JP2004221326A - Soldering method using lead-free solder - Google Patents

Soldering method using lead-free solder Download PDF

Info

Publication number
JP2004221326A
JP2004221326A JP2003006994A JP2003006994A JP2004221326A JP 2004221326 A JP2004221326 A JP 2004221326A JP 2003006994 A JP2003006994 A JP 2003006994A JP 2003006994 A JP2003006994 A JP 2003006994A JP 2004221326 A JP2004221326 A JP 2004221326A
Authority
JP
Japan
Prior art keywords
soldering
solder
temperature
lead
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006994A
Other languages
Japanese (ja)
Inventor
Shozo Otani
省三 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO SEISAN GIKEN KK
Original Assignee
TOKYO SEISAN GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO SEISAN GIKEN KK filed Critical TOKYO SEISAN GIKEN KK
Priority to JP2003006994A priority Critical patent/JP2004221326A/en
Publication of JP2004221326A publication Critical patent/JP2004221326A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molten Solder (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soldering method using a lead-free solder. <P>SOLUTION: The automatic soldering method uses a lead-free solder to apply primary soldering to the lower surface of a printed board to be transferred and finishing soldering successively. Furthermore, the temperature around the lower surface of the printed board is kept at 200°C or more in the entire section between one point where the contact with a primary solder jet starts and another point where the contact with a finishing solder jet starts. Preferably, the temperature around the lower surface thereof is kept at 220-250°C in the entire section. Therefore, such a method can effectively prevent solidification of solder, resulting in defective soldering at a low temperature where the temperature of a lead-free solder adhered to the lower surface of the printed board during the primary soldering is sharply reduced before the following secondary soldering starts. As a result, an appropriate soldering can be conducted using a high-melting-point lead-free solder, which is difficult to be used in the conventional soldering method. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉛フリーハンダを用いたより良好なハンダ付け方法に関する。
【0002】
【従来の技術】
従来より、印刷基板とチップ部品との自動ハンダ付けは、一次ハンダ付け、そして続く仕上げハンダ付けからなり、そのハンダ付けに使用される装置は、一次ハンダ付けの為の一次ハンダ吹き口塔及び仕上げハンダ付けの為の仕上げハンダ吹き口塔、さらにそれらが並置される外槽からなる。そして溶融ハンダが一次ハンダ吹き口塔の上部のハンダ吹出し部から噴出し一次ハンダ噴流を形成し、続いて二次ハンダ吹き口塔の上部のハンダ吹出し部から溶融ハンダが噴出し仕上げハンダ噴流を形成して印刷基板とチップ部品とのハンダ付けが行われる。一例として、特開平5−69124号公報の図2及び図3に示されるような装置を用いたハンダ付けが挙げられる。
【0003】
ところでハンダは、従来より鉛−スズ系ハンダが一般的に用いられてきたが、含有される鉛が環境汚染を招く可能性がある為、環境問題の観点から、鉛−スズ系ハンダの代替として、鉛を含まない、いわゆる鉛フリーのハンダの開発が進められ、それはすでに実用されている。
【0004】
【特許文献】
特開平5−69124号公報
【0005】
【発明が解決しようとする課題】
そこで、上述した従来からの自動ハンダ付け方法をそのまま用い、鉛フリーハンダにより印刷基板にハンダ付けを行ったところ、仕上げハンダ付け終了後の印刷基板において、ハンダ付け不良を生じ易くなるという問題が起きてしまった。
出願人は、かかる問題を生じた一因を探るべく、鉛フリーハンダを用いてハンダ付けを行った場合の、搬送される印刷基板の下面の温度変化を観察することにした。ハンダ付けは、鉛フリーハンダ(融点220℃)を、鉛−スズハンダが用いられた従来のハンダ付け装置に対して用い、該ハンダの溶融温度を260℃、及び印刷基板の搬送速度を1m/分の条件で行った。また、印刷基板の下面の温度(s’)の測定は、該基板の下面に取り付けた温度センサーにより観察した。
その結果を、図4のグラフ中の温度変化曲線に示した。図4の横軸は印刷基板の搬送開始からの経過時間を表し、縦軸は印刷基板の下面の温度を表す。
【0006】
図4に示すように、搬送路上において、搬送される印刷基板の下面の温度(s’)は、一次ハンダ噴流との接触が始まる地点(P1’)から急激に上昇し、およそ250℃に達した後は、一次ハンダ噴流との接触が終わる地点(P2’)までの間にそのままの温度で維持されているが、印刷基板がP2’通過後に該温度は急激に低下し、仕上げハンダ噴流との接触が始まる地点(R1’)までの間においておよそ180℃にまで低下している。仕上げハンダ噴流との接触が始まった後、基板の下面の温度s’は再び上昇し、およそ250℃まで達した後は、仕上げハンダ噴流との接触が終わる地点(R2’)までそのままの温度で維持されている。
【0007】
ここで出願人は、R1’からR2’までの時間、つまり仕上げハンダ噴流と接触している時間において、およそ250℃に維持されている時間(t’)が以外と短いことに着目し、以下のように推論した。一次ハンダ付けにより印刷基板に付着した鉛フリーハンダは、続く仕上げハンダ噴流との接触が始まるまでに固化するが、該ハンダが仕上げハンダ噴流との接触を通じて十分に溶融して基板下面に付着される条件としては、およそ250℃に維持される仕上げハンダ噴流とある一定の時間以上の間接触することが必要であると考えられる。しかし仕上げハンダ噴流との接触は一定の時間に限られているので、該条件を満たす為には、基板下面の温度がR1’における温度から出来る限り短時間でおよそ250℃に到達することが必要と思われる。これにより、印刷基板と仕上げハンダ噴流との接触時間のうち、およそ250℃に維持される時間が長くなり、印刷基板に一次ハンダ付けされた鉛フリーハンダは十分に溶融するはずである。
【0008】
しかしながら、従来の自動ハンダ付けにおいては、R1’における温度(およそ180℃)とR2’における温度(およそ250℃)との差が大きく、R1’における温度からR2’における温度まで上昇させる為により長くの時間が必要とされる。その為、結果として印刷基板と仕上げハンダ噴流との接触時間のうち、250℃に維持される時間(t’)が短くなって印刷基板に一次ハンダ付けされた鉛フリーハンダが十分に溶融せず、つまり実質的に仕上げハンダ付けが十分に為されていないことによりハンダ付け不良を引き起こしたものであると考えられる。
これら推測から、出願人は、一次ハンダ噴流との接触が終わる地点(P2’)から仕上げハンダ噴流との接触が始まる地点(R1’)までの間の温度管理を工夫することにより上述の問題点を解決することを着想し、本発明を完成するに至った。
【0009】
【課題を解決するための手段】
すなわち本発明は詳細には、鉛フリーハンダを用い、搬送される印刷基板の下面に対して、一次ハンダ付け及びこれに続いて仕上げハンダ付けを行う自動ハンダ付け方法において、前記印刷基板の搬送路上において一次ハンダ噴流との接触が終わる地点から仕上げハンダ噴流との接触が始まる地点までの区域の全体にわたって、該印刷基板の下面付近の温度を200℃以上の温度に維持することを特徴とするハンダ付け方法に関する。その中で好ましい態様は、前記区域の全体にわたって、前記印刷基板の下面付近の温度を220℃ないし250℃の範囲内の温度に維持することを特徴とする前述のハンダ付け方法に関する。
【0010】
本発明の方法は、鉛フリーハンダを用いた自動ハンダ付けに特に適した方法であって、印刷基板の搬送路上において、該印刷基板の下面に対し、一次ハンダ付けにおける一次ハンダ噴流との接触が終わる地点から、仕上げハンダ付けにおける仕上げハンダ噴流との接触が始まる地点までの区域の全体にわたって、該印刷基板の下面付近の温度を200℃以上の温度に維持することを特徴とする。
【0011】
搬送される印刷基板の下面付近の温度を200℃以上の温度に維持する手段としては、該下面付近を、例えば熱風又はヒーター等による加熱する手段が挙げられる。しかしながら、これらよりも有効な手段としては、印刷基板と一次ハンダ噴流との接触が終わる地点から仕上げハンダ噴流との接触が始まる地点までの距離Aを短くし、一次ハンダ付けにより印刷基板の下面に付着した鉛フリーハンダの温度が、ハンダ付け不良を起こしやすくなる程に低い温度にまで低下しないうちに、より短時間で仕上げハンダ付け噴流と接触するように調整する手段が挙げられ、この場合、基板の搬送速度が1m/分のとき、前記距離Aは20mm以下であるのが好ましい。もしくは、印刷基板の搬送速度を上げ、同様に短時間で仕上げハンダ付け噴流と接触するように調整する手段等も挙げられる。
【0012】
以上説明したように、本発明のハンダ付け方法は、一次ハンダ噴流との接触が終わる地点から、仕上げハンダ噴流との接触が始まる地点までの区域の全体にわたって、印刷基板の下面付近の温度を200℃以上の温度に維持する方法である為、該下面に一次ハンダ付けされた鉛フリーハンダの温度が前記区域において、該ハンダがハンダ付け不良を生じる温度にまで低下して固化することを効果的にに抑制し得る。したがって、特に融点の高い鉛フリーハンダを用いたハンダ付けにおいてもより良好なハンダ付けを行うことが出来る。
【0013】
【実施例】
図面を参照して本発明をさらに詳しく説明する。以下の実施例は本発明を限定することを目的とするものではない。
【0014】
実施例 1.
本発明のハンダ付け方法を具体的に表した装置として、ハンダ付け装置1を挙げて説明する。図1及び図2(図1におけるA−A線による断面図を示す)に示すように、ハンダ付け装置1は、溶融した鉛フリーハンダが満たされる鋳鉄からなる外槽2、該ハンダを加熱し、かつ一定温度に保つ為のヒーター3、外槽2中の溶融した鉛フリーハンダを一次ハンダ吹き口塔4及び仕上げハンダ吹き口塔5に給送する為のハンダ給送部6及び6’を備える。ステンレス鋼の表面に窒化クロム処理された一次ハンダ吹き口塔4及び仕上げハンダ吹き口塔5は、印刷基板7の搬送方向(図2中の矢印方向P)に前後となるように並置されている。一次ハンダ吹き口塔4の上部には、多孔平板8からなるハンダ吹出し部9が設けられ、その一方、仕上げハンダ吹き口塔5の上部のハンダ吹出し部9’においては、複数の振動板10が、バイブレーターに連結したシャフト11によって、互いに一定間隔で配置されている。
【0015】
P方向に向って搬送される印刷基板7は、外槽2中の鉛フリーハンダが一次ハンダ吹き口塔4に給送されハンダ吹出し部9を通って形成される一次ハンダ噴流と接触し、続いて印刷基板7は、外槽2からハンダ吹出し部9’を通って形成される仕上げハンダ噴流と接触されることによってハンダ付けされる。本実施例においては、融点がおよそ220℃の鉛フリーハンダを用い、該ハンダの溶融温度を260℃、印刷基板7の搬送速度は0.9m/分とし、一次ハンダ噴流との接触が終わる地点から仕上げハンダ噴流との接触が始まる地点までの距離(図2中のL)を15mmに設定した。また、印刷基板の下面の温度(s)は、該基板の下面に取り付けた温度センサーにより測定した。その結果を、図3のグラフ中の温度変化曲線に示す。図3の横軸は印刷基板の搬送開始からの経過時間を表し、縦軸は印刷基板の下面の温度を表す。
【0016】
図3によると、印刷基板の下面の温度sは、一次ハンダ噴流との接触が始まる地点(P1)から急激に上昇し、およそ250℃に達した後は、一次ハンダ噴流との接触が終わる地点(P2)まで該温度に維持されている。そして印刷基板7がP2を通過した後、印刷基板の下面の温度sはおよそ220℃まで低下するが、仕上げハンダ噴流との接触が始まる地点(R1)から上昇し、再び上昇し、250℃に達した後は仕上げハンダ噴流との接触が終わる地点(R2)まで同温度に維持されている。
ここで、印刷基板の下面の温度sはP2における温度から低下しているものの、P2−R1間の距離Lを15mmと短く設定してある為に、印刷基板7がP2からR1に至るまでの時間もより短縮され、結果として印刷基板の下面の温度sの低下がおよそ220℃までの低下に抑えられており、従来のハンダ付けによる結果である図4における対応する温度(およそ180℃)よりもその低下の程度がより少ない結果となっている。この為、仕上げハンダ噴流と接触して印刷基板の下面の温度sが上昇し、250℃に到達する時間も従来の方法と比較して早く、したがって印刷基板7がR1からR2まで達する時間、つまり印刷基板7が仕上げハンダ噴流と接触する時間のうち、250℃に維持されている時間(t)も、図4におけるt’と比較してより長い結果となっている。したがって、一次ハンダ付けにより印刷基板7に付着された鉛フリーハンダは、仕上げハンダ噴流との接触によって十分な時間の間で加熱されて溶融される為、ハンダ付け不良を引き起こすおそれがより低く、従来と比較して鉛フリーハンダを用いたより良好なハンダ付けを行うことが可能である。
【0017】
【発明の効果】
本発明のハンダ付け方法は、自動ハンダ付け方法において、一次ハンダ噴流との接触が終わる地点から仕上げハンダ噴流との接触が始まる地点までの区域の全体にわたって、搬送される印刷基板の下面付近の温度を200℃以上の温度に維持する方法である。その為、一次ハンダ付けにより印刷基板の下面に付着した鉛フリーハンダの温度が、続く二次ハンダ付けが始まるまでの間に急激に低下して、ハンダ付け不良を生じる程低温にまで固化してしまうことを効果的に防ぎ得る。したがって、従来のハンダ付け方法では対応することが困難であった、融点の高い鉛フリーハンダを用いたハンダ付けにおいてもより良好なハンダ付けを行うことが出来る。
【図面の簡単な説明】
【図1】本発明のハンダ付け方法に使用されるハンダ付け装置1を示す斜視図である。
【図2】図1のA−A線における断面図である。
【図3】本発明のハンダ付け方法において、搬送される印刷基板の下面の温度(s)の変化を示したグラフである。
【図4】従来のハンダ付け方法において、搬送される印刷基板の下面の温度(s’)の変化を示したグラフである。
【符号の説明】
1 ハンダ付け装置 2 外槽 3 ヒーター
4 一次ハンダ吹き口塔 5 仕上げハンダ吹き口塔 6 ハンダ給送部
7印刷基板 8 多孔平板 9 ハンダ吹出し部
10 振動板 11 シャフト
P1、P1’ 一次ハンダ噴流との接触が始まる地点
P2、P2’ 一次ハンダ噴流との接触が終わる地点
R1、R1’ 仕上げハンダ噴流との接触が始まる地点
R2、R2’ 仕上げハンダ噴流との接触が終わる地点
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a better soldering method using lead-free solder.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, automatic soldering of a printed circuit board and a chip component includes a primary soldering and a subsequent soldering, and a device used for the soldering is a primary soldering blower tower for the primary soldering and finishing. It consists of a finish soldering tower for soldering and an outer tank in which they are juxtaposed. Then, the molten solder blows out from the solder outlet at the top of the primary solder outlet tower to form a primary solder jet, and then the molten solder blows out from the solder outlet at the upper part of the secondary solder outlet tower to form a finished solder jet. Then, the printed circuit board and the chip component are soldered. As an example, there is a soldering method using an apparatus as shown in FIGS. 2 and 3 of JP-A-5-69124.
[0003]
By the way, as the solder, lead-tin solder has been generally used, but since lead contained therein may cause environmental pollution, from the viewpoint of environmental problems, it is used as an alternative to lead-tin solder. The development of lead-free, so-called lead-free solder has been promoted and has already been put into practical use.
[0004]
[Patent Document]
JP-A-5-69124
[Problems to be solved by the invention]
Therefore, when the conventional automatic soldering method described above is used as it is and soldering is performed on the printed board with lead-free solder, a problem that soldering failure easily occurs on the printed board after finishing soldering has occurred. I have.
The applicant has determined to observe the temperature change on the lower surface of the printed printed board when soldering is performed using lead-free solder in order to find out one cause of the problem. For soldering, a lead-free solder (melting point 220 ° C.) was used for a conventional soldering device using lead-tin solder, the melting temperature of the solder was 260 ° C., and the transfer speed of the printed circuit board was 1 m / min. Was performed under the following conditions. The measurement of the temperature (s ′) of the lower surface of the printed board was observed with a temperature sensor attached to the lower face of the printed board.
The results are shown in the temperature change curve in the graph of FIG. The horizontal axis in FIG. 4 represents the elapsed time from the start of transport of the printed circuit board, and the vertical axis represents the temperature of the lower surface of the printed circuit board.
[0006]
As shown in FIG. 4, the temperature (s ′) of the lower surface of the printed substrate conveyed on the conveyance path rapidly rises from a point (P1 ′) at which contact with the primary solder jet starts and reaches approximately 250 ° C. After that, the temperature is maintained at the same temperature until the point where the contact with the primary solder jet ends (P2 ′), but after the printed board passes through P2 ′, the temperature drops rapidly, and the final solder jet becomes The temperature drops to about 180 ° C. until the point (R1 ′) at which the contact starts. After the contact with the finishing solder jet has started, the temperature s ′ on the lower surface of the substrate rises again, and after reaching approximately 250 ° C., the same temperature is maintained until the point (R2 ′) at which the contact with the finishing solder jet ends. Has been maintained.
[0007]
Here, the applicant has noticed that the time (t ′) maintained at about 250 ° C. in the time from R1 ′ to R2 ′, that is, the time in contact with the finished solder jet, is extremely short. Inferred as follows. The lead-free solder adhered to the printed circuit board by the primary soldering solidifies before contact with the subsequent finished solder jet starts, but the solder is sufficiently melted through the contact with the finished solder jet and adheres to the lower surface of the substrate. It is considered that the condition is that it is necessary to make contact with the finishing solder jet maintained at about 250 ° C. for a certain period of time or more. However, since the contact with the finishing solder jet is limited to a certain time, in order to satisfy the condition, the temperature of the lower surface of the substrate needs to reach approximately 250 ° C. from the temperature at R1 ′ in as short a time as possible. I think that the. As a result, of the contact time between the printed board and the finish solder jet, the time maintained at about 250 ° C. becomes longer, and the lead-free solder that is primarily soldered to the printed board should melt sufficiently.
[0008]
However, in the conventional automatic soldering, the difference between the temperature at R1 ′ (about 180 ° C.) and the temperature at R2 ′ (about 250 ° C.) is large, and it takes longer to raise the temperature from R1 ′ to the temperature at R2 ′. Time is needed. As a result, of the contact time between the printed board and the finished solder jet, the time (t ′) maintained at 250 ° C. is shortened, and the lead-free solder that is primarily soldered to the printed board is not sufficiently melted. That is, it is considered that the soldering failure was caused by the fact that the finish soldering was not sufficiently performed.
From these assumptions, the applicant has devised the above problem by devising a temperature control from the point where the contact with the primary solder jet ends (P2 ′) to the point where the contact with the finished solder jet starts (R1 ′). With the idea of solving the above, the present invention has been completed.
[0009]
[Means for Solving the Problems]
That is, in detail, the present invention relates to an automatic soldering method for performing primary soldering and subsequent finish soldering on the lower surface of a printed circuit board to be conveyed using lead-free solder. Wherein the temperature near the lower surface of the printed circuit board is maintained at a temperature of 200 ° C. or more over the entire area from the point where the contact with the primary solder jet ends to the point where the contact with the finish solder jet starts. About the attachment method. A preferred embodiment thereof relates to the above-mentioned soldering method, wherein the temperature near the lower surface of the printed board is maintained at a temperature in the range of 220 ° C. to 250 ° C. over the entire area.
[0010]
The method of the present invention is a method particularly suitable for automatic soldering using lead-free solder, and on the transfer path of the printed board, the lower surface of the printed board is in contact with the primary solder jet in the primary soldering. The temperature near the lower surface of the printed circuit board is maintained at 200 ° C. or more over the entire area from the end point to the point where the contact with the finish solder jet in the finish soldering starts.
[0011]
As means for maintaining the temperature near the lower surface of the conveyed printed circuit board at a temperature of 200 ° C. or higher, there is a means for heating the lower surface near the surface by, for example, hot air or a heater. However, as a more effective means, the distance A from the point where the contact between the printed board and the primary solder jet ends to the point where the contact with the finish solder jet starts is shortened, and the primary soldering is performed on the lower surface of the printed board. Means for adjusting the temperature of the attached lead-free solder so that it comes into contact with the finish soldering jet in a shorter time before the temperature of the lead-free solder does not decrease to such a low temperature that soldering failure is likely to occur. When the substrate transport speed is 1 m / min, the distance A is preferably 20 mm or less. Alternatively, a means for increasing the transport speed of the printed board and adjusting the printed board to be brought into contact with the finish soldering jet in a short time may be used.
[0012]
As described above, the soldering method according to the present invention increases the temperature in the vicinity of the lower surface of the printed circuit board by 200 degrees over the entire area from the point where the contact with the primary solder jet ends to the point where the contact with the finish solder jet starts. ° C or higher, so that the temperature of the lead-free solder primary soldered to the lower surface in the area is effectively reduced to a temperature at which the solder causes soldering failure and solidified. Can be suppressed. Therefore, even in soldering using lead-free solder having a particularly high melting point, better soldering can be performed.
[0013]
【Example】
The present invention will be described in more detail with reference to the drawings. The following examples are not intended to limit the invention.
[0014]
Embodiment 1 FIG.
The soldering device 1 will be described as a device specifically illustrating the soldering method of the present invention. As shown in FIGS. 1 and 2 (a cross-sectional view taken along line AA in FIG. 1), a soldering apparatus 1 includes an outer tank 2 made of cast iron filled with molten lead-free solder, and heats the solder. And a solder feeder 6 and 6 ′ for feeding the molten lead-free solder in the outer tank 2 to the primary solder outlet tower 4 and the finished solder outlet tower 5. Prepare. The primary solder port tower 4 and the finished solder port tower 5 on which the surface of stainless steel has been subjected to chromium nitride treatment are juxtaposed so as to be forward and backward in the transport direction of the printed board 7 (arrow direction P in FIG. 2). . In the upper part of the primary solder outlet tower 4, a solder outlet part 9 composed of a perforated flat plate 8 is provided. On the other hand, in the upper solder outlet part 9 ′ of the finish solder outlet tower 5, a plurality of diaphragms 10 are provided. , Are arranged at regular intervals from each other by a shaft 11 connected to a vibrator.
[0015]
The printed circuit board 7 conveyed in the P direction contacts the primary solder jet formed by the lead-free solder in the outer tank 2 being fed to the primary solder port tower 4 and passing through the solder blowout section 9. Thus, the printed circuit board 7 is soldered by being brought into contact with a finished solder jet formed from the outer tank 2 through the solder blowing section 9 ′. In the present embodiment, a lead-free solder having a melting point of about 220 ° C. is used, the melting temperature of the solder is 260 ° C., the transfer speed of the printed circuit board 7 is 0.9 m / min, and the point at which contact with the primary solder jet is completed. The distance (L in FIG. 2) from to the point where contact with the finished solder jet started was set to 15 mm. The temperature (s) of the lower surface of the printed board was measured by a temperature sensor attached to the lower surface of the board. The results are shown in the temperature change curve in the graph of FIG. The horizontal axis in FIG. 3 represents the elapsed time from the start of transport of the printed circuit board, and the vertical axis represents the temperature of the lower surface of the printed circuit board.
[0016]
According to FIG. 3, the temperature s on the lower surface of the printed board rises sharply from the point (P1) where the contact with the primary solder jet starts, and after reaching about 250 ° C., the point where the contact with the primary solder jet ends. The temperature is maintained until (P2). Then, after the printed circuit board 7 has passed through P2, the temperature s on the lower surface of the printed circuit board decreases to about 220 ° C., but rises from a point (R1) where contact with the finishing solder jet starts, rises again, and rises to 250 ° C. After reaching, the same temperature is maintained until a point (R2) where the contact with the finishing solder jet ends.
Here, although the temperature s of the lower surface of the printed circuit board is lower than the temperature at P2, the distance L between P2 and R1 is set as short as 15 mm. The time is further shortened, and as a result, the decrease in the temperature s of the lower surface of the printed circuit board is suppressed to about 220 ° C., which is lower than the corresponding temperature (about 180 ° C.) in FIG. Results in a smaller degree of reduction. For this reason, the temperature s of the lower surface of the printed circuit board rises in contact with the finishing solder jet, and the time to reach 250 ° C. is earlier than that of the conventional method, and therefore, the time for the printed circuit board 7 to reach from R1 to R2, The time (t) at which the printed board 7 is kept at 250 ° C. in contact with the finishing solder jet is longer than the time t ′ in FIG. Therefore, the lead-free solder adhered to the printed circuit board 7 by the primary soldering is heated and melted for a sufficient time by contact with the finishing solder jet, so that the possibility of causing poor soldering is lower. It is possible to perform better soldering using lead-free solder than in the case of (1).
[0017]
【The invention's effect】
The soldering method of the present invention is the automatic soldering method, wherein the temperature near the lower surface of the printed substrate conveyed over the entire area from the point where the contact with the primary solder jet ends to the point where the contact with the finish solder jet starts. Is maintained at a temperature of 200 ° C. or higher. Therefore, the temperature of the lead-free solder attached to the lower surface of the printed circuit board due to the primary soldering rapidly drops before the subsequent secondary soldering starts, and solidifies to a low temperature enough to cause soldering failure. Can be effectively prevented. Therefore, it is possible to perform better soldering using lead-free solder having a high melting point, which has been difficult to cope with the conventional soldering method.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a soldering device 1 used in a soldering method of the present invention.
FIG. 2 is a cross-sectional view taken along line AA of FIG.
FIG. 3 is a graph showing a change in temperature (s) of a lower surface of a printed circuit board conveyed in the soldering method of the present invention.
FIG. 4 is a graph showing a change in temperature (s ′) of a lower surface of a printed substrate conveyed in a conventional soldering method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solder 2 Outer tank 3 Heater 4 Primary solder port tower 5 Finish solder port tower 6 Solder feeding section 7 Printed circuit board 8 Perforated flat plate 9 Solder blowing section 10 Vibration plate 11 Shaft P1, P1 'With primary solder jet Contact point P2, P2 'Point where contact with primary solder jet ends R1, R1' Point where contact with finish solder jet starts R2, R2 'Point where contact with finish solder jet ends

Claims (2)

鉛フリーハンダを用い、搬送される印刷基板の下面に対して、一次ハンダ付け及びこれに続いて仕上げハンダ付けを行う自動ハンダ付け方法において、前記印刷基板の搬送路上において一次ハンダ噴流との接触が終わる地点から仕上げハンダ噴流との接触が始まる地点までの区域の全体にわたって、該印刷基板の下面付近の温度を200℃以上の温度に維持することを特徴とするハンダ付け方法。Using lead-free solder, in the automatic soldering method of performing primary soldering and subsequent soldering to the lower surface of the printed circuit board to be conveyed, the contact with the primary solder jet on the conveying path of the printed circuit board is reduced. A soldering method, comprising: maintaining the temperature near the lower surface of the printed board at a temperature of 200 ° C. or more over the entire area from the end point to the point where the contact with the finishing solder jet starts. 前記区域の全体にわたって、前記印刷基板の下面付近の温度を220℃ないし250℃の範囲内の温度に維持することを特徴とする請求項1記載のハンダ付け方法。The method according to claim 1, wherein a temperature near a lower surface of the printed circuit board is maintained at a temperature in a range of 220C to 250C over the entire area.
JP2003006994A 2003-01-15 2003-01-15 Soldering method using lead-free solder Pending JP2004221326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006994A JP2004221326A (en) 2003-01-15 2003-01-15 Soldering method using lead-free solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006994A JP2004221326A (en) 2003-01-15 2003-01-15 Soldering method using lead-free solder

Publications (1)

Publication Number Publication Date
JP2004221326A true JP2004221326A (en) 2004-08-05

Family

ID=32897215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006994A Pending JP2004221326A (en) 2003-01-15 2003-01-15 Soldering method using lead-free solder

Country Status (1)

Country Link
JP (1) JP2004221326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503749A (en) * 2009-09-02 2013-02-04 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Equipment for supplying rare gas to wave soldering equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503749A (en) * 2009-09-02 2013-02-04 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Equipment for supplying rare gas to wave soldering equipment

Similar Documents

Publication Publication Date Title
US20070039999A1 (en) Soldering apparatus and soldering method
US6164516A (en) Soldering apparatus and method
JP2020115574A (en) Method of correcting solder bump
JP2004221326A (en) Soldering method using lead-free solder
EP1293283B1 (en) Method for local application of solder to preselected areas on a printed circuit board
JP2009010300A (en) Soldering device and method
JP2004106061A (en) Manufacturing method for printed circuit board unit and soldering device
JP4962459B2 (en) Component mounting method
JP2004214553A (en) Reflow furnace
JP2004195539A (en) Soldering device
JP4410490B2 (en) Automatic soldering equipment
JP2002141658A (en) Method and device for flow soldering
JP2002204060A (en) Soldering method and flow soldering apparatus
JP6860729B2 (en) Soldered product manufacturing equipment and soldered product manufacturing method
JPH0286152A (en) Solder dipping equipment
JPH03155465A (en) Method for adjusting jet stream of jet type soldering device
JP2008159961A (en) Board transfer apparatus
JP2705280B2 (en) Reflow equipment
JP2002271013A (en) Soldering equipment and method of soldering
JP2000294918A (en) Blow nozzle, reflow soldering apparatus and reflow soldering method
JP2005079124A (en) Soldering equipment
JP4731768B2 (en) Flow soldering method
JPS63299857A (en) Convective type vapor phase soldering device
JP2002185121A (en) Reflow method for printed circuit board and reflow furnace
JP2001284788A (en) Equipment for soldering substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080618

A02 Decision of refusal

Effective date: 20081022

Free format text: JAPANESE INTERMEDIATE CODE: A02