JP4962459B2 - Component mounting method - Google Patents

Component mounting method Download PDF

Info

Publication number
JP4962459B2
JP4962459B2 JP2008247829A JP2008247829A JP4962459B2 JP 4962459 B2 JP4962459 B2 JP 4962459B2 JP 2008247829 A JP2008247829 A JP 2008247829A JP 2008247829 A JP2008247829 A JP 2008247829A JP 4962459 B2 JP4962459 B2 JP 4962459B2
Authority
JP
Japan
Prior art keywords
component
substrate
component mounting
solder
reflow furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008247829A
Other languages
Japanese (ja)
Other versions
JP2010080695A (en
Inventor
利彦 永冶
浩二 桜井
朋美 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008247829A priority Critical patent/JP4962459B2/en
Publication of JP2010080695A publication Critical patent/JP2010080695A/en
Application granted granted Critical
Publication of JP4962459B2 publication Critical patent/JP4962459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、両端部に電極を有する部品を予め半田が塗布された基板上に搭載した後、その基板を一定の方向に送ってリフロー炉を通過させ、これにより基板上の半田を加熱及び冷却させて部品を基板に実装する部品実装方法に関するものである。   In the present invention, after components having electrodes at both ends are mounted on a substrate on which solder has been applied in advance, the substrate is sent in a certain direction and passed through a reflow furnace, thereby heating and cooling the solder on the substrate. The present invention relates to a component mounting method for mounting components on a substrate.

両端部に電極を有する部品(チップ部品)をリフロー方式により基板に実装する場合、基板上に設けられたランドに予めペースト状の半田を塗布しておき、部品の両端部の電極がその部品に対応する一対のランド上の半田に接触するように各部品を搭載した後、基板を一定の方向に送ってリフロー炉を通過させる。これによりペースト状の半田は溶融・固化され、各部品が基板に実装される。   When mounting components (chip components) having electrodes at both ends on a substrate by the reflow method, paste-like solder is applied in advance to lands provided on the substrate, and the electrodes at both ends of the component are applied to the components. After mounting each component in contact with the solder on the corresponding pair of lands, the substrate is sent in a certain direction and passed through a reflow furnace. As a result, the paste-like solder is melted and solidified, and each component is mounted on the substrate.

このようなリフロー方式の部品実装方法により基板に実装される部品のうち、両端部の電極の並ぶ方向が基板のリフロー炉内での進行方向と一致しているものでは、基板がリフロー炉内を進行するとき、基板の進行方向の前方に位置するランド上の半田が進行方向の後方に位置するランド上の半田よりも時間的に早く溶融を開始し、かつ時間的に早く固化を開始することになる。このため、進行方向の前方に位置するランド上の半田と進行方向の後方に位置するランド上の半田との間で部品に対して作用する力(表面張力や粘着力)のアンバランスが生じ、その結果として基板の進行方向の後方の電極がランドから浮き上がり、進行方向の前方の電極のみがランド上に半田付けされて部品が傾斜姿勢に立ちあがってしまうチップ立ち(マンハッタン現象又はツームストン現象とも呼ばれる)が生じる場合がある。   Among the components mounted on the board by such a reflow-type component mounting method, if the direction in which the electrodes on both ends are aligned with the traveling direction of the board in the reflow furnace, the board moves through the reflow furnace. When traveling, the solder on the land located in the front of the board in the direction of travel starts melting earlier than the solder on the land located in the rear of the direction of travel, and starts solidifying earlier in time. become. For this reason, an unbalance of the force (surface tension and adhesive force) acting on the component occurs between the solder on the land located in the front in the traveling direction and the solder on the land located in the rear in the traveling direction, As a result, the tip of the chip rises from the land in the direction of travel of the substrate, and only the front electrode in the direction of travel is soldered onto the land and the component stands in an inclined position (also called Manhattan phenomenon or tombstone phenomenon) May occur.

このようなチップ立ちは部品が微小であるほど起き易く、部品の軽薄化が進む現在ではその対策が重要となる。このため従来、種々の対策が講じられており、例えば、下記の特許文献1には、半田が溶融・固化してもチップを立ち上がらせる表面張力が発生しないようにランドの形状を整える技術が開示されている。
特開2005−116918号公報
Such chip standing is more likely to occur as the part becomes smaller, and countermeasures are important nowadays as parts become lighter and thinner. For this reason, various measures have been taken in the past. For example, Patent Document 1 listed below discloses a technique for adjusting the shape of a land so that surface tension that raises a chip does not occur even when solder melts and solidifies. Has been.
JP 2005-116918 A

しかしながら、基板に実装される部品は極めて多数であることから、個々のチップに対してランドの形状を整えることはコストの面等から困難であり、より簡単なチップ立ちの防止方法が求められている。   However, since there are an extremely large number of components mounted on the board, it is difficult to adjust the shape of the land for each chip from the viewpoint of cost, and a simpler chip standing prevention method is required. Yes.

そこで本発明は、簡単な方法でチップ立ちの発生を防止することができる部品実装方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a component mounting method that can prevent the occurrence of chip standing by a simple method.

