構成について説明する。
【0025】
本実施の形態の場合も、第1の実施の形態と同様に1種類のローパスフィルタ係数を用意すればよい。用意するのはF=Fd/16のローパスフィルタである。このフィルタ係数に対し、φ=−45、0、45の3種類の回転係数を掛けた(複素)フィルタは、それぞれ−3Fd/16〜−Fd/16、−Fd/16〜Fd/16、Fd/16〜3Fd/16のバンドパスフィルタとなる。第2の実施の形態と同様に、これらのフィルタ係数の間に0を挿入する。本実施の形態の場合には2個ずつ0を挿入し、それによって出来る新しいフィルタ係数は−2〜2MHzを3分割することとなる。残りの−3〜−2および2〜3MHzについては、φ=−45および45の回転係数を掛けたフィルタが−6〜−2、2〜6MHzのバンドパスフィルタとなるため(Fd=32MHz)、これをそのまま適用させればよい(図6)。
【0026】
ここでφ=±45ということもまた回路規模を考えるうえで非常に重要である。フィルタは信号{SRi+j*SIi}とフィルタ係数{KRi+j*KIi}との積をiに関して累積する処理であるため、iが偶数である場合には,φ=±90の時と同様である。iが奇数の場合には、1係数毎の乗算結果は{√2/2*KRi(±SRi±SIi)}であるため、入力信号の加減算をしてから係数{√2/2*KRi}を掛けることで乗算器の数が2個ですむ。さらに上側フィルタの係数と下側フィルタの係数とでは符号が一部反転しているだけなので、乗算後の値を上側フィルタと下側フィルタの両者に使用することができる。従って、φ=±45の場合にも本来必要な乗算量に対し4分の1の乗算量でフィルタを構成することが出来る。
【0027】
図7に本発明による効果の例を示す。図7は地上ディジタル放送を移動受信した際の受信率を示したものである。図7の横軸は主波と遅延波の遅延時間を表しており、縦軸は正常に受信できた時間の割合を示している。図7より、周波数帯域の分割数を多くすることにより、遅延波の遅延時間に対する受信特性の劣化が軽減できていることがわかる。
【0028】
尚、本発明のダイバーシチ受信装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の構成を示すブロック図。
【図2】本発明の第1の実施の形態にフィルタの作用を示す図。
【図3】本発明の第2の実施の形態の構成を示すブロック図。
【図4】本発明の第2の実施の形態におけるフィルタの作用を示す図。
【図5】本発明の第3の実施の形態の構成を示すブロック図。
【図6】本発明の第3の実施の形態におけるフィルタの作用を示す図。
【図7】本発明の効果を示すグラフ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a diversity receiver, and more particularly, to a diversity receiver for reducing the influence of frequency selective fading due to multipath.
[0002]
[Prior art]
Conventionally, a diversity receiver determines a weighting factor based on a correlation coefficient between signals received by each antenna. In the diversity receiver of Patent Literature 1, a weight coefficient is determined based on a correlation coefficient between a combined signal and a signal received by each antenna. As a result, even when the reception level of a specific antenna is extremely lowered, it is possible to reliably synthesize a desired wave, and a stable reception signal can be obtained.
[0003]
[Patent Document 1]
JP 2001-156689 A
[Problems to be solved by the invention]
In general, when the main wave and the delayed wave are received at the same time, the frequency characteristics of the received signal are distorted. The period of the distortion depends on the delay time of the delay wave, and the longer the delay time, the shorter the period of the distortion on the frequency axis. In the diversity receiver described in Patent Literature 1, the entire band of the received signal is collectively weighted and combined. Therefore, if the delay time of the delay wave is short and the distortion of the frequency characteristic is slight, it is possible to combine the signals in all the bands in the same phase by combining based on the maximum ratio combining, and to combine the received signals. Quality can be greatly improved. However, when the delay time of the delayed wave becomes longer, even if weighting is performed based on the maximum ratio combining and combining, it is difficult to perform weighting so that signals in all bands have the same phase. That is, in the diversity receiving apparatus described in Patent Literature 1, when the delay time increases, the reception quality improvement effect may decrease.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and provides a diversity reception that can reduce the influence of frequency selective fading even when the delay time of a delayed wave is long, and improve the reception quality improvement effect. It is intended to provide a device.
[0006]
[Means for Solving the Problems]
A diversity receiving apparatus according to claim 1 of the present application is a diversity receiving apparatus in communication using multicarrier modulation, in which a plurality of antennas and a signal received by the plurality of antennas are divided into a plurality of frequency bands. Means, weighting the divided signals to output a synthesized signal for each frequency band, and coupling means for aligning and combining the phases of the output synthesized signals for each frequency band. It is characterized by the following.
[0007]
Further, the diversity receiving apparatus according to claim 2 of the present application is characterized in that the weighting factor used for weighting the combining means is determined based on maximum ratio combining or equal gain combining.
[0008]
Also, in the diversity receiving apparatus according to claim 3 of the present application, the coupling means has a correlation coefficient calculating means for calculating a correlation coefficient between synthesized signals of adjacent frequency bands, and based on the calculated correlation coefficient. It is characterized in that the combined signals are combined with the same phase.
[0009]
Further, the diversity receiving apparatus according to claim 4 of the present application is characterized in that the dividing means divides the frequency band into two, three, or five.
[0010]
Function and effect of the present invention
The diversity receiving apparatus of the present invention divides a received signal into a plurality of frequency bands, and weights and synthesizes each frequency band. The received signal is stochastically degraded in a certain frequency component due to frequency selective fading due to multipath. This phenomenon occurs independently for each antenna. In each frequency band synthesizing means, it is possible to calculate a more accurate weight coefficient in which the influence of the degraded signal component is reduced, and the signal level for each frequency band is leveled. As described above, the diversity receiving apparatus of the present invention can reduce the influence of frequency selective fading due to multipath.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(First Embodiment)
FIG. 1 is a block diagram showing a configuration of the diversity receiver according to the first embodiment of the present invention. The diversity receiver according to the present embodiment includes antennas 11, 12, 13, 14, receivers 21, 22, 23, 24, filters 31, 32, combiners 41, 42, combiner 50, and demodulator 60. . Hereinafter, each operation will be described.
[0012]
The signals received by the antennas 11 to 14 are converted into frequencies suitable for signal processing by the receivers 21 to 24, A / D converted and quadrature demodulated, and are converted into two types of digital filters (filters 31 and 32). Is entered. The filters 31 and 32 are composed of a low-pass filter and a high-pass filter having a characteristic of dropping 6 dB at the center of the frequency band of the signal. This is because when combining the synthesized signals of the respective bands, the signal level of the overlapping portion on the frequency axis is restored.
[0013]
Thereafter, the combiners 41 and 42 combine the signals of the respective antennas in the respective frequency bands with the maximum ratio combination or equal gain combination. In the present embodiment, maximum ratio combining is performed. For this synthesizer, the means described in Patent Document 1 can be used. As a result, a weighting factor that maximizes the S / N ratio is applied for each frequency band. That is, even if a certain frequency component of a certain antenna element is deteriorated due to frequency selective fading due to multipath, the effect can be reduced.
[0014]
Then, the combined signal combined by the combiners 41 and 42 is input to the combiner 50. The combiner 50 obtains a signal correlation between two adjacent synthesized signals. In the present embodiment, since there are two synthesized signals in the first place, the signal correlation between the two synthesized signals is obtained. The phases are aligned based on the obtained signal correlation. The phase in this case is the phase of the signal in the portion where the two signals overlap on the frequency axis. If the phases are not aligned, in the worst case (ie, the opposite phase), the signal components of the overlapping frequency are combined. Are canceled out, so the phases are aligned.
[0015]
Strictly speaking, since the purpose of this coupling is to make the phases of the central portions uniform, it is better that the overlapping portion on the frequency axis is narrower, that is, it is more preferable that the filter has as steep a characteristic as possible.
[0016]
The combined signal is input to demodulator 60. When the number of divisions of the frequency band is increased, only the number of filters and the number of synthesis units are increased, and the operation principle is the same as described above.
[0017]
Here, it will be described that the circuit size of the filter can be significantly reduced when the frequency band is divided into two as in the present embodiment. The filter is realized by a digital filter.
[0018]
In the case of division into two, one kind of low-pass filter coefficient may be prepared. Generally speaking, the filter is considered in the real signal domain, that is, in the positive frequency domain. Here, the filter is extended to the negative frequency domain. That is, in this case, the low-pass filter having the cutoff F (Hz) is a band-pass filter having a frequency of -F to F (Hz) (FIG. 2). By transforming the filter coefficient of this filter, a band pass filter of 0 to 2 F (Hz) is obtained by moving the filter coefficient on the frequency axis by + F (Hz), and conversely, by moving it by -F (Hz), -2 F to 0 ( Hz).
[0019]
When a digital filter is configured by a circuit having an operating frequency of Fd (Hz), a low-pass filter of F = Fd / 4 (Hz) is prepared. The filter coefficient is a real value {KR1, KR2,..., KRn}, which can be easily extended to the complex domain. In this case, the (complex) filter coefficient is {KR1 + 0 * j = K1, KR2 = 0 * j = K2,..., KRn + 0 * j = Kn} (where j * j = −1). When this (complex) filter coefficient is multiplied by Ki to the i-th power of a rotation coefficient exp (2πjφ / 360), the frequency characteristic of the filter is −Fd / 4 + Fd * φ / 360 to Fd / 4 + Fd * φ / 360 (Hz ). The filter characteristics when φ = 90 and −90 are a bandpass filter (upper filter) of 0 to 2 Fd (Hz) and a bandpass filter (lower filter) of −2 Fd to 0 (Hz), respectively.
[0020]
Here, it is very important that φ = ± 90 when considering the circuit scale. Since the filter is a process of accumulating the product of the signal {SRi + j * SIi} and the filter coefficient {KRi + j * KIi} with respect to i, four multiplications (SRi * KRi, SRi * Kii, SIi * KRI, SIi * KIi) is required. However, if φ = ± 90, either KRi or KIi becomes 0. That is, the number of multipliers per coefficient is two. Further, since the sign of KIi is only partially inverted between the coefficient of the upper filter and the coefficient of the lower filter, the value after the multiplication can be used for both the upper filter and the lower filter. Therefore, the filter can be configured with a multiplication amount that is one fourth of the originally required multiplication amount.
[0021]
On the other hand, if the frequency band of the demodulated signal is -Fs to Fs (Fs <Fd / 2), for example, in the case of terrestrial digital broadcasting, Fs is about 3 MHz. In this system, when Fd is set to about 32 MHz, if the filter is designed as described above, the terrestrial digital broadcast signal output by the upper filter becomes a signal of 0 to 3 MHz, and the lower output becomes a signal of -3 to 0 MHz. Then, the signals of the respective bands are combined.
[0022]
(Second embodiment)
FIG. 3 shows a block diagram of the diversity receiver according to the second embodiment. In the present embodiment, three filters and three combiners (filters 31 to 33 and combiners 41 to 43) are provided. That is, the frequency band is divided into three. The operation of each component of this embodiment is the same as that of the first embodiment. Here, the configuration of each filter will be described.
[0023]
Also in the case of the present embodiment, one type of low-pass filter coefficient may be prepared as in the case of the first embodiment. What is prepared is a low-pass filter of F = Fd / 8 (FIG. 4). The (complex) filters obtained by multiplying the filter coefficients by three kinds of rotation coefficients of φ = −90, 0, 90 are −3Fd / 8 to −Fd / 8, −Fd / 8 to Fd / 8, Fd, respectively. / 8 to 3Fd / 8. In this state, -3 to 3 MHz cannot be divided into three. Therefore, 0 is inserted between these filter coefficients. If 0s are inserted every m, the frequency characteristic of the filter becomes 1 / (m + 1). Therefore, a new filter coefficient obtained by inserting m = 3 0s between the coefficients of the band-pass filter is obtained by exactly dividing -3 to 3 MHz into three.
[0024]
(Third embodiment)
Next, a block diagram of a diversity receiver according to the third embodiment is shown in FIG. In the present embodiment, each of the filter and the combiner is composed of five filters (filters 31 to 35 and combiners 41 to 45). That is, the frequency band is divided into five. The operation of each component is the same as in the first embodiment. Here, the configuration of each filter will be described.
[0025]
Also in the case of the present embodiment, one type of low-pass filter coefficient may be prepared as in the case of the first embodiment. What is prepared is a low-pass filter of F = Fd / 16. (Complex) filters obtained by multiplying these filter coefficients by three kinds of rotation coefficients of φ = −45, 0, and 45 are −3Fd / 16 to −Fd / 16, −Fd / 16 to Fd / 16, and Fd, respectively. / 16 to 3Fd / 16. As in the second embodiment, 0 is inserted between these filter coefficients. In the case of the present embodiment, 0s are inserted two by two, and a new filter coefficient created by this is to divide -2 to 2 MHz into three. For the remaining -3 to -2 and 2 to 3 MHz, the filters multiplied by the rotation coefficients of φ = −45 and 45 become band-pass filters of −6 to −2 and 2 to 6 MHz (Fd = 32 MHz). This can be applied as it is (FIG. 6).
[0026]
Here, φ = ± 45 is also very important in considering the circuit scale. Since the filter is a process for accumulating the product of the signal {SRi + j * SIi} and the filter coefficient {KRi + j * KIi} with respect to i, when i is an even number, the same as when φ = ± 90. When i is an odd number, since the multiplication result for each coefficient is {2/2 * KRi (± SRi ± SIi)}, the coefficient {2/2 * KRi} after adding / subtracting the input signal. , The number of multipliers can be reduced to two. Further, since the sign of the coefficient of the upper filter and the coefficient of the lower filter are only partially inverted, the value after the multiplication can be used for both the upper filter and the lower filter. Therefore, even when φ = ± 45, the filter can be configured with a multiplication amount that is の of the originally required multiplication amount.
[0027]
FIG. 7 shows an example of the effect of the present invention. FIG. 7 shows the reception rate when mobile reception of digital terrestrial broadcasting is performed. The horizontal axis of FIG. 7 represents the delay time of the main wave and the delayed wave, and the vertical axis represents the ratio of the time during which the signal can be received normally. From FIG. 7, it can be seen that by increasing the number of divisions of the frequency band, the deterioration of the reception characteristics with respect to the delay time of the delayed wave can be reduced.
[0028]
It should be noted that the diversity receiving apparatus of the present invention is not limited to the illustrated example described above, and it is needless to say that various changes can be made without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a first embodiment of the present invention.
FIG. 2 is a diagram showing an operation of a filter according to the first embodiment of the present invention.
FIG. 3 is a block diagram showing a configuration according to a second embodiment of the present invention.
FIG. 4 is a diagram illustrating an operation of a filter according to a second embodiment of the present invention.
FIG. 5 is a block diagram showing a configuration according to a third embodiment of the present invention.
FIG. 6 is a diagram illustrating an operation of a filter according to a third embodiment of the present invention.
FIG. 7 is a graph showing the effect of the present invention.

Claims (4)

マルチキャリア変調を用いた通信におけるダイバーシチ受信装置において、
複数のアンテナと、
前記複数のアンテナで受信した信号をそれぞれ複数の周波数帯域ごとに分割する分割手段と、
前記分割されたそれぞれの信号に重み付けを行って周波数帯域ごとの合成信号を出力する合成手段と、
前記出力された周波数帯域ごとの合成信号の位相を揃えて結合する結合手段とを有することを特徴とするダイバーシチ受信装置。
In a diversity receiver in communication using multi-carrier modulation,
Multiple antennas,
Dividing means for dividing the signals received by the plurality of antennas for each of a plurality of frequency bands,
Combining means for weighting each of the divided signals to output a combined signal for each frequency band,
A diversity receiving device comprising: coupling means for aligning and combining the phases of the output synthesized signals for each frequency band.
前記合成手段の重み付けに用いる重み係数は最大比合成または等利得合成に基づき決定される
ことを特徴とする請求項1に記載のダイバーシチ受信装置。
The diversity receiving apparatus according to claim 1, wherein a weighting coefficient used for weighting of the combining unit is determined based on maximum ratio combining or equal gain combining.
前記結合手段は、隣り合う周波数帯域の合成信号間の相関係数を求める相関係数算出手段を有し、
算出した相関係数に基づいて位相を揃えて合成信号を結合する
ことを特徴とする請求項1または請求項2のいずれかに記載のダイバーシチ受信装置。
The coupling means has a correlation coefficient calculation means for obtaining a correlation coefficient between the synthesized signals of adjacent frequency bands,
3. The diversity receiver according to claim 1, wherein the combined signals are combined with the phases thereof being adjusted based on the calculated correlation coefficient.
前記分割手段は、周波数帯域を2または3または5に分割することを特徴とする請求項1乃至請求項3のいずれか1項に記載のダイバーシチ受信装置。The diversity receiving apparatus according to any one of claims 1 to 3, wherein the dividing unit divides the frequency band into two, three, or five.
JP2003005277A 2003-01-14 2003-01-14 Diversity receiver Expired - Fee Related JP4134730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005277A JP4134730B2 (en) 2003-01-14 2003-01-14 Diversity receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005277A JP4134730B2 (en) 2003-01-14 2003-01-14 Diversity receiver

Publications (2)

Publication Number Publication Date
JP2004221808A true JP2004221808A (en) 2004-08-05
JP4134730B2 JP4134730B2 (en) 2008-08-20

Family

ID=32895967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005277A Expired - Fee Related JP4134730B2 (en) 2003-01-14 2003-01-14 Diversity receiver

Country Status (1)

Country Link
JP (1) JP4134730B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067707A (en) * 2005-08-30 2007-03-15 Toshiba Corp Receiver
JP2009016921A (en) * 2007-06-29 2009-01-22 Toyota Central R&D Labs Inc Diversity receiver
US7609793B2 (en) 2005-05-11 2009-10-27 Kabushiki Kaisha Toshiba Radio receiver and radio receiving method
JP2016201743A (en) * 2015-04-13 2016-12-01 株式会社東芝 Receiver and reception method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609793B2 (en) 2005-05-11 2009-10-27 Kabushiki Kaisha Toshiba Radio receiver and radio receiving method
JP2007067707A (en) * 2005-08-30 2007-03-15 Toshiba Corp Receiver
JP2009016921A (en) * 2007-06-29 2009-01-22 Toyota Central R&D Labs Inc Diversity receiver
JP4573858B2 (en) * 2007-06-29 2010-11-04 株式会社豊田中央研究所 Diversity receiver
JP2016201743A (en) * 2015-04-13 2016-12-01 株式会社東芝 Receiver and reception method

Also Published As

Publication number Publication date
JP4134730B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US6628638B1 (en) Method and apparatus for receiving diversity signals for use in OFDM radio communication system
JP3737264B2 (en) Diversity receiver
JPH11330841A (en) Active array antenna system
CN104838601B (en) Diversity receiving device and diversity receiving method
JP2011501522A (en) Low complexity diversity using coarse FFT and subband unit synthesis
JP5214018B2 (en) Receiver
JP6548668B2 (en) First Adjacent Canceller (FAC) Improves Mixing Using Parametric Filters
JP4134730B2 (en) Diversity receiver
JP4275530B2 (en) Receiver and method thereof
JP5729561B2 (en) Time division multiplexing adaptive array antenna signal processing apparatus
JP2002171238A (en) Ofdm receiver
JP5264987B2 (en) Receiver
EP1770876A1 (en) Phase combining diversity receiver
JP4234878B2 (en) Wireless receiver
JP2006217399A (en) Receiver
JP3109445B2 (en) Diversity receiver for frequency division multiplexed signal
JP3550326B2 (en) Digital broadcast receiver
JP4621143B2 (en) Diversity receiver
CN101617488A (en) Multi-carrier communication apparatus
JP2007208658A (en) Diversity receiver
JP2008060913A (en) Diversity receiver
JP2006203659A (en) Diversity receiver and ofdm signal processor
JPH0974366A (en) Direct conversion receiver
JP4200723B2 (en) Diversity receiver
JP3554226B2 (en) Receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees