JP2004220013A - ビーム発散を減少させた光スイッチ - Google Patents

ビーム発散を減少させた光スイッチ Download PDF

Info

Publication number
JP2004220013A
JP2004220013A JP2003429212A JP2003429212A JP2004220013A JP 2004220013 A JP2004220013 A JP 2004220013A JP 2003429212 A JP2003429212 A JP 2003429212A JP 2003429212 A JP2003429212 A JP 2003429212A JP 2004220013 A JP2004220013 A JP 2004220013A
Authority
JP
Japan
Prior art keywords
optical
refractive
refractive material
optical waveguide
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003429212A
Other languages
English (en)
Other versions
JP2004220013A5 (ja
Inventor
Julie E Fouquet
ジュリー・イー・フォウケット
Charles D Hoke
チャールズ・ディー・ホーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Publication of JP2004220013A publication Critical patent/JP2004220013A/ja
Publication of JP2004220013A5 publication Critical patent/JP2004220013A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35543D constellations, i.e. with switching elements and switched beams located in a volume
    • G02B6/3556NxM switch, i.e. regular arrays of switches elements of matrix type constellation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

【課題】光スイッチにおける光ビームの発散を良好に低減または除去する手段を提供する。
【解決手段】光路内に少なくとも1つのマイクロミラー(204,504,506)を有する光スイッチ、光スイッチング法、及びスイッチング式光通信システムを開示する。光信号は、この光路に沿って、第1の光導波路(210,212,214,216,518)と第2の光導波路(220,222,224,226,520)の間を伝搬する。光信号が伝搬する屈折材料(310,410,502,820)がさらに設けられる。屈折材料は空気の屈折率よりも大きな屈折率を有する。屈折材料の屈折率を光導波路の屈折率以下にすることもできる。
【選択図】図3

Description

本明細書に開示する技術は、一般的には光通信に関する。より詳しくは、本明細書に開示する技術は、一群の入力路の1つから一群の出力路の1つへ光信号を切り替えるための光スイッチに関する。
図1は、光信号を介して情報交換する簡略化した従来の光通信システム100の概念的ブロック図である。複数の光源110−1,110−2,・・・110−Mが、対応する数の入力光導波路120−1,120−2,・・・120−Mに沿って光信号を供給する。例えば、入力光導波路120は光ファイバや他の光導波構造から構成することができる。図1に示す如く、光源110と入力光導波路120の数はMであり、それは任意の正の整数である。それぞれの光源110からの光信号は、入力光導波路120により光スイッチ130へ伝送される。
光スイッチ130は、光信号を多数の出力光導波路140−1,140−2,・・・140−N(例えば、光ファイバ)へ転送する。光信号は、出力光導波路140を介して光信号を特定目的に用いる対応する数の送り先装置(または、目的装置。以下同じ)150−1,150−2,・・・150−Nに送られる。送り先装置150は、必ずしも光スイッチ(または光学的スイッチ。以下同じ)130の近くに位置するとは限らない。代わりに、光通信システム100を、出力光導波路140がそれぞれ数キロメートルの長さを有するよう構成することもできる。この構成を用いることで、光導波路140は光スイッチ130から長距離に位置する送り先装置150へ光信号を導くことができる。数Nは、出力光導波路140と送り先装置150の数を表わす。
光スイッチ130は、M個の入力光導波路120のうちの任意の1つを介して受信される光信号を、N個の出力光導波路140のうちの任意の1つに振り分けられるようにする。光スイッチ130の1例は、二つの個別入力光導波路120に接続した二つの入力路と二つの個別出力光導波路140に接続した二つの出力路を含む。この構成は、時として2行2列のマトリックスすなわち「交差接続(クロスコネクト)」光スイッチと呼ばれる。実際、交差接続光スイッチは、当該技術分野では既知のように、任意数M個の入力路と任意数N個の出力路を用いて構成することができる。幾つかの交差接続光スイッチでは入力路の数は出力路の数に等しく、すなわちM=Nである。光信号は、光スイッチ130の入力路と出力路の間の被制御光路に沿って伝搬する。可動マイクロミラーを操作して入力路からそれぞれの選択された出力路へ光信号を振り分けることで、その光路を確立することができる。
図2には、Hoenに付与された米国特許第6,215,222号(特許文献1)(発行時点でAgilent Technologies Inc.へ譲渡)に記載されているこのタイプの1つである従来技術の交差接続光スイッチ200の略図を示す。交差接続光スイッチ200は、4行4列のマトリクス光スイッチとして図示してあり、起動時に光信号を転送することができる複数のスイッチング装置202を含む。各スイッチング装置202は、光スイッチ200の入力側206の入力光導波路の1つから光スイッチ200の出力側208の出力光導波路の1つへ光信号を反射するよう配向することのできるマイクロミラー(または微小ミラー。以下同じ)204を含む。
入力側206で各入力光導波路210,212,214,216(例えば、光ファイバ)の端部を出射する光ビームは、光導波路の端部から距離が離れるにつれて拡散、すなわち「発散」することが知られている。自由空間に発射された光の場合は、光ビームは、Salehらによる文献(非特許文献1)に記載された概ね円錐パターンでもって発散するであろう。生成される円錐放射ビームの角「ビーム幅」(θ)は、円錐が全ビームエネルギの大半の割合(しばしば約86%)を含む角度としてしばしば指定される。角ビーム幅θは、λ/ωに比例しており、λ/πωにほぼ等しく、ここでλはビーム内の光の波長であり、ωはその原点におけるビーム半径(例えば、ほぼ導波路の半径)である。波長λは、λ/nに等しく、ここでλは自由空間(真空)における波長であり、nはビームが伝搬する媒体の屈折率を表わす。例えば、屈折率nがより大きくなれば、角ビーム幅θはより小さくなる。多くの光通信システムが比較的小さな径の光導波路を備え、比較的長い波長で動作するため、それらの関連する光スイッチにおけるビームの角ビーム幅θは非常に大きくなる可能性がある。
ビーム発散は、光通信システムにおいてさまざまな問題を引き起こす。例えば、大きな角ビーム幅θを有するビームは他の導波路に効率よく結合するのが困難である。ビーム発散は、発散ビームが周囲のチャンネルに溢れ出てクロストークを引き起こす場合がある交差接続光スイッチにとって特に重大である。さらにまた、大きなビームは一般により大きいミラーを必要とするが、それは製造ならびに動作させるのが難しく、かつ費用がかかるものである。より大きなミラーとそれらの配列はまた、同一のポート数の場合により長い光伝送路をもたらし、それがビーム発散に関連する問題点をさらに悪化させる。
米国特許第6,215,222号明細書 米国特許第5,848,211号明細書 Saleh、他による「Fundamentals of Photonics」第3章、題名「Beam Optics,」(John Wiley & Sons、1991年)
光スイッチのビーム発散の問題に対処する従来の手法は、発散光ビームを平行ビームへ変換するコリメータの使用に焦点を当ててきた。例えば、図2に示す光スイッチ200は各入力光導波路210,212,214,216と対応するマイクロミラー204の間に配置されたレンズ218を含むものである。入力側206のレンズ218が、入力光導波路210,212,214,216が出力する光ビームを平行光束化し、出力側208のレンズ218が、出力光導波路220,222,224,226(例えば、光ファイバ)の端部へ平行光束化ビームを再合焦させる。しかしながら、ビーム発散に関連する問題はレンズでは完全に排除することができない。これまでのところ、従来技術では、光スイッチ内のビーム発散を低減するための他の手法が十分に考慮されていない。
従来技術の上記の欠点及び他の欠点は、入力光導波路、出力光導波路、及び光路(この光路に沿って入力光導波路から出力光導波路へ光信号が伝搬する)内に配置された少なくとも1つのマイクロミラーを含む光スイッチを設けることにより対処される。少なくとも1つのマイクロミラーが、対をなす光導波路間で光信号を反射する。光スイッチは加えて、光路に配置される屈折材料を含む。屈折材料は、空気の屈折率よりも大きな屈折率を有する。
また、第1の光導波路と第2の光導波路と屈折材料を用いる光スイッチング方法を開示する。この場合、屈折材料の屈折率は、空気の屈折率よりも大きい。光信号は、屈折材料を介して第1の光導波路から伝播される。光信号は、次に、屈折材料を介して第2の光導波路へ反射される。
さらに別の実施形態では、光通信システムは、第1の光導波路、第2の光導波路、光源、光スイッチ、及び送り先装置を含む。光源は、第1の光導波路を介して光スイッチへ光信号を伝送する。光スイッチは、少なくとも1つのマイクロミラーと空気の屈折率よりも大きな屈折率を有する屈折材料を含む。屈折材料は、少なくとも1つのマイクロミラーの周囲の自由空間を充填する。光スイッチでは、光信号は屈折材料を介して伝播し、少なくとも1つのマイクロミラーにより反射され、屈折材料を介して第2の光導波路へ伝搬する。光信号は、第2の光導波路を介して送り先装置へ伝搬する。
自由空間を含む従来の光スイッチの領域を空気よりも大きな屈折率を有する屈折材料で置き換えた改良された光スイッチを設けることにより、ビーム発散はかなり低減される。ビーム発散における低減が、従来技術の光スイッチが被るクロストークの問題を低減し、或いは除去さえする。さらに、ビーム発散が低減された光スイッチは、従来技術の光スイッチにおいて必要とされるものよりも小さなマイクロミラーを組み込むことができる。かくして、本発明の光スイッチの製造ならびに動作に関するコストは低減される。
以下、本発明の種々の実施形態を添付図面を参照して説明するが、図面中の同じ参照符号は同じ構成を示している。
図3は、改良された交差接続光スイッチ300の1実施形態の1例である。光スイッチ200の構成要素に対応する光スイッチ300の構成要素は、図2を参照して前述している。同一の構成要素には同じ参照符号を付しており、ここでは説明しないことにする。図2に示した共通の構成要素に加え、光スイッチ300は従来技術の光スイッチ200の自由空間を満たす屈折材料310を含む。光信号は入力光導波路210,212,214,216から屈折材料310を介して伝搬し、起動されたマイクロミラー204により反射される。反射された光信号はさらに、屈折材料310を通り、それぞれの出力光導波路220,222,224,226へ伝搬する。
図3に示す如く、レンズ218は光導波路端部とマイクロミラー204の間に位置する。レンズ218は、レンズ218からの平行光束化光ビームが自由空間を通って進む距離を少なくするために、好ましくは、屈折材料310の外面に近接または隣接して配置される。レンズ218を、間に空隙を有して、屈折材料310近傍に配置する場合は、屈折材料310の外面は、好ましくは反射防止コーティング(図示せず)を含み、低い屈折率を有する空気中からより高い屈折率を有する屈折材料310へ向かう光信号を考慮する。また、レンズ218の外面も、好ましくは反射防止コーティング(図示せず)を含む。レンズ218を屈折材料310に隣接配置する場合には、レンズ218を、例えば、レンズ218の露出面上の反射防止コーティングと共に屈折材料310の外面に成形することができる。
屈折材料310の寸法は、レンズ218を一部、または完全に囲むよう伸長させることができる。レンズ218を完全に屈折材料310内に配置する場合には、屈折材料310はその屈折率がレンズ218の屈折率未満であるよう選択される。屈折率のこの差異により、レンズ218は光信号を適切に平行光束化させることができる。そうではなく、レンズ218をほぼ同じ屈折率を有する屈折材料310内に配置したとすれば、レンズ218はそれらの意図した機能を実行することはできないであろう。
本明細書では、用語「屈折材料」は、空気の屈折率よりも大きな屈折率を有する材料を意味するものとして用いている。屈折材料310は、自由空間中の伝搬に比べて、光スイッチ300の反対側の端部上のレンズ218間を伝搬する光信号のビーム発散を低減する。屈折材料310の屈折率は、光導波路210,212,214,216,220,222,224,226やレンズ218の屈折率未満か、好ましくは、等しいかまたはほぼ等しいものとすることができる。例えば、空気が約1.0の屈折率を有し、従来の光ファイバが約1.45乃至1.7の屈折率を有するため、屈折材料310の屈折率は、好ましくは、約1.0(空気)と1.45乃至1.7(光学ガラス)の間にある。好ましくは、その屈折率は約1.5である。屈折材料310はまた、自己導光型とすることもできる。