請求項1に記載の部品実装方法は、両端部に電極を有する部品を予め半田が塗布された基板上に部品搭載機により搭載した後、その基板を一定の方向に送ってリフロー炉を通過させ、これにより基板上の半田を加熱及び冷却させて部品を基板に実装する部品実装方法であって、基板に搭載しようとする部品のうち、基板上に搭載された場合に両端部の電極の並ぶ方向が基板のリフロー炉内での進行方向と一致し、かつ、リフロー炉内で半田が加熱されて溶融したときにチップ立ちすることが予測されるものは、その部品について予め定められている基板上の規定の搭載位置から電極の並ぶ方向にずらして部品搭載機により搭載するものであり、リフロー炉を通過した基板を半田付け外観検査機により検査し、電極が並ぶ方向が基板のリフロー炉内での進行方向と一致していた部品が、リフロー炉を通過した後にチップ立ちが生じていた旨の情報が半田付け外観検査装置から部品搭載機に送られてきた場合には、その後、同一の基板の同一箇所に同一の部品を搭載してリフロー炉を通過させたならば、その部品はチップ立ちすると予測するIn the component mounting method according to claim 1, after mounting components having electrodes at both ends on a substrate on which solder has been applied in advance by a component mounting machine , the substrate is sent in a certain direction and passed through a reflow furnace. This is a component mounting method in which the solder on the substrate is heated and cooled to mount the component on the substrate. Among the components to be mounted on the substrate, the electrodes on both ends are aligned when mounted on the substrate. If the direction of the board is the same as the direction of travel in the reflow furnace and the solder is expected to rise when the solder is heated and melted in the reflow furnace, the board that is predetermined for the component is used. reflow from the mounting position above the defined shift in the direction of arrangement of the electrode is intended to be mounted by the component mounting machine, the substrate passing through the reflow furnace were examined by soldering visual inspection machine, direction in which the electrode is lined with the substrate If the information indicating that the chip was standing after passing through the reflow furnace was sent to the component mounting machine from the soldering appearance inspection device If the same component is mounted on the same location of the substrate and passed through the reflow furnace, the component is predicted to stand up .

本発明の部品実装方法では、基板上に搭載しようとする部品のうち、基板上に搭載された場合に両端部の電極の並ぶ方向が基板のリフロー炉内での進行方向と一致し、かつ、リフロー炉内で半田が加熱されて溶融したときにチップ立ちすることが予測されるものは、その部品について予め定められている基板上の規定の搭載位置から電極の並ぶ方向にずらして搭載する。このようにすると、部品の両電極に接する半田が部品に対して作用する力(表面張力や粘着力)のバランス状態を安定方向(チップ立ちが起きない方向)に変化させることができ、極めて簡単にチップ立ちの発生を防止することができる。   In the component mounting method of the present invention, among the components to be mounted on the substrate, the direction in which the electrodes on both ends are aligned with the traveling direction in the reflow furnace of the substrate when mounted on the substrate, and When the solder is expected to stand when the solder is heated and melted in the reflow furnace, the component is mounted by shifting it from the predetermined mounting position on the substrate in the direction in which the electrodes are arranged. In this way, it is possible to change the balance of the force (surface tension and adhesive force) acting on the component by the solder that contacts both electrodes of the component in a stable direction (a direction in which the chip does not stand up). In addition, it is possible to prevent the occurrence of chip standing.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の一実施の形態における部品実装ラインの概略構成図、図2(a),(b),(c)は本発明の一実施の形態における基板と電子部品の接合過程を説明する図、図3は本発明の一実施の形態における部品実装ラインが実行する部品実装の流れを示すフローチャート、図4(a)は本発明の一実施の形態における部品実装ラインにおいて部品が正常に実装された状態を示す図、図4(b)は本発明の一実施の形態における部品実装ラインにおいて部品がチップ立ちをした状態を示す図、図5は本発明の一実施の形態における部品搭載機が実行する部品搭載工程の流れを示すフローチャート、図6は本発明の一実施の形態における部品搭載機の平面図、図7は本発明の一実施の形態における部品搭載機の移載ヘッドの拡大正面図、図8は本発明の一実施の形態における部品搭載機の制御系統を示すブロック図、図9(a),(b)は本発明の一実施の形態における部品実装機が実行する部品搭載工程における部品の搭載位置のずらし方を説明する基板及び部品の平面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a component mounting line according to an embodiment of the present invention, and FIGS. 2A, 2B, and 2C illustrate a bonding process between a substrate and an electronic component according to an embodiment of the present invention. FIG. 3 is a flowchart showing the flow of component mounting executed by the component mounting line according to the embodiment of the present invention, and FIG. 4A is a diagram showing normal components in the component mounting line according to the embodiment of the present invention. FIG. 4B is a diagram showing a mounted state, FIG. 4B is a diagram showing a state in which the component stands on the component mounting line in the embodiment of the present invention, and FIG. 5 is a component mounting in the embodiment of the present invention. FIG. 6 is a plan view of a component mounting machine according to an embodiment of the present invention, and FIG. 7 is a transfer head of the component mounting machine according to an embodiment of the present invention. Enlarged front view, figure FIG. 9 is a block diagram showing a control system of a component mounting machine in one embodiment of the present invention, and FIGS. 9A and 9B are views of components in a component mounting process executed by the component mounting machine in one embodiment of the present invention. It is a top view of the board | substrate and components explaining the shift method of a mounting position.

図1において、部品実装ライン1は半田印刷機2、半田外観検査機3、部品搭載機4、部品搭載検査機5、リフロー炉6及び半田付け外観検査機7を有して構成されている。   In FIG. 1, a component mounting line 1 includes a solder printing machine 2, a solder appearance inspection machine 3, a component mounting machine 4, a component mounting inspection machine 5, a reflow furnace 6, and a soldering appearance inspection machine 7.

半田印刷機2は外部から供給された基板8を搬送コンベア2aによって受け取って所定位置に位置決めし、基板8上のランド8aにペースト状の半田Sを印刷(塗布)した後(図2(a)、図3に示すステップST1の半田塗布工程)、搬送コンベア2aにより半田印刷機2の外部に搬出する。   The solder printer 2 receives the substrate 8 supplied from the outside by the conveyor 2a, positions it at a predetermined position, and prints (applies) paste solder S on the land 8a on the substrate 8 (FIG. 2A). The solder application process in step ST1 shown in FIG. 3 is carried out of the solder printer 2 by the conveyor 2a.

半田外観検査機3は半田印刷機2から搬出された基板8を搬送コンベア3aによって受け取って所定位置に位置決めし、その基板8に印刷されているペースト状の半田Sの外観(塗布状態)を図示しないカメラによって視認して異常の有無を検査する(図3に示すステップST2の半田外観検査工程)。その結果、半田Sの塗布状態に異常が認められなかった基板8については搬送コンベア3aによってそのまま外部に搬出し、半田Sの塗布状態に異常が認められた基板8についてはその基板8の所定位置に不良マークを押印して搬出する。   The solder appearance inspection machine 3 receives the board 8 carried out from the solder printing machine 2 by the conveyor 3a and positions it at a predetermined position, and shows the appearance (applied state) of the paste-like solder S printed on the board 8. The presence or absence of an abnormality is visually inspected with a camera that does not (step ST2 solder appearance inspection step shown in FIG. 3). As a result, the substrate 8 in which no abnormality is found in the application state of the solder S is unloaded by the conveyor 3a as it is, and the substrate 8 in which the abnormality is found in the application state of the solder S is determined at a predetermined position on the substrate 8. Imprint a defect mark on the

部品搭載機4は半田外観検査機3から搬出された基板8を搬送コンベア4aによって受け取って所定位置に位置決めし、半田外観検査機3によって不良マークが押印されなかった基板8に対して部品Pの搭載を行う(図2(b)、ステップST3の部品搭載工程)。ここで、部品Pは両端部に電極Tを有して基板8上に表面実装される所謂チップ部品であり、部品Pは両端部の電極Tが半田印刷機2によってペースト状の半田Sが塗布された一対のランド8a上に搭載される。基板8上の所定位置に全ての部品Pを搭載したら、部品搭載機4は搬送コンベア4aによって基板8を外部に搬出する。   The component mounting machine 4 receives the substrate 8 transported from the solder appearance inspection machine 3 by the transfer conveyor 4a and positions it at a predetermined position. The component mounting machine 4 places the component P on the substrate 8 on which no defect mark is imprinted by the solder appearance inspection machine 3. Mounting is performed (FIG. 2B, component mounting process in step ST3). Here, the component P is a so-called chip component that has electrodes T at both ends and is surface-mounted on the substrate 8. The component P is coated with paste solder S by the solder printer 2. It is mounted on the pair of lands 8a. When all the components P are mounted at predetermined positions on the substrate 8, the component mounting machine 4 unloads the substrate 8 to the outside by the transfer conveyor 4a.

部品搭載検査機5は部品搭載機4から搬出された基板8を搬送コンベア5aによって受け取って所定位置に位置決めし、部品搭載機4によって基板8上に搭載された各部品Pを図示しないカメラによって視認して異常の有無を検査する(ステップST4の部品搭載外
観検査工程)。その結果、部品Pの搭載状態に異常が認められなかった基板8については搬送コンベア5aによってそのまま外部に搬出し、部品Pの搭載状態に異常が認められた基板8についてはその基板8の所定位置に不良マークを押印して搬出する。
The component mounting inspection machine 5 receives the substrate 8 transported from the component mounting device 4 by the transfer conveyor 5a and positions it at a predetermined position, and visually recognizes each component P mounted on the substrate 8 by the component mounting device 4 with a camera (not shown). Then, the presence / absence of an abnormality is inspected (component mounting appearance inspection step in step ST4). As a result, the board 8 in which no abnormality is found in the mounting state of the component P is unloaded by the conveyor 5a as it is, and the board 8 in which the abnormality is found in the mounting state of the part P is determined at a predetermined position on the board 8. Imprint a defect mark on the

リフロー炉6は部品搭載検査機5から搬出された基板8を搬送コンベア6aによって受け取り、一定の方向(図1中に示す矢印A)に送って炉内を進行させつつ、加熱した後(図2(c))、冷却する(ステップST5の半田加熱冷却工程)。これにより基板8上の半田Sは溶融し、その後固化することによって、部品Pの両端部の電極Tが基板8の一対のランド8a上に半田付けされる。部品Pが半田付けされた基板8は搬送コンベア6aによってそのまま外部に搬出される。   The reflow furnace 6 receives the substrate 8 carried out from the component mounting inspection machine 5 by the transfer conveyor 6a, sends it in a certain direction (arrow A shown in FIG. 1), and heats it while moving through the furnace (FIG. 2). (C)) Cooling (solder heating cooling step of step ST5). As a result, the solder S on the substrate 8 is melted and then solidified, whereby the electrodes T at both ends of the component P are soldered onto the pair of lands 8 a of the substrate 8. The board 8 to which the component P is soldered is directly carried out to the outside by the transfer conveyor 6a.

半田付け外観検査機7はリフロー炉6から搬出された基板8を搬送コンベア7aによって受け取り、リフロー炉6内で加熱及び冷却された基板8の半田Sの外観(部品Pの半田付け状態)を図示しないカメラによって視認して異常の有無を検査する。その結果、部品Pの半田付け状態に異常が認められなかった基板8については搬送コンベア7aによってそのまま外部に搬出し、部品Pの半田付け状態に異常が認められた基板8についてはその基板8の所定位置に不良マークを押印して搬出する(ステップST6の半田外観検査工程)。半田付け外観検査機7から搬出された基板8のうち、不良マークが押印されていない基板8は部品実装ライン1において正常に部品実装がなされた基板8となる。   The soldering appearance inspection machine 7 receives the board 8 carried out from the reflow furnace 6 by the transfer conveyor 7a, and shows the appearance of the solder S of the board 8 heated and cooled in the reflow furnace 6 (soldering state of the component P). Visually inspect with a camera that does not, check for abnormalities. As a result, the board 8 in which no abnormality is found in the soldering state of the component P is unloaded by the conveyor 7a as it is, and the board 8 in which the abnormality is found in the soldering state of the part P A defective mark is impressed at a predetermined position and is carried out (solder appearance inspection step of step ST6). Of the substrates 8 carried out from the soldering appearance inspection machine 7, the substrate 8 on which no defect mark is imprinted becomes the substrate 8 on which component mounting is normally performed in the component mounting line 1.

また半田付け外観検査機7は、リフロー炉6から搬出された基板8上にチップ立ちしている部品Pがあるかどうかの検査も行う。半田付け外観検査機7は、基板8上にチップ立ちをしている部品Pを視認したときには、基板8上のどの位置にどの向きで搭載された部品Pがチップ立ちしているかの情報を、図1に示す信号伝送線9を介して部品搭載機4に送信する。これにより部品搭載機4は、基板8上のどの位置にどの向きで搭載した部品Pがその後にチップ立ちを起こしたかの情報を得ることができる。   The soldering appearance inspection machine 7 also performs an inspection of whether there is a component P standing on a chip on the substrate 8 carried out of the reflow furnace 6. When the soldering appearance inspection machine 7 visually recognizes the component P standing on the substrate 8, information on which position on the substrate 8 and the component P mounted in which direction the chip is standing, It transmits to the component mounting machine 4 via the signal transmission line 9 shown in FIG. As a result, the component mounting machine 4 can obtain information on which position on the substrate 8 and in which direction the component P mounted thereafter caused the chip to stand.

ここでチップ立ちとは、基板8上に搭載した部品Pの両端部の電極Tの並ぶ方向が、基板8のリフロー炉8内での進行方向(図1及び図4(a),(b)中に示す矢印Aの向く方向)と一致している場合に、図4(a)に示すように、部品Pの両電極Tがそれぞれ対応するランド8aに半田付けされるのではなく、図4(b)に示すように、基板8のリフロー炉6内での進行方向の後方の電極Tがランド8aから浮き上がり、進行方向の前方の電極Tのみがランド8a上に半田付けされて部品Pが傾斜姿勢に立ち上がってしまう現象をいう。このようなチップ立ちは、基板8がリフロー炉6内を進行するとき、基板8の進行方向の前方に位置するランド8a上の半田Sが進行方向の後方に位置するランド8a上の半田Sよりも時間的に早く溶融を開始し、かつ時間的に早く固化を開始することから、進行方向の前方に位置するランド8a上の半田Sと進行方向の後方に位置するランド8a上の半田Sとの間で部品Pに対して作用する力(表面張力や粘着力)のアンバランスが生じることによって起こると考えられている。   Here, the chip standing means that the direction in which the electrodes T on both ends of the component P mounted on the substrate 8 are arranged is the direction in which the substrate 8 travels in the reflow furnace 8 (FIGS. 1, 4A, and 4B). 4), the two electrodes T of the component P are not soldered to the corresponding lands 8a as shown in FIG. 4A. As shown in (b), the electrode T behind the substrate 8 in the traveling direction in the reflow furnace 6 is lifted from the land 8a, and only the electrode T ahead in the traveling direction is soldered onto the land 8a. The phenomenon of standing up in an inclined position. In such chip standing, when the substrate 8 travels in the reflow furnace 6, the solder S on the land 8 a located in front of the traveling direction of the substrate 8 is more than the solder S on the land 8 a located behind in the traveling direction. In this case, since melting starts earlier in time and solidification starts earlier in time, the solder S on the land 8a located in the front in the traveling direction and the solder S on the land 8a located in the rear in the traveling direction It is thought that this is caused by an unbalance of forces (surface tension and adhesive force) acting on the component P between the two.

本実施の形態において、部品実装ライン1の部品搭載機4が行う部品搭載工程(図3に示すステップST3)は、具体的には図5に示すフローチャートに示す手順で実行され、ステップST5の半田加熱冷却工程において部品Pがチップ立ちをすることを防止できるものとなっている。   In the present embodiment, the component mounting process (step ST3 shown in FIG. 3) performed by the component mounting machine 4 of the component mounting line 1 is specifically executed according to the procedure shown in the flowchart shown in FIG. It is possible to prevent the component P from standing up in the heating and cooling process.

部品搭載機4が行う部品搭載工程の詳細を述べる前に、先ず、図6、図7及び図8を用いて部品搭載機4の構成について説明する。部品搭載機4は基台11上に前述の搬送コンベア4aを備えており、搬送コンベア4aの上方には搬送コンベア4aによる基板8の搬送方向であるX軸方向(図1及び図4(a),(b)中の矢印Aに沿った方向)と水平に直交する方向(Y軸方向)に延びたY軸テーブル12が設けられている。Y軸テーブル1
2には2つのY軸スライダ13がY軸テーブル12に沿って(すなわちY軸方向に)移動自在に設けられており、各Y軸スライダ13にはX軸方向に延びたX軸テーブル14の一端が取り付けられている。各X軸テーブル14にはX軸テーブル14に沿って(すなわちX軸方向に)移動自在な移動ステージ15が設けられている。
Before describing the details of the component mounting process performed by the component mounting machine 4, first, the configuration of the component mounting machine 4 will be described with reference to FIGS. 6, 7, and 8. The component mounting machine 4 includes the above-described transport conveyor 4a on the base 11, and an X-axis direction (FIG. 1 and FIG. 4A), which is the transport direction of the substrate 8 by the transport conveyor 4a, is above the transport conveyor 4a. , (B) is provided with a Y-axis table 12 extending in a direction (Y-axis direction) perpendicular to the horizontal direction (direction along arrow A). Y-axis table 1
2 includes two Y-axis sliders 13 that are movable along the Y-axis table 12 (that is, in the Y-axis direction). Each Y-axis slider 13 includes an X-axis table 14 that extends in the X-axis direction. One end is attached. Each X-axis table 14 is provided with a moving stage 15 that is movable along the X-axis table 14 (that is, in the X-axis direction).

図6及び図7において、各移動ステージ15には移載ヘッド16が取り付けられており、各移載ヘッド16には複数のノズルシャフト17が上下方向(Z軸方向とする)の下方に延びて設けられている。各ノズルシャフト17の下端部にはノズルホルダ18を介して吸着ノズル19が着脱自在に取り付けられている。   6 and 7, a transfer head 16 is attached to each moving stage 15, and a plurality of nozzle shafts 17 extend downward in the vertical direction (Z-axis direction) to each transfer head 16. Is provided. A suction nozzle 19 is detachably attached to the lower end portion of each nozzle shaft 17 via a nozzle holder 18.

図6において、搬送コンベア4aの側方領域には移載ヘッド16に部品Pを供給する複数のテープフィーダ20がX軸方向に並んで設けられている。また、移載ヘッド16には撮像面を下方に向けた基板カメラ21が設けられており、基台11上には撮像面を上方に向けた部品カメラ22が設けられている。   In FIG. 6, a plurality of tape feeders 20 that supply the component P to the transfer head 16 are provided side by side in the X-axis direction in the side region of the transport conveyor 4a. The transfer head 16 is provided with a substrate camera 21 with the imaging surface facing downward, and a component camera 22 with the imaging surface facing upward is provided on the base 11.

図8において、部品搭載機4には、搬送コンベア4aを駆動する搬送コンベア駆動モータ23a、各Y軸スライダ13をY軸テーブル12に沿って移動させるY軸スライダ移動機構23b、各移動ステージ15をX軸テーブル14に沿って移動させる移動ステージ移動機構23c、各吸着ノズル19を個別に昇降及び上下軸(Z軸)回りに回転させるノズル駆動機構23d及び各吸着ノズル19に部品Pの吸着(ピックアップ)動作を行わせるノズル吸着機構23eが備えられている。これら搬送コンベア駆動モータ23a、Y軸スライダ移動機構23b、移動ステージ移動機構23c、ノズル駆動機構23d及びノズル吸着機構23eは部品搭載機4に備えられた制御装置24によって作動制御がなされ、搬送コンベア4aによる基板8の搬送及び位置決めや、移載ヘッド16による部品Pのピックアップ及びその部品Pの基板8への搭載等が行われる。また、基板カメラ21及び部品カメラ22は制御装置24によりその作動制御がなされ、基板カメラ21及び部品カメラ22からの撮像結果は制御装置24に入力される。また、制御装置24に繋がる記憶装置25には、各部品Pの基板8上の目標搭載位置のデータ(基板8を基準とする座標データ)を含む種々のデータが記憶されている。   In FIG. 8, the component mounting machine 4 includes a transport conveyor drive motor 23 a that drives the transport conveyor 4 a, a Y-axis slider moving mechanism 23 b that moves each Y-axis slider 13 along the Y-axis table 12, and each moving stage 15. A moving stage moving mechanism 23c that moves along the X-axis table 14, a nozzle drive mechanism 23d that individually moves the suction nozzles 19 up and down and rotates around the vertical axis (Z-axis), and suction of the component P to each suction nozzle 19 (pickup) ) A nozzle suction mechanism 23e for performing the operation is provided. The transport conveyor drive motor 23a, the Y-axis slider moving mechanism 23b, the moving stage moving mechanism 23c, the nozzle drive mechanism 23d, and the nozzle suction mechanism 23e are controlled by the control device 24 provided in the component mounting machine 4, and the transport conveyor 4a. The substrate 8 is transported and positioned by means of the above, the component P is picked up by the transfer head 16, and the component P is mounted on the substrate 8. The operation of the board camera 21 and the component camera 22 is controlled by the control device 24, and the imaging results from the board camera 21 and the component camera 22 are input to the control device 24. The storage device 25 connected to the control device 24 stores various data including data on the target mounting position of each component P on the substrate 8 (coordinate data based on the substrate 8).

このような構成の部品搭載機4が行う部品搭載工程では、制御装置24は先ず、搬送コンベア4aを駆動して基板8をX軸方向に搬送し、所定位置に位置決めする(図5に示すステップST31)。そして、X軸テーブル14のY軸方向への移動と移動ステージ15のX軸方向への移動とによって移動ステージ15を所定位置に位置決めされた基板8に対して相対移動させ、基板8の上方に位置させた基板カメラ21によって基板8の位置決めマーク(図示せず)の画像認識(撮像)を行わせた後(ステップST32)、移載ヘッド16が備える吸着ノズル19にテープフィーダ20が供給する部品Pをピックアップさせる(ステップST33)。   In the component mounting process performed by the component mounting machine 4 having such a configuration, the control device 24 first drives the transport conveyor 4a to transport the substrate 8 in the X-axis direction and position it at a predetermined position (steps shown in FIG. 5). ST31). Then, the movement stage 15 is moved relative to the substrate 8 positioned at a predetermined position by the movement of the X-axis table 14 in the Y-axis direction and the movement stage 15 in the X-axis direction. Components that the tape feeder 20 supplies to the suction nozzle 19 provided in the transfer head 16 after image recognition (imaging) of a positioning mark (not shown) on the substrate 8 is performed by the substrate camera 21 that has been positioned (step ST32). P is picked up (step ST33).

制御装置24は、ステップST33を終了したら、吸着ノズル19に吸着された部品Pが部品カメラ22の上方(部品カメラ22の視野内)を通過するように水平方向に移動して部品カメラ22に部品Pの下面の画像認識(撮像)を行わせる(ステップST34)。そして、現在ピックアップしている部品Pの基板8上での目標搭載位置のデータを記憶装置25から読み出す(ステップST35)。   After completing step ST33, the control device 24 moves in the horizontal direction so that the component P sucked by the suction nozzle 19 passes above the component camera 22 (within the field of view of the component camera 22) and moves the component P to the component camera 22. Image recognition (imaging) of the lower surface of P is performed (step ST34). And the data of the target mounting position on the board | substrate 8 of the components P currently picked up are read from the memory | storage device 25 (step ST35).

制御装置24は、ステップST35において記憶装置25から部品Pの目標搭載位置のデータを読み出したら、現在吸着ノズル19によりピックアップしている、これから基板8に搭載しようとする部品Pのうち、予め定められている基板8上の規定の搭載位置に(すなわち記憶装置25から読み出した目標搭載位置のデータ通りに)搭載された場合に、両端部の電極Tの並ぶ方向が基板8のリフロー炉6内での進行方向と一致し、かつ、リフ
ロー炉6内で半田Sが加熱されて溶融したときにチップ立ちをすることが予測されるものがあるかどうかの判断を行う(ステップST36)。
When the control device 24 reads the data of the target mounting position of the component P from the storage device 25 in step ST35, the control device 24 is currently selected from among the components P that are currently picked up by the suction nozzle 19 and are to be mounted on the substrate 8 from now on. When the electrodes 8 are mounted at the specified mounting positions on the substrate 8 (that is, according to the target mounting position data read from the storage device 25), the direction in which the electrodes T on both ends are aligned in the reflow furnace 6 of the substrate 8 In step ST36, it is determined whether or not there is a chip that is predicted to stand up when the solder S is heated and melted in the reflow furnace 6 in the reflow furnace 6.

上記ステップST36の判断は、前述の信号伝送線9を介して部品搭載機4に半田付け外観検査機7より送られてくる部品Pのチップ立ちの情報(前述したように、基板8上のどの位置にどの向きで搭載された部品Pがチップ立ちしているかの情報)に基づいて行うことができる。すなわち、図9(a)に示すように、ステップST35において記憶装置25から読み出した目標搭載位置のデータ通りに基板8に搭載され、電極Tが並ぶ方向が基板8のリフロー炉6内での進行方向(図9(a),(b)中に示す矢印A)と一致していた部品Pが、リフロー炉6を通過した後にチップ立ちが生じていた旨の情報が半田付け外観検査機7から部品搭載機4に送られてきた場合には、その後、同一の基板8の同一箇所に同一の部品Pを搭載してリフロー炉6を通過させたとしたならば、その部品Pはチップ立ちを起こすと予測することができる。 In step ST36, the chip standing information of the component P sent from the soldering appearance inspection machine 7 to the component mounting machine 4 via the signal transmission line 9 (as described above, the information on which on the substrate 8 This can be performed based on information on which direction the component P mounted in the position is standing on the chip. That is, as shown in FIG. 9 (a), the substrate 8 is mounted on the substrate 8 according to the target mounting position data read from the storage device 25 in step ST35, and the direction in which the electrodes T are aligned is the progress of the substrate 8 in the reflow furnace 6. Information indicating that the chip standing has occurred after the part P that coincides with the direction (arrow A shown in FIGS. 9A and 9B) has passed through the reflow furnace 6 is obtained from the soldering appearance inspection machine 7. In the case of being sent to the component mounting machine 4, if the same component P is subsequently mounted on the same location on the same substrate 8 and passed through the reflow furnace 6, the component P raises the chip. Can be predicted.

部品搭載機4の制御装置24は、ステップST36においてチップ立ちをすることが予測されるものがあると判断したときには、そのチップ立ちをすると予測される部品Pの基板8上での搭載位置を、その部品Pについて予め定められている基板8上の規定の搭載位置(記憶装置25から読み出した目標搭載位置)から電極Tの並ぶ方向にずれた位置に補正する搭載位置の補正を行った上で(ステップST37)、その補正した搭載位置に部品Pを搭載する(ステップST38)。その結果、チップ立ちをすると予測される部品Pは、その部品Pについて予め定められている基板8上の規定の搭載位置から電極Tの並ぶ方向にずらして搭載される(図9(b))。   When the control device 24 of the component mounting machine 4 determines that there is something that is predicted to stand up in step ST36, the mounting position of the component P predicted to stand up on the substrate 8 is determined as follows: After correcting the mounting position, the component P is corrected to a position shifted in the direction in which the electrodes T are arranged from a predetermined mounting position (target mounting position read from the storage device 25) on the substrate 8 in advance. (Step ST37), the component P is mounted at the corrected mounting position (step ST38). As a result, the component P predicted to stand up is mounted with being shifted in the direction in which the electrodes T are arranged from a predetermined mounting position on the substrate 8 that is predetermined for the component P (FIG. 9B). .

このように、チップ立ちをすると予測される部品Pについて、その基板8上での搭載位置を、規定の搭載位置から電極Tの並ぶ方向にずらすようにすると、基板8のリフロー炉6内での進行方向の前方に位置するランド8a上の半田Sと進行方向の後方に位置するランド8a上の半田Sとの間で部品Pに対して作用する力(表面張力や粘着力)のバランス状態を安定方向(チップ立ちが起きない方向)に変化させることができるのでチップ立ちが解消される。   As described above, when the mounting position of the component P predicted to stand up on the substrate 8 is shifted from the specified mounting position in the direction in which the electrodes T are arranged, The balance state of the force (surface tension or adhesive force) acting on the component P between the solder S on the land 8a located in the front in the traveling direction and the solder S on the land 8a located in the rear in the traveling direction. Since it can be changed in a stable direction (a direction in which chip standing does not occur), chip standing is eliminated.

ここで、部品Pの基板8上での搭載位置を、基板8のリフロー炉6内での進行方向と同一の方向にずらすか、進行方向と反対の方向にずらすかは、ランド8aの形状、ランド8a上に塗布した半田Sの量や領域、部品Pの形状や重心の位置等、さまざまな要因によって異なるので一概には決定できないが、本願発明者の実験したところに従えば、進行方向と反対の方向にずらした場合に、よりチップ立ちを防止できる傾向にあるといえるので、部品Pをずらす方向は、通常は基板8のリフロー炉6内での進行方向と反対の方向(図9(b)中に示す矢印Bの向く方向)とするとよい。部品Pの搭載位置を基板8のリフロー炉6内での進行方向と反対の方向にずらした結果、逆にチップ立ちの程度が大きくなってしまうこともあり得るが、この場合には、部品Pの搭載位置を基板8のリフロー炉6内での進行方向と同一の方向(図9(b)に示す矢印Bが向く方向とは反対の方向)にずらせばよいので、多くとも2回の試行で同一基板8の同一箇所に搭載する同一部品Pのチップ立ちを防止することが可能である。   Here, whether the mounting position of the component P on the substrate 8 is shifted in the same direction as the traveling direction of the substrate 8 in the reflow furnace 6 or in the direction opposite to the traveling direction depends on the shape of the land 8a. Since it varies depending on various factors such as the amount and area of the solder S applied on the land 8a, the shape of the component P, the position of the center of gravity, etc., it cannot be determined unconditionally. Since it can be said that there is a tendency to prevent chip standing when shifted in the opposite direction, the direction in which the component P is shifted is usually the direction opposite to the traveling direction of the substrate 8 in the reflow furnace 6 (FIG. 9 ( b) the direction of arrow B shown in the figure). As a result of shifting the mounting position of the component P in the direction opposite to the traveling direction of the substrate 8 in the reflow furnace 6, conversely, the degree of chip standing may increase, but in this case, the component P Since the mounting position of the substrate 8 may be shifted in the same direction as the traveling direction of the substrate 8 in the reflow furnace 6 (the direction opposite to the direction in which the arrow B shown in FIG. 9B faces), at most two trials Thus, it is possible to prevent the chip standing of the same component P mounted on the same location of the same substrate 8.

一方、ステップST36において、チップ立ちをすることが予測されるものはないと判断したときには、その部品Pについて予め定められている基板8上の規定の位置に(記憶装置25から読み出した目標搭載位置のデータ通りに)搭載される(ステップST38)。なお、吸着ノズル19に吸着させた部品Pを基板8上に搭載するときは、基板カメラ21の画像認識によって得られる基板8の位置ずれと、部品カメラ22の画像認識によって得られる吸着ノズル19に対する部品Pの吸着ずれが修正されるようにする。   On the other hand, when it is determined in step ST36 that there is nothing predicted to stand up, the target mounting position read from the storage device 25 is set at a predetermined position on the substrate 8 for the component P. (According to the data) (step ST38). When the component P sucked by the suction nozzle 19 is mounted on the substrate 8, the positional deviation of the substrate 8 obtained by the image recognition of the substrate camera 21 and the suction nozzle 19 obtained by the image recognition of the component camera 22 are detected. The suction deviation of the component P is corrected.

以上説明したように、本実施の形態における部品実装方法は、基板8上に搭載しようとする部品Pのうち、予め定めた基板8上の規定位置(目標搭載位置)に搭載された場合に両端部の電極Tの並ぶ方向が基板8のリフロー炉6内での進行方向と一致し、かつ、リフロー炉6内で半田Sが加熱されて溶融したときにチップ立ちすることが予測されるものは、基板8上の規定位置から電極Tの並ぶ方向にずらして搭載するものというものであるが、このようにすると、部品Pの両電極Tに接する半田Sが部品Pに対して作用する力(表面張力や粘着力)のバランス状態を安定方向(チップ立ちが起きない方向)に変化させることができ、極めて簡単にチップ立ちの発生を防止することができる。   As described above, the component mounting method according to the present embodiment has both ends when mounted on a predetermined position (target mounting position) on the substrate 8 among the components P to be mounted on the substrate 8. The direction in which the electrodes T are aligned is coincident with the traveling direction of the substrate 8 in the reflow furnace 6 and the chip is expected to stand when the solder S is heated and melted in the reflow furnace 6. In this case, the mounting is performed by shifting the electrode T from the specified position on the substrate 8 in the direction in which the electrodes T are arranged. The balance state of the surface tension and the adhesive force can be changed in a stable direction (a direction in which the chip does not stand), and the occurrence of the chip standing can be prevented very easily.

簡単な方法でチップ立ちの発生を防止することができる部品実装方法を提供する。   Provided is a component mounting method capable of preventing occurrence of chip standing by a simple method.

本発明の一実施の形態における部品実装ラインの概略構成図Schematic configuration diagram of a component mounting line in an embodiment of the present invention (a)(b)(c)本発明の一実施の形態における基板と電子部品の接合過程を説明する図(A) (b) (c) The figure explaining the joining process of the board | substrate and electronic component in one embodiment of this invention 本発明の一実施の形態における部品実装ラインが実行する部品実装の流れを示すフローチャートThe flowchart which shows the flow of the component mounting which the component mounting line in one embodiment of this invention performs (a)本発明の一実施の形態における部品実装ラインにおいて部品が正常に実装された状態を示す図(b)本発明の一実施の形態における部品実装ラインにおいて部品がチップ立ちをした状態を示す図(A) The figure which shows the state in which the component was normally mounted in the component mounting line in one embodiment of this invention (b) The state in which the component stood up in the component mounting line in one embodiment of this invention is shown Figure 本発明の一実施の形態における部品搭載機が実行する部品搭載工程の流れを示すフローチャートThe flowchart which shows the flow of the component mounting process which the component mounting machine in one embodiment of this invention performs 本発明の一実施の形態における部品搭載機の平面図The top view of the component mounting machine in one embodiment of this invention 本発明の一実施の形態における部品搭載機の移載ヘッドの拡大正面図The enlarged front view of the transfer head of the component mounting machine in one embodiment of this invention 本発明の一実施の形態における部品搭載機の制御系統を示すブロック図The block diagram which shows the control system of the component mounting machine in one embodiment of this invention (a)(b)本発明の一実施の形態における部品実装機が実行する部品搭載工程における部品の搭載位置のずらし方を説明する基板及び部品の平面図(A) (b) The board | substrate which demonstrates how to shift the mounting position of the components in the component mounting process which the component mounting machine in one embodiment of this invention performs, and the top view of components

符号の説明Explanation of symbols

6 リフロー炉
8 基板
P 部品
T 電極
S 半田
6 Reflow furnace 8 Substrate P Component T Electrode S Solder

Claims (1)

両端部に電極を有する部品を予め半田が塗布された基板上に部品搭載機により搭載した後、その基板を一定の方向に送ってリフロー炉を通過させ、これにより基板上の半田を加熱及び冷却させて部品を基板に実装する部品実装方法であって、
基板に搭載しようとする部品のうち、基板上に搭載された場合に両端部の電極の並ぶ方向が基板のリフロー炉内での進行方向と一致し、かつ、リフロー炉内で半田が加熱されて溶融したときにチップ立ちすることが予測されるものは、その部品について予め定められている基板上の規定の搭載位置から電極の並ぶ方向にずらして部品搭載機により搭載するものであり、
リフロー炉を通過した基板を半田付け外観検査機により検査し、電極が並ぶ方向が基板のリフロー炉内での進行方向と一致していた部品が、リフロー炉を通過した後にチップ立ちが生じていた旨の情報が半田付け外観検査装置から部品搭載機に送られてきた場合には、その後、同一の基板の同一箇所に同一の部品を搭載してリフロー炉を通過させたならば、その部品はチップ立ちすると予測することを特徴とする部品実装方法。
After components with electrodes at both ends are mounted on a substrate on which solder has been applied in advance by a component mounting machine , the substrate is sent in a certain direction and passed through a reflow furnace, thereby heating and cooling the solder on the substrate A component mounting method for mounting a component on a board,
Among the components to be mounted on the board, when the electrodes are mounted on the board, the direction in which the electrodes on both ends are aligned with the direction in which the board moves in the reflow furnace, and the solder is heated in the reflow furnace. What is expected to stand when the chip is melted is to be mounted by a component mounting machine by shifting it in the direction in which the electrodes are arranged from a predetermined mounting position on the substrate that is predetermined for the component ,
The board that passed through the reflow furnace was inspected by a soldering visual inspection machine, and the parts where the direction of the electrodes aligned with the direction of travel of the board in the reflow furnace had chipped after passing through the reflow furnace. If the information to the effect is sent from the soldering appearance inspection device to the component mounting machine, then if the same component is mounted on the same location on the same board and passed through the reflow furnace, the component is A component mounting method characterized by predicting that a chip stands .
JP2008247829A 2008-09-26 2008-09-26 Component mounting method Active JP4962459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247829A JP4962459B2 (en) 2008-09-26 2008-09-26 Component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247829A JP4962459B2 (en) 2008-09-26 2008-09-26 Component mounting method

Publications (2)

Publication Number Publication Date
JP2010080695A JP2010080695A (en) 2010-04-08
JP4962459B2 true JP4962459B2 (en) 2012-06-27

Family

ID=42210803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247829A Active JP4962459B2 (en) 2008-09-26 2008-09-26 Component mounting method

Country Status (1)

Country Link
JP (1) JP4962459B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739754B2 (en) * 2011-07-08 2015-06-24 富士機械製造株式会社 Electronic circuit component rise prevention method and electronic circuit manufacturing system
WO2021220649A1 (en) * 2020-04-28 2021-11-04 パナソニックIpマネジメント株式会社 Solder pre-coat forming apparatus and mounting substrate manufacturing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245474A (en) * 1994-03-04 1995-09-19 Ibiden Co Ltd Method of mounting surface-mounting electronic part
JP3685035B2 (en) * 2000-10-25 2005-08-17 松下電器産業株式会社 Electronic component mounting system and electronic component mounting method
JP4617998B2 (en) * 2005-05-18 2011-01-26 オムロン株式会社 Failure factor analysis system

Also Published As

Publication number Publication date
JP2010080695A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP4793187B2 (en) Electronic component mounting system and electronic component mounting method
JP3656533B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP5945697B2 (en) Electronic component mounting system and electronic component mounting method
KR101163003B1 (en) Method of manufacturing printed wiring board with surface-mount component mounted thereon
WO2014076969A1 (en) Electronic-component-mounting system and electronic-component mounting method
JP4797894B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP5739754B2 (en) Electronic circuit component rise prevention method and electronic circuit manufacturing system
JP4962459B2 (en) Component mounting method
JP2006305779A (en) Method for correcting position of substrate for multi-area subdividing and screen printing machine
JP2007059652A (en) Electronic component mounting method
JP6010760B2 (en) Electronic component mounting system and electronic component mounting method
JP5927504B2 (en) Component mounting system and component mounting method
JP5927430B2 (en) Component mounting line
JP2012253249A (en) Solder mark setting method, and solder mark setting device
JP2007189101A (en) Method for mounting electronic component
JP2008066625A (en) Electronic component mounting device and electronic component packaging method
JP7337188B2 (en) Component mounting method and component mounting system
JP2014041892A (en) Screen printing system and screen printing method
US9615495B2 (en) Electronic component mounting system and electronic component mounting method
JP4743059B2 (en) Electronic component mounting system and electronic component mounting method
JP3972883B2 (en) Manufacturing method of pre-coated substrate and manufacturing method of component mounting substrate
JP5990775B2 (en) Electronic component mounting system, electronic component mounting apparatus, and electronic component mounting method
JP2005347387A (en) Process and apparatus for producing substrate mounted with component, and method for correcting abnormal supply state of bonding material
JP7365542B2 (en) Component mounting system and component mounting method
WO2021240979A1 (en) Mounting board manufacturing device and mounting board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R151 Written notification of patent or utility model registration

Ref document number: 4962459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3