JP2004221424A - Thermoelectric semiconductor device - Google Patents

Thermoelectric semiconductor device Download PDF

Info

Publication number
JP2004221424A
JP2004221424A JP2003008665A JP2003008665A JP2004221424A JP 2004221424 A JP2004221424 A JP 2004221424A JP 2003008665 A JP2003008665 A JP 2003008665A JP 2003008665 A JP2003008665 A JP 2003008665A JP 2004221424 A JP2004221424 A JP 2004221424A
Authority
JP
Japan
Prior art keywords
thermoelectric semiconductor
electrode
type thermoelectric
semiconductor device
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003008665A
Other languages
Japanese (ja)
Inventor
Masato Itakura
正人 板倉
Seishi Moriyama
誠士 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2003008665A priority Critical patent/JP2004221424A/en
Publication of JP2004221424A publication Critical patent/JP2004221424A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a well reliable thermoelectric semiconductor device for solving a problem, even in a structure of a conventional technique, that stresses are collected to a vicinity of a joint between a thermoelectric semiconductor and an electrode to cause breakage in the thermoelectric semiconductor having a weak mechanical strength. <P>SOLUTION: The thermoelectric semiconductor comprises a first electrode 51, a first conductive type thermoelectric semiconductor 3 whose one surface is jointed to the first electrode 51, a second electrode 6 which is jointed to the other surface of the semiconductor 3, a second conductive type thermoelectric semiconductor 4 whose one surface is jointed to the second electrode 6, and an another first electrode 52 which is jointed to the other surface of the semiconductor 4. At least in one of the combinations of the first electrode 51 and the semiconductor 3, the semiconductor 3 and the second electrode 6, the second electrode 6 and the semiconductor 4, and the semiconductor 4 and the first electrode 52, jointing is achieved through support members 71, 72, 81 and 82. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は熱電半導体装置に関する。
【0002】
【従来の技術】
図4は従来一般的に製造されている熱電半導体装置の斜視説明図である。熱電半導体装置は、基板12、13に設けられた電極12a、13aと熱電半導体11を半田材で接合し、P型熱電半導体とN型熱電半導体が交互に電気的に直列に接続された熱電半導体接続体100を作製することによって製造される。
【0003】
熱電半導体装置の使用時には、吸熱側の基板は温度が低いので熱収縮し、放熱側の基板は温度が高いので熱膨張するため熱電半導体に曲げ応力・せん断応力などが生じる。熱電半導体や半田層は機械的強度が低く、最も応力の加わる半田層や熱電半導体の電極との接合部付近に破損が生じ熱電半導体装置の信頼性を低下するなどの問題があった(非特許文献1など)。このような問題を解決する従来技術として、非特許文献1には、電極に凸部を設け、この凸部上に熱電半導体を接合した熱電半導体が開示されている。これにより応力が緩和され信頼性が向上するとされている。
【0004】
【非特許文献1】
熱電変換工学、株式会社リアライズ社発行、345〜347ページ、425〜426ページ
【0005】
【発明が解決しようとする課題】
しかしながら、従来技術のような構造でも熱電半導体と電極の接合部付近に応力が集中するため、機械的強度の弱い熱電半導体に破損が生じるなどの問題があった。
【0006】
本発明は上記課題を解決したもので、信頼性に優れた熱電半導体装置を提供する。
【0007】
【課題を解決するための手段】
上記技術的課題を解決するために、本発明の請求項1において講じた技術的手段(以下、第1の技術的手段と称する。)は、第1の第1電極と、該第1の第1電極にその一方面が接合された第1導電型熱電半導体と、該第1導電型熱電半導体の他方面に接合された第2電極と、該第2電極にその一方面が接合された第2導電型熱電半導体と、該第2導電型熱電半導体の他方面に接合された第2の第1電極が設けられ、前記第1の第1電極と前記第1導電型熱電半導体、前記第1導電型熱電半導体と前記第2電極、前記第2電極と前記第2導電型熱電半導体、前記第2導電型熱電半導体と前記第2の第1電極、の少なくとも一つは支持部材を介して接合されていることを特徴とする熱電半導体装置である。
【0008】
上記第1の技術的手段による効果は、以下のようである。
【0009】
すなわち、熱電半導体と電極を支持部材を介して接合することにより、熱電半導体と電極の接合付近に加わっていた最大応力が、熱電半導体と支持部材の接合部付近および支持部材と電極の接合部付近に分散され、熱電半導体と電極の接合付近に加わっていた最大応力が低減されるので、信頼性に優れた熱電半導体装置ができる。
【0010】
上記技術的課題を解決するために、本発明の請求項2において講じた技術的手段(以下、第2の技術的手段と称する。)は、前記第1の第1電極と前記第1導電型熱電半導体、前記第1導電型熱電半導体と前記第2電極、前記第2電極と前記第2導電型熱電半導体、前記第2導電型熱電半導体と前記第2の第1電極、のすべてが支持部材を介して接合されていることを特徴とする請求項1記載の熱電半導体装置である。
【0011】
上記第2の技術的手段による効果は、以下のようである。
【0012】
すなわち、熱電半導体と電極がすべて支持部材を介して接合されているので、さらに最大応力を低減でき、より信頼性に優れた熱電半導体装置ができる。
上記技術的課題を解決するために、本発明の請求項3において講じた技術的手段(以下、第3の技術的手段と称する。)は、前記接合が半田付けによるものであることを特徴とする請求項1または2に記載の熱電半導体装置である。
【0013】
上記第3の技術的手段による効果は、以下のようである。
【0014】
すなわち、半田付けによって接合しているので、大きな設備を必要とせずに製造できる。
【0015】
上記技術的課題を解決するために、本発明の請求項4において講じた技術的手段(以下、第4の技術的手段と称する。)は、前記第1導電型熱電半導体と前記支持部材、前記第2導電型熱電半導体と前記支持部材の少なくとも一方の支持部材は前記第1導電型熱電半導体または前記第2導電型熱電半導体にメッキ法によって形成されたものであることを特徴とする請求項1または2に記載の熱電半導体装置である。
【0016】
上記第4の技術的手段による効果は、以下のようである。
【0017】
すなわち、支持部材が熱電半導体にメッキ法で形成されたものであるので、平板状の熱電半導体の平面に支持部材を形成後、切断することによって支持部材が形成された熱電半導体を製造できるため、低コストで支持部材付き熱電半導体装置を製造できる。
【0018】
【発明の実施の形態】
以下、本発明の実施例について、図面に基づいて説明する。
【0019】
(実施例1)
図1は実施例1の熱電半導体装置の断面説明図である。1および2はセラミックス(酸化アルミニウム)製の基板である。基板1および2にはそれぞれ電極5および6が設けられている。電極5および6はメッキ法によって形成されている。電極5および6には、それぞれ支持部材7および8が半田層21および22によって接合されている。支持部材7および8の間には、半田層23、24によって支持部材7、8と接合された第1導電型熱電半導体であるN型熱電半導体3または第2導電型熱電半導体であるP型熱電半導体4が設けられている。
【0020】
すなわち、第1の第1電極51に支持部材71の一方面が半田層21によって接合されている。支持部材71の他方面にN型熱電半導体3の一方面が半田層23によって接合されている。N型熱電半導体3の他方面に支持部材81の一方面が半田層24によって接合されている。支持部材81の他方面は半田層22によって第2電極6に接合されている。第2電極6の支持部材81と同じ面側には、もう一つの支持部材82の一方面が半田層22によって接合されている。支持部材82の他方面にP型熱電半導体4の一方面が半田層24によって接合されている。P型熱電半導体4の他方面に支持部材72の一方面が半田層23によって接合されている。支持部材72の他方面に第2の第1電極52が接合されている。
【0021】
この構造の熱電半導体装置についてFEM(有限要素法)解析を実施した。FEM解析を実施した熱電半導体装置の外形寸法は縦8mm、横12mm、高さ1.35mmである。N型熱電半導体3およびP型熱電半導体4の大きさは0.55mm四方、高さ0.4mmの直方体で、高さ方向の一方面と他方面に支持部材7または支持部材8が接合されている。N型熱電半導体3、P型熱電半導体4の個数はそれぞれ70個である。熱電半導体装置の縦方向には14個、横方向には10個の熱電半導体が並んでいる。すなわち、基板1上に熱電半導体は14個×10個の行列配置されている。支持部材71、72、81、82の大きさは0.55mm四方、高さ0.15mmの直方体で、高さ方向の一方面と他方面に熱電半導体または電極が接合されている。電極5(電極51、52)、電極6の大きさは幅0.6mm、長さ1.4mm、厚さ0.08mmで、同じ面側の長さ方向の一方と他方に熱電半導体が接合されている。基板1、2は縦8mm、横12mm、厚さ0.3mmである。半田層21〜24の幅と長さは電極5、6と同じで、厚さは15μmである。
【0022】
第1の第1電極51、第2の第1電極52、第2電極6の材質は銅(C1020)であり、そのヤング率は117GPa、ポアソン比0.33である。半田層21〜24の材質はSn/Pb半田であり、そのヤング率は34.5GPa、ポアソン比0.4である。支持部材71、72、81、82の材質は電極と同じ銅(C1020)である。境界条件として、基板1の温度を25℃、基板2の温度を70℃、第1の第1電極51、第2の第1電極52および支持部材71、72の温度を25℃、第2電極6および支持部材81、82の温度を75℃とした。またN型熱電半導体3およびP型熱電半導体4は、第1電極側の温度を25℃から第2電極側の温度を75℃に徐変しているとした。
【0023】
(実施例2)
図2は実施例2の熱電半導体装置の断面説明図である。実施例2は、支持部材および支持部材と熱電素子の接合方法が異なる以外、実施例1と同様の構成であるので同じ部位には同じ符号を付し説明を省略する。支持部材73と83は、それぞれN型熱電半導体3の一方面と他方面に銅をメッキすることにより形成されたものである。支持部材74と84は、それぞれP型熱電半導体4の一方面と他方面に銅をメッキすることにより形成されたものである。
【0024】
実施例2の熱電半導体装置は、まずN型熱電半導体3、P型熱電半導体4に銅メッキ法により支持部材73、74、83、84を形成する。支持部材が形成されたN型熱電半導体3、P型熱電半導体4を半田層21により基板1に形成された電極5と接合し、半田層22により基板2に形成された電極6と接合する。
【0025】
支持部材73、74、83、84の大きさは0.55mm四方、高さ0.15mmの直方体で、0.55mm四方の一方面が熱電半導体に当接している。支持部材73、74、83、84の材質は銅(C1020)であり、そのヤング率は117GPa、ポアソン比0.33である。その他の部材の形状、材質は実施例1と同じである。境界条件は実施例1と同じとした。この構造の熱電半導体装置についてFEM解析を実施した。
【0026】
(比較例)
図3は比較例の熱電半導体装置の断面説明図である。比較例は非特許文献1の第426ページ、図3〜5に記載された熱電半導体装置を模したものである。比較例の電極31、32の形状は幅0.6mm、長さ1.4mm、厚さ0.23mmの長さ方向の中央に幅0.6mm、長さ0.2mm、深さ0.15mmの凹部を有する凹形状である。基板1上に電極31が形成され、この電極31とN型熱電半導体3またはP型熱電半導体4の一方面が半田層21により接合されている。N型熱電半導体3またはP型熱電半導体4の他方面は基板2上に形成された電極32と半田層22により接合されている。
【0027】
電極31、32の材質は実施例1の電極と同じ銅(C1020)である。基板1、2、N型熱電半導体3、P型熱電半導体4、半田層21、22の形状と材質は実施例1と同じである。境界条件は実施例1と同じとした。この構造の熱電半導体装置についてFEM解析を実施した。
【0028】
(解析結果)
FEM解析の結果から得られた実施例1、2および比較例の最大応力を表1に示す。
【0029】
【表1】

Figure 2004221424
実施例1、2は比較例に比べて最大応力が約1/2となっている。実施例1の応力集中部位は熱電半導体と支持部材の接合部付近および支持部材と電極の接合部付近であった。実施例2の応力集中部位は熱電半導体と支持部材の界面付近および支持部材と電極の接合部付近であった。比較例の応力集中部位は熱電半導体と電極の接合部付近であった。これらの応力集中部位にかかる応力が表1の最大応力となっている。比較例では1ヶ所に応力集中するのに対し、実施例1、2では応力集中が2ヶ所に分散している。この結果、最大応力が半減したと考えられる。
【0030】
以上のように、熱電半導体と電極を支持部材を介して接合することにより、熱電半導体と電極の接合付近に加わっていた最大応力は、熱電半導体と支持部材の接合部付近および支持部材と電極の接合部付近に分散され、熱電半導体と電極の接合付近に加わっていた最大応力が大きく低減されるので、信頼性に優れた熱電半導体装置ができる。
【0031】
なお、支持部材と電極の接合部付近に応力集中が起こっても支持部材や電極の強度は大きいので、この部分では破壊されることはない。
【0032】
実施例では第1電極と熱電半導体の間、第2電極と熱電半導体の間の両方に支持部材が設けられているが、その一方に設けてもよい。また第1の第1電極とN型熱電半導体の間、N型熱電半導体と第2電極の間、第2電極とP型熱電半導体の間、P型熱電半導体と第2の第1電極の間、のいずれかの間に支持部材が設けられている場合にも適用できる。この場合は、基板1と基板2は略平行であることが望ましいので、電極や熱電半導体の高さで調整する。
【0033】
実施例では支持部材に銅(C1020)を用いたが、特に限定されず、電気伝導性を有し、良熱伝導の材料なら使用できる。支持部材としては電極のヤング率以下のヤング率の材質を使用した方が応力緩和効果が大きいために望ましい。また支持部材としては熱電半導体より小さいヤング率の材質を使用した方が応力緩和効果がさらに大きいために望ましい。すなわち支持部材のヤング率は低い方が好ましく、スズ(ヤング率49.9GPa)などが例示できる。
【0034】
実施例では半田層の材質としてSn/Sb半田を用いたが、接合限定されない。半田層は他の部材の厚さに比べて極めて薄いので、その材質は大きな影響を与えない。実施例では半田層またはメッキ法による直接接合を用いたが、他の接合方法も適宜選択できる。
【0035】
実施例では第1導電型熱電半導体をN型熱電半導体とし、第2導電型熱電半導体をP型熱電半導体としたが、第1導電型熱電半導体をP型熱電半導体とし、第2導電型熱電半導体をN型熱電半導体としてもよい。
【0036】
【発明の効果】
本発明は、第1の第1電極と、該第1の第1電極にその一方面が接合された第1導電型熱電半導体と、該第1導電型熱電半導体の他方面に接合された第2電極と、該第2電極にその一方面が接合された第2導電型熱電半導体と、該第2導電型熱電半導体の他方面に接合された第2の第1電極が設けられ、前記第1の第1電極と前記第1導電型熱電半導体、前記第1導電型熱電半導体と前記第2電極、前記第2電極と前記第2導電型熱電半導体、前記第2導電型熱電半導体と前記第2の第1電極、の少なくとも一つは支持部材を介して接合されていることを特徴とする熱電半導体装置であるので、信頼性に優れた熱電半導体装置ができる。
【図面の簡単な説明】
【図1】実施例1の熱電半導体装置の断面説明図
【図2】実施例2の熱電半導体装置の断面説明図
【図3】比較例の熱電半導体装置の断面説明図
【図4】従来一般的に製造されている熱電半導体装置の斜視説明図
【符号の説明】
1、2…基板
3…N型熱電半導体(第1導電型熱電半導体)
4…P型熱電半導体(第2導電型熱電半導体)
5、31…第1電極
6、32…第2電極
7、8、71〜74、81〜84…支持部材
21〜24…半田層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric semiconductor device.
[0002]
[Prior art]
FIG. 4 is an explanatory perspective view of a thermoelectric semiconductor device generally manufactured conventionally. The thermoelectric semiconductor device is a thermoelectric semiconductor in which electrodes 12a and 13a provided on substrates 12 and 13 and thermoelectric semiconductor 11 are joined by a solder material, and a P-type thermoelectric semiconductor and an N-type thermoelectric semiconductor are alternately electrically connected in series. It is manufactured by manufacturing the connection body 100.
[0003]
When the thermoelectric semiconductor device is used, the heat-absorbing substrate has a low temperature and therefore contracts thermally, and the heat-radiating substrate has a high temperature and thermally expands, so that bending stress and shear stress are generated in the thermoelectric semiconductor. Thermoelectric semiconductors and solder layers have low mechanical strength, and there are problems such as damage to the solder layers to which the most stress is applied and the vicinity of the junction between the thermoelectric semiconductor and the electrodes, thereby reducing the reliability of the thermoelectric semiconductor device (non-patented). Reference 1). As a conventional technique for solving such a problem, Non-Patent Document 1 discloses a thermoelectric semiconductor in which a convex portion is provided on an electrode, and a thermoelectric semiconductor is bonded on the convex portion. It is said that the stress is relieved and the reliability is improved.
[0004]
[Non-patent document 1]
Thermoelectric conversion engineering, published by Realize Inc., pages 345-347, 425-426
[Problems to be solved by the invention]
However, even in the structure of the related art, since stress concentrates near the junction between the thermoelectric semiconductor and the electrode, there has been a problem that the thermoelectric semiconductor having low mechanical strength is damaged.
[0006]
The present invention has solved the above problems and provides a thermoelectric semiconductor device having excellent reliability.
[0007]
[Means for Solving the Problems]
In order to solve the above technical problem, the technical means (hereinafter referred to as first technical means) taken in claim 1 of the present invention comprises a first first electrode and a first first electrode. A first conductive type thermoelectric semiconductor having one surface bonded to one electrode, a second electrode bonded to the other surface of the first conductive type thermoelectric semiconductor, and a second electrode having one surface bonded to the second electrode. A second conductivity type thermoelectric semiconductor; and a second first electrode joined to the other surface of the second conductivity type thermoelectric semiconductor. The first first electrode, the first conductivity type thermoelectric semiconductor, and the first At least one of a conductivity type thermoelectric semiconductor and the second electrode, the second electrode and the second conductivity type thermoelectric semiconductor, or the second conductivity type thermoelectric semiconductor and the second first electrode are joined via a support member. A thermoelectric semiconductor device characterized in that:
[0008]
The effects of the first technical means are as follows.
[0009]
That is, by joining the thermoelectric semiconductor and the electrode via the support member, the maximum stress applied near the joint between the thermoelectric semiconductor and the electrode is increased near the joint between the thermoelectric semiconductor and the support member and near the joint between the thermoelectric semiconductor and the electrode. And the maximum stress applied near the junction between the thermoelectric semiconductor and the electrode is reduced, so that a thermoelectric semiconductor device with excellent reliability can be obtained.
[0010]
In order to solve the above technical problem, the technical means (hereinafter referred to as second technical means) taken in claim 2 of the present invention includes the first first electrode and the first conductivity type. The thermoelectric semiconductor, the first conductivity type thermoelectric semiconductor and the second electrode, the second electrode and the second conductivity type thermoelectric semiconductor, and the second conductivity type thermoelectric semiconductor and the second first electrode are all support members. The thermoelectric semiconductor device according to claim 1, wherein the thermoelectric semiconductor device is joined through a junction.
[0011]
The effects of the second technical means are as follows.
[0012]
That is, since the thermoelectric semiconductor and the electrodes are all joined via the support member, the maximum stress can be further reduced, and a thermoelectric semiconductor device with higher reliability can be obtained.
In order to solve the above technical problem, a technical means (hereinafter referred to as a third technical means) taken in claim 3 of the present invention is characterized in that the joining is performed by soldering. The thermoelectric semiconductor device according to claim 1 or 2, wherein
[0013]
The effects of the third technical means are as follows.
[0014]
That is, since they are joined by soldering, they can be manufactured without requiring large equipment.
[0015]
In order to solve the above technical problem, the technical means (hereinafter referred to as fourth technical means) taken in claim 4 of the present invention includes the first conductive type thermoelectric semiconductor, the supporting member, 2. The thermoelectric semiconductor according to claim 1, wherein at least one of the second conductive thermoelectric semiconductor and the support member is formed by plating the first conductive thermoelectric semiconductor or the second conductive thermoelectric semiconductor. Or the thermoelectric semiconductor device according to 2.
[0016]
The effects of the fourth technical means are as follows.
[0017]
That is, since the support member is formed by plating the thermoelectric semiconductor, the support member is formed on the plane of the flat thermoelectric semiconductor, and the thermoelectric semiconductor having the support member formed can be manufactured by cutting. A thermoelectric semiconductor device with a supporting member can be manufactured at low cost.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
(Example 1)
FIG. 1 is an explanatory cross-sectional view of the thermoelectric semiconductor device according to the first embodiment. 1 and 2 are substrates made of ceramics (aluminum oxide). Substrates 1 and 2 are provided with electrodes 5 and 6, respectively. The electrodes 5 and 6 are formed by a plating method. Support members 7 and 8 are joined to the electrodes 5 and 6 by solder layers 21 and 22, respectively. Between the support members 7 and 8, the N-type thermoelectric semiconductor 3 as the first conductivity type thermoelectric semiconductor or the P-type thermoelectric semiconductor as the second conductivity type thermoelectric semiconductor joined to the support members 7 and 8 by the solder layers 23 and 24. A semiconductor 4 is provided.
[0020]
That is, one surface of the support member 71 is joined to the first first electrode 51 by the solder layer 21. One surface of the N-type thermoelectric semiconductor 3 is joined to the other surface of the support member 71 by the solder layer 23. One surface of the support member 81 is joined to the other surface of the N-type thermoelectric semiconductor 3 by the solder layer 24. The other surface of the support member 81 is joined to the second electrode 6 by the solder layer 22. One surface of another support member 82 is joined to the second electrode 6 on the same surface side as the support member 81 by the solder layer 22. One surface of the P-type thermoelectric semiconductor 4 is joined to the other surface of the support member 82 by the solder layer 24. One surface of the support member 72 is joined to the other surface of the P-type thermoelectric semiconductor 4 by the solder layer 23. The second first electrode 52 is joined to the other surface of the support member 72.
[0021]
FEM (finite element method) analysis was performed on the thermoelectric semiconductor device having this structure. The external dimensions of the thermoelectric semiconductor device subjected to the FEM analysis are 8 mm in length, 12 mm in width, and 1.35 mm in height. Each of the N-type thermoelectric semiconductor 3 and the P-type thermoelectric semiconductor 4 is a rectangular parallelepiped having a size of 0.55 mm square and a height of 0.4 mm, and a supporting member 7 or a supporting member 8 is joined to one surface and the other surface in the height direction. I have. The number of the N-type thermoelectric semiconductors 3 and the number of the P-type thermoelectric semiconductors 4 are 70 each. Fourteen thermoelectric semiconductors are arranged in the vertical direction and ten thermoelectric semiconductors in the horizontal direction of the thermoelectric semiconductor device. That is, the thermoelectric semiconductors are arranged in a matrix of 14 × 10 on the substrate 1. Each of the support members 71, 72, 81, and 82 is a rectangular solid having a size of 0.55 mm square and a height of 0.15 mm, and a thermoelectric semiconductor or an electrode is joined to one surface and the other surface in the height direction. Electrodes 5 (electrodes 51 and 52) and electrode 6 have a width of 0.6 mm, a length of 1.4 mm, and a thickness of 0.08 mm, and a thermoelectric semiconductor is joined to one and the other in the length direction on the same surface side. ing. The substrates 1 and 2 are 8 mm long, 12 mm wide, and 0.3 mm thick. The width and length of the solder layers 21 to 24 are the same as those of the electrodes 5 and 6, and the thickness is 15 μm.
[0022]
The material of the first first electrode 51, the second first electrode 52, and the second electrode 6 is copper (C1020), and its Young's modulus is 117 GPa and Poisson's ratio is 0.33. The material of the solder layers 21 to 24 is Sn / Pb solder, and its Young's modulus is 34.5 GPa and Poisson's ratio is 0.4. The material of the support members 71, 72, 81, 82 is the same copper (C1020) as the electrodes. As boundary conditions, the temperature of the substrate 1 is 25 ° C., the temperature of the substrate 2 is 70 ° C., the temperatures of the first first electrode 51, the second first electrode 52, and the supporting members 71 and 72 are 25 ° C., and the second electrode 6 and the temperature of the supporting members 81 and 82 were set to 75 ° C. The N-type thermoelectric semiconductor 3 and the P-type thermoelectric semiconductor 4 are assumed to gradually change the temperature on the first electrode side from 25 ° C. to 75 ° C. on the second electrode side.
[0023]
(Example 2)
FIG. 2 is an explanatory cross-sectional view of the thermoelectric semiconductor device according to the second embodiment. The second embodiment has the same configuration as that of the first embodiment except that the supporting member and the method of bonding the supporting member and the thermoelectric element are different. The support members 73 and 83 are formed by plating copper on one surface and the other surface of the N-type thermoelectric semiconductor 3, respectively. The support members 74 and 84 are formed by plating copper on one surface and the other surface of the P-type thermoelectric semiconductor 4, respectively.
[0024]
In the thermoelectric semiconductor device according to the second embodiment, first, support members 73, 74, 83, and 84 are formed on the N-type thermoelectric semiconductor 3 and the P-type thermoelectric semiconductor 4 by a copper plating method. The N-type thermoelectric semiconductor 3 and the P-type thermoelectric semiconductor 4 on which the support members are formed are joined to the electrode 5 formed on the substrate 1 by the solder layer 21 and to the electrode 6 formed on the substrate 2 by the solder layer 22.
[0025]
Each of the support members 73, 74, 83, and 84 is a rectangular solid having a square of 0.55 mm and a height of 0.15 mm, and one surface of the square of 0.55 mm is in contact with the thermoelectric semiconductor. The material of the support members 73, 74, 83 and 84 is copper (C1020), and its Young's modulus is 117 GPa and Poisson's ratio is 0.33. The shape and material of the other members are the same as in the first embodiment. The boundary conditions were the same as in Example 1. FEM analysis was performed on the thermoelectric semiconductor device having this structure.
[0026]
(Comparative example)
FIG. 3 is an explanatory sectional view of a thermoelectric semiconductor device of a comparative example. The comparative example simulates the thermoelectric semiconductor device described in Non-Patent Document 1, page 426, and FIGS. The electrodes 31 and 32 of the comparative example have a width of 0.6 mm, a length of 1.4 mm, a thickness of 0.23 mm, a width of 0.6 mm, a length of 0.2 mm, and a depth of 0.15 mm at the center in the longitudinal direction. It has a concave shape having a concave portion. An electrode 31 is formed on the substrate 1, and the electrode 31 and one surface of the N-type thermoelectric semiconductor 3 or the P-type thermoelectric semiconductor 4 are joined by the solder layer 21. The other surface of the N-type thermoelectric semiconductor 3 or the P-type thermoelectric semiconductor 4 is joined to the electrode 32 formed on the substrate 2 by the solder layer 22.
[0027]
The material of the electrodes 31 and 32 is the same copper (C1020) as the electrode of the first embodiment. The shapes and materials of the substrates 1 and 2, the N-type thermoelectric semiconductor 3, the P-type thermoelectric semiconductor 4, and the solder layers 21 and 22 are the same as those in the first embodiment. The boundary conditions were the same as in Example 1. FEM analysis was performed on the thermoelectric semiconductor device having this structure.
[0028]
(Analysis result)
Table 1 shows the maximum stress of Examples 1 and 2 and Comparative Example obtained from the results of the FEM analysis.
[0029]
[Table 1]
Figure 2004221424
In Examples 1 and 2, the maximum stress was about 1 / compared to the comparative example. The stress concentration sites in Example 1 were near the junction between the thermoelectric semiconductor and the support member and near the junction between the support member and the electrode. The stress concentration sites in Example 2 were near the interface between the thermoelectric semiconductor and the support member and near the joint between the support member and the electrode. The stress concentration site of the comparative example was near the junction between the thermoelectric semiconductor and the electrode. The stress applied to these stress concentration portions is the maximum stress in Table 1. In the comparative example, the stress concentration is at one location, whereas in Examples 1 and 2, the stress concentration is dispersed at two locations. As a result, it is considered that the maximum stress was reduced by half.
[0030]
As described above, by joining the thermoelectric semiconductor and the electrode via the support member, the maximum stress applied near the junction between the thermoelectric semiconductor and the electrode is increased near the junction between the thermoelectric semiconductor and the support member and between the support member and the electrode. Since the maximum stress distributed near the junction and applied near the junction between the thermoelectric semiconductor and the electrode is greatly reduced, a highly reliable thermoelectric semiconductor device can be obtained.
[0031]
Note that even if stress concentration occurs near the joint between the support member and the electrode, the strength of the support member and the electrode is high, so that the portion is not destroyed.
[0032]
In the embodiment, the support members are provided both between the first electrode and the thermoelectric semiconductor and between the second electrode and the thermoelectric semiconductor, but may be provided on one of them. Further, between the first first electrode and the N-type thermoelectric semiconductor, between the N-type thermoelectric semiconductor and the second electrode, between the second electrode and the P-type thermoelectric semiconductor, between the P-type thermoelectric semiconductor and the second first electrode. The present invention can also be applied to a case where a supporting member is provided between any of the above. In this case, since it is desirable that the substrate 1 and the substrate 2 are substantially parallel, adjustment is made by the height of the electrodes and the thermoelectric semiconductor.
[0033]
In the embodiment, copper (C1020) is used for the support member. However, the material is not particularly limited, and any material having electric conductivity and good heat conductivity can be used. It is preferable to use a material having a Young's modulus equal to or less than the Young's modulus of the electrode because the stress relaxation effect is large. It is preferable to use a material having a Young's modulus smaller than that of the thermoelectric semiconductor as the support member because the stress relaxation effect is further increased. That is, the Young's modulus of the support member is preferably low, and tin (Young's modulus 49.9 GPa) can be exemplified.
[0034]
Although the Sn / Sb solder is used as the material of the solder layer in the embodiment, the joining is not limited. Since the solder layer is extremely thin compared to the thickness of the other members, its material does not have a significant effect. In the embodiment, the direct bonding by the solder layer or the plating method is used, but other bonding methods can be appropriately selected.
[0035]
In the embodiment, the first-conductivity-type thermoelectric semiconductor is an N-type thermoelectric semiconductor, and the second-conductivity-type thermoelectric semiconductor is a P-type thermoelectric semiconductor. May be an N-type thermoelectric semiconductor.
[0036]
【The invention's effect】
The present invention provides a first first electrode, a first conductive type thermoelectric semiconductor having one surface joined to the first first electrode, and a first conductive type thermoelectric semiconductor joined to the other surface of the first conductive type thermoelectric semiconductor. A second conductive type thermoelectric semiconductor having one surface bonded to the second electrode, and a second first electrode bonded to the other surface of the second conductive type thermoelectric semiconductor; A first electrode and the first conductivity type thermoelectric semiconductor, the first conductivity type thermoelectric semiconductor and the second electrode, the second electrode and the second conductivity type thermoelectric semiconductor, the second conductivity type thermoelectric semiconductor and the second Since at least one of the second electrodes is a thermoelectric semiconductor device that is joined via a support member, a thermoelectric semiconductor device with excellent reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a thermoelectric semiconductor device according to a first embodiment; FIG. 2 is a cross-sectional view of a thermoelectric semiconductor device according to a second embodiment; FIG. 3 is a cross-sectional view of a thermoelectric semiconductor device according to a comparative example; Explanatory view of a thermoelectric semiconductor device manufactured in a typical manner [Description of reference numerals]
1, 2, substrate 3, N-type thermoelectric semiconductor (first conductivity type thermoelectric semiconductor)
4. P-type thermoelectric semiconductor (second conductivity type thermoelectric semiconductor)
5, 31 first electrodes 6, 32 second electrodes 7, 8, 71 to 74, 81 to 84 support members 21 to 24 solder layer

Claims (4)

第1の第1電極と、該第1の第1電極にその一方面が接合された第1導電型熱電半導体と、該第1導電型熱電半導体の他方面に接合された第2電極と、該第2電極にその一方面が接合された第2導電型熱電半導体と、該第2導電型熱電半導体の他方面に接合された第2の第1電極が設けられ、前記第1の第1電極と前記第1導電型熱電半導体、前記第1導電型熱電半導体と前記第2電極、前記第2電極と前記第2導電型熱電半導体、前記第2導電型熱電半導体と前記第2の第1電極、の少なくとも一つは支持部材を介して接合されていることを特徴とする熱電半導体装置。A first first electrode, a first conductivity type thermoelectric semiconductor having one surface joined to the first first electrode, and a second electrode joined to the other surface of the first conductivity type thermoelectric semiconductor; A second conductive type thermoelectric semiconductor having one surface bonded to the second electrode; and a second first electrode bonded to the other surface of the second conductive type thermoelectric semiconductor; An electrode and the first conductivity type thermoelectric semiconductor, the first conductivity type thermoelectric semiconductor and the second electrode, the second electrode and the second conductivity type thermoelectric semiconductor, the second conductivity type thermoelectric semiconductor and the second first A thermoelectric semiconductor device, wherein at least one of the electrodes is joined via a support member. 前記第1の第1電極と前記第1導電型熱電半導体、前記第1導電型熱電半導体と前記第2電極、前記第2電極と前記第2導電型熱電半導体、前記第2導電型熱電半導体と前記第2の第1電極、のすべてが支持部材を介して接合されていることを特徴とする請求項1記載の熱電半導体装置。The first first electrode and the first conductivity type thermoelectric semiconductor, the first conductivity type thermoelectric semiconductor and the second electrode, the second electrode and the second conductivity type thermoelectric semiconductor, the second conductivity type thermoelectric semiconductor; 2. The thermoelectric semiconductor device according to claim 1, wherein all of the second first electrodes are joined via a support member. 前記接合が半田付けによるものであることを特徴とする請求項1または2に記載の熱電半導体装置。The thermoelectric semiconductor device according to claim 1, wherein the joining is performed by soldering. 前記第1導電型熱電半導体と前記支持部材、前記第2導電型熱電半導体と前記支持部材の少なくとも一方の支持部材はメッキ法によって形成されたものであることを特徴とする請求項1または2に記載の熱電半導体装置。3. The method according to claim 1, wherein the first conductive type thermoelectric semiconductor and the support member and at least one of the second conductive type thermoelectric semiconductor and the support member are formed by a plating method. A thermoelectric semiconductor device according to claim 1.
JP2003008665A 2003-01-16 2003-01-16 Thermoelectric semiconductor device Pending JP2004221424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008665A JP2004221424A (en) 2003-01-16 2003-01-16 Thermoelectric semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008665A JP2004221424A (en) 2003-01-16 2003-01-16 Thermoelectric semiconductor device

Publications (1)

Publication Number Publication Date
JP2004221424A true JP2004221424A (en) 2004-08-05

Family

ID=32898399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008665A Pending JP2004221424A (en) 2003-01-16 2003-01-16 Thermoelectric semiconductor device

Country Status (1)

Country Link
JP (1) JP2004221424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201761A (en) * 2010-03-24 2011-09-28 岳凡恩 Power supply module, system and method thereof
JP2011249492A (en) * 2010-05-26 2011-12-08 Furukawa Co Ltd Thermoelectric conversion module
WO2013076765A1 (en) * 2011-11-22 2013-05-30 古河機械金属株式会社 Thermoelectric conversion module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201761A (en) * 2010-03-24 2011-09-28 岳凡恩 Power supply module, system and method thereof
JP2011249492A (en) * 2010-05-26 2011-12-08 Furukawa Co Ltd Thermoelectric conversion module
WO2013076765A1 (en) * 2011-11-22 2013-05-30 古河機械金属株式会社 Thermoelectric conversion module
US9337409B2 (en) 2011-11-22 2016-05-10 Furukawa Co., Ltd. Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP4728745B2 (en) Thermoelectric device and thermoelectric module
US20140261608A1 (en) Thermal Interface Structure for Thermoelectric Devices
US20140182644A1 (en) Structures and methods for multi-leg package thermoelectric devices
JP2008277584A (en) Thermoelectric substrate member, thermoelectric module, and manufacturing method of them
JP2007048916A (en) Thermoelectric module
JP2016174114A (en) Thermoelectric conversion module
US20120060889A1 (en) Thermoelectric modules and assemblies with stress reducing structure
KR102395226B1 (en) Flexible thermoelectric module
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
KR102374415B1 (en) Thermo electric device
JP2004221424A (en) Thermoelectric semiconductor device
JP2010278035A (en) Thermoelectric conversion module
JP2004221109A (en) Thermoelectric element module and manufacturing method therefor
JP2004221375A (en) Method of manufacturing thermoelectric semiconductor, thermoelectric converter, and thermoelectric conversion device
JP4523306B2 (en) Method for manufacturing thermoelectric element
JP4737436B2 (en) Thermoelectric conversion module assembly
JP2005136075A (en) Thermoelectric conversion module and its manufacturing method
JP2013191801A (en) Airtight case-enclosed thermoelectric conversion module
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
US20200052178A1 (en) Thermoelectric conversion device
JP2017069443A (en) Thermoelectric conversion module
JP2021022712A (en) Thermoelectric module and manufacturing method of thermoelectric module
JPH10229223A (en) Thermoelectric element
JP2013161823A (en) Thermoelectric conversion module
JP3007904U (en) Thermal battery