低水酸基(OH)含有高品質光学ガラスを、屈折材料310用に用いることができる。この種のガラスは、好ましくは光スイッチの動作波長範囲(典型的には、約1.25〜1.6μm)に亙って非常に低い吸収と散乱を有する。しかしながら、非常に低い熱膨張係数と分散係数もまた役に立つ。適切な光学ガラスはまた、独国のSchott Glassを含む様々な供給元から入手可能である。この種の光学ガラスの1つはSchottのZERODUR(登録商標)銘柄のガラスであり、このガラスもまた、熱的な不整合問題を最小化すべく比較的低い熱膨張係数を有する。
屈折材料310がガラスまたは他の固体材料である本例では、マイクロミラー204の周囲に凹部(または、くぼみ部)320を設けて、マイクロミラー204の動きを容易にすることができる。凹部320は、凹部320内でマイクロミラー204を自由に動けるようにする空気や気体や液体や他の適切な材料などの媒体で満たすことができる。凹部320内の媒体が屈折材料310の屈折率とは異なる屈折率を有する場合は、凹部320の内面は、一つの媒体から異なる屈折率を有する別の媒体への光信号の遷移を考慮する反射防止コーティング(図示せず)を含む。
代替的には、屈折材料310は、流体、またはゲルなどの半固体とすることもできる。例えば、ほぼ1.5の屈折率を有する様々な液体が様々な供給元から市販されている。屈折材料310が流体または半固体である場合は、屈折材料310を閉じ込めるのに容器(図示せず)が用いられる。この容器は、好ましくは空気と容器の外面の間の境界面における光の反射を低減する反射防止層で被覆された外面を有する。
屈折材料310として非固体材料を用いることの一つの利点は、それらを、マイクロミラー204の周囲の空間内の空気を完全に排除するよう容易に配置できる点にある。かくして、非固体材料を用いることで、凹部320は不要とすることができる。何故なら、非固体材料は一般にマイクロミラー204の移動の邪魔をしないからである。これらのタイプの屈折材料を用いることにより、(他の場合には、ビーム発散を引き起こすであろう)凹部320内の自由空間が取り除かれる。凹部320を必要としない非固体を使用することの別の利点は、内面または凹部320に通常必要となる反射防止コーティングが不要になる点にある。さらに、いくつかの液体は、発散をさらに低減する自己導光型とすることができる。
図4は、交差接続光スイッチ400の別の1実施形態を示す。光スイッチ400は、図3に示した屈折材料310に比べ増大した寸法と段付き形状(または千鳥形状)を有する屈折材料410を含む。光スイッチ400は、光信号が入力光導波路210,212,214,216の端部から出力光導波路220,222,224,226の端部まで進行する距離がほぼ等しくなるような仕方で構成されている。図4に示す実施形態に示すように、光導波路の対応する各対間のほぼ全光路に屈折材料410が設けられている。
レンズ218は、屈折材料410の形状に従って段付き構成内に同様に位置決めされており、屈折材料410に近接または隣接させ、またはその内部に配置されている。レンズ218と屈折材料410をそれら間に空隙を有して配置した場合に、屈折材料410は、好ましくはその外面に反射防止コーティングを有して構成され、低い屈折率を有する空気とより高い屈折率を有する屈折材料410の間の遷移部を介して移動する光信号を考慮する。レンズ218を屈折材料410に隣接して配置するときは、レンズ218を屈折材料410の表面に成形することができる。別の場合には、屈折材料410は、部分的に、または完全にレンズ218を囲むことができる。レンズ218を完全に囲む屈折材料410の場合、屈折材料410は、好ましくは、レンズ218の屈折率未満の屈折率を有し、これによりレンズ218が光信号を適切に平行化できるようにする。
屈折材料410の形状を、図4に示す如く段付き(または千鳥形状。以下同じ)とし、光導波路の配置も同様に段付きとなるようにすることができる。屈折材料410は従って、光信号が屈折材料410を伝播する一定の距離を維持するような形状としてあり、それによってどの入力光導波路210,212,214,216からどの出力光導波路220,222,224,226への光路長もほぼ等しくなるようにされている。
屈折材料410は、上述したSchottのZERODUR(登録商標)銘柄のガラスまたは他の固体材料などの高品質のガラスとすることができる。空気や気体や液体や他の適切な材料で満たした凹部420をマイクロミラー204の周囲に設けて、マイクロミラー204の動きを容易にすることもできる。屈折材料410が、固体または他のタイプの材料であるときは、凹部420が必要である(これがなければマイクロミラー204の動きを邪魔することになるであろう)。凹部420の内面は、好ましくは、異なる屈折率を有する媒体間での光学的な遷移を考慮する反射防止コーティング(図示せず)を含む。
代替的には、屈折材料410は容器(図示せず)内に閉じ込めた流体または半固体とすることもできる。この場合、その容器は段付きの形状とし、その外面に反射防止コーティングを有するものとすることができる。図3の実施形態と同様、非固体の屈折材料410をマイクロミラー204を覆うように延ばし、それらの周囲の空間内の空気を完全に排除することができる。かくして、流体または半固体の屈折材料410を用いることで、凹部420は不要になる。
図5は、光学ガラス製屈折材料502を含む光スイッチ500の別の実施形態の等角図である。それぞれ図3と図4に示した交差接続光スイッチ300,400とは対照的に、光スイッチ500はマイクロミラー204のマトリクス配置に置き換わる二つのマイクロミラーアレイを含む。第1のマイクロミラーアレイ504と第2のマイクロミラーアレイ506は、光学ガラス屈折材料502の両側に配置されている。各マイクロミラーアレイ504,506は、複数のマイクロミラー(図示せず)を含む。マイクロミラーアレイ504,506のマイクロミラーは、マイクロミラーの向きを制御して光信号が選択された光路に沿って反射されるよう三次元的に操向可能にされている。
第1のファイバアレイ位置決め器508と第1のレンズアレイ510が、光学ガラス屈折材料502の一方の側に配置されている。第2のレンズアレイ512と第2のファイバアレイ位置決め器514が、光学ガラス屈折材料502の反対側に配置されている。各レンズアレイ510,512は、複数のレンズ516を含む。ファイバアレイ位置決め器508,514は、光ファイバをレンズアレイ510,512内の個々のレンズ516に整列させて安定的に位置決めする。互いに光通信する例示的な光ファイバが、518,520に示されている。
例えば、光スイッチ500のこれら及び他の構成要素を、Yang他に付与された米国特許第5,848,211号(発行時点でHewlett-Packard Companyに譲渡)に記載されているように、取り付け部材に正確に取り付けることができる。さらに、アパーチャ付き位置決め器の使用が、「Precisely Configuring Optical Fibers And Other Optical Elements Using An Apertured Wafer Positioner」と題する2001年10月1日出願の米国特許出願第09/968,378号に記載されている。光学ガラス屈折材料502にはまた、その表面の少なくとも一つに反射防止コーティング522を設けることもできる。
一つの光ファイバ518だけを図5と図6の第1のファイバアレイ位置決め器508内に図示したが、第1のファイバアレイ位置決め器508は通常、第1のレンズアレイ510内の各特定のレンズ516に対応する光ファイバ(または他の光導波路)を含む。同様に、第2のファイバアレイ位置決め器514は通常、第2のレンズアレイ512内の特定の各レンズ516に対応する光ファイバを含む。反射防止コーティングをファイバの端面に設けることもできるが、それらの例が518,520に示されている。
光信号を光ファイバ518から光ファイバ520へ導く光スイッチ500の動作を、以下に説明する。光信号は、第1のファイバアレイ位置決め器508内に位置する光ファイバ518から入射する。光信号は、光ファイバ518に対応する第1のレンズアレイ510内のレンズ516へ向け自由空間内へ入射する。代替的には、自由空間に代えて、第1のレンズアレイ510のレンズ516の屈折率と異なる屈折率を有する屈折材料を、第1のファイバアレイ位置決め器508と第1のレンズアレイ510の間に配置することができる。
図5の破線で示すように、光ファイバ518に対応するレンズ516により平行光束化された光信号は光学ガラス屈折材料502を通過する。光信号は、光ファイバ518に対応する第1のマイクロミラーアレイ504のマイクロミラーにより反射され、光学ガラス屈折材料502を介して伝搬し戻される。光信号は、次に、第2のマイクロミラーアレイ506のマイクロミラーの一つにより反射されて再び光学ガラス屈折材料502を介して戻される。光信号は、光ファイバ520に対応する第2のレンズアレイ512のレンズ516を通って伝搬する。第2のレンズアレイ512のレンズ516は、第2のファイバアレイ位置決め器514内に配置された受光ファイバ520の端部にビームを再合焦させる。
図5では、自由空間を通る光伝送路の長さを最小化すべく、マイクロミラーアレイ504,506及び/またはレンズアレイ510,512を、好ましくは光学ガラス屈折材料502の出来る限り近くに設けている。光学ガラス屈折材料502とマイクロミラーアレイ504,506とレンズアレイ510,512とファイバアレイ位置決め器508,514の間の光伝送路内の自由空間の大部分を、ビーム発散をさらに低減すべく適切な屈折材料で満たすことができる。レンズアレイ510,512のレンズを囲むどんな屈折材料も、レンズの屈折率とは異なる屈折率を有していて、レンズが適切に平行光束化と合焦を行なうことができるようにしている。
代替構成では、レンズアレイ510,512を、光学ガラス屈折材料502の表面の真上または真下に形成することができる。レンズアレイ510,512を完全に光学ガラス屈折材料502内に配置するときは、レンズアレイ510,512のレンズの屈折率を光学ガラス屈折材料502の屈折率とは異なるようにする。この取り付け構成は、熱ドリフトの影響を最小化するのに役立ち、かつまた光スイッチ500をよりコンパクトにする。
図6に示す如く、光スイッチ600の1代替実施形態が提供される。この実施形態は図5の実施形態の簡易版であり、レンズアレイ510,512無しで形成している点を除いて、同じ構成を有する。この実施形態はレンズアレイ510,512を欠くものであるが、それは光学ガラス屈折材料502を通過するビームの伝搬により、ビームの発散の大半が低減されるからである。
図7は、光スイッチ700の別の実施形態を示し、図5と図6に示した実施形態の簡易版である。この構成では、光ファイバ518,520の端部は、図5と図6に示したファイバアレイ位置決め器508,514を用いることなく光学ガラス屈折材料502に隣接配置される。光ファイバ518,520の端部は、直接光学ガラス屈折材料502に取り付けることができる。マイクロミラーアレイ504,506とファイバ518,520を振動から切り離す場合には、光スイッチ700は許容範囲内で位置決め精度を達成する光スイッチにとって通常必要となる能動的な位置決め制御無しで動作可能である。
2002年3月21日出願の「Optical Switching Fabric With an Optical to Electrical Converter in the Output Plane」と題する同時係属米国特許出願第10/104,193号に記載された技術を、光スイッチ700と組み合わせて用い、能動的な位置決め制御に対する要件を最小化または除去することができる。能動的な位置決め制御はこの状況下では不要となる場合がある。何故なら、終端スイッチにおいて出力は、直径寸法が約1μmのシングルモード光導波路コアではなく、約35μmの直径を有する目標をヒットする必要があるからである。必要に応じて、ある程度一緒にドリフトする異なるチャンネルにより制御をさらに簡単化することもできる。
図8には、光スイッチ800のさらに別の実施形態が示されている。図5乃至図7に示した光学ガラス屈折材料502は、流体屈折材料820を収容した透明容器810で置換されている。流体屈折材料820は、液体や半流動体やゲルや気体やそれらの任意の組み合わせにより構成することができる。図5乃至図7に示した光学ガラス屈折材料502の屈折材料の幾つかまたはその全てを、適切な高屈折率を有する液体や半流動体ゲルや気体や他の材料で置き換えることができる。
スイッチ300,400,500,600,700,及び800のうちの任意のもの、または、全てを、図9に示す如く、改良された光通信システム900を提供するのに利用することができる。改良された通信システム900は、従来の光スイッチ130が改良された光スイッチ300,400,500,600,700,または、800のうちの一つで置き換えられている点を除き、図1に示した通信システム100と実質的に同じである。通信システム900にはさらに、スイッチングが要求される様々な他の位置に改良された光スイッチを設けることができる。光スイッチ300,400,500,600,700,及び800は、既存の光学システム内の任意の従来の光スイッチまたはスイッチ群と置換することができる。光スイッチ300,400,500,600,700,及び800は、ビーム発散の低減に役立ち、それによって入力光導波路からの光信号を、それらの関連する出力光導波路へより効率的に結合させることができる。さらに、改良された光スイッチの低減したビーム発散が光スイッチ内部のクロストークを低減する。従って、スイッチング損失は減少する。光スイッチ300,400,500,600,700,及び800にはまた、より小さなマイクロミラーを設けることができ、これにより、速度の増大とコストの低減が可能になる。
図10は、光信号を一つの光導波路から別の光導波路へ光学的にスイッチングさせるための方法の1実施形態を示すフローチャートである。ブロック1000において、第1の光導波路と第2の光導波路と屈折材料を設ける。屈折材料には、空気の屈折率よりも大きな屈折率が提供される。ブロック1002において、光信号を第1の光導波路から屈折材料を介して伝播させる。ブロック1004において、光信号を、屈折材料を介して第2の光導波路へ反射させる。
図11は、光学的スイッチング方法の別の実施形態を示すフローチャートである。ブロック1100において、第1の光導波路と第2の光導波路と光学ガラス屈折材料を設ける。ブロック1102において、反射防止膜を光学ガラス屈折材料の表面に貼り付ける。ブロック1104において、光信号を第1の光導波路から光学ガラス屈折材料を介して伝播させる。ブロック1106において、光信号を、屈折材料を介して第2の光導波路へ反射させる。
本発明は、光路内に少なくとも1つのマイクロミラー(204,504,506)を有する光スイッチ、光スイッチング法、及びスイッチング式光通信システムに関する。光信号は、この光路に沿って、第1の光導波路(210,212,214,216,518)と第2の光導波路(220,222,224,226,520)の間を伝搬する。光信号が伝搬する屈折材料(310,410,502,820)がさらに設けられる。屈折材料は空気の屈折率よりも大きな屈折率を有する。屈折材料の屈折率を光導波路の屈折率以下にすることもできる。
上記実施形態及び特にどの「好適な」実施形態も、本発明の様々な局面を明瞭に理解できるようにするための、本明細書に記載した様々な実施の単なる例であることを強調しておく。当業者は、特許請求の範囲の適切な解釈によってのみ規定される保護範囲から実質的に逸脱することなく、これらの実施形態を変更することができよう。
従来の光通信システムの簡略化したブロック図である。 図1に示した光通信システムにおいて使用される従来の交差接続光スイッチの概略図である。 本発明による交差接続光スイッチの1実施形態の略図である。 本発明による交差接続光スイッチの別の実施形態の略図である。 本発明による光スイッチの1実施形態の等角図である。 本発明による光スイッチの別の実施形態の等角図である。 本発明による光スイッチのさらに別の実施形態の等角図である。 本発明による光スイッチのさらに別の実施形態の等角図である。 図3乃至図8に示したスイッチのうちの任意の1つを含む光通信システムの略ブロック図である。 本発明による光学的スイッチング方法の1実施形態のフローチャートである。 本発明による光学的スイッチング方法の別の実施形態のフローチャートである。
符号の説明
210,212,214,216,518 入力光導波路(第1の光導波路)
218,516 レンズ
220,222,224,226,520 出力光導波路(第2の光導波路)
204,504,506 マイクロミラー
300,400,500,600,700,800 光スイッチ

Claims (10)

  1. 光スイッチであって、
    入力光導波路(210,212,214,216,518)と、
    出力光導波路(220,222,224,226,520)と、
    光信号が前記入力光導波路から前記出力光導波路へ伝搬する光路内の少なくとも1つのマイクロミラー(204,504,506)と、
    前記光信号が伝搬する光路内に設けられた、空気の屈折率よりも大きな屈折率を有する屈折材料(310,410,502,820)
    を備える、光スイッチ。
  2. 前記屈折材料(310,410,502,820)の屈折率は、前記入力光導波路(210,212,214,216,518)と前記出力光導波路(220,222,224,226,520)のうちの一方の屈折率にほぼ等しい、請求項1に記載の光スイッチ。
  3. 前記屈折材料(310,410,502,820)の屈折率は、1.0と1.7の間にある、請求項1に記載の光スイッチ。
  4. 前記屈折材料(310,410,502,820)の屈折率は、約1.5である、請求項3に記載の光スイッチ。
  5. 前記屈折材料(310,410,502,820)は前記少なくとも1つのマイクロミラー(204,504,506)を浸漬する液体から構成され、該液体がほぼ1.5の屈折率を有する、請求項1に記載の光スイッチ。
  6. 前記屈折材料(310,410,502,820)は光学ガラスを備え、該光学ガラスの表面は反射防止コーティング(522)で被覆される、請求項1に記載の光スイッチ。
  7. 前記光導波路と前記屈折材料の間に配置された複数のレンズ(218,516)をさらに備える、請求項1に記載の光スイッチ。
  8. 光スイッチング方法であって、
    第1の光導波路、第2の光導波路、及び、空気の屈折率よりも大きな屈折率を有する屈折材料を設けるステップ(1000)と、
    前記屈折材料を介して前記第1の光導波路から光信号を伝播させるステップ(1002)と、
    前記屈折材料を介して前記光信号を前記第2の光導波路へ反射させるステップ(1004)
    を含む、方法。
  9. 前記反射させるステップ(1004)が、少なくとも1つのマイクロミラーを3次元的に配向させるステップを含む、請求項8に記載の方法。
  10. 光通信システムにおいて、
    第1の光導波路(120,210,212,214,216,518)と、
    第2の光導波路(140,220,222,224,226,520)と、
    第1の光導波路を介して光信号を伝送するための光源(110)と、
    少なくとも1つのマイクロミラー(204,504,506)、及び空気の屈折率よりも大きな屈折率を有する屈折材料(310,410,502,820)を含む光スイッチ(300,400,500,600,700,800)であって、前記屈折材料が前記少なくとも1つのマイクロミラー周囲の自由空間を満たし、それによって前記光信号を前記屈折材料を介して前記第1の光導波路から伝播させて、前記少なくとも1つのマイクロミラーにより反射させ、前記屈折材料を介して、前記第2の光導波路へ伝搬させることからなる、光スイッチと、
    前記第2の光導波路から前記光信号を受信するための送り先装置(150)
    を備える、システム
JP2003429212A 2003-01-10 2003-12-25 ビーム発散を減少させた光スイッチ Withdrawn JP2004220013A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/339,922 US6912335B2 (en) 2003-01-10 2003-01-10 Optical switch with reduced beam divergence

Publications (2)

Publication Number Publication Date
JP2004220013A true JP2004220013A (ja) 2004-08-05
JP2004220013A5 JP2004220013A5 (ja) 2007-02-08

Family

ID=32711197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429212A Withdrawn JP2004220013A (ja) 2003-01-10 2003-12-25 ビーム発散を減少させた光スイッチ

Country Status (2)

Country Link
US (1) US6912335B2 (ja)
JP (1) JP2004220013A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108345068A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 光开关和光交换系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912335B2 (en) * 2003-01-10 2005-06-28 Agilent Technologies, Inc. Optical switch with reduced beam divergence
US20060093361A1 (en) * 2004-11-03 2006-05-04 Fenwick David M Optical bus system
US7400790B2 (en) 2004-11-03 2008-07-15 Hewlett-Packard Development Company, L.P. Optical connections and methods of forming optical connections
US7231106B2 (en) * 2005-09-30 2007-06-12 Lucent Technologies Inc. Apparatus for directing an optical signal from an input fiber to an output fiber within a high index host
US10197971B1 (en) * 2017-08-02 2019-02-05 International Business Machines Corporation Integrated optical circuit for holographic information processing
CN117134827A (zh) * 2022-05-20 2023-11-28 华为技术有限公司 光通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848211A (en) 1996-08-28 1998-12-08 Hewlett-Packard Company Photonics module having its components mounted on a single mounting member
US6215222B1 (en) 1999-03-30 2001-04-10 Agilent Technologies, Inc. Optical cross-connect switch using electrostatic surface actuators
JP2002258081A (ja) * 2001-02-28 2002-09-11 Fujitsu Ltd 光配線基板、光配線基板の製造方法及び多層光配線
US6567206B1 (en) * 2001-12-20 2003-05-20 St. Clair Intellectual Property Consultants, Inc. Multi-stage optical switching device
US6912335B2 (en) * 2003-01-10 2005-06-28 Agilent Technologies, Inc. Optical switch with reduced beam divergence

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108345068A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 光开关和光交换系统

Also Published As

Publication number Publication date
US20040136644A1 (en) 2004-07-15
US6912335B2 (en) 2005-06-28

Similar Documents

Publication Publication Date Title
JP4476140B2 (ja) 波長選択スイッチ
US5943454A (en) Freespace optical bypass-exchange switch
US6618519B2 (en) Switch and variable optical attenuator for single or arrayed optical channels
US6603894B1 (en) MEMS mirror arrays and external lens system in an optical switch
US6718114B2 (en) Variable optical attenuator of optical path conversion
JPH11287962A (ja) スイッチング素子
US6483961B1 (en) Dual refraction index collimator for an optical switch
US11199665B2 (en) Optical device for redirecting optical signals
CN113189709A (zh) 一种用于光纤阵列的输入光信号发生装置及光刻系统
US6912335B2 (en) Optical switch with reduced beam divergence
US9507093B2 (en) Polarization maintaining optical rotary joint
US20020181876A1 (en) Reconfigurable optical add/drop module
US6678438B2 (en) Apparatus and method for switching an optical path
US6785439B2 (en) Switching using three-dimensional rewriteable waveguide in photosensitive media
JP6411899B2 (ja) マルチコアファイバ接続装置およびシステム
US20020172454A1 (en) Reconfigurable optical add/drop module
US6970615B1 (en) Compact high-stability optical switches
CN112444915B (zh) 一种光开关以及通过光开关的光传输方法
US11515941B2 (en) Free space optical communication terminal with dispersive optical component
JP4400317B2 (ja) 光部品
US6829403B2 (en) Optical switch having an array of optical fibers with respective, removable disposed mirrors and a lens disposed away from an end surface of each corresponding optical fiber
Suzuki et al. Experimental Study of Adjustable Single-Mode Optical-Coupling Using Movable Micro-Mirror Array
US20030048983A1 (en) Fiber optic switching system
JP2002090663A (ja) 光ファイバ交換方法及び装置
JPH11326795A (ja) 光スイッチ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070320

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070